JP2007043075A - 熱電変換装置 - Google Patents

熱電変換装置 Download PDF

Info

Publication number
JP2007043075A
JP2007043075A JP2006092368A JP2006092368A JP2007043075A JP 2007043075 A JP2007043075 A JP 2007043075A JP 2006092368 A JP2006092368 A JP 2006092368A JP 2006092368 A JP2006092368 A JP 2006092368A JP 2007043075 A JP2007043075 A JP 2007043075A
Authority
JP
Japan
Prior art keywords
thermoelectric
conversion device
thermoelectric element
voltage
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006092368A
Other languages
English (en)
Inventor
Akio Matsuoka
彰夫 松岡
Yasuhiko Niimi
康彦 新美
Isao Azeyanagi
功 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006092368A priority Critical patent/JP2007043075A/ja
Publication of JP2007043075A publication Critical patent/JP2007043075A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】冷却能力およびその成績係数を低下させることなく、装置の小型化が図れるとともに生産性の向上が図れる熱電変換装置を提供することにある。
【解決手段】P型とN型とからなる一対の熱電素子12、13と、この熱電素子12、13を複数対配列し、これらの熱電素子12、13を電気的に接続される熱電素子基板10を一つまたは複数備え、電源電圧を一つまたは複数の熱電素子基板10に直接印加する熱電変換装置であって、熱電素子基板10は、電源電圧の出力が定格条件で使用されたときに、一対の熱電素子12、13に印加する印加電圧が0.04V以上、0.08V未満となるように形成された。これにより、装置の小型化が図れる。
【選択図】図8

