JP2007051708A - Fluid dynamic bearing unit and spindle motor using the same - Google Patents

Fluid dynamic bearing unit and spindle motor using the same Download PDF

Info

Publication number
JP2007051708A
JP2007051708A JP2005237647A JP2005237647A JP2007051708A JP 2007051708 A JP2007051708 A JP 2007051708A JP 2005237647 A JP2005237647 A JP 2005237647A JP 2005237647 A JP2005237647 A JP 2005237647A JP 2007051708 A JP2007051708 A JP 2007051708A
Authority
JP
Japan
Prior art keywords
shaft
bearing
dynamic pressure
bearing unit
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005237647A
Other languages
Japanese (ja)
Other versions
JP4587220B2 (en
JP2007051708A5 (en
Inventor
Katsutoshi Arai
勝敏 新居
Hideo Yomo
英雄 四方
Tadashi Akahori
忠 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Resonac Corp
Original Assignee
Minebea Co Ltd
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd, Hitachi Powdered Metals Co Ltd filed Critical Minebea Co Ltd
Priority to JP2005237647A priority Critical patent/JP4587220B2/en
Publication of JP2007051708A publication Critical patent/JP2007051708A/en
Publication of JP2007051708A5 publication Critical patent/JP2007051708A5/ja
Application granted granted Critical
Publication of JP4587220B2 publication Critical patent/JP4587220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-performance fluid dynamic bearing unit showing superior bearing rigidity at a high-temperature condition, and a spindle motor using the fluid dynamic bearing unit, in the fluid dynamic bearing unit used for 1.8 inch, 2.5 inch, and 3.5 inch magnetic recording disk drives. <P>SOLUTION: Separated grooves 74 extending along an axial direction are formed on an internal peripheral surface 73 of a fluid dynamic bearing 70, and arc surfaces 75, which are offset to an axis center P and reduce their diameter in the internal peripheral side in a rotational direction of a shaft 40, are respectively formed between the separated grooves 74. A plurality of spiral grooves 76 extending and bending in the internal peripheral side in a rotational direction of the shaft 40 are formed on an upper end face 72 opposite to a thrust washer 42. Five separated grooves 74 and arc surfaces 75 are respectively formed, a width of the separated groove 74 is set up at a length equivalent to 8° to 20° as an angle θ in the peripheral direction around the axis center P, and the maximum depth of the separated grooves 74 is set up to be 0.05 to 0.15 mm. Eight to twelve spiral grooves 76 are formed, and the maximum depth of the spiral grooves is set up to be 8 to 15 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、潤滑油等の潤滑用流体に動圧を発生させて高い軸受剛性を得ることのできる動圧軸受ユニットおよびこれを用いたスピンドルモータに関する。本発明の動圧軸受ユニットは、特に、小型・薄型の磁気記録ディスク駆動装置用であって、駆動するHD(ハードディスク)等の磁気記録ディスクの径が1.8インチ、2.5インチまたは3.5インチのタイプの動圧軸受ユニットおよびこれを用いたスピンドルモータに関する。   The present invention relates to a dynamic pressure bearing unit capable of obtaining a high bearing rigidity by generating dynamic pressure in a lubricating fluid such as lubricating oil, and a spindle motor using the dynamic pressure bearing unit. The hydrodynamic bearing unit of the present invention is particularly for a small and thin magnetic recording disk drive device, and the diameter of a magnetic recording disk such as an HD (hard disk) to be driven is 1.8 inches, 2.5 inches or 3 inches. The present invention relates to a hydrodynamic bearing unit of a 5-inch type and a spindle motor using the same.

例えば、磁気ディスクあるいはCD−ROM、DVD−ROM等の光ディスクを駆動してこれらディスクに情報の読み書きを行うディスク駆動装置や、レーザビームプリンタ等の各種情報機器には、駆動源としてスピンドルモータが採用されている。この種のスピンドルモータの軸受としてはボールベアリングが用いられていたが、回転精度、高速性、静音性といった面では限界があり、これらの特性に優れた軸受として、非接触タイプの動圧軸受が用いられるようになってきた。動圧軸受とは、軸と軸受との間の微小隙間に潤滑油による油膜を形成し、その油膜を、軸が回転することにより高圧化させて軸を高い剛性で支持する軸受であり、その動圧は、軸か、軸受のいずれか一方に形成される凹所によって効果的に発生する。   For example, a spindle motor is used as a drive source for a disk drive device that drives a magnetic disk or an optical disk such as a CD-ROM or DVD-ROM and reads / writes information from / to these disks, and various information devices such as a laser beam printer. Has been. Ball bearings have been used as bearings for this type of spindle motor, but there are limitations in terms of rotational accuracy, high speed, and quietness. Non-contact type hydrodynamic bearings are excellent for these characteristics. It has come to be used. A hydrodynamic bearing is a bearing that supports a shaft with high rigidity by forming an oil film with lubricating oil in a minute gap between the shaft and increasing the pressure of the oil film by rotating the shaft. The dynamic pressure is effectively generated by a recess formed in either the shaft or the bearing.

そのような凹所は、主に、ラジアル荷重を支持するラジアル動圧凹所と、スラスト荷重を支持するスラスト動圧凹所とに分けられる。ラジアル動圧凹所はラジアル受け面(軸の外周面か、軸受の内周面のいずれか一方)に形成され、形状としては、ヘリングボーン状の溝や、外径と非同心の複数(例えば3つ)の円弧面などが挙げられる。溝は、軸の回転に伴って油膜がより高圧になるように形状や深さが工夫され、また、円弧面は、軸との間の微小隙間が、軸の回転方向に向かうにしたがい狭小となって断面クサビ状になるように形成されている。一方、スラスト荷重を支持するスラスト動圧凹所は、スラスト受け面(軸の端面あるいは軸に設けられたフランジ状のスラストワッシャと、軸受端面との互いの対向面のうちの一方の面)に形成され、形状としては、ヘリングボーン状、あるいはスパイラル状の溝が挙げられる(特許文献1,2参照)。   Such a recess is mainly divided into a radial dynamic pressure recess that supports a radial load and a thrust dynamic pressure recess that supports a thrust load. The radial dynamic pressure recess is formed on a radial receiving surface (either the outer peripheral surface of the shaft or the inner peripheral surface of the bearing). The shape is a herringbone groove or a plurality of non-concentric outer diameters (for example, 3) arcuate surfaces. The groove is devised in shape and depth so that the oil film becomes higher pressure with the rotation of the shaft, and the arc surface is narrow as the minute gap between the groove and the shaft goes in the rotation direction of the shaft. The cross section is wedge-shaped. On the other hand, the thrust dynamic pressure recess supporting the thrust load is on the thrust receiving surface (the end surface of the shaft or one of the opposing surfaces of the flange-shaped thrust washer provided on the shaft and the bearing end surface). As the formed shape, a herringbone shape or a spiral groove can be cited (see Patent Documents 1 and 2).

特開2001−53683号公報JP 2001-53683 A 特開2002−31223号公報JP 2002-31233 A

上記の溝等によるラジアル動圧凹所やスラスト動圧凹所は、一般に、ケミカルエッチングや電解放電加工等の方法によって形成されるが、特に軸受が焼結材からなる場合には、塑性加工によって形成される。   Radial dynamic pressure depressions and thrust dynamic depressions due to the above-mentioned grooves are generally formed by a method such as chemical etching or electrolytic discharge machining, but especially when the bearing is made of a sintered material, It is formed.