Description

本発明は、N型熱電素子、P型熱電素子からなる直列回路に直流電流を流通させることで吸熱、放熱が得られる熱電変換装置に関するものであり、特に、熱電素子モジュールに配設される複数対の熱電素子の最適形状および最適印加電圧に関する。
従来、この種の熱電変換装置として、例えば、所定個数のN型熱電素子およびP型熱電素子を平面状に配設し、一対の各熱電素子の一方面に一方側電極素子を取付けるとともに、一対の各熱電素子の他方面に他方側電極素子を取付け、これらの熱電素子を電気的に直列接続してなる熱電素子モジュールを構成している。
さらに、その一方側電極素子および他方側電極素子の少なくとも一方に、各電極素子から伝熱される熱を吸熱、放熱するための熱交換部材を形成している(例えば、特許文献1参照)。
特開2003−124531号公報
しかしながら、上記特許文献1のような装置では、全ての熱電素子が一方側電極素子もしくは他方側電極素子を介して電気的に直列接続されている。そのために、互いに隣り合う熱電素子、電極素子、および熱交換部材は、それぞれが電気的に絶縁された状態で配設されている。
言い換えれば、特許文献1では詳しくは記載されていないが、この種の装置では平面状に配設される複数対の熱電素子の平面面積に応じて装置の小型化が可能である。例えば、素子一対あたりの印加電圧を低減すれば熱電素子の素子対数を増加することができ、素子一対あたりの印加電圧を増加すれば熱電素子の素子対数を減少することができる。
つまり、一対あたりの印加電圧を増加させて素子対数を減少すると設置面積が減少できるが冷却能力および成績係数が低下してしまう。
さらに、この種の熱電素子モジュールは、小型の冷却装置や加熱装置に用いられるため、熱電素子、電極素子および熱交換部材などの構成部品は、複数個あり、かつ極小部品である。これにより、これらの構成部品を組み付けるときの製造工程における生産性が極めて低い問題がある。
そこで、本発明の目的は、上記点を鑑みたものであり、冷却能力およびその成績係数を低下させることなく、装置の小型化が図れるとともに生産性の向上が図れる熱電変換装置を提供することにある。
上記目的を達成するために、請求項1ないし請求項11に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの熱電素子(12、13)が電気的に接続される熱電素子モジュール(10)を一つまたは複数備え、電源電圧を一つまたは複数の熱電素子モジュール(10)に直接印加する熱電変換装置であって、
熱電素子モジュール(10)は、電源電圧の出力が定格条件で使用されたときに、一対の熱電素子(12、13)に印加する印加電圧が0.04V以上、0.08V未満となるように形成されたことを特徴としている。
この発明によれば、吸熱能力およびその成績係数は、最大となる最適な一対の熱電素子(12、13)あたりの印加電圧が存在する。これは発明者らが研究により見出したものであって、上記0.04V以上〜0.08V未満の最適電圧範囲内であれば吸熱能力およびその成績係数が良好となる使用範囲で使用することができる。
しかも、これらの最適電圧範囲内のうち、その印加電圧を低減させると吸熱能力と成績係数とが最大となる。ところが、このようなときには素子対数が増加して装置の設置面積が増加するが、生産性の低下を防止できる範囲内で熱電素子(12、13)の体格を小さく形成することで、冷却能力およびその成績係数を低下させることことなく装置の小型化が図れる。
また、上記最適電圧範囲を電源電圧の定格条件によって求めたことにより、車両に搭載する冷却装置もしくは加熱装置として好適である。
請求項2に記載の発明では、P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの熱電素子(12、13)が電気的に接続される熱電素子モジュール(10)を一つまたは複数備え、電源電圧を所定電圧に調整する電圧調整手段(2)を有し、電圧調整手段(2)を介して一つまたは複数の熱電素子モジュール(10)に印加する熱電変換装置であって、
熱電素子モジュール(10)は、電圧調整手段(2)の出力電圧が定格条件で使用されたときに、一対の熱電素子(12、13)に印加する印加電圧が0.04V以上、0.08V未満となるように形成されたことを特徴としている。
この発明によれば、車両用電源では、車両用補機の負荷や環境条件により電源電圧が変動することで、その変動によって一対の熱電素子(12、13)に印加する印加電圧が変動するが、電圧調整手段(2)によって、常時最適な印加電圧を一対の熱電素子(12、13)に印加することができる。これにより、吸熱能力およびその成績係数が良好となる使用範囲で使用することができる。
請求項3に記載の発明では、熱電素子モジュール(10)は、一対の熱電素子(12、13)に印加する印加電圧がより好ましくは0.04V以上、0.07V未満となるように形成されたことを特徴としている。この発明によれば、最適な印加電圧の上限を0.07V未満とすることにより、上述した請求項1および請求項2よりも、より冷却能力およびその成績係数を向上させることができる。
請求項4に記載の発明では、熱電素子モジュール(10)は、一対の熱電素子(12、13)に印加する印加電圧が最も好ましくは0.04V以上、0.05V未満となるように形成されたことを特徴としている。この発明によれば、最適な印加電圧の上限を0.05V未満とすることにより、上述した請求項3よりも、より冷却能力およびその成績係数を向上させることができる。
請求項5に記載の発明では、P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの熱電素子(12、13)が電気的に接続される熱電素子モジュール(10)を一つまたは複数備え、電源電圧を一つまたは複数の熱電素子モジュール(10)に直接印加する熱電変換装置であって、
熱電素子モジュール(10)は、熱電素子(12、13)をその熱電素子(12、13)に流れる電流の流れ方向に対して鉛直な断面積(a×b)と、熱電素子(12、13)の高さ(h)との比である素子形状指数(a×b/h)が1.5以上、2.5未満となるように形成されたことを特徴としている。
この発明によれば、吸熱能力は、素子形状指数(a×b/h)が大きいほど吸熱能力が増加し、その成績係数は、素子形状指数(a×b/h)が小さいほど成績係数が増大する。そこで、本発明では素子形状指数(a×b/h)の最適範囲を1.5以上、2.5未満とすることにより、冷却能力およびその成績係数を低下させることはない。
また、素子形状指数(a×b/h)の上限を2.5未満とすることにより、熱電素子(12、13)の高さ(h)を製造面からの制約となる1mm以上にして、生産性の低下を防止しつつ、高い吸熱能力と高い成績係数を実現できる。
請求項6に記載の発明では、P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの熱電素子(12、13)が電気的に接続される熱電素子モジュール(10)を一つまたは複数備え、電源電圧を所定電圧に調整する電圧調整手段(2)を有し、この電圧調整手段(2)を介して一つまたは複数の熱電素子モジュール(10)に印加する熱電変換装置であって、
熱電素子モジュール(10)は、熱電素子(12、13)をその熱電素子(12、13)に流れる電流の流れ方向に対して鉛直な断面積(a×b)と、熱電素子(12、13)の高さ(h)との比である素子形状指数(a×b/h)が1.5以上、2.5未満となるように形成されたことを特徴としている。
この発明によれば、電圧調整手段(2)によって、常時最適な印加電圧を一対の熱電素子(12、13)に印加することができるため、より確実に冷却能力およびその成績係数を低下させることはない。さらに、より確実に生産性の低下を防止しつつ、高い吸熱能力と高い成績係数を実現できる。
請求項7に記載の発明では、熱電素子モジュール(10)は、熱電素子(12、13)を素子形状指数(a×b/h)がより好ましくは2.0以上、2.5未満となるように形成されたことを特徴としている。この発明によれば、素子形状指数(a×b/h)の下限を2.0以上とすることにより、上述した請求項5および請求項6より冷却能力の向上が図れる。
請求項8に記載の発明では、熱電素子モジュール(10)は、電源電圧の出力が定格条件で使用されたときに、一対の熱電素子(12、13)に印加する印加電圧が0.04V以上、0.08V未満となるように形成されたことを特徴としている。この発明によれば、冷却能力およびその成績係数を低下させることなく、装置の小型化が図れるとともに生産性の向上が図れることができる。
請求項9に記載の発明では、熱電素子モジュール(10)は、電圧調整手段(2)の出力電圧が定格条件で使用されたときに、一対の熱電素子(12、13)に印加する印加電圧が0.04V以上、0.08V未満となるように形成されたことを特徴としている。この発明によれば、より確実に冷却能力およびその成績係数を低下させることなく、より確実に装置の小型化が図れるとともに生産性の向上が図れることができる。
請求項10に記載の発明では、熱電素子モジュール(10)の一方面に互いに絶縁空間(L1、L2)を隔てて配設され、一対の熱電素子(12、13)に伝熱可能に接続された複数の吸熱熱交換部材(22)と、
熱電素子モジュール(10)の他方面に互いに絶縁空間(L1、L2)を隔てて配設され、一対の熱電素子(12、13)に伝熱可能に接続された複数の放熱熱交換部材(32)とを有し、複数の吸熱熱交換部材(22)側、および複数の放熱熱交換部材(32)側のそれぞれに熱交換媒体が流通するように構成されており、
複数の吸熱熱交換部材(22)および複数の放熱熱交換部材(32)は、熱交換媒体の流れ方向に沿って形成される絶縁空間(L2)よりも熱交換媒体の流れ方向に対して直交する方向に形成される絶縁空間(L1)の方が大きくなるように形成されたことを特徴としている。
この発明によれば、絶縁空間(L2)を小さくすることで素子対数を増加させることができる。これにより、装置の小型化が図れる。なお、直交する方向に形成される絶縁空間(L1)には、吸熱熱交換部材(22)および放熱熱交換部材(32)の熱交換部が形成できる。
請求項11に記載の発明では、熱電素子モジュール(10)は、一対の熱電素子(12、13)を熱交換媒体の流れ方向に沿う奥行き方向に向けて電気的に直列接続するように配設しており、かつ熱交換媒体の流れ方向に沿う奥行き寸法(W2)よりも、熱交換媒体の流れ方向に対して直角方向となる幅寸法(W1)の方が大きくなるように形成されたことを特徴としている。
この発明によれば、奥行き寸法(W2)の方が小さいことで、熱交換媒体の流れ方向に対して直角方向に隣り合う熱電素子(12、13)間の電位差が大きくなるのを防止することができる。また、幅寸法(W1)側に素子対数を増加することができる。つまり、通風抵抗が低下する方向に素子対数を増加することができる。
なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、本発明の第1実施形態における熱電変換装置を図1ないし図9に基づいて説明する。図1は本実施形態における熱電変換装置の外観形状を示す平面図であり、図2は熱電変換装置の全体構成を示す図1に示すA−A断面図である。また、図3は図2に示すC−C断面図であり、図4は図1に示すB−B断面図である。
本実施形態の熱電変換装置は、車両に搭載される冷却装置もしくは加熱装置に適用させた熱電変換装置であり、例えば、車両用のシートの着座部内と背当部内とにそれぞれ熱電変換装置を配設し、その熱電変換装置により冷却された冷風をシート表面から吹き出すシート空調装置に適用させている。
従って、本実施形態の熱電変換装置は、設置空間の狭い車両用のシート内に搭載できるように熱電変換装置の小型化を図っている。熱電変換装置は、図1ないし図4に示すように、熱電素子モジュールである熱電素子基板10、吸熱側フィン基板20、放熱側フィン基板30、および一対のケース部材28、38から構成している。
熱電素子モジュールである熱電素子基板10は、図2ないし図4に示すように、熱電素子の保持板である第1絶縁基板11、P型、N型からなる熱電素子12、13、および電極部材16から一体に構成している。
具体的には、平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる第1絶縁基板11に、一対のP型熱電素子12とN型熱電素子13とを交互に略碁盤目状に複数対配列してなる熱電素子群を列設し、隣接する一対の熱電素子12、13の両端面に電極部材16を接合して一体に構成している。
P型熱電素子12はBi−Te系化合物からなるP型半導体により構成され、N型熱電素子12はBi−Te系化合物からなるN型半導体により構成された極小部品である。なお、P型熱電素子12およびN型熱電素子13は、その上端面、下端面が第1絶縁基板11よりも突き出すように形成されている。
電極部材16は、平板状の銅材などの導電性金属から形成され、熱電素子基板10に配列された熱電素子群のうち、隣接する一対のP型熱電素子12およびN型熱電素子13を電気的に直列接続する電極である。
より具体的には、図2に示すように、上方に配置される電極部材16は、隣接するN型熱電素子13からP型熱電素子12に向けて電流を流すための電極であり、下方に配置される電極部材16は、隣接するP型熱電素子12からN型熱電素子13に電流を流すための電極である。なお、電極部材16は、熱電素子12、13の端面に予めペーストハンダなどをスクリーン印刷で薄く均一に塗っておいてから半田付けで接合される。