ところで、近年のノート型パーソナルコンピュータ(PC)に搭載されるハードディスク駆動用のスピンドルモータは、小型化・薄型化とともに、回転の高速化が顕著である。小型化・薄型化に関しては、ハードディスクの径が3.5インチから2.5インチ、さらには1.8インチ程度と小径化が進んでおり、これに伴ってディスク駆動装置全体の厚さは、12.5mm程度から5mm前後と薄くなってきている。これに伴い、軸受は、内径φ5mmからφ2mm程度、軸方向長さが2mm程度と、小型化を余儀なくされている。また、3.5インチのハードディスクについても、ディスクが1枚の薄型のものについては、同様に軸受の小型化の要求が為されている。軸受の小型化は、軸受剛性の低下や、動圧凹所を上記の方法で形成することが困難になるといった問題を招く。   By the way, a spindle motor for driving a hard disk mounted on a notebook personal computer (PC) in recent years is notable for reduction in size and thickness, and speeding up of rotation. Regarding miniaturization and thinning, the diameter of the hard disk has been reduced from 3.5 inches to 2.5 inches, and further about 1.8 inches, and along with this, the thickness of the entire disk drive device is It has become thinner from about 12.5 mm to around 5 mm. Along with this, the bearings are forced to be downsized with an inner diameter of about 5 mm to about 2 mm and an axial length of about 2 mm. In addition, as for a 3.5-inch hard disk, there is a similar demand for downsizing of a bearing for a thin disk having one disk. The downsizing of the bearing causes problems such as a decrease in bearing rigidity and difficulty in forming the dynamic pressure recess by the above method.

一方、高速化に関しては、軸の回転数が4200rpmから5400rpm、さらには7200rpmと回転数が増大している。このような高速化は、軸受部分の温度の上昇を招き、例えば、従来では60℃前後だったものが、80℃を超えるまでに高温となる。軸受部分の高温化は潤滑油の粘度を低下させることになるため、特にスラスト受け面においてスラスト動圧による軸の浮上量が不足して金属接触が起こり、軸受剛性や回転精度を低下させる要因となる。   On the other hand, for speeding up, the rotational speed of the shaft is increasing from 4200 rpm to 5400 rpm, and further to 7200 rpm. Such speeding-up causes an increase in the temperature of the bearing portion. For example, what was conventionally about 60 ° C. becomes a high temperature before it exceeds 80 ° C. Since the higher temperature of the bearing part will lower the viscosity of the lubricating oil, metal contact will occur due to insufficient axial lift due to the thrust dynamic pressure, especially on the thrust receiving surface. Become.

このような高温化や、上記のような小型化・薄型化による軸受剛性の低下は、NRRO値(再現性のない振動成分)の増大を惹起し、ひいてはディスクに対する情報の読み書きに支障を来すおそれがある。さらには、ディスクに対する記録の高密度化の観点から、軸振れが1μm程度、あるいはそれ以下のものが要求される場合が多くなってきた。   Such a high temperature and a decrease in bearing rigidity due to the reduction in size and thickness as described above cause an increase in the NRRO value (vibration component having no reproducibility), which in turn hinders the reading and writing of information to and from the disk. There is a fear. Furthermore, from the viewpoint of increasing the recording density on the disk, there has been an increasing demand for a shaft runout of about 1 μm or less.

よって本発明は、特に、駆動する磁気記録ディスクの径が1.8インチまたは2.5インチと小型・薄型の磁気記録ディスク駆動装置用、および3.5インチ1枚ディスクの薄型磁気記録ディスク駆動装置用であって、高温状況下においても優れた軸受剛性を発揮する高性能な動圧軸受ユニットと、このような動圧軸受ユニットを用いたスピンドルモータを提供することを目的としている。   Therefore, the present invention is particularly suitable for a small and thin magnetic recording disk drive device having a diameter of 1.8 or 2.5 inches to be driven, and for driving a thin magnetic recording disk of 3.5 inch single disk. It is an object of the present invention to provide a high-performance dynamic pressure bearing unit that is excellent in bearing rigidity even under high temperature conditions, and a spindle motor using such a dynamic pressure bearing unit.

本発明者は、3.5インチ型以下の磁気記録ディスク装置、特に、1.8インチ型または2.5インチ型の磁気記録ディスク駆動装置用の動圧軸受に形成する上記ラジアル動圧凹所やスラスト動圧凹所の形状、数、寸法等の条件について鋭意研究したところ、まず、ラジアル動圧凹所としては、上記円弧面が好適で、かつ、その数が5つである場合に、最も高い軸受剛性を得ることができることを見出した。また、これら円弧面の間に、潤滑油を供給するための溝として、軸方向に延びて内周面を周方向に分離させて各円弧面を隔絶させる分離溝を、周方向を5等分する位置に形成し、その幅は、当該軸受の軸心を中心とした周方向への角度で8〜15°に相当する長さを有するとともに、その最大深さは0.05〜0.15mmが好適であることを見出した。一方、スラスト動圧凹所としては、上記スパイラル溝が好適であって、その本数が8〜12本、最大深さが0.05〜0.15μmである場合に、80℃前後の高温状況下においてスラスト荷重を支持する能力が最も高くなることを見出した。なお、1.8インチ型または2.5インチ型の磁気記録ディスク駆動装置用の動圧軸受においては、支持する軸の径はφ2〜φ3mmが好適とされる。   The present inventor has disclosed the above-mentioned radial dynamic pressure recess formed in a dynamic pressure bearing for a magnetic recording disk device of 3.5 inch type or less, in particular, a 1.8 inch type or 2.5 inch type magnetic recording disk drive device. As a result of diligent research on the conditions such as the shape, number, and dimensions of the thrust dynamic pressure depression, first, as the radial dynamic pressure depression, when the arc surface is suitable and the number is five, It has been found that the highest bearing rigidity can be obtained. Further, as a groove for supplying lubricating oil between the arc surfaces, a separation groove extending in the axial direction and separating the inner circumferential surface in the circumferential direction to isolate each arc surface is divided into five equal parts in the circumferential direction. The width thereof has a length corresponding to an angle of 8 to 15 degrees in the circumferential direction around the axis of the bearing, and the maximum depth is 0.05 to 0.15 mm. Has been found to be suitable. On the other hand, as the thrust dynamic pressure recess, the spiral groove is suitable, and when the number of the grooves is 8 to 12 and the maximum depth is 0.05 to 0.15 μm, the temperature is about 80 ° C. It was found that the ability to support the thrust load was the highest. In a dynamic pressure bearing for a 1.8 inch type or 2.5 inch type magnetic recording disk drive, the diameter of the shaft to be supported is preferably φ2 to φ3 mm.

本発明の動圧軸受ユニットは上記知見を基になされたものであって、有底筒状のハウジング内に、スラストワッシャを有する軸を回転自在に支持する円筒状の動圧軸受が設けられた1.8インチ型または2.5インチ型記録ディスク駆動装置用、および3.5インチ1枚ディスクの薄型磁気記録ディスク駆動装置用の動圧軸受ユニットであって、動圧軸受は、軸が挿入される軸孔の内周面に、軸方向に沿って延び、該内周面を周方向に分離させる複数の分離溝が、周方向に等間隔をおいて形成され、これら分離溝の間の内周面に、外径と非同心で、かつ、一周方向に向かうにしたがって内周側に縮径していく円弧面が形成されており、一方、スラストワッシャに対向する動圧軸受の端面には、一周方向に向かうにしたがって内周側に湾曲しながら延びる複数のスパイラル溝が形成されており、分離溝は5つ形成され、これに伴い円弧面も5つ形成され、分離溝は、幅が、当該軸受の軸心を中心とした周方向への角度で8〜15°に相当する長さを有し、また、最大深さが0.05〜0.15mmとされ、スパイラル溝は8〜12本形成され、その最大深さが8〜15μmとされており、さらに、軸の径がφ2〜φ3mmであることを特徴としている。   The hydrodynamic bearing unit of the present invention is based on the above knowledge, and a cylindrical hydrodynamic bearing that rotatably supports a shaft having a thrust washer is provided in a bottomed cylindrical housing. A hydrodynamic bearing unit for a 1.8-inch or 2.5-inch recording disk drive and a 3.5-inch single-disk thin magnetic recording disk drive, the shaft being inserted into the hydrodynamic bearing A plurality of separation grooves extending along the axial direction and separating the inner circumferential surface in the circumferential direction are formed at equal intervals in the circumferential direction on the inner circumferential surface of the shaft hole. A circular arc surface is formed on the inner peripheral surface that is non-concentric with the outer diameter and is reduced in diameter toward the inner peripheral side in the circumferential direction. On the other hand, on the end surface of the hydrodynamic bearing facing the thrust washer Does not curve toward the inner circumference as it goes around the circumference. A plurality of spiral grooves are formed, and five arcuate surfaces are formed along with this, and the separation grooves have a width in the circumferential direction centered on the axis of the bearing. The maximum depth is 0.05 to 0.15 mm, 8 to 12 spiral grooves are formed, and the maximum depth is 8 to 15 μm. Furthermore, the diameter of the shaft is φ2 to φ3 mm.

上記の各数値条件について根拠を述べると、まず、ラジアル動圧凹所としての円弧面の数は、上記のように5つの場合が、最も高い軸受剛性を得られるからである。上記分離溝内には潤滑油が貯留し、その潤滑油は軸の回転に巻き込まれて円弧面と軸との間の微小隙間に供給されて油膜を形成し、この油膜に動圧が発生する。分離溝の幅が上記角度で8°を下回ると、動圧は高くなるものの、潤滑油が巻き込まれにくくなって供給が不足がちになり、逆に20°を超えると動圧が低くなって軸受剛性の低減を招く。したがって、この角度を8〜20°とした。なお、分離溝の幅の上限を15°以下にすると、十分な軸受剛性が得られるのでより好ましい。   The grounds for each of the above numerical conditions will be described. First, when the number of arcuate surfaces as radial dynamic pressure recesses is five as described above, the highest bearing rigidity can be obtained. Lubricating oil is stored in the separation groove, and the lubricating oil is caught in the rotation of the shaft and supplied to a minute gap between the arc surface and the shaft to form an oil film, and dynamic pressure is generated in the oil film. . When the width of the separation groove is less than 8 ° at the above angle, the dynamic pressure becomes high, but the lubricating oil becomes difficult to be caught and the supply tends to be insufficient. Conversely, when the width exceeds 20 °, the dynamic pressure becomes low and the bearing becomes low. Reduces rigidity. Therefore, this angle was set to 8 to 20 °. In addition, it is more preferable that the upper limit of the width of the separation groove is 15 ° or less because sufficient bearing rigidity is obtained.

また、分離溝の最大深さが0.05mmを下回ると分離溝の部分で負圧が発生し、また、空気を巻き込んで気泡が生じるおそれもある。気泡の発生は軸受剛性を低減させるばかりでなく、上記NRRO値が増大しやすい。一方、分離溝の最大深さが0.15mmを超えると、軸受自体の強度低下につながり、例えば当該動圧軸受をハウジング内に圧入すると分離溝に応力が集中して変形を招くおそれがある。したがって、分離溝の最大深さを0.05〜0.15mmとした。   Further, if the maximum depth of the separation groove is less than 0.05 mm, a negative pressure is generated in the separation groove portion, and air may be entrained to generate bubbles. The generation of bubbles not only reduces the bearing rigidity but also tends to increase the NRRO value. On the other hand, if the maximum depth of the separation groove exceeds 0.15 mm, the strength of the bearing itself is reduced. For example, when the dynamic pressure bearing is press-fitted into the housing, stress may concentrate on the separation groove and cause deformation. Therefore, the maximum depth of the separation groove is set to 0.05 to 0.15 mm.

スラスト動圧凹所としての上記スパイラル溝の本数は、8本から、スラスト荷重支持能力を示す負荷容量が満足するレベルに達し、多くなるにしたがって荷重支持能力は高まる。しかしながら、1.8インチ型や2.5インチ型の磁気記録ディスク駆動装置用、および3.5インチ1枚ディスクの薄型磁気記録ディスク駆動装置用の動圧軸受においては、軸孔の内径がφ2〜φ3mm、外径がφ5〜φ6mmといったサイズが標準的であるから、このような軸受の端面に形成するスパイラル溝の数は、その端面の面積で制限を受け、12本を超える数を形成すると溝幅が0.3mm前後となるため、加工が困難となる。また、近年のより一層の小型化要求に伴い、軸受の大きさも小さくなる傾向にあり、そのような状況の下では、12本を超えるスパイラル溝の形成はより一層困難となる。したがって、スパイラル溝は8〜12本が好適である。また、スパイラル溝の最大深さは、80℃前後の高温状況下で潤滑油の粘度が低下した場合、10μm前後で上記浮上量が最大となるが、加工する上で、深さを15μm超とすることは困難である。これらの観点から、スパイラル溝の最大深さを8〜15μmとした。   The number of the spiral grooves as the thrust dynamic depressions reaches a level where the load capacity indicating the thrust load supporting ability is satisfied from eight, and the load supporting ability increases as the thrust dynamic depression becomes larger. However, in the hydrodynamic bearings for 1.8-inch and 2.5-inch magnetic recording disk drives and for the 3.5-inch single-disk thin magnetic recording disk drive, the inner diameter of the shaft hole is φ2 Since the size of ~ φ3mm and the outer diameter of φ5 ~ φ6mm are standard, the number of spiral grooves formed on the end face of such a bearing is limited by the area of the end face, and if the number exceeds 12 Since the groove width is around 0.3 mm, processing becomes difficult. In addition, with the recent demand for further miniaturization, the size of the bearing tends to be reduced. Under such circumstances, the formation of more than 12 spiral grooves becomes even more difficult. Therefore, 8 to 12 spiral grooves are suitable. In addition, the maximum depth of the spiral groove is about 10 μm when the viscosity of the lubricating oil is reduced under a high temperature condition of about 80 ° C., but the above floating amount is maximum at about 10 μm. It is difficult to do. From these viewpoints, the maximum depth of the spiral groove was set to 8 to 15 μm.

本発明では、スパイラル溝が形成された動圧軸受の端面との間に、スラストワッシャを挟み込む環状のカバー部材をハウジングの開口端部に設け、このカバー部材によって、軸の開口側への抜け止めと、潤滑油の飛散を抑える形態を採用することができる。   In the present invention, an annular cover member that sandwiches a thrust washer is provided between the end face of the hydrodynamic bearing formed with a spiral groove at the opening end of the housing, and this cover member prevents the shaft from coming off to the opening side. And the form which suppresses scattering of lubricating oil is employable.

また、ハウジング内に設けられる動圧軸受の材質は、各動圧凹所を加工しやすいことから、原料粉末を圧縮成形し、その成形体を焼結した焼結材が好ましく用いられる。   The material of the hydrodynamic bearing provided in the housing is preferably a sintered material obtained by compression-molding the raw material powder and sintering the compact, since each hydrodynamic recess can be easily processed.

次に、本発明のスピンドルモータは、上記本発明の動圧軸受ユニットを具備することを特徴としている。   Next, a spindle motor according to the present invention includes the above-described dynamic pressure bearing unit according to the present invention.

本発明によれば、動圧軸受におけるラジアル動圧凹所やスラスト動圧凹所の形状、数、寸法等を最適な条件に規定したことにより、高温状況下においても優れた軸受剛性を発揮し、小型・薄型の1.8インチ型または2.5インチ型磁気記録ディスク用、および3.5インチ1枚ディスクの薄型磁気記録ディスク駆動装置用の動圧軸受ユニットおよびこれを用いたスピンドルモータの動圧軸受ユニットとして、きわめて有望である。   According to the present invention, the shape, number, size, etc. of the radial dynamic thrust recess and the thrust dynamic pressure recess in the dynamic pressure bearing are defined as optimum conditions, so that excellent bearing rigidity is exhibited even under high temperature conditions. Of a hydrodynamic bearing unit for a small and thin 1.8-inch or 2.5-inch magnetic recording disk and a 3.5-inch single-disk thin magnetic recording disk drive and a spindle motor using the same It is extremely promising as a hydrodynamic bearing unit.