次に、吸熱側フィン基板20は、複数個の吸熱熱交換部材22を平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる保持板である第2絶縁基板21に一体構成しており、放熱側フィン基板30は、複数個の放熱熱交換部材32を平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる保持板である第3絶縁基板31に一体構成している。
そして、吸熱熱交換部材22および放熱熱交換部材32は、銅材などの導電性金属からなる薄肉の板材を用いて、図4に示すように、断面が略U字状からなり底部に平面状の吸熱、放熱電極部25、35を形成し、その電極部25、35から外方に延出された平面にルーバー状の熱交換部26、36を形成している。
また、この熱交換部26、36は、吸熱、放熱電極部25、35から伝熱される熱を吸熱、放熱するためのフィンであり、切り起こしなどの成形加工により電極部25、35と一体に形成している。そして、その吸熱、放熱電極部25、35の一端面が電極部材16に接合するように、第2もしくは第3絶縁基板21、31に一体で構成している。
なお、吸熱熱交換部材22および放熱熱交換部材32は、第2もしくは第3絶縁基板21、31の一端面に、その吸熱、放熱電極部25、35の一端面が僅かに突き出す程度の位置に一体で構成している。つまり、電極部25、35の一端面が熱電素子基板10に設けられた電極部材16に接合したときに、その吸熱、放熱電極部25、35が電極部材16側にはみ出さないように構成している。
さらに、互いに隣り合う吸熱熱交換部材22、放熱熱交換部材32同士は、互いに電気的に絶縁するように、所定の空間を設けて複数個略碁盤目状に第2、第3絶縁基板21、31に配設している。そして、上方に配置された電極部材16に吸熱熱交換部材22の吸熱電極部25を接合するように配置し、下方に配置された電極部材16に放熱熱交換部材32の放熱電極部35を接合するように配置している。
なお、図1および図2中に示す左右端に配設される熱電素子12、13の末端には、それぞれ端子24a、24bが設けられ、その端子24a、24bには、図示しない直流電源の正側端子を端子24aに接続し、負側端子を端子24bに接続するようにしている。
これにより、上方側に配設される電極部材16および吸熱熱交換部材22は、隣接するN型熱電素子13からP型熱電素子12に電気的に接続するように複数個配設され、下方側に配設される電極部材16および放熱熱交換部材32は、隣接するP型熱電素子12からN型熱電素子13に電気的に接続するように複数個配設されている。
因みに、端子24aから入力された直流電源は、図1中に示す左端のP型熱電素子12から下方に配設された電極部材16を介してN型熱電素子13に直列的に流れ、次に、このN型熱電素子13から上方に配設された電極部材16を介してP型熱電素子12に直列的に流れる。
このときに、PN接合部を構成する下方に配設された電極部材16は、ペルチェ効果によって高温の状態となり、NP接合部を構成する上方に配設された電極部材16は低温の状態となる。つまり、上方側に配置された熱交換部26は吸熱熱交換部を形成して低温状態の熱が伝熱されて被冷却流体に接触され、下方側に設置された熱交換部36は放熱熱交換部を形成して高温状態の熱が伝熱されて冷却流体に接触される。
言い換えると、図2に示すように、熱電素子基板10を区画壁として、ケース部材28、38により、熱電素子基板10の両側に送風通路を形成し、その送風通路に熱交換媒体である空気を流通することで、熱交換部26,36と空気とが熱交換され、熱電素子基板10を区画壁として、上側の熱交換部26で空気を冷却することができ、下側の熱交換部36で空気を加熱することができる。
なお、本実施形態では、直流電源の正側端子を端子24a側に接続し、負側端子を端子24b側に接続して端子24aに直流電源を入力させたが、これに限らず、直流電源の正側端子を端子24b側に接続し、負側端子を端子24a側に接続して端子24bに直流電源を入力させても良い。ただし、このときには、上方の吸熱熱交換部材22が放熱熱交換部を形成し、下方の放熱熱交換部材32が吸熱熱交換部を形成する。
ところで、以上の構成による熱電変換装置において、装置全体の小型化を図るために、特に、熱電素子基板10に配設する複数対の熱電素子12、13の素子の形状、素子対数、熱電素子一対あたりの印加電圧を最適化させている。言い換えれば、車両用のシートのように、狭い設置空間に搭載できるように熱電変換装置の小型化を図るとともに、冷却能力およびその成績係数COPの向上を図るようにしている。
ここで、上述した熱電素子12、13の素子の形状、素子対数、熱電素子一対あたりの印加電圧の最適化については発明者らの研究によって見出したので以下図5ないし図9に基づいて説明する。熱電変換装置の冷却能力は、NP接合部を構成する上方に配設された電極部材16で発生する低温の状態の熱、つまり、吸熱量Qcを求めることで良い。
この吸熱量Qcは、具体的には、Qc=(ペルチェ吸熱)−(ジュール熱損失)−(戻り熱損失)により求めることができる。より具体的には、ペルチェ吸熱=n・α・I・Tc、ジュール熱損失=1/2・I・(n・h/(a・b)・ρ)、戻り熱損失=n・(a・b)/h・λ・ΔTであって、これらから算出することができる。
ここで、n:素子対数、α:素子材料のゼーベック係数、I:電流、Tc:吸熱面の温度、h:素子の高さ、a:素子の幅寸法、b:素子の奥行寸法、ρ:素子材料の抵抗係数、λ:素子材料の熱伝導率、ΔT:吸放熱面の温度差である。
そして、図5は熱電素子一対あたりの印加電圧と吸熱能力比との関係を示す特性図であり、図6は熱電素子一対あたりの印加電圧と成績係数COPとの関係を示す特性図である。また、図7は熱電素子一対あたりの印加電圧と素子対数との関係を示す特性図である。さらに、図8は熱電素子一対あたりの印加電圧と素子の最大許容寸法との関係を示す特性図である。
因みに、図5に示す吸熱能力比は上記吸熱量Qcより求め、図6に示す成績係数COPはCOP=吸熱量Qc/消費電力によって求めている。また、この図5および図6に示す吸熱能力比、成績係数COPは、熱電素子12、13をBi−Te系化合物の材料からなり、かつ、その素子の寸法(図11参照)をa=1.5mm、b=1.5mm、h=1mmとする形状のものを用いる。
なお、熱電素子基板10の端子24a、24b間に印加する電圧は、車両用電源から出力される定格条件で使用されるDC12Vの駆動電圧を印加し、その定格条件の駆動電圧による熱電素子一対あたりの印加電圧を求めている。
これにより、図5および図6に示す結果から、吸熱量Qcおよび成績係数COPがともに、最大になる最適電圧範囲の印加電圧が存在することを見出した。つまり、吸熱量Qcと成績係数COPを向上させるには、熱電素子一対あたりの印加電圧が好ましくは0.01V以上、0.08V未満の最適電圧範囲であれば良いことが分った。
また、特に、その印加電圧が下限である0.01V近傍であれば吸熱量Qcおよび成績係数COPが最大値となることが分った。従って、最適印加電圧を最良の0.01V程度とすると、吸熱量Qcおよび成績係数COPが高能力、高効率となる。