以下、図面を参照して本発明をHDD(ハードディスク駆動装置)用スピンドルモータに適用した一実施形態を説明する。
図1は、一実施形態のスピンドルモータ1の断面を示している。このモータ1は、1.8インチまたは2.5インチの径の2枚の磁気記録ディスクDを回転させるものであり、ケース10、磁気記録ディスクDを支持するハブ20、ハブ20を回転させるモータ部30、ハブ20の回転中心となる軸40、軸40を回転自在に支持する動圧軸受ユニット50から構成されている。ケース10の中心には図1で上方に突出する円筒状のホルダ部11が形成されており、このホルダ部11内に動圧軸受ユニット50が収容されている。なお、図1は、1.8インチまたは2.5インチの径の2枚の磁気記録ディスクDを回転させるものであるが、3.5インチの1枚の磁気記録ディスクを回転させるものであってもよい。
Hereinafter, an embodiment in which the present invention is applied to a spindle motor for an HDD (Hard Disk Drive Device) will be described with reference to the drawings.
FIG. 1 shows a cross section of a spindle motor 1 according to an embodiment. The motor 1 rotates two magnetic recording disks D having a diameter of 1.8 inches or 2.5 inches, and includes a case 10, a hub 20 that supports the magnetic recording disks D, and a motor that rotates the hub 20. The shaft 30 is a rotation center of the hub 30, and a hydrodynamic bearing unit 50 that rotatably supports the shaft 40. A cylindrical holder portion 11 protruding upward in FIG. 1 is formed at the center of the case 10, and the hydrodynamic bearing unit 50 is accommodated in the holder portion 11. In FIG. 1, two magnetic recording disks D having a diameter of 1.8 inches or 2.5 inches are rotated, but one magnetic recording disk of 3.5 inches is rotated. May be.

図2に示すように、動圧軸受ユニット50は、図中上方に開口する有底円筒状のハウジング60と、このハウジング60に収容された動圧軸受70とから構成されている。ハウジング60は、円筒体61と、この円筒体61の下側の開口内周縁に、かしめ、あるいは溶接、接着等の手段で固着されてこの開口を塞ぐ円盤状のプレート62とから構成されている。動圧軸受70は、ハウジング60の円筒体61内に圧入するか、もしくは嵌め込んだ状態を溶接、接着等の手段によって、ハウジング60内に固着されている。そして、この動圧軸受ユニット50は、図1に示すように、ハウジング60が、円筒体61に対する動圧軸受70の固着手段と同様の手段によってケース10のホルダ部11内に固着されることにより、ケース10に組み込まれている。   As shown in FIG. 2, the hydrodynamic bearing unit 50 includes a bottomed cylindrical housing 60 that opens upward in the drawing, and a hydrodynamic bearing 70 accommodated in the housing 60. The housing 60 includes a cylindrical body 61 and a disk-like plate 62 that is fixed to the inner peripheral edge of the opening on the lower side of the cylindrical body 61 by means of caulking, welding, adhesion, or the like and closes the opening. . The dynamic pressure bearing 70 is fixed in the housing 60 by means such as welding, bonding, or the like by press-fitting into the cylindrical body 61 of the housing 60 or fitting. As shown in FIG. 1, the dynamic pressure bearing unit 50 is configured such that the housing 60 is fixed in the holder portion 11 of the case 10 by means similar to the fixing means of the dynamic pressure bearing 70 with respect to the cylindrical body 61. It is incorporated in the case 10.

軸40は、径がφ2〜φ3mmの軸本体41にスラストワッシャ42が嵌合、固着されたもので、スラストワッシャ42は、軸本体41の外周面に形成された段部に係止することにより軸方向の位置決めがなされている。この軸40は、軸本体41が動圧軸受70の軸孔71に図中上から挿入され、スラストワッシャ42が動圧軸受70の上端面72に対向して配置される。軸40のラジアル荷重は動圧軸受70の内周面73で受けられ、軸40のスラスト荷重は動圧軸受70の上端面72で受けられる。動圧軸受70の内周面73と軸本体41との間と、動圧軸受70の上端面72とスラストワッシャ42との間には、潤滑油が供給される微小隙間が形成される。   The shaft 40 has a thrust washer 42 fitted and fixed to a shaft main body 41 having a diameter of φ2 to φ3 mm. The thrust washer 42 is engaged with a step formed on the outer peripheral surface of the shaft main body 41. Axial positioning is performed. In the shaft 40, the shaft main body 41 is inserted into the shaft hole 71 of the dynamic pressure bearing 70 from above in the drawing, and the thrust washer 42 is disposed to face the upper end surface 72 of the dynamic pressure bearing 70. The radial load of the shaft 40 is received by the inner peripheral surface 73 of the dynamic pressure bearing 70, and the thrust load of the shaft 40 is received by the upper end surface 72 of the dynamic pressure bearing 70. Between the inner peripheral surface 73 of the dynamic pressure bearing 70 and the shaft main body 41 and between the upper end surface 72 of the dynamic pressure bearing 70 and the thrust washer 42, a minute gap to which lubricating oil is supplied is formed.

ハウジング60の開口端部には、環状の板材からなるカバー部材63が固着されている。このカバー部材63によって、上記潤滑油の飛散が抑えられるともに、浮上する軸40のスラストワッシャ42がカバー部材63に当接して軸40の抜け止めがなされる。   A cover member 63 made of an annular plate material is fixed to the open end of the housing 60. The cover member 63 suppresses the scattering of the lubricating oil, and the thrust washer 42 of the floating shaft 40 abuts against the cover member 63 to prevent the shaft 40 from coming off.

図1に示すように、軸40の軸本体41はハウジング60から上方に突出し、その突出した上端部のハブ固定部43に、ハブ20が固定されている。このハブ20は、内側に突出するボス21が中心に形成された円板部22と、円板部22の周縁から垂下する円筒部23と、円筒部23の下端周縁から外側に突出する鍔部24とを有する断面略ハット状である。軸40のハブ固定部43がハブ20のボス21内に、ボス21の下端がスラストワッシャ42を押圧するまで圧入して嵌合されることにより、ハブ20が軸40に固定されている。   As shown in FIG. 1, the shaft main body 41 of the shaft 40 protrudes upward from the housing 60, and the hub 20 is fixed to the hub fixing portion 43 at the protruding upper end portion. The hub 20 includes a disc portion 22 formed with a boss 21 projecting inward at the center, a cylindrical portion 23 depending from the periphery of the disc portion 22, and a flange portion protruding outward from the lower end periphery of the cylindrical portion 23. 24 and has a substantially hat-shaped cross section. The hub 20 is fixed to the shaft 40 by press-fitting the hub fixing portion 43 of the shaft 40 into the boss 21 of the hub 20 until the lower end of the boss 21 presses the thrust washer 42.

この固定状態で、ハブ20の円筒部23の内周面とケース10のホルダ部11の外周面とは互いに対向し、これら対向面のケース10側には、コイル31が巻かれた回転磁界発生用のステータ32が固着され、ハブ20側には、モータマグネット33が固着されている。これらステータ32およびモータマグネット33により、モータ部30が構成されている。ケース10の上面であってモータマグネット33の直下に当たる位置には、環状の鉄板12が固着されており、ハブ20は、鉄板12がモータマグネット33を吸引する吸引力でケース10側に引っ張られた状態で、動圧軸受ユニット50に回転自在に支持されている。   In this fixed state, the inner peripheral surface of the cylindrical portion 23 of the hub 20 and the outer peripheral surface of the holder portion 11 of the case 10 face each other, and a rotating magnetic field generated by winding a coil 31 is formed on the case 10 side of these opposing surfaces. A stator 32 is fixed, and a motor magnet 33 is fixed on the hub 20 side. The stator 32 and the motor magnet 33 constitute a motor unit 30. An annular iron plate 12 is fixed to a position on the upper surface of the case 10 and directly below the motor magnet 33, and the hub 20 is pulled toward the case 10 by the suction force that the iron plate 12 attracts the motor magnet 33. In the state, it is rotatably supported by the hydrodynamic bearing unit 50.

2枚の磁気記録ディスクDは、ハブ20の円筒部23の外周に環状のスペーサ25を挟んで嵌め込まれており、軸40の上端面にねじ26で固定されるクランプ部材27と鍔部24とによって挟み込まれた状態で、ハブ20に支持されている。   The two magnetic recording disks D are fitted on the outer periphery of the cylindrical portion 23 of the hub 20 with an annular spacer 25 interposed therebetween, and a clamp member 27 and a flange portion 24 fixed to the upper end surface of the shaft 40 with screws 26. Is supported by the hub 20 in a state of being sandwiched by the hub 20.