ところが、端子24a、24b間に印加する定格条件の駆動電圧に対して、熱電素子一対あたりの印加電圧を0.01V程度とすると、熱電素子基板10内に配設する素子対数は、図7に示すように、1300対数程度が必要となる。
これでは、熱電素子基板10の体格が極めて大となる問題があった。つまり、限られた設置空間を有するシート内に搭載するためには、上記素子対数の熱電素子基板10では、体格が大きすぎて搭載できないことが分った。
そこで、本発明では、シート内に搭載できる熱電素子基板10の体格を予め一般的な所定(例えば、40mm角程度)形状と設定して、この所定(例えば、40mm角程度)の形状内に配設可能な熱電素子12、13の素子寸法とその素子対数を求めた。
具体的には、素子寸法を、第1絶縁基板11内に組み付けるための組付性を低下させることのない大きさとして、1.0〜1.5mm程度以上とし、さらに、素子間の隙間を考慮して40mm角の第1絶縁基板11内に配設可能な素子対数は130対程度とした。
ところが、この130対程度の素子対数によると、図7および図8に示すように、熱電素子一対あたりの印加電圧が0.09Vとなる。これは、上述したように、図5および図6に示す最適電圧範囲を外れてしまうことになる。
そこで、本実施形態では、端子24a、24b間に印加する駆動電圧を、例えばDC6Vに半減させることで、図8に示すように、熱電素子一対あたりの印加電圧が0.05V以下となる。
この印加電圧であれば、図5および図6に示す最適電圧範囲内に収めることが可能である。従って、本実施形態では、素子寸法が1.5mm×1.5mm程度の熱電素子12、13を用いて、130対程度の素子対数を配設して熱電素子基板10を構成する。そして、端子24a、24b間にDC6Vの駆動電圧を印加させることで、熱電素子一対あたりの印加電圧が0.04V以上、0.05V未満で印加することができる。
従って、熱電素子基板10は、図8に示すように、熱電素子一対あたりの印加電圧が好ましくは0.04V以上、0.08V未満となるように形成すれば良い。また、これよりも、高能力、高効率を高めるためには、熱電素子一対あたりの印加電圧がより好ましくは0.04V以上、0.07V未満、および熱電素子一対あたりの印加電圧が最も好ましくは0.04V以上、0.05V未満となるように形成すれば良い。
なお、本実施形態では、熱電素子基板10の端子24a、24b間にDC6Vの駆動電圧を印加させるように構成したが、これに限らず、図9に示すように、二つの熱電素子基板10を電気的に直列接続させて、その端子24a、24b間にDC12Vの駆動電圧を印加するように構成しても良い。これによれば、一つの熱電素子基板10には、それぞれDC6Vの駆動電圧が印加される。
また、以上の構成では、熱電素子基板10の素子対数を130程度に配設したが、これに限らず、熱電素子基板10の端子24a、24b間に印加する駆動電圧をDC4Vにして素子対数を少なくしても良い。ただし、この場合には3個の熱電素子基板10を電気的に直列接続してその端子24a、24b間にDC12Vの駆動電圧を印加するように構成しても良い。
なお、車両用電源には、上記DC12V仕様の他にDC24V仕様もあるため、この場合には、一つの熱電素子基板10の端子24a、24b間に、例えば、定格条件のDC12Vの約数となる駆動電圧を印加するように複数(例えば、2個〜4個)の熱電素子基板10を配設するようにしても良い。
次に、以上の構成による熱電素子基板10の組み付け方法について説明する。まず、熱電素子12、13は、図3および図4に示すように、第1絶縁基板11に設けられた基板穴にP型とN型を交互に略碁盤目状に複数個配列して熱電素子基板10を一体に構成する。そして、熱電素子基板10に隣接して配列された熱電素子12、13の両端面に電気的に直列接続するように複数個の電極部材16を半田付けにより接合する。
これにより、熱電素子12、13および電極部材16が一体に構成される。また、上方側に配設される電極部材16がNP接合部を形成し、隣接する熱電素子12、13を直列的に接続されるとともに、下方側に配設される電極部材16がPN接合部を形成し、隣接する熱電素子12、13を電気的に直列接続される。
なお、熱電素子12、13および電極部材16は、半導体、電子部品などを制御基板に組み付けるための製造装置であるマウンター装置を用いて組み付けても良い。これによれば、熱電素子12、13の素子寸法が1.5mm×1.5mm程度以上であれば、容易に摘むことができるので生産性が低下することなく組付けができる。
以上の第1実施形態による熱電変換装置によれば、熱電素子基板10は、電源電圧の出力が定格条件で使用されたときに、一対の熱電素子12、13に印加する印加電圧が0.04V以上、0.08V未満となるように形成している。
これによれば、吸熱能力およびその成績係数COPは、最大となる最適な一対の熱電素子12、13あたりの印加電圧が存在する。これは発明者らが研究により見出したものであって、上記0.04V以上〜0.08V未満の最適電圧範囲内であれば吸熱能力およびその成績係数が良好となる使用範囲で使用することができる。
しかも、これらの最適電圧範囲内のうち、その印加電圧を低減させると吸熱能力と成績係数とが最大となる。ところが、このようなときには素子対数が増加して装置の設置面積が増加する。
ところが、生産性の低下を防止できる範囲内で熱電素子12、13の体格を小さく形成することで、冷却能力およびその成績係数を低下させることことなく装置の小型化が図れる。また、上記最適電圧範囲を電源電圧の定格条件によって求めたことにより、車両に搭載する冷却装置もしくは加熱装置として好適である。
また、熱電素子基板10が一対の熱電素子12、13に印加する印加電圧がより好ましくは0.04V以上、0.07V未満となるように形成されたことにより、印加電圧の上限を0.07V未満とすることで、上述したよりもより冷却能力およびその成績係数を向上させることができる。
さらに、熱電素子基板10が一対の熱電素子12、13に印加する印加電圧が最も好ましくは0.04以上、0.05V未満となるように形成されたことにより、印加電圧の上限を0.05V未満とすることで最も冷却能力およびその成績係数を向上させることができる。
(第2実施形態)
以上の第1実施形態では、熱電素子基板10を素子の形状、素子対数、熱電素子一対あたりの印加電圧を最適化して形成したが、これに限らず、熱電素子12、13の素子形状を最適化して形成しても良い。
具体的には、図10に示すように、吸熱量Qcは、素子の断面積(a×b)/高さ(h)が大きいほど増加する関係があり、その成績係数COPは、素子の断面積(a×b)/高さ(h)が小さいほど増加する関係がある。なお、このときには、熱電素子基板10の端子24a、24b間にDC6Vの駆動電圧を印加している。