以上が本実施形態のスピンドルモータ1の概略構成であり、このモータ1によれば、コイル31に所定の電流を供給するとステータ32から電流磁界が発生し、この電流磁界とモータマグネット33との間に発生する電磁相互作用により、ハブ20が軸40を中心として回転し、磁気記録ディスクDが回転する。このような稼働中においては、軸40のラジアル荷重は動圧軸受70の内周面73で受けられ、軸40のスラスト荷重は動圧軸受70の上端面72で受けられる。   The above is the schematic configuration of the spindle motor 1 of the present embodiment. According to the motor 1, when a predetermined current is supplied to the coil 31, a current magnetic field is generated from the stator 32. The hub 20 rotates about the shaft 40 and the magnetic recording disk D rotates due to the electromagnetic interaction generated in FIG. During such operation, the radial load of the shaft 40 is received by the inner peripheral surface 73 of the dynamic pressure bearing 70, and the thrust load of the shaft 40 is received by the upper end surface 72 of the dynamic pressure bearing 70.

次いで、動圧軸受ユニット50の動圧軸受70について詳述する。
動圧軸受70の軸孔71の内周面73には、図3に示すように、断面が半円弧状で、両端面間にわたり軸方向に沿って真っ直ぐに延びる5つの分離溝74が、周方向に等間隔をおいて形成されている。そして、内周面73の各分離溝74の間には、動圧軸受70の外径の軸心Pに対して偏心し、矢印Rで示す軸40の回転方向に向かうにしたがって内周側に縮径していく形状の円弧面75が形成されている。すなわち、これら円弧面75は動圧軸受70の外径と非同心であり、各円弧面75の中心は、軸心Pの周囲に、この軸心Pと同心的で周方向に等間隔をおいて存在する。
Next, the dynamic pressure bearing 70 of the dynamic pressure bearing unit 50 will be described in detail.
As shown in FIG. 3, the inner peripheral surface 73 of the shaft hole 71 of the dynamic pressure bearing 70 has five separation grooves 74 having a semicircular cross section and extending straight along the axial direction between both end surfaces. It is formed at equal intervals in the direction. And between each separation groove 74 of the inner peripheral surface 73, it is decentered with respect to the axial center P of the outer diameter of the hydrodynamic bearing 70, and toward the inner peripheral side toward the rotational direction of the shaft 40 indicated by the arrow R. A circular arc surface 75 having a shape that decreases in diameter is formed. That is, these circular arc surfaces 75 are not concentric with the outer diameter of the hydrodynamic bearing 70, and the center of each circular arc surface 75 is concentric with the axial center P and equidistantly spaced in the circumferential direction around the axial center P. Exist.

このような円弧面75の形状により、円弧面75と軸40の外周面との間の微小隙間は、軸40の回転方向に向かうにしたがってしだいに狭小となる断面クサビ状に形成される。この場合、分離溝74の幅は、図3に示す動圧軸受70の軸心Pを中心とした周方向への角度θで8〜20°に相当する長さとされている。また、その最大深さは、0.05〜0.15mmとされている。   Due to the shape of the circular arc surface 75, a minute gap between the circular arc surface 75 and the outer peripheral surface of the shaft 40 is formed in a wedge shape that gradually narrows toward the rotation direction of the shaft 40. In this case, the width of the separation groove 74 is set to a length corresponding to 8 to 20 degrees in the angle θ in the circumferential direction around the axis P of the dynamic pressure bearing 70 shown in FIG. The maximum depth is 0.05 to 0.15 mm.

動圧軸受70の上端面72には、図4に示すように、軸40の回転方向Rに向かうにしたがって内周側に湾曲しながら延びる複数のスパイラル溝76が、周方向に等間隔をおいて形成されている。これらスパイラル溝76の外周側の端部は外周側の縁に開口しているが、内周側の端部は内周側の縁に開口しておらず閉塞している。この場合、図示例ではスパイラル溝76は12本形成されているが、8〜12本が好適な数とされる。そして、これらスパイラル溝76の最大深さは8〜15μmとされている。   On the upper end surface 72 of the dynamic pressure bearing 70, as shown in FIG. 4, a plurality of spiral grooves 76 that are curved toward the inner peripheral side toward the rotational direction R of the shaft 40 are spaced at equal intervals in the circumferential direction. Formed. The outer peripheral ends of the spiral grooves 76 are open at the outer peripheral edge, but the inner peripheral ends are not opened at the inner peripheral edge and are closed. In this case, in the illustrated example, twelve spiral grooves 76 are formed, but a suitable number is eight to twelve. The maximum depth of these spiral grooves 76 is 8 to 15 μm.

本実施形態の動圧軸受70は、原料粉末を圧縮成形した成形体を焼結した焼結軸受である。焼結軸受であることにより、分離溝74、円弧面75およびスパイラル溝76は、塑性加工によって容易に形成することができる。例えば、内周面73の加工は、分離溝74および円弧面75を形成し得る雄型のピンを、焼結軸受の素材の軸孔71に圧入することによって形成することができる。また、スパイラル溝76は、このスパイラル溝76を形成し得る複数の凸部が形成されたパンチを焼結軸受の素材の端面に刻印することによって形成することができる。焼結軸受は多孔質であるためスプリングバック量が少なく、塑性加工によって上記分離溝74、円弧面75およびスパイラル溝76を、高い寸法精度で形成することができる。   The dynamic pressure bearing 70 of the present embodiment is a sintered bearing obtained by sintering a molded body obtained by compression molding raw material powder. By being a sintered bearing, the separation groove 74, the circular arc surface 75, and the spiral groove 76 can be easily formed by plastic working. For example, the inner peripheral surface 73 can be formed by press-fitting a male pin capable of forming the separation groove 74 and the arc surface 75 into the shaft hole 71 of the sintered bearing material. Further, the spiral groove 76 can be formed by marking a punch having a plurality of convex portions that can form the spiral groove 76 on the end face of the sintered bearing material. Since the sintered bearing is porous, the amount of spring back is small, and the separation groove 74, the arc surface 75 and the spiral groove 76 can be formed with high dimensional accuracy by plastic working.

原料粉末としては、例えば、鉄:40〜60wt%、銅:40〜60wt%、錫:1〜5wt%の合金粉末のように、鉄粉と銅粉がほぼ同量であって、他に数wt%の錫粉を含有するものが好ましく用いられる。このような組成により、加工性の良好な銅を主成分とする焼結材の特性に加えて、鉄量を多く含有することにより強度が向上し、さらに、錫を含有することにより、軸40に対するなじみ性と塑性加工性がより向上する。このため、上記のように塑性加工によって分離溝74、円弧面75およびスパイラル溝76を形成することが容易となり、しかも、摩擦係数が低減して耐摩耗性が向上する。   As the raw material powder, for example, iron powder and copper powder are almost the same amount, such as alloy powder of iron: 40 to 60 wt%, copper: 40 to 60 wt%, tin: 1 to 5 wt%. Those containing wt% tin powder are preferably used. With such a composition, in addition to the properties of a sintered material whose main component is copper having good workability, the strength is improved by containing a large amount of iron, and further, the shaft 40 is obtained by containing tin. The conformability and plastic workability are improved. For this reason, it becomes easy to form the separation groove 74, the circular arc surface 75, and the spiral groove 76 by plastic working as described above, and the friction coefficient is reduced and the wear resistance is improved.

上記動圧軸受70によれば、潤滑油が含浸されて含油軸受とされる。そして、軸孔71に挿入された軸40が、図3および図4に示す矢印R方向に回転すると、内周面73の各分離溝74にしみ出して貯留する潤滑油が、効率よく軸40に巻き込まれて円弧面75と軸40との間のクサビ状の微小隙間に侵入し、油膜を形成する。この微小隙間に入っていく潤滑油は、微小隙間の狭小側に流動することにより、クサビ効果が生じて高圧となり、高いラジアル動圧が発生する。このように油膜が高圧化する部分は、円弧面75に応じて周方向に等間隔をおいて発生し、これによって軸40のラジアル荷重は、バランスよく、かつ高い剛性をもって支持される。   According to the hydrodynamic bearing 70, the oil is impregnated with the lubricating oil. When the shaft 40 inserted into the shaft hole 71 rotates in the direction of the arrow R shown in FIGS. 3 and 4, the lubricating oil that oozes out and accumulates in each separation groove 74 of the inner peripheral surface 73 is efficiently stored in the shaft 40. Is wound into the wedge-shaped minute gap between the arc surface 75 and the shaft 40 to form an oil film. The lubricating oil entering the minute gap flows toward the narrow side of the minute gap, thereby generating a wedge effect and a high pressure, and a high radial dynamic pressure is generated. The portion where the oil film is increased in pressure is generated at equal intervals in the circumferential direction according to the circular arc surface 75, whereby the radial load of the shaft 40 is supported with good balance and high rigidity.

一方、潤滑油は、動圧軸受70の上端面72に形成されたスパイラル溝76内にもしみ出して貯留され、この潤滑油の一部は、軸40の回転によってスパイラル溝76内から出て、上端面72とスラストワッシャ42との間に油膜を形成する。また、スパイラル溝76内に保持される潤滑油は、スパイラル溝76内の外周側から内周側に向かって流動し、内周側の端部で最も高圧化するスラスト動圧が発生する。そして、そのスラスト動圧をスラストワッシャ42が受けることにより、軸40が僅かに浮上した状態となり、これによってスラスト荷重がバランスよく、かつ高い剛性をもって支持される。   On the other hand, the lubricating oil oozes out and is stored in the spiral groove 76 formed in the upper end surface 72 of the dynamic pressure bearing 70, and a part of this lubricating oil comes out of the spiral groove 76 by the rotation of the shaft 40. An oil film is formed between the upper end surface 72 and the thrust washer 42. Further, the lubricating oil retained in the spiral groove 76 flows from the outer peripheral side to the inner peripheral side in the spiral groove 76, and a thrust dynamic pressure that generates the highest pressure is generated at the end on the inner peripheral side. Then, when the thrust washer 42 receives the thrust dynamic pressure, the shaft 40 is slightly lifted, whereby the thrust load is supported in a balanced manner and with high rigidity.

本実施形態の動圧軸受70によれば、ラジアル側においては、円弧面75が5つであり、これら円弧面75に潤滑油を供給するための分離溝74の幅が上記角度θで8〜15°に相当するため、各円弧面75と軸40との間に高いラジアル動圧が発生して軸受剛性が大幅に向上する。一方、スラスト側では、スパイラル溝76が8〜12本(図示例では12本)であるため、上端面72とスラストワッシャ42との間に高いスラスト動圧が発生する。そのスパイラル溝76は、最大深さが8〜15μmであるため、軸40の高速回転により軸受部分が80℃前後に高温化して潤滑油の粘度が低下しても、軸40を支持して浮上させるスラスト動圧が確保される。   According to the dynamic pressure bearing 70 of the present embodiment, on the radial side, there are five arc surfaces 75, and the width of the separation groove 74 for supplying lubricating oil to these arc surfaces 75 is 8 to 8 at the angle θ. Since it corresponds to 15 °, a high radial dynamic pressure is generated between each arc surface 75 and the shaft 40, and the bearing rigidity is greatly improved. On the other hand, on the thrust side, since there are 8 to 12 spiral grooves 76 (12 in the illustrated example), high thrust dynamic pressure is generated between the upper end surface 72 and the thrust washer 42. Since the spiral groove 76 has a maximum depth of 8 to 15 μm, even if the bearing portion is heated to about 80 ° C. due to the high speed rotation of the shaft 40 and the viscosity of the lubricating oil is lowered, the shaft 40 is supported and floated. The thrust dynamic pressure is ensured.

また、分離溝74の最大深さが0.05〜0.15mmであるため、この分離溝74によって動圧軸受70自体の強度が損なわれることがなく、また、負圧や気泡の発生が抑えられて、上記のように潤滑油が効率よく円弧面75に供給される。   Moreover, since the maximum depth of the separation groove 74 is 0.05 to 0.15 mm, the strength of the dynamic pressure bearing 70 itself is not impaired by the separation groove 74, and the generation of negative pressure and bubbles is suppressed. Thus, the lubricating oil is efficiently supplied to the circular arc surface 75 as described above.

次に、本発明の実施例を説明し、本発明の効果を明らかにする。
表1に示す組成の原料粉末を圧縮成形し、その成形体を焼結して真密度比6.3〜7.2%、外径φ6mm、内径φ3mm、軸方向長さ5mmの円筒状の焼結軸受の素材を必要数得た。次いで、この焼結軸受の素材を加工して以下の項目A〜Eにつき試験を行った。
Next, examples of the present invention will be described to clarify the effects of the present invention.
The raw material powder having the composition shown in Table 1 is compression-molded, and the molded body is sintered to obtain a cylindrical sintered body having a true density ratio of 6.3 to 7.2%, an outer diameter of 6 mm, an inner diameter of 3 mm, and an axial length of 5 mm. Obtained the required number of materials for the bearing. Next, the sintered bearing material was processed and tested for the following items A to E.

Figure 2007051708
Figure 2007051708

A.分離溝および円弧面の数
内周面の分離溝および円弧面の数を3〜8とした6種類の焼結軸受を作製した。分離溝および円弧面の形成は、焼結軸受の素材の軸孔に、分離溝および円弧面の雄型のピンを圧入する塑性加工によって形成した。これら焼結軸受を鋼製のハウジングに圧入し、潤滑油としてエステル油を含浸させた。次いで、焼結軸受に軸を挿入して4200rpmで回転させ、その時に生じる焼結軸受と軸との間の油膜圧力(kg/cm)を測定した。この油膜圧力が高いほど軸受剛性が高いと判断できる。
A. Number of Separation Grooves and Arc Surfaces Six types of sintered bearings were prepared with 3 to 8 separation grooves and arc surfaces on the inner peripheral surface. The separation groove and the arc surface were formed by plastic working by press-fitting a male pin of the separation groove and the arc surface into the shaft hole of the sintered bearing material. These sintered bearings were pressed into a steel housing and impregnated with ester oil as a lubricating oil. Next, the shaft was inserted into the sintered bearing and rotated at 4200 rpm, and the oil film pressure (kg / cm 2 ) between the sintered bearing and the shaft generated at that time was measured. It can be determined that the higher the oil film pressure, the higher the bearing rigidity.

図5は測定結果を示しており、測定した油膜圧力は円弧面の数が3つのものが最も油膜圧力が高いが、軸受剛性は油膜圧力×円弧面の数の値、すなわち各円弧面での油膜圧力の総和で表されることから、軸受特性は、円弧面が5つのものが最も高い軸受特性を示すことが判る。ただし、分離溝および円弧面の数が3つあれば、必要十分な軸受剛性は確保されることも判った。したがって、分離溝および円弧面の数は5つが最適であることが認められた。   FIG. 5 shows the measurement results. The measured oil film pressure is the highest in the number of arc surfaces with three arc surfaces, but the bearing rigidity is the value of oil film pressure × number of arc surfaces, that is, in each arc surface. Since it is expressed by the sum of oil film pressures, it can be seen that the bearing characteristics with the five circular arc surfaces show the highest bearing characteristics. However, it has also been found that if the number of separation grooves and arcuate surfaces is three, sufficient and sufficient bearing rigidity is ensured. Therefore, it was recognized that the optimal number of separation grooves and arc surfaces is five.

B.分離溝の幅
分離溝の幅を、図3で示す角度θを5〜20°の範囲で1°ずつ異ならせた16種類の焼結軸受を作製し、これら焼結軸受を用いて、試験Aと同様に油膜圧力を測定した。なお、形成した分離溝および円弧面はそれぞれ5つと共通させた。図6は測定結果を示しており、これによると、分離溝の幅が狭くなるほど動圧は高くなることが判る。しかしながら、分離溝の幅を示す角度θが8°を下回ったものでは、潤滑油が巻き込まれにくくなって円弧面への潤滑油の供給が不足がちになる現象が起きた。また、角度θが20°で油膜圧力がほぼ6kg/cmであり、これは実用上必要な油膜圧力の下限値であるため、角度θが20°を超えると、必要十分な軸受剛性を確保しにくくなる。また、角度θが15°で油膜圧力が8kg/cmと十分な油膜圧力となり、十分な軸受剛性が確保される。これらのことから、角度θは8〜20°が好適であり、8〜15°がより好適であることが認められた。
B. Width of Separation Grooves 16 kinds of sintered bearings were produced in which the width of the separation grooves was varied by 1 ° in the range of the angle θ shown in FIG. 3 in the range of 5 to 20 °. The oil film pressure was measured in the same manner as above. Each of the formed separation grooves and arc surfaces was common to five. FIG. 6 shows the measurement results. According to this, it can be seen that the dynamic pressure increases as the width of the separation groove decreases. However, when the angle θ indicating the width of the separation groove is less than 8 °, a phenomenon occurs in which the lubricating oil is difficult to be caught and the supply of the lubricating oil to the arc surface tends to be insufficient. Moreover, since the angle θ is 20 ° and the oil film pressure is approximately 6 kg / cm 2 , which is the lower limit value of the oil film pressure necessary for practical use, if the angle θ exceeds 20 °, a necessary and sufficient bearing rigidity is ensured. It becomes difficult to do. Further, the angle θ is 15 ° and the oil film pressure is 8 kg / cm 2, which is a sufficient oil film pressure, and sufficient bearing rigidity is ensured. From these things, it was recognized that 8-20 degrees is suitable for angle (theta), and 8-15 degrees is more suitable.