本実施形態では、図10に基づいて、熱電素子12、13の形状をその熱電素子12、13に流れる駆動電流の流れ方向に対して鉛直な断面積(a×b)と、熱電素子12、13の高さ(h)との比である素子形状指数(a×b/h)を最適化して熱電変換装置の小型化を図るようにしている。なお、素子形状指数(a×b/h)のうち、aは、図11に示すように、熱電素子12、13の幅寸法であり、bは奥行寸法である。
そして、より具体的には、(1)吸熱量比が最大吸熱量Qcの65%以上を確保できること。(2)成績係数COPが1以上確保できること。(3)素子の高さ(h)が1mm以上確保できること。の3つの条件を満足する素子形状指数(a×b/h)の最適範囲を求めている。ここで、(3)素子の高さ(h)は、製造面における制約であり、高さ(h)を1mm以上とすることで組付性が低下することはない。
これにより、(1)は素子形状指数(a×b/h)が1.5以上であれば良い。(2)は素子形状指数(a×b/h)が3.2未満であれば良い。(3)は素子形状指数(a×b/h)が2.5以下であれば、吸熱量比が最大吸熱量Qcの65%以上を確保でき、かつ、成績係数COPが1以上確保できる。
つまり、素子形状指数(a×b/h)が好ましくは1.5以上、2.5未満であり、より好ましくは2以上、2.5未満であると良い。これによって、冷却能力およびその成績係数をともに高い領域で実現できる。
また、素子形状指数(a×b/h)の上限を2.5未満とすることで、熱電素子12、13の高さ(h)を製造面からの制約となる所定の高さ(例えば、1mm)以上にして、生産性の低下を防止しつつ、高い吸熱能力と高い成績係数を実現できる。さらに、素子形状指数(a×b/h)の下限を2.0以上とすることで吸熱量比が最大吸熱量Qcの80%以上を確保できる。
なお、以上の素子形状指数(a×b/h)に基づいて形成した熱電素子基板10に第1実施形態で求めた熱電素子一対あたりの印加電圧の最適電圧範囲を組み合わせることで、より確実に冷却能力およびその成績係数を低下させることなく、装置の小型化が図れるとともに生産性の向上が図れることができる。
(第3実施形態)
以上の実施形態では、熱電素子基板10の小型化について説明したが、これに限らず、熱電素子基板10の上下に積層する吸熱側フィン基板20および放熱側フィン基板30においても、複数の吸熱熱交換部材22および放熱熱交換部材32を小型化となるように配設することが望ましい。
具体的には、図12に示すように、吸熱側フィン基板20および放熱側フィン基板30には、熱交換媒体である空気の流れ方向に沿って形成される絶縁空間L2と熱交換媒体の流れ方向に対して直交する方向に形成される絶縁空間L1を設けて、それぞれ吸熱熱交換部材22、放熱熱交換部材32が複数個配設される。
従って、絶縁空間L2よりも絶縁空間L1の方が大きくなるように、吸熱側フィン基板20および放熱側フィン基板30を形成することにより、絶縁空間L2を小さくすることで熱電素子対数を増加させることができる。これにより、装置の小型化が図れる。なお、直交する方向に形成される絶縁空間L1には、吸熱熱交換部材22、放熱熱交換部材32の熱交換部が形成できる。
(第4実施形態)
以上の第3実施形態では、吸熱側フィン基板20および放熱側フィン基板30を互いに隣り合う吸熱熱交換部材22、放熱熱交換部材32の間に形成される絶縁空間L1、L2を異なるように形成したが、これに限らず、熱電素子基板10の外形が空気の流れ方向に沿う奥行き寸法W2よりも、空気の流れ方向に対して直角方向となる幅寸法W1の方が大きくなるように形成されていても良い。
具体的には、図13に示すように、熱電素子12、13を空気の流れ方向に沿う奥行き方向に向けて電気的に直列接続するように第1絶縁基板11に配設している。そして、熱電素子基板10の外形を奥行き寸法W2よりも幅寸法W1の方が大きくなるように形成する。
これによれば、奥行き寸法W2の方が小さいことで、空気の流れ方向に対して直角方向に隣り合う熱電素子12、13間の電位差が大きくなるのを防止することができる。また、幅寸法W1側に素子対数を増加することができる。つまり、通風抵抗が低下する方向に素子対数を増加することができる。
(第5実施形態)
以上の実施形態では、一つまたは複数の熱電素子基板10を電気的に直列接続させて、その端子24a、24b間に車両用電源を直接印加するように構成したが、これに限らず、電源電圧を所定電圧に調整する 電圧調整手段であるDC−DCコンバータ2を有し、そのDC−DCコンバータ2を介して熱電素子基板10印加するように構成しても良い。
具体的には、図14に示すように、車両用電源であるバッテリ1と熱電素子基板10との間にDC−DCコンバータ2を設ける。そして、バッテリ1から出力される電源電圧をDC−DCコンバータ2で所定電圧(例えば、DC6V)に調整して熱電素子基板10の端子24a、24b間に接続している。なお、このときの所定電圧が定格条件である。
以上の構成によれば、例えば、車両用電源は、車両用補機の負荷や環境条件により電源電圧が変動することで、その変動によって一対の熱電素子12、13に印加する印加電圧が変動するが、DC−DCコンバータ2によって、常時最適な印加電圧を一対の熱電素子12、13に印加することができる。従って、吸熱能力およびその成績係数が良好となる使用範囲で使用することができる。
(他の実施形態)
以上の実施形態では、本発明を車両に搭載されるシート空調装置に適用させたが、車両とは限らず、ペルチェ素子52により送風空気を冷却もしくは加熱する冷却装置もしくは加熱装置に適用させても良い。
本発明の第1実施形態における熱電変換装置の外観形状を示す平面図である。 図1に示すA−A断面図である。 図2に示すC−C断面図である。 図1に示すB−B断面図である。 熱電素子一対あたりの印加電圧と吸熱能力比との関係を示す特性図である。 熱電素子一対あたりの印加電圧と成績係数COPとの関係を示す特性図である。 熱電素子一対あたりの印加電圧と素子対数との関係を示す特性図である。 熱電素子一対あたりの印加電圧と素子の最大許容寸法との関係を示す特性図である。 本発明の第1実施形態の変形例における熱電素子基板10の外観形状を示す平面図である。 本発明の第2実施形態における素子形状指数と吸熱能力比、成績係数COPとの関係を示す特性図である。 熱電素子12、13の素子形状を説明する斜視図である。 本発明の第3実施形態における吸熱側フィン基板20、放熱側フィン基板30の外観形状を示す模式図である。 本発明の第4実施形態における熱電素子基板10の形状を示す模式図である。 本発明の第5実施形態における熱電素子基板10の電気配線を示すブロック図である。
符号の説明
2…DC−DCコンバータ(電圧調整手段)
10…熱電素子基板(熱電素子モジュール)
12…P型熱電素子、熱電素子
13…N型熱電素子、熱電素子
22…吸熱熱交換部材
32…吸熱熱交換部材