C.分離溝の深さ
分離溝の最大深さを0.01〜0.21mmの範囲で0.02mmずつ異ならせた9種類の焼結軸受を作製し、これら焼結軸受を用いて、試験Aと同様に油膜圧力を測定した。なお、形成した分離溝および円弧面はそれぞれ5つ、分離溝の幅を示す角度θは10°と共通させた。図7は測定結果を示しており、これによると、分離溝の最大深さは0.05mm以上で油膜圧力が一定となるが、0.05mm以下では油膜圧力が若干低下するとともに変動することが判った。これは分離溝が0.05mm以下では分離溝の部分で負圧が発生して空気を巻き込み、これが軸受面に流入して圧力低下と圧力変動が生じるためである。ところが、0.15mmを超えると、焼結軸受全体に、分離溝が狭まるような変形が生じやすい。このため、分離溝の最大深さは0.05〜0.15mmが好適であることが認められた。
C. Separation groove depth Nine kinds of sintered bearings were produced with the maximum depth of the separation groove varied by 0.02 mm in the range of 0.01 to 0.21 mm. Using these sintered bearings, test A and Similarly, the oil film pressure was measured. Each of the formed separation grooves and arc surfaces was five, and the angle θ indicating the width of the separation grooves was 10 ° in common. FIG. 7 shows the measurement results. According to this, the maximum depth of the separation groove is 0.05 mm or more and the oil film pressure is constant, but if it is 0.05 mm or less, the oil film pressure slightly decreases and fluctuates. understood. This is because if the separation groove is 0.05 mm or less, a negative pressure is generated in the separation groove and air is entrained, which flows into the bearing surface and causes a pressure drop and a pressure fluctuation. However, if it exceeds 0.15 mm, the entire sintered bearing is likely to be deformed such that the separation groove is narrowed. For this reason, it was recognized that the maximum depth of the separation groove is preferably 0.05 to 0.15 mm.

D.スパイラル溝の本数
端面に形成するスパイラル溝の数を6〜16とした11種類の焼結軸受を作製した。スパイラル溝の形成は、凸部が形成されたパンチを焼結軸受の素材の端面に刻印することによって形成した。これら焼結軸受に潤滑油としてエステル油を含浸させ、この焼結軸受に、スラストワッシャを有する軸を、そのスラストワッシャをスパイラル溝に対向させて挿入し、この軸を4200rpmで回転させて、スラスト荷重支持能力を示すスラストワッシャの浮上量を調べた。図8はその結果を示しており、これによれば、スパイラル溝を8本以上有することにより負荷容量が満足するレベルに達することが判る。一方、スパイラル溝は、上記のようにパンチに形成された凸部を焼結軸受の素材の端面に刻印して形成されるが、外径φ6mm、内径φ3mmで形成される焼結軸受の端面はきわめて狭く、この狭い領域に12本を超えるスパイラル溝を形成することは難しい。よって、スパイラル溝の本数の上限は12本が好適である。
D. Number of spiral grooves Eleven types of sintered bearings were prepared in which the number of spiral grooves formed on the end face was 6-16. The spiral groove was formed by stamping a punch having a convex portion on the end face of the sintered bearing material. These sintered bearings are impregnated with ester oil as a lubricating oil, and a shaft having a thrust washer is inserted into the sintered bearing with the thrust washer facing the spiral groove, and the shaft is rotated at 4200 rpm. The flying height of the thrust washer indicating the load carrying capacity was examined. FIG. 8 shows the result. According to this, it can be seen that the load capacity reaches a level satisfying by having eight or more spiral grooves. On the other hand, the spiral groove is formed by stamping the convex portion formed on the punch as described above on the end face of the sintered bearing material, but the end face of the sintered bearing formed with an outer diameter of φ6 mm and an inner diameter of φ3 mm is It is extremely narrow, and it is difficult to form more than 12 spiral grooves in this narrow region. Therefore, the upper limit of the number of spiral grooves is preferably 12.

E.スパイラル溝の深さ
端面に形成するスパイラル溝の最大深さを4〜19μmの範囲で1μmずつ異ならせた16種類の焼結軸受を作製した。スパイラル溝は上記Dの試験と同様の方法で形成し、本数は10本と共通させた。そして、室温:25℃と、高温の80℃の環境下で、上記Dの試験と同様にして軸を回転させ、スラストワッシャの浮上量を調べた。図9はその結果を示しており、これによれば、室温では、スパイラル溝の深さが増大するほどスラストワッシャの浮上量も増大するが、80℃と高温の状況では、深さが10μmで浮上量は最大となった。したがって、室温と高温の双方の温度状況を鑑みると、スパイラル溝の深さは8〜15μmが好適であることが判る。
E. Depth of spiral groove Sixteen kinds of sintered bearings were produced in which the maximum depth of the spiral groove formed on the end face was varied by 1 μm within a range of 4 to 19 μm. Spiral grooves were formed by the same method as in the test of D above, and the number of spiral grooves was 10 in common. Then, in a room temperature of 25 ° C. and a high temperature of 80 ° C., the shaft was rotated in the same manner as the test of D above, and the flying height of the thrust washer was examined. FIG. 9 shows the result. According to this, as the depth of the spiral groove increases at room temperature, the flying height of the thrust washer also increases. However, at a high temperature of 80 ° C., the depth is 10 μm. The flying height reached the maximum. Therefore, it is understood that the depth of the spiral groove is preferably 8 to 15 μm in consideration of both the room temperature and the high temperature conditions.

本発明の一実施形態のスピンドルモータの縦断面図である。It is a longitudinal cross-sectional view of the spindle motor of one Embodiment of this invention. 一実施形態の動圧軸受ユニットの縦断面図である。It is a longitudinal cross-sectional view of the dynamic pressure bearing unit of one Embodiment. 一実施形態の動圧軸受の横断面図である。It is a cross-sectional view of the hydrodynamic bearing of one embodiment. 一実施形態の動圧軸受の上面図である。It is a top view of the dynamic pressure bearing of one embodiment. 実施例で作製した動圧軸受の円弧面の数と軸受剛性(油膜圧力)との関係を示す線図である。It is a diagram which shows the relationship between the number of the arc surfaces of the dynamic pressure bearing produced in the Example, and bearing rigidity (oil film pressure). 実施例で作製した動圧軸受の分離溝の幅と軸受剛性(油膜圧力)との関係を示す線図である。It is a diagram which shows the relationship between the width | variety of the separation groove | channel of a dynamic pressure bearing produced in the Example, and bearing rigidity (oil film pressure). 実施例で作製した動圧軸受の分離溝の最大深さと軸受剛性(油膜圧力)との関係を示す線図である。It is a diagram which shows the relationship between the maximum depth of the separation groove | channel of a dynamic pressure bearing produced in the Example, and bearing rigidity (oil film pressure). 実施例で作製した動圧軸受のスパイラル溝の本数と軸の浮上量との関係を示す線図である。It is a diagram which shows the relationship between the number of the spiral groove | channels of the dynamic pressure bearing produced in the Example, and the floating amount of a shaft. 実施例で作製した動圧軸受のスパイラル溝の深さと軸の浮上量との関係を示す線図である。It is a diagram which shows the relationship between the depth of the spiral groove | channel of the dynamic pressure bearing produced in the Example, and the floating amount of a shaft.