Claims (11)

  1. P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの前記熱電素子(12、13)が電気的に接続される熱電素子モジュール(10)を一つまたは複数備え、電源電圧を一つまたは複数の前記熱電素子モジュール(10)に直接印加する熱電変換装置であって、
    前記熱電素子モジュール(10)は、前記電源電圧の出力が定格条件で使用されたときに、前記一対の熱電素子(12、13)に印加する印加電圧が0.04V以上、0.08V未満となるように形成されたことを特徴とする熱電変換装置。
  2. P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの前記熱電素子(12、13)が電気的に接続される熱電素子モジュール(10)を一つまたは複数備え、電源電圧を所定電圧に調整する電圧調整手段(2)を有し、前記電圧調整手段(2)を介して一つまたは複数の前記熱電素子モジュール(10)に印加する熱電変換装置であって、
    前記熱電素子モジュール(10)は、前記電圧調整手段(2)の出力電圧が定格条件で使用されたときに、前記一対の熱電素子(12、13)に印加する印加電圧が0.04V以上、0.08V未満となるように形成されたことを特徴とする熱電変換装置。
  3. 前記熱電素子モジュール(10)は、前記一対の熱電素子(12、13)に印加する印加電圧がより好ましくは0.04V以上、0.07V未満となるように形成されたことを特徴とする請求項1または請求項2に記載の熱電変換装置。
  4. 前記熱電素子モジュール(10)は、前記一対の熱電素子(12、13)に印加する印加電圧が最も好ましくは0.04V以上、0.05V未満となるように形成されたことを特徴とする請求項1または請求項2に記載の熱電変換装置。
  5. P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの前記熱電素子(12、13)が電気的に接続される熱電素子モジュール(10)を一つまたは複数備え、電源電圧を一つまたは複数の前記熱電素子モジュール(10)に直接印加する熱電変換装置であって、
    前記熱電素子モジュール(10)は、前記熱電素子(12、13)をその熱電素子(12、13)に流れる電流の流れ方向に対して鉛直な断面積(a×b)と、前記熱電素子(12、13)の高さ(h)との比である素子形状指数(a×b/h)が1.5以上、2.5未満となるように形成されたことを特徴とする熱電変換装置。
  6. P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの前記熱電素子(12、13)が電気的に接続される熱電素子モジュール(10)を一つまたは複数備え、電源電圧を所定電圧に調整する電圧調整手段(2)を有し、前記電圧調整手段(2)を介して一つまたは複数の前記熱電素子モジュール(10)に印加する熱電変換装置であって、
    前記熱電素子モジュール(10)は、前記熱電素子(12、13)をその熱電素子(12、13)に流れる電流の流れ方向に対して鉛直な断面積(a×b)と、前記熱電素子(12、13)の高さ(h)との比である素子形状指数(a×b/h)が1.5以上、2.5未満となるように形成されたことを特徴とする熱電変換装置。
  7. 前記熱電素子モジュール(10)は、前記熱電素子(12、13)を前記素子形状指数(a×b/h)がより好ましくは2.0以上、2.5未満となるように形成されたことを特徴とする請求項5または請求項6に記載の熱電変換装置。
  8. 前記熱電素子モジュール(10)は、前記電源電圧の出力が定格条件で使用されたときに、前記一対の熱電素子(12、13)に印加する印加電圧が0.04V以上、0.08V未満となるように形成されたことを特徴とする請求項5または請求項7に記載の熱電変換装置。
  9. 前記熱電素子モジュール(10)は、前記電圧調整手段(2)の出力電圧が定格条件で使用されたときに、前記一対の熱電素子(12、13)に印加する印加電圧が0.04V以上、0.08V未満となるように形成されたことを特徴とする請求項6または請求項7に記載の熱電変換装置。
  10. 前記熱電素子モジュール(10)の一方面に互いに絶縁空間(L1、L2)を隔てて配設され、前記一対の熱電素子(12、13)に伝熱可能に接続された複数の吸熱熱交換部材(22)と、
    前記熱電素子モジュール(10)の他方面に互いに絶縁空間(L1、L2)を隔てて配設され、前記一対の熱電素子(12、13)に伝熱可能に接続された複数の放熱熱交換部材(32)とを有し、前記複数の吸熱熱交換部材(22)側、および前記複数の放熱熱交換部材(32)側のそれぞれに熱交換媒体が流通するように構成されており、
    前記複数の吸熱熱交換部材(22)および前記複数の放熱熱交換部材(32)は、熱交換媒体の流れ方向に沿って形成される前記絶縁空間(L2)よりも熱交換媒体の流れ方向に対して直交する方向に形成される前記絶縁空間(L1)の方が大きくなるように形成されたことを特徴とする請求項1ないし請求項9のいずれか一項に記載の熱電変換装置。
  11. 前記熱電素子モジュール(10)は、前記一対の熱電素子(12、13)を熱交換媒体の流れ方向に沿う奥行き方向に向けて電気的に直列接続するように配設しており、かつ熱交換媒体の流れ方向に沿う奥行き寸法(W2)よりも、熱交換媒体の流れ方向に対して直角方向となる幅寸法(W1)の方が大きくなるように形成されたことを特徴とする請求項10に記載の熱電変換装置。
JP2006092368A 2005-07-04 2006-03-29 熱電変換装置 Pending JP2007043075A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092368A JP2007043075A (ja) 2005-07-04 2006-03-29 熱電変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005195534 2005-07-04
JP2006092368A JP2007043075A (ja) 2005-07-04 2006-03-29 熱電変換装置

Publications (1)

Publication Number Publication Date
JP2007043075A true JP2007043075A (ja) 2007-02-15

Family

ID=37800733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092368A Pending JP2007043075A (ja) 2005-07-04 2006-03-29 熱電変換装置

Country Status (1)

Country Link
JP (1) JP2007043075A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223497A (ja) * 2009-03-24 2010-10-07 Nitto Electric Works Ltd ペルチェ式冷却ユニット
JP2018528565A (ja) * 2015-06-10 2018-09-27 ジェンサーム インコーポレイテッドGentherm Incorporated 低温プレートアセンブリ一体化車両バッテリ熱電素子と熱電素子の組立方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242022A (ja) * 1995-03-02 1996-09-17 Saamobonitsuku:Kk 熱電変換装置
JP2002329897A (ja) * 2001-05-01 2002-11-15 Eco Twenty One:Kk 熱電変換素子ならびにそれを用いた光通信用モジュール
JP2004071969A (ja) * 2002-08-08 2004-03-04 Okano Electric Wire Co Ltd 熱電冷却装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242022A (ja) * 1995-03-02 1996-09-17 Saamobonitsuku:Kk 熱電変換装置
JP2002329897A (ja) * 2001-05-01 2002-11-15 Eco Twenty One:Kk 熱電変換素子ならびにそれを用いた光通信用モジュール
JP2004071969A (ja) * 2002-08-08 2004-03-04 Okano Electric Wire Co Ltd 熱電冷却装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223497A (ja) * 2009-03-24 2010-10-07 Nitto Electric Works Ltd ペルチェ式冷却ユニット
JP2018528565A (ja) * 2015-06-10 2018-09-27 ジェンサーム インコーポレイテッドGentherm Incorporated 低温プレートアセンブリ一体化車両バッテリ熱電素子と熱電素子の組立方法

Similar Documents

Publication Publication Date Title
US5724818A (en) Thermoelectric cooling module and method for manufacturing the same
US7898806B2 (en) Motor controller
US7687901B2 (en) Heat dissipating fins opposite semiconductor elements
US11075331B2 (en) Thermoelectric device having circuitry with structural rigidity
JP4581802B2 (ja) 熱電変換装置
US8997502B2 (en) Thermoelectric assembly for improved airflow
US7957143B2 (en) Motor controller
US20050172991A1 (en) Thermoelectric element and electronic component module and portable electronic apparatus using it
KR20150130168A (ko) 열전환장치
US20100218512A1 (en) Heat exchanger for thermoelectric applications
KR101753322B1 (ko) 열전모듈 및 이를 구비하는 차량용 시트 냉난방장치
KR100663117B1 (ko) 열전 모듈
JP5906921B2 (ja) 電池モジュール及び車両
JP2007043075A (ja) 熱電変換装置
JP4391351B2 (ja) 冷却装置
JP4968150B2 (ja) 半導体素子冷却装置
CN115175519A (zh) 一种散热器、电子设备及汽车
KR20150123055A (ko) 열전환장치
KR101177266B1 (ko) 열전모듈 열교환기
JP2005228915A (ja) セパレート型ペルチェシステム
JP2006287066A (ja) 熱電変換装置およびその装置の製造方法
CN216213539U (zh) 一种特殊连接方式的多层热电半导体模块
KR100414379B1 (ko) 냉각소자
KR101344527B1 (ko) 열전모듈 열교환기
JP2006108253A (ja) 熱電変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823