符号の説明Explanation of symbols

1…スピンドルモータ、40…軸、42…スラストワッシャ、
50…動圧軸受ユニット、60…ハウジング、63…カバー部材、70…動圧軸受、
71…軸孔、73…内周面、74…分離溝、75…円弧面、76…スパイラル溝。


1 ... spindle motor, 40 ... shaft, 42 ... thrust washer,
50 ... Dynamic pressure bearing unit, 60 ... Housing, 63 ... Cover member, 70 ... Dynamic pressure bearing,
71 ... shaft hole, 73 ... inner peripheral surface, 74 ... separation groove, 75 ... arc surface, 76 ... spiral groove.


Claims (4)

有底筒状のハウジング内に、スラストワッシャを有する軸を回転自在に支持する円筒状の動圧軸受が設けられた磁気記録ディスク駆動装置用の動圧軸受ユニットであって、
前記動圧軸受は、前記軸が挿入される軸孔の内周面に、軸方向に沿って延び、該内周面を周方向に分離させる複数の分離溝が、周方向に等間隔をおいて形成され、これら分離溝の間の内周面に、外径と非同心で、かつ、一周方向に向かうにしたがって内周側に縮径していく円弧面が形成されており、
一方、前記スラストワッシャに対向する前記動圧軸受の端面には、前記一周方向に向かうにしたがって内周側に湾曲しながら延びる複数のスパイラル溝が形成されており、
前記分離溝は5つ形成され、これに伴い前記円弧面も5つ形成され、
前記分離溝は、幅が、当該軸受の軸心を中心とした周方向への角度で8〜20°に相当する長さを有し、また、最大深さが0.05〜0.15mmとされ、
前記スパイラル溝は8〜12本形成され、その最大深さが8〜15μmとされており、
さらに、前記軸の径がφ2〜φ3mmであることを特徴とする動圧軸受ユニット。
A hydrodynamic bearing unit for a magnetic recording disk drive device in which a cylindrical hydrodynamic bearing that rotatably supports a shaft having a thrust washer is provided in a bottomed cylindrical housing,
The dynamic pressure bearing has a plurality of separation grooves extending in the axial direction on an inner peripheral surface of a shaft hole into which the shaft is inserted, and separating the inner peripheral surface in the circumferential direction at equal intervals in the circumferential direction. An arc surface that is non-concentric with the outer diameter and is reduced in diameter toward the inner circumference as it goes in the circumferential direction is formed on the inner circumference between these separation grooves,
On the other hand, a plurality of spiral grooves extending while curving toward the inner circumference side as it goes in the one circumferential direction are formed on the end face of the hydrodynamic bearing facing the thrust washer,
Five separation grooves are formed, and along with this, five arc surfaces are formed,
The separation groove has a length corresponding to an angle of 8 to 20 ° in a circumferential direction centered on the axis of the bearing, and a maximum depth of 0.05 to 0.15 mm. And
8 to 12 spiral grooves are formed, and the maximum depth is 8 to 15 μm.
Furthermore, the diameter of the said shaft is (phi) 2- (phi) 3mm, The dynamic pressure bearing unit characterized by the above-mentioned.
前記スパイラル溝が形成された前記動圧軸受の端面との間に、前記スラストワッシャを挟み込む環状のカバー部材を、前記ハウジングの開口端部に設けたことを特徴とする請求項1に記載の動圧軸受ユニット。   The dynamic cover according to claim 1, wherein an annular cover member that sandwiches the thrust washer is provided at an opening end of the housing between the end face of the hydrodynamic bearing in which the spiral groove is formed. Pressure bearing unit. 前記動圧軸受が、焼結材からなる焼結軸受であることを特徴とする請求項1または2に記載の動圧軸受ユニット。   The hydrodynamic bearing unit according to claim 1, wherein the hydrodynamic bearing is a sintered bearing made of a sintered material. 請求項1〜3のいずれかに記載の動圧軸受ユニットを具備することを特徴とするスピンドルモータ。


A spindle motor comprising the hydrodynamic bearing unit according to claim 1.


JP2005237647A 2005-08-18 2005-08-18 Hydrodynamic bearing unit and spindle motor using the same Expired - Fee Related JP4587220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237647A JP4587220B2 (en) 2005-08-18 2005-08-18 Hydrodynamic bearing unit and spindle motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237647A JP4587220B2 (en) 2005-08-18 2005-08-18 Hydrodynamic bearing unit and spindle motor using the same

Publications (3)

Publication Number Publication Date
JP2007051708A true JP2007051708A (en) 2007-03-01
JP2007051708A5 JP2007051708A5 (en) 2008-07-31
JP4587220B2 JP4587220B2 (en) 2010-11-24

Family

ID=37916290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237647A Expired - Fee Related JP4587220B2 (en) 2005-08-18 2005-08-18 Hydrodynamic bearing unit and spindle motor using the same

Country Status (1)

Country Link
JP (1) JP4587220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030757A (en) * 2007-07-30 2009-02-12 Nippon Densan Corp Fluid dynamic-pressure bearing device, spindle motor, and disk drive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131733A (en) * 1985-11-28 1987-06-15 Ebara Res Co Ltd Motor
JP2001116046A (en) * 1999-08-06 2001-04-27 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device
JP2003035310A (en) * 2001-07-24 2003-02-07 Hitachi Powdered Metals Co Ltd Structure of dynamic pressure sleeve bearing
JP2003307212A (en) * 2001-11-13 2003-10-31 Ntn Corp Fluid lubricated bearing device
JP2005155655A (en) * 2003-11-12 2005-06-16 Hitachi Powdered Metals Co Ltd Sliding bearing manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131733A (en) * 1985-11-28 1987-06-15 Ebara Res Co Ltd Motor
JP2001116046A (en) * 1999-08-06 2001-04-27 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device
JP2003035310A (en) * 2001-07-24 2003-02-07 Hitachi Powdered Metals Co Ltd Structure of dynamic pressure sleeve bearing
JP2003307212A (en) * 2001-11-13 2003-10-31 Ntn Corp Fluid lubricated bearing device
JP2005155655A (en) * 2003-11-12 2005-06-16 Hitachi Powdered Metals Co Ltd Sliding bearing manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030757A (en) * 2007-07-30 2009-02-12 Nippon Densan Corp Fluid dynamic-pressure bearing device, spindle motor, and disk drive

Also Published As

Publication number Publication date
JP4587220B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
US7015611B2 (en) Spindle motor and recording disk driving apparatus having the spindle motor
US7411762B2 (en) Fluid dynamic pressure bearing including dynamic pressure generating grooves, and spindle motor and disc drive including the bearing
US20060002642A1 (en) Fluid dynamic pressure bearing apparatus
US8506168B2 (en) Disk drive device improved in anti-vibration characteristic
US7612476B2 (en) Motor
US20060051003A1 (en) Fluid dynamic pressure bearing
JP2010138992A (en) Bearing device, spindle motor, and disk drive unit
US20140118859A1 (en) Spindle motor and hard disk drive including the same
US20080204929A1 (en) Fluid dynamic bearing device, spindle motor including the same, read-write device, and method of manufacturing bearing part
KR20100014973A (en) Method of producing dynamic pressure bearing
US7946770B2 (en) Hydrodynamic bearing device
US20080068744A1 (en) Hard disk drive
US20030168923A1 (en) Motor with magnetic attraction member
JPH11122867A (en) Spindle motor
KR101412886B1 (en) Spindle motor and hard disc drive including the same
JP2003209950A (en) Spindle motor
JP4587220B2 (en) Hydrodynamic bearing unit and spindle motor using the same
US9047910B2 (en) Spindle motor and hard disk drive including the same
JP2003274602A (en) Spindle motor
JP2009158029A (en) Spindle motor for disk drive device, information recording and reproducing device using the same
JP2007064278A (en) Fluid bearing device, spindle motor using it and method of manufacturing fluid bearing device
US20060188186A1 (en) Fluid dynamic pressure bearing device, spindle motor provided with the fluid dynamic pressure bearing device, and recording disk drive device with the fluid dynamic pressure bearing device
JP2005337341A (en) Dynamic pressure bearing device and motor using the same
JP2007247726A (en) Hydrodynamic fluid bearing device, spindle motor and recording disk drive mechanism equipped therewith
JP4498932B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees