JP2007042603A - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
JP2007042603A
JP2007042603A JP2006155956A JP2006155956A JP2007042603A JP 2007042603 A JP2007042603 A JP 2007042603A JP 2006155956 A JP2006155956 A JP 2006155956A JP 2006155956 A JP2006155956 A JP 2006155956A JP 2007042603 A JP2007042603 A JP 2007042603A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
carbon fiber
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006155956A
Other languages
English (en)
Inventor
Masami Ootsuki
正珠 大月
Shinichi Toyosawa
真一 豊澤
Masahito Yoshikawa
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006155956A priority Critical patent/JP2007042603A/ja
Publication of JP2007042603A publication Critical patent/JP2007042603A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】安全性が高いことに加え、電池容量が大きく、充放電サイクルに伴う負極の体積変化が抑制されており、優れたサイクル特性を有する非水電解液二次電池を提供する。
【解決手段】正極と、負極と、非水電解液とを備える非水電解液二次電池において、前記負極が3次元連続状炭素繊維に金属微粒子を担持してなる炭素材電極であって、前記非水電解液がホスファゼン化合物と支持塩とを含むことを特徴とする非水電解液二次電池である。前記3次元連続状炭素繊維としては、芳香環を有する化合物を酸化重合して得られるフィブリル状ポリマーを非酸化性雰囲気中で焼成して得たものが好ましい。また、前記金属微粒子は、金属イオンの還元法により前記3次元連続状炭素繊維上に担持されることが好ましい。更に、前記金属微粒子を構成する金属としては、リチウムを吸蔵・脱離可能な金属が好ましい。
【選択図】図4

Description

本発明は、非水電解液二次電池、特に、安全性が高い上、電池容量が大きく、充放電サイクルに伴う負極の体積変化が抑制されており、優れたサイクル特性を有する非水電解液二次電池に関するものである。
昨今、携帯用端末やモバイル通信機器として広く普及したリチウムイオン電池やキャパシタが、ハイブリッド自動車や燃料電池自動車の補助電源として、あるいは定置用大型電源としても注目を集めており、広く研究が行われている。中でも、リチウムイオン電池は、現存する二次電池の中でも最もエネルギー密度が大きいことから、更なる広範囲な適用に期待がかかっている。
上記リチウムイオン電池には、一般に、エステル化合物やエーテル化合物等の非プロトン性有機溶媒に支持塩を溶解させてなる非水電解液が用いられるが、非プロトン性有機溶媒は、例えば、電池が異常に発熱した際に、気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高い。これに対して、非水電解液にホスファゼン化合物を添加して、非水電解液に不燃性、難燃性又は自己消火性を付与して、短絡等の非常時に電池が発火・引火する危険性を大幅に低減したリチウムイオン電池が開発されている(特許文献1参照)。
また、上記リチウムイオン電池は、リチウムイオンを電気化学的に吸蔵・離脱可能な層状構造の正極(例えば、LiCoO2)と同特性を有する負極(例えば、黒鉛)がリチウムイオンを溶解した電解液を介して対向した構造を有する電池であり、一般に、正極と負極との短絡を防止するために電解液を透過しうる多孔質ポリマー膜が両極材の間に配置された構造を有している。上記電極系の場合、充電によってリチウムイオンが負極層間で還元され電気を蓄えた状態、例えば、C6Liとなって固定される。この際、正極からはLiが放出され、例えば、Li0.44CoO2のような構造をとる。このように非常に高い還元状態となった負極と、非常に高い酸化状態になった正極とを外部負荷の下で放電すると、非常に電圧が高く、且つ高容量の電気を取り出すことができる。
ところで、上記リチウムイオン電池は、1992年に市場に投入され、その後2000年まで年率にして30%以上の急成長を見せた電池である。市場投入当時のリチウムイオン電池の電池容量は、18650型電池にして800mAh程度であったが、2005年現在ではその容量は2500mAhに達しており、実に3倍の容量向上が実現された。この電池容量の向上は、主に負極の単位重量あたりの容量の向上によってもたらされたものであるが、負極の黒鉛の容量も限界に近づいており、現在、大きなブレークスルー技術の開発が嘱望されている。
このように負極容量設計がほぼ限界にきており、新たな負極の出現が望まれているリチウムイオン電池において、近年、SiやSn等のリチウムイオンを電気化学的に大量に吸蔵・脱離できる金属が注目されている。なお、黒鉛の吸蔵・脱離能力が372mAh/gであるのに対し、これら金属の吸蔵・脱離能力は約3000〜4000mAh/gに上ることが知られている。
しかしながら、これら金属は、リチウムの吸蔵・脱離に伴う体積膨張・収縮が極めて大きく、例えば、Siの場合は吸蔵によりその体積が200%となるため、充放電サイクルが進むにつれCu等からなる集電体から剥離してしまい、電極として機能しなくなるという大きな間題点を抱えている。
これに対して、金属状のシリコン等をそのまま用いるのではなく、表面にカーボンをコーティンクしたシリコン粒子を使用する等して、異種物質で膨張・収縮に伴う体積変化を吸収する試みも見られるが、依然として本質的な問題の解決には至っていない。
特開平6−13108号公報 T. Ishiharaら,The 44th Battery Symposium in Japan,2003,1D14,"Anodic Property of n-type Si coated with C Filament"
そこで、本発明の目的は、上記従来技術の問題を解決し、安全性が高いことに加え、電池容量が大きく、充放電サイクルに伴う負極の体積変化が抑制されており、優れたサイクル特性を有する非水電解液二次電池を提供することにある。
本発明者らは、上記目的を達成するために鋭意検討した結果、非水電解液二次電池において、3次元連続状で網目構造を有する炭素繊維に金属微粒子を担持してなる炭素材電極を負極として用いることで、負極中の金属微粒子が大量のリチウムを吸蔵・脱離できるため、電池容量が大幅に向上し、また、負極中の炭素繊維の網目構造の空隙が担持された金属微粒子の体積膨張を吸収するため、充放電サイクルにより金属微粒子が膨張・収縮しても、負極全体としての体積変化が抑制され、サイクル特性が大幅に向上し、更に、非水電解液にホスファゼン化合物を添加することで、電解液の発火・引火の危険性が大幅に低減され、電池の安全性が大幅に向上することを見出し、本発明を完成させるに至った。
即ち、本発明の非水電解液二次電池は、正極と、負極と、非水電解液とを備え、前記負極が3次元連続状炭素繊維に金属微粒子を担持してなる炭素材電極であって、前記非水電解液がホスファゼン化合物と支持塩とを含むことを特徴とする。ここで、負極として用いる炭素材電極は、3次元連続状炭素繊維と、該炭素繊維上に担持された金属微粒子とからなり、3次元連続状炭素繊維が導電体として機能する一方、金属微粒子がリチウム吸蔵体として機能する。
本発明の非水電解液二次電池の好適例においては、前記3次元連続状炭素繊維が、芳香環を有する化合物を酸化重合して得られるフィブリル状ポリマーを非酸化性雰囲気中で焼成して得たものである。ここで、前記芳香環を有する化合物としては、アニリン、ピロール、チオフェン、及びそれらの誘導体からなる群から選択される少なくとも一種の化合物が好ましい。また、前記酸化重合としては、電解酸化重合が好ましい。
本発明の非水電解液二次電池に用いる炭素材電極は、金属イオンの還元法により前記金属微粒子が前記3次元連続状炭素繊維上に担持されていることが好ましい。ここで、前記金属イオンの還元法としては、電気メッキ(電解メッキ)が好ましい。電気メッキの場合、印加電圧や電圧印加法を変化させることが容易であるため、金属担持量やその大きさ、形状を制御し易い。
本発明の非水電解液二次電池に用いる炭素材電極において、前記金属微粒子を構成する金属は、リチウムを吸蔵・脱離可能な金属であることが好ましい。ここで、該金属微粒子は、Sn、Si、Pb、Al、Au、Pt、In、Zn、Cd、Ag及びMgからなる群から選択される少なくとも一種の金属を含むことが好ましく、Snを含むことが特に好ましい。
本発明の非水電解液二次電池に用いる炭素材電極は、前記3次元連続状炭素繊維の空隙の50体積%以下が前記金属微粒子で充填されていることが好ましい。この場合、充放電サイクルにおいて、炭素繊維上に担持された金属微粒子が膨張しても、炭素材電極全体としての膨張が十分に防止されている。
本発明の非水電解液二次電池において、前記ホスファゼン化合物としては、下記式(I):
[式中、R1は、それぞれ独立して一価の置換基又はハロゲン元素を表し;Y1は、それぞれ独立して2価の連結基、2価の元素又は単結合を表し;Xは、炭素、ケイ素、ゲルマニウム、スズ、窒素、リン、ヒ素、アンチモン、ビスマス、酸素、硫黄、セレン、テルル及びポロニウムからなる群から選ばれる元素の少なくとも1種を含む置換基を表す]で表される鎖状ホスファゼン化合物、及び下記式(II):
(NPR2 2)n ・・・ (II)
[式中、R2はそれぞれ独立して一価の置換基又はハロゲン元素を表し;nは3〜15を表す]で表される環状ホスファゼン化合物が好ましい。ここで、前記ホスファゼン化合物としては、リンに直接ハロゲンが結合しているホスファゼン化合物がより好ましく、更には、当該ハロゲンがフッ素であり、その個数が1個以上であるホスファゼン化合物が特に好ましい。
また、本発明の非水電解液二次電池の非水電解液は、更に非プロトン性有機溶媒を含むことが好ましい。該非プロトン性有機溶媒は、負極と反応することなく、非水電解液の粘度を低く抑えることができる。
本発明によれば、非水電解液がホスファゼン化合物を含有し且つ3次元連続状炭素繊維に金属微粒子を担持してなる炭素材電極を負極とし、電解液の発火・引火の危険性が大幅に低減されている上、負極中の金属微粒子の利用率が高いため電池容量が大きく、且つ該金属微粒子が電気化学反応に伴って体積変化しても負極全体として体積変化することがなく、優れたサイクル特性を有する非水電解液二次電池を提供することができる。
以下に、本発明を詳細に説明する。本発明の非水電解液二次電池は、正極と、負極と、非水電解液とを備え、前記負極が3次元連続状炭素繊維に金属微粒子を担持してなる炭素材電極であって、前記非水電解液がホスファゼン化合物と支持塩とを含むことを特徴とする。なお、本発明の非水電解液二次電池は、必要に応じて、セパレーター等の非水電解液二次電池の技術分野で通常使用されている他の部材を備えることができる。
<負極>
本発明の非水電解液二次電池に負極として用いる炭素材電極は、3次元連続状炭素繊維に金属微粒子を担持してなる。該炭素材電極を構成する3次元連続状炭素繊維は、3次元連続状であるため、導電性が高く、金属微粒子上で起こる酸化・還元反応に伴う電子を効果的に集電体に伝導することができる。そのため、該炭素材電極には、特に外部から導電体を追加付与する必要はない。また、上記炭素材電極においては、金属が微粒子状に担持されているため、金属の比表面積、即ち、反応面積が大きい。そのため、該炭素材電極は、大電流での充電や放電特性にも優れる。更に、上記炭素材電極においては、3次元連続状炭素繊維が3次元網目構造を有し、該網目構造が金属微粒子の電気化学反応に伴う体積変化を効率よく吸収するため、炭素材電極全体としての体積変化が殆どなく、隣接する集電体等と剥離することがない。そのため、本発明の非水電解液二次電池は、充放電サイクル特性に優れる。
また更に、電気メッキで金属微粒子を3次元連続状炭素繊維上に析出させた場合には、金属微粒子が炭素繊維と接触した状態で析出するため、金属微粒子と炭素繊維との接触性が優れる。その結果、炭素材電極における金属の利用効率の向上が達成される上、非水電解液二次電池の内部抵抗を低減することもできる。
上記3次元連続状炭素繊維は、例えば、芳香環を有する化合物を酸化重合してフィブリル状ポリマーを生成させた後、該フィブリル状ポリマーを非酸化性雰囲気中で焼成することで得られる。上記芳香環を有する化合物としては、ベンゼン環を有する化合物、芳香族複素環を有する化合物を挙げることができる。ここで、ベンゼン環を有する化合物としては、アニリン及びアニリン誘導体が好まく、芳香族複素環を有する化合物としては、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香環を有する化合物は、一種単独で用いても、二種以上の混合物として用いてもよい。
上記芳香環を有する化合物を酸化重合して得られるフィブリル状ポリマーは、直径が30nm〜数百nmで、好ましくは40nm〜500nmであり、長さが0.5μm〜100mmで、好ましくは1μm〜10mmである。
上記酸化重合法としては、電解酸化重合法及び化学的酸化重合法等の種々の方法が利用できるが、中でも電解酸化重合法が好ましい。また、酸化重合においては、原料の芳香環を有する化合物と共に、酸を混在させることが好ましい。この場合、酸の負イオンがドーパントとして合成されるフィブリル状ポリマー中に取り込まれ、導電性に優れるフィブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより炭素繊維の導電性を更に向上させることができる。
この点について更に詳述すると、例えば、重合原料としてアニリンを用いた場合、アニリンをHBF4を混在させた状態で酸化重合して得られるポリアニリンは、通常下記式(A)〜(D):
に示した4種のポリアニリンが混在した状態、即ち、ベンゾノイド=アミン状態(式A)、ベンゾノイド=アンモニウム状態(式B)、ドープ=セミキノンラジカル状態(式C)及びキノイド=ジイミン状態(式D)の混合状態になる。ここで、上記各状態の混合比率は特に制限されるものではないが、ドープ=セミキノンラジカル状態(式C)を多く含んでいる方がキノイド=ジイミン状態(式D)が大部分であるよりも得られる炭素繊維の残炭率及び導電率が高くなる。従って、ドープ=セミキノンラジカル状態(式C)を多く含むポリアニリンを得るためには、重合時に酸を混在させることが好ましい。なお、重合の際に混在させる酸としては、上記HBF4に限定されるものではなく、種々のものを使用することができ、HBF4の他、H2SO4、HCl、HClO4等を例示することができる。ここで、該酸の濃度は、0.1〜3mol/Lの範囲が好ましく、0.5〜2.5mol/Lの範囲が更に好ましい。
上記ドープ=セミキノンラジカル状態(式C)の含有割合(ドーピングレベル)は適宜調節することができ、この含有割合(ドーピングレベル)を調節することにより、得られる炭素繊維の残炭率及び導電率を制御することができ、ドーピングレベルを高くすることにより得られる炭素繊維の残炭率及び導電率が共に高くなる。なお、特に限定されるものではないが、このドープ=セミキノンラジカル状態(式C)の含有割合(ドーピングレベル)は、通常0.01〜50%の範囲とすることが好ましい。
電解酸化重合によりフィブリル状ポリマーを得る場合には、芳香環を有する化合物を含む溶液中に作用極及び対極となる一対の電極板を浸漬し、両極間に前記芳香環を有する化合物の酸化電位以上の電圧を印加するか、または該芳香環を有する化合物が重合するのに充分な電圧が確保できるような条件の電流を通電すればよく、これにより作用極上にフィブリル状ポリマーが生成する。この電解酸化重合法によるフィブリル状ポリマーの合成方法の一例を挙げると、作用極及び対極としてステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質材などを用い、これらをH2SO4、HBF4等の酸及び芳香環を有する化合物を含む電解溶液中に浸漬し、両極間に0.1〜1000mA/cm2、好ましくは0.2〜100mA/cm2の電流を通電して、作用極側にフィブリル状ポリマーを重合析出させる方法などが例示される。ここで、芳香環を有する化合物の電解溶液中の濃度は、0.05〜3mol/Lの範囲が好ましく、0.25〜1.5mol/Lの範囲が更に好ましい。また、電解溶液には、上記成分に加え、pHを調製するために可溶性塩等を適宜添加してもよい。
上述のように、炭素繊維のドーピングレベルを調節することにより、得られる炭素繊維の導電率及び残炭率を制御することができるが、ドーピングレベルの調節は、得られたフィブリル状ポリマーを何らかの方法で還元すればよく、その手法に特に制限はない。具体例としては、アンモニア水溶液又はヒドラジン水溶液などに浸漬する方法、電気化学的に還元電流を付加する方法などが挙げられる。この還元レベルによりフィブリル状ポリマーに含まれるドーパント量の制御を行うことができ、この場合、還元処理によってフィブリル状ポリマー中のドーパント量は減少する。また、重合時において酸濃度を制御することにより重合過程でドーピングレベルをある程度調節することもできるが、ドーピングレベルが大きく異なる種々のサンプルを得ることは難しく、このため上記還元法が好適に採用される。なお、このように含有割合を調節したドーパントは、後述する焼成処理後も、その焼成条件を制御することによって得られる炭素繊維中に保持され、これにより炭素繊維の導電率及び残炭率が制御される。
上記のようにして作用極上に得られたフィブリル状ポリマーを、水や有機溶剤等の溶媒で洗浄し、乾燥させた後、非酸化性雰囲気中で焼成して炭化することで、フィブリル状で3次元連続状の炭素繊維が得られる。ここで、乾燥方法としては、特に制限されるものではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライヤー等を使用した方法を例示することができる。また、焼成条件としては、特に限定されるものではなく、最適導電率となるように設定すればよいが、特に高導電率を必要とする場合は、温度500〜3000℃、好ましくは600〜2800℃で、0.5〜6時間とすることが好ましい。なお、非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。
上記炭素繊維は、直径が30nm〜数百nm、好ましくは40nm〜500nmであり、長さが0.5μm〜100mm、好ましくは1μm〜10mmであり、表面抵抗が106〜10-2Ω、好ましくは104〜10-2Ωである。また、該炭素繊維は、残炭率が95〜30%、好ましくは90〜40%である。該炭素繊維は、カーボン全体が3次元に連続した構造を有するため、粒状カーボンよりも導電性が高い。
上記炭素材電極の金属微粒子を構成する金属としては、リチウムを吸蔵・脱離可能な金属が好ましく、Sn、Si、Pb、Al、Au、Pt、In、Zn、Cd、Ag及びMg等が更に好ましく、Snがより一層好ましい。これら金属は、一種単独で用いてもよいし、二種以上の合金として用いてもよい。ここで、炭素繊維上に担持される金属微粒子の粒径は、0.5〜20nmの範囲が好ましい。また、金属微粒子の担持率は、炭素繊維1gに対して0.05〜5gの範囲が好ましい。更に、上記炭素材電極においては、3次元連続状炭素繊維の空隙の50体積%以下が金属微粒子で充填されていることが好ましい。この場合、充放電サイクルにおいて、炭素繊維上に担持された金属微粒子が膨張・収縮しても、負極全体としての体積変化が十分に防止されている。
上記金属微粒子の炭素繊維上への担持法としては、含浸法、電気メッキ法(電解還元法)、無電解メッキ法(化学メッキ法)、スパッタリング法等が挙げられるが、金属微粒子の担持率の調整が容易な点で、電気メッキ法が好ましい。該電気メッキ法では、メッキしたい金属のイオンを含む溶液を調製し、該溶液に上記炭素繊維を浸漬し、所定の電圧を印加することで、溶液から金属微粒子を炭素繊維上に電気化学的に析出させることにより、炭素繊維表面のみに金属微粒子を析出させることができ、しかも通電電荷量で金属微粒子の析出量を正確に制御することができる。また、金属微粒子析出の際の通電条件(電流密度、直流法かパルス法か、温度、金属イオン濃度、共存イオン種等)を適宜選択することで、析出させる金属微粒子の粒径、形態、付着状況等を変えることもできる。
例えば、炭素繊維にSn微粒子を担持する場合は、Snイオンを含む水溶液に炭素繊維を浸漬し、該炭素繊維を通電することで、炭素繊維の表面上にSn微粒子を電気化学的に析出させることができる。この場合においても、通電量によってSn微粒子の析出量をコントロールすることができる。但し、Snのように表面が酸化し易い金属を電析させて炭素材電極を作製する場合には、金属微粒子表面に生成したSnO層等を除去するために、HF処理やH2雰囲気下でのアニーリングを施すことが好ましく、これらの処理によって、炭素材電極の性能を向上させることができる。
上記炭素材電極は、特に限定されるものではないが、集電体上で3次元連続状炭素繊維を合成し、更に金属微粒子を担持することで、集電体の塗工工程が省略できる。例えば、銅集電体上に3次元連続状炭素繊維を形成し、該炭素繊維上に電気メッキ等によりスズ等の金属微粒子を担持し、該金属微粒子担持炭素繊維を加熱乾燥した後、プレスすることで、そのまま負極として用いることができる。
本発明の非水電解液二次電池の負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。
<正極>
本発明の非水電解液二次電池の正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2(式中、0≦x<1、0≦y<1、0<x+y≦1)、LiMnxFey2-x-y、あるいはLiNixCoyMn1-x-y2等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24、LiNi1/3Co1/3Mn1/32が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。
上記正極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。また、上記正極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。
<非水電解液>
本発明の非水電解液二次電池に用いる非水電解液は、ホスファゼン化合物と支持塩とを含み、更に非プロトン性有機溶媒を含むことが好ましい。上記ホスファゼン化合物は、分解して、窒素ガスやリン酸エステル等を発生するため、発生した窒素ガスの作用によって、電解液が燃焼する危険性が低減されると共に、発生したリン酸エステル等の作用によって、電池を構成する高分子材料の連鎖分解が抑制されるため、電池の発火・引火の危険性を効果的に低減することができる。更に、上記ホスファゼン化合物がハロゲンを含む場合、万が一の燃焼時にはハロゲンが活性ラジカルの捕捉剤として機能し、電解液の燃焼の危険性を低減する。また更に、上記ホスファゼン化合物が有機置換基を含む場合、燃焼時にセパレーター上に炭化物(チャー)を生成するため酸素の遮断効果もある。なお、上記非水電解液において、上記ホスファゼン化合物の含有量は、電解液の安全性を向上させる観点から、3体積%以上が好ましく、5体積%以上が更に好ましく、また、電解液の100体積%をホスファゼン化合物とすることもできる。
上記非水電解液に用いるホスファゼン化合物としては、上記式(I)で表される鎖状ホスファゼン化合物及び上記式(II)で表される環状ホスファゼン化合物が好適に挙げられる。また、式(I)又は式(II)で表されるホスファゼン化合物の中でも、25℃(室温)において液体であるものが好ましい。該液状ホスファゼン化合物の25℃における粘度は、300mPa・s(300cP)以下が好ましく、20mPa・s(20cP)以下が更に好ましく、5mPa・s(5cP)以下が特に好ましい。なお、本発明において粘度は、粘度測定計[R型粘度計Model RE500-SL、東機産業(株)製]を用い、1rpm、2rpm、3rpm、5rpm、7rpm、10rpm、20rpm及び50rpmの各回転速度で120秒間づつ測定し、指示値が50〜60%となった時の回転速度を分析条件とし、その際の粘度を測定することによって求めた。ホスファゼン化合物の25℃における粘度が300mPa・sを超えると、支持塩が溶解し難くなり、正極、負極、セパレーター等への濡れ性が低下し、電解液の粘性抵抗の増大によりイオン導電性が著しく低下し、特に氷点以下等の低温条件下での使用において性能不足となる。また、これらのホスファゼン化合物は、液状であるため、通常の液状電解質と同等の導電性を有し、電解液に使用することで、優れたサイクル特性を発現させることができる。また、上記式(I)又は式(II)で表されるホスファゼン化合物の中でも、リンに直接ハロゲンが結合しているホスファゼン化合物が更に好ましく、リンに直接フッ素が結合しているホスファゼン化合物がより一層好ましい。
式(I)のR1は、一価の置換基又はハロゲン元素である限り特に制限はなく、各R1は、同一でも、異なってもよい。ここで、一価の置換基としては、アルコキシ基、アルキル基、カルボキシル基、アシル基、アリール基等が挙げられ、これらの中でも、ホスファゼン化合物が低粘度となる点で、アルコキシ基が好ましい。一方、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられる。上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、メトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられ、これらの中でも、メトキシ基、エトキシ基、メトキシエトキシ基及びメトキシエトキシエトキシ基が好ましく、低粘度・高誘電率の観点から、メトキシ基及びエトキシ基が更に好ましい。また、上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ、上記アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基等が挙げられ、上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられる。これら一価の置換基中の水素元素は、ハロゲン元素で置換されているのが好ましく、該ハロゲン元素としては、フッ素、塩素、臭素が好適であり、フッ素が最も好ましく、次いで塩素が好ましい。
式(I)のY1は、2価の連結基、2価の元素又は単結合である限り特に制限はなく、各Y1は、同一でも、異なってもよい。ここで、2価の連結基としては、CH2基の他、酸素、硫黄、セレン、窒素、ホウ素、アルミニウム、スカンジウム、ガリウム、イットリウム、インジウム、ランタン、タリウム、炭素、ケイ素、チタン、スズ、ゲルマニウム、ジルコニウム、鉛、リン、バナジウム、ヒ素、ニオブ、アンチモン、タンタル、ビスマス、クロム、モリブデン、テルル、ポロニウム、タングステン、鉄、コバルト、ニッケルからなる群から選ばれる元素の少なくとも1種を含む2価の連結基が挙げられ;2価の元素としては、酸素、硫黄、セレン等が挙げられる。これらの中でも、式(I)のY1としては、CH2基、及び、酸素、硫黄、セレン、窒素からなる群から選ばれる元素の少なくとも1種を含む2価の連結基が好ましい。特に、硫黄及び/又はセレンの元素を含む2価の連結基の場合には、電解液の発火・引火の危険性が著しく低減するため好ましい。
式(I)のXは、炭素、ケイ素、ゲルマニウム、スズ、窒素、リン、ヒ素、アンチモン、ビスマス、酸素、硫黄、セレン、テルル及びポロニウムからなる群から選ばれる元素の少なくとも1種を含む置換基である限り特に制限はない。有害性、環境等への配慮の観点から、式(I)のXとしては、炭素、ケイ素、窒素、リン、酸素及び硫黄からなる群から選ばれる元素の少なくとも1種を含む置換基が好ましく、下記式(III)、式(IV)又は式(V):
[式(III)、式(IV)及び式(V)中、R3、R4及びR5は、それぞれ独立に一価の置換基又はハロゲン元素を表し;Y3、Y4及びY5は、それぞれ独立に2価の連結基、2価の元素又は単結合を表し;Zは2価の基又は2価の元素を表す]で表される置換基が更に好ましい。
式(III)のR3、式(IV)のR4及び式(V)のR5としては、式(I)のR1で述べたのと同様の一価の置換基又はハロゲン元素がいずれも好適に挙げられる。また、式(III)の2つのR3、並びに式(V)の2つのR5は、それぞれ同一でも、異なってもよく、互いに結合して環を形成していてもよい。
式(III)のY3、式(IV)のY4及び式(V)のY5としては、式(I)のY1で述べたのと同様の2価の連結基又は2価の元素がいずれも好適に挙げられる。同様に、硫黄及び/又はセレンの元素を含む2価の連結基の場合には、電解液の発火・引火の危険性が大きく低減するため特に好ましい。また、Y3、Y4及びY5としては、単結合も好ましい。式(III)の2つのY3、並びに式(V)の2つのY5は、それぞれ同一でも、異なってもよい。
式(III)のZは、2価の基又は2価の元素である限り特に制限はない。ここで、2価の基としては、CH2基、CHR基(ここで、Rは、アルキル基、アルコキシ基、フェニル基等を表す)、NR基の他、酸素、硫黄、セレン、ホウ素、アルミニウム、スカンジウム、ガリウム、イットリウム、インジウム、ランタン、タリウム、炭素、ケイ素、チタン、スズ、ゲルマニウム、ジルコニウム、鉛、リン、バナジウム、ヒ素、ニオブ、アンチモン、タンタル、ビスマス、クロム、モリブデン、テルル、ポロニウム、タングステン、鉄、コバルト、ニッケルからなる群から選ばれる元素の少なくとも1種を含む2価の基等が挙げられ;2価の元素としては、酸素、硫黄、セレン等が挙げられる。これらの中でも、式(III)のZとしては、CH2基、CHR基、NR基の他、酸素、硫黄、セレンからなる群から選ばれる元素の少なくとも1種を含む2価の基が好ましい。特に、硫黄及び/又はセレンの元素を含む2価の基の場合には、電解液の発火・引火の危険性が大幅に低減するため好ましい。
これら置換基としては、特に効果的に発火・引火の危険性を低減し得る点で、式(III)で表されるようなリンを含む置換基が特に好ましい。また、置換基が式(IV)で表されるような硫黄を含む置換基である場合には、電解液の小界面抵抗化の点で特に好ましい。
式(II)のR2は、一価の置換基又はハロゲン元素である限り特に制限はない。ここで、一価の置換基としては、アルコキシ基、アリールオキシ基、アルキル基、カルボキシル基、アシル基、アリール基等が挙げられ、これらの中でも、ホスファゼン化合物が低粘度となる点で、アルコキシ基及びアリールオキシ基が好ましい。一方、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられ、これらの中でも、フッ素が特に好ましい。上記アルコキシ基としては、メトキシ基、エトキシ基、メトキシエトキシ基、プロポキシ基等が挙げられ、上記アリールオキシ基としては、フェノキシ基等が挙げられ、これらの中でも、メトキシ基、エトキシ基、メトキシエトキシ基、フェノキシ基が特に好ましい。また、上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ;上記アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基等が挙げられ;上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられる。これら一価の置換基中の水素元素は、ハロゲン元素で置換されているのが好ましく、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられ、フッ素原子で置換された置換基としては、トリフルオロエトキシ基等が挙げられる。
式(I)〜式(V)におけるR1〜R5、Y1、Y3〜Y5、Zを適宜選択することにより、より好適な粘度、添加・混合に適する溶解性等を有するホスファゼン化合物が得られる。これらホスファゼン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。
また、上記非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性に優れる点で、LiPF6が更に好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。ここで、非水電解液における支持塩の濃度としては、0.2〜1.5mol/L(M)の範囲が好ましく、0.5〜1mol/L(M)の範囲が更に好ましい。支持塩の濃度が0.2mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。
更に、上記非水電解液に用いることができる非プロトン性有機溶媒としては、特に制限はないが、電解液の粘度を低く抑える観点から、エーテル化合物やエステル化合物等が好ましい。具体的には、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)、γ-バレロラクトン、エチルメチルカーボネート(EMC)、メチルフォルメート(MF)等が好適に挙げられる。これらの中でも、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等の環状エステル化合物、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状エステル化合物、1,2-ジメトキシエタン等の鎖状エーテル化合物が好ましい。特に、環状のエステル化合物は、比誘電率が高く、リチウム塩等の溶解性に優れる点で好適であり、鎖状のエステル化合物及びエーテル化合物は、低粘度であるため電解液の低粘度化の点で好適である。これらは1種単独で使用してもよく、2種以上を併用してもよいが、2種以上を併用するのが好適である。
<その他の部材>
本発明の非水電解液二次電池に使用できる他の部材としては、非水電解液二次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。
以上に説明した本発明の非水電解液二次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液二次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水電解液二次電池を作製することができる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
<3次元連続状炭素繊維の製造例>
アニリンモノマー 0.5mol/LとHBF4 1.0mol/Lとを含む酸性水溶液中に、銅製の作用極を設置し、対極として白金板を使用して、室温にて10mA/cm2の定電流で10分間電解重合を行い、ポリアニリンを作用極上に電析させた。得られたポリアニリンをイオン交換水で洗浄し、更に24時間真空乾燥した後、SEMで観察したところ、フィブリル状ポリアニリンが生成していることを確認した。
次に、上記ポリアニリンを銅作用極ごとAr雰囲気中3℃/分の昇温速度で950℃まで加熱し、その後950℃で1時間保持して焼成処理した。得られた焼成物をSEMで観察したところ、直径が40〜100nmのフィブリル状で3次元連続状の炭素繊維が、銅作用極上に生成していることを確認した。なお、該炭素繊維は、残炭率が45%で、表面抵抗が1.0Ωであった(三菱油化製, Loresta IP又はHiresta IPで測定)。
(実施例1)
1Nの硫酸酸性Snイオン溶解溶液(Sn2+:18g/L)に上記の方法で作製した3次元連続状炭素繊維を浸漬し、5C/cm2で電気メッキを行った。電気メッキの際の電流値は50mAである。得られたSn担持炭素繊維のSEM写真を図1に示す。該SEM写真から、Snが炭素繊維上に微細に担持されており、基材の3次元連続状炭素繊維の骨格が維持されていることが確認された。その後、該Sn担持炭素繊維を水洗し、乾燥後、Ar雰囲気下のグローブボックス中で更に乾燥した。また、下記の方法で炭素繊維の空隙の充填率を測定したところ、炭素繊維の空隙の約20体積%がSn微粒子で埋められていることが分かった。
<炭素繊維の空隙充填率>
まず、Sn担持前の炭素繊維についてその嵩密度を求め、真密度との関係から空隙率を求める。この空隙率と未担持の炭素繊維の見かけ体積から空隙の体積を求める。更に、Sn担持炭素繊維の重量と未担持炭素繊維の重量差からSn担持重量を求め、これをSnの真密度で除して、Snの占有する体積を求める。得られたSn占有体積と先に求めた空隙体積の関係から、Sn充填率を算出する。
次に、得られたSn担持炭素繊維に有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)を加えて混練した後、該混練物を厚さ25μmの銅箔(集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120℃)して、厚さ60μmの負極シートを作製した。
また、LiCoO2(正極活物質)94質量部に対して、アセチレンブラック(導電剤)3質量部と、ポリフッ化ビニリデン(結着剤)3質量部とを添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmのアルミニウム箔(集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120℃)して、厚さ80μmの正極シートを作製した。
更に、エチレンカーボネート(EC)30体積%、エチルメチルカーボネート(EMC)60体積%及びホスファゼン化合物A[上記式(II)において、nが3であって、全R2のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物]10体積%からなる混合溶液に、LiPF6(支持塩)を1M(mol/L)の濃度で溶解させて非水電解液を調製した。なお、下記の方法で電解液の安全性を評価したところ、得られた非水電解液は不燃性であった。ここで、EC及びEMCの混合溶媒(EC/EMC体積比=1/2)にLiPF6を1Mの濃度で溶解させて調製した非水電解液の評価結果が燃焼性であったことから、上記ホスファゼン化合物の添加によって電解液の安全性が大幅に向上したことが確認された。
<電解液の安全性の評価方法>
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼挙動から非水電解液の安全性を評価した。その際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体的には、UL試験基準に基づき、不燃性石英ファイバーに上記電解液1.0mLを染み込ませて、127mm×12.7mmの試験片を作製して行った。ここで、試験炎が試験片に着火しない場合(燃焼長:0mm)を「不燃性」、着火した炎が25mmラインまで到達せず且つ落下物にも着火が認められない場合を「難燃性」、着火した炎が25〜100mmラインで消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が100mmラインを超えた場合を「燃焼性」と評価した。
次に、上記正極シート及び上記負極シートをそれぞれφ16mmに打ち抜いたものを正極及び負極とし、セルロースセパレーター[日本高度紙工業社製TF4030]を介して正負極を対座させ、上記非水電解液を注入し封口して、4mAh級のリチウムイオン電池(2016コイン型)を作製した。
(実施例2)
10C/cm2で電気メッキを行う以外は、実施例1と同様にして3次元連続状炭素繊維にSnを担持した。得られたSn担持炭素繊維のSEM写真を図2に示す。該SEM写真から、Snが炭素繊維上に微細に担持されており、基材の3次元連続状炭素繊維の骨格が維持されていることが確認された。その後、該Sn担持炭素繊維を水洗し、乾燥後、Ar雰囲気下のグローブボックス中で更に乾燥した。また、上記の方法で炭素繊維の空隙の充填率を測定したところ、炭素繊維の空隙の約50体積%がSn微粒子で埋められていることが分かった。更に、得られたSn担持炭素繊維を用いて、実施例1と同様にしてリチウムイオン電池を作製した。
(実施例3)
25C/cm2で電気メッキを行う以外は、実施例1と同様にして3次元連続状炭素繊維にSnを担持した。得られたSn担持炭素繊維のSEM写真を図3に示す。該SEM写真から、25C/cm2以上では析出するSnが成長し、炭素繊維の3次元空間を壊して巨大化することが分かった。その後、該Sn担持炭素繊維を水洗し、乾燥後、Ar雰囲気下のグローブボックス中で更に乾燥を実施した。また、上記の方法で炭素繊維の空隙の充填率を測定したところ、炭素繊維の空隙の60体積%がSn微粒子で埋められていることが分かった。更に、得られたSn担持炭素繊維を用いて、実施例1と同様にしてリチウムイオン電池を作製した。
(比較例1)
EC及びEMCの混合溶媒(EC/EMC体積比=1/2)にLiPF6を1Mの濃度で溶解させて調製した非水電解液を用いる以外は、実施例1と同様にしてリチウムイオン電池を作製した。
(比較例2)
EC及びEMCの混合溶媒(EC/EMC体積比=1/2)にLiPF6を1Mの濃度で溶解させて調製した非水電解液を用いる以外は、実施例2と同様にしてリチウムイオン電池を作製した。
(比較例3)
EC及びEMCの混合溶媒(EC/EMC体積比=1/2)にLiPF6を1Mの濃度で溶解させて調製した非水電解液を用いる以外は、実施例3と同様にしてリチウムイオン電池を作製した。
<電池のサイクル特性評価>
上記のようにして得られた各電池に対して、20℃の環境下で、上限電圧4.3V、下限電圧3.0V、放電電流50mA、充電電流50mAの条件で充放電を行い、この時の放電容量を既知の電極重量で除することにより初期放電容量(mAh/g)を求めた。更に、同様の充放電条件で50サイクルまで充放電を繰り返して、各サイクル後の放電容量を求め、下記の式:
容量残存率=各サイクル後の放電容量/初期放電容量×100(%)
に従って各サイクルの容量残存率を算出し、電池のサイクル特性の指標とした。結果を図4に示す。
図4中の実施例1と比較例1、実施例2と比較例2、実施例3と比較例3の比較から、Sn担持炭素繊維からなる負極を備えるリチウムイオン電池において、電解液にホスファゼン化合物を含ませることで、電池のサイクル特性が向上することが分る。
また、図4から、3次元連続状炭素繊維の空隙の50体積%以下がSn微粒子で埋められたSn担持炭素繊維からなる負極を用いた実施例1及び2のリチウムイオン電池は、特に優れたサイクル特性を有することが分る。
一方、3次元連続状炭素繊維の空隙の50体積%超がSn微粒子で埋められたSn担持炭素繊維からなる負極を用いた実施例3のリチウムイオン電池は、サイクル特性が実施例1及び2に比べて悪かったため、金属微粒子の充填率は3次元連続状炭素繊維の空隙の50体積%以下であることが好ましいことが確認された。これは、本発明で用いる3次元連続状炭素繊維は、網目構造を有し、金属微粒子が体積膨張しても、炭素材電極全体としての体積膨張を緩和できるものの、例えば、金属としてSnを担持した場合、充放電に伴うSnの体積膨張率が200%であるため、Snを炭素繊維の空隙の50体積%を超えて担持すると、充放電によって炭素繊維の網目構造の一部が壊れ、該部分の導通が遮断されるため、充放電容量が低下したものと思われる。
実施例1で得られたSn担持炭素繊維のSEM写真である。 実施例2で得られたSn担持炭素繊維のSEM写真である。 実施例3で得られたSn担持炭素繊維のSEM写真である。 実施例及び比較例のリチウムイオン電池のサイクル特性を示すグラフである。

Claims (11)

  1. 正極と、負極と、非水電解液とを備える非水電解液二次電池において、
    前記負極が3次元連続状炭素繊維に金属微粒子を担持してなる炭素材電極であって、
    前記非水電解液がホスファゼン化合物と支持塩とを含むことを特徴とする非水電解液二次電池。
  2. 前記3次元連続状炭素繊維が、芳香環を有する化合物を酸化重合して得られるフィブリル状ポリマーを非酸化性雰囲気中で焼成して得たものであることを特徴とする請求項1に記載の非水電解液二次電池。
  3. 金属イオンの還元法により前記金属微粒子を前記3次元連続状炭素繊維上に担持したことを特徴とする請求項1又は2に記載の非水電解液二次電池。
  4. 前記金属微粒子を構成する金属がリチウムを吸蔵・脱離可能な金属であることを特徴とする請求項1〜3のいずれかに記載の非水電解液二次電池。
  5. 前記金属微粒子が、Sn、Si、Pb、Al、Au、Pt、In、Zn、Cd、Ag及びMgからなる群から選択される少なくとも一種の金属を含むことを特徴とする請求項4に記載の非水電解液二次電池。
  6. 前記3次元連続状炭素繊維の空隙の50体積%以下が前記金属微粒子で充填されていることを特徴とする請求項1に記載の非水電解液二次電池。
  7. 前記芳香環を有する化合物が、アニリン、ピロール、チオフェン、及びそれらの誘導体からなる群から選択される少なくとも一種の化合物であることを特徴とする請求項2に記載の非水電解液二次電池。
  8. 前記酸化重合が電解酸化重合であることを特徴とする請求項2に記載の非水電解液二次電池。
  9. 前記金属イオンの還元法が電気メッキであることを特徴とする請求項3に記載の非水電解液二次電池。
  10. 前記ホスファゼン化合物が下記式(I):
    [式中、R1は、それぞれ独立して一価の置換基又はハロゲン元素を表し;Y1は、それぞれ独立して2価の連結基、2価の元素又は単結合を表し;Xは、炭素、ケイ素、ゲルマニウム、スズ、窒素、リン、ヒ素、アンチモン、ビスマス、酸素、硫黄、セレン、テルル及びポロニウムからなる群から選ばれる元素の少なくとも1種を含む置換基を表す]又は下記式(II):
    (NPR2 2)n ・・・ (II)
    [式中、R2はそれぞれ独立して一価の置換基又はハロゲン元素を表し;nは3〜15を表す]で表されることを特徴とする請求項1に記載の非水電解液二次電池。
  11. 前記非水電解液が、更に非プロトン性有機溶媒を含むことを特徴とする請求項1に記載の非水電解液二次電池。
JP2006155956A 2005-07-06 2006-06-05 非水電解液二次電池 Withdrawn JP2007042603A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155956A JP2007042603A (ja) 2005-07-06 2006-06-05 非水電解液二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005197232 2005-07-06
JP2006155956A JP2007042603A (ja) 2005-07-06 2006-06-05 非水電解液二次電池

Publications (1)

Publication Number Publication Date
JP2007042603A true JP2007042603A (ja) 2007-02-15

Family

ID=37800380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155956A Withdrawn JP2007042603A (ja) 2005-07-06 2006-06-05 非水電解液二次電池

Country Status (1)

Country Link
JP (1) JP2007042603A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009837A (ja) * 2008-06-25 2010-01-14 Furukawa Electric Co Ltd:The リチウム二次電池用合金負極材料
WO2010089991A1 (ja) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 リチウム二次電池用ファイバー電極及びその製造方法並びにファイバー電極を備えたリチウム二次電池
JP2012119079A (ja) * 2010-11-29 2012-06-21 Hiramatsu Sangyo Kk 負極活物質、負極製造方法、負極、及び二次電池
US9281539B2 (en) 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
WO2023056774A1 (zh) * 2021-10-09 2023-04-13 广东邦普循环科技有限公司 一种复合材料及其制备方法和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009837A (ja) * 2008-06-25 2010-01-14 Furukawa Electric Co Ltd:The リチウム二次電池用合金負極材料
WO2010089991A1 (ja) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 リチウム二次電池用ファイバー電極及びその製造方法並びにファイバー電極を備えたリチウム二次電池
JP5283138B2 (ja) * 2009-02-04 2013-09-04 独立行政法人産業技術総合研究所 リチウム二次電池用ファイバー正極の製造方法、リチウム二次電池用ファイバー負極及びその製造方法、並びにファイバー電極を備えたリチウム二次電池
US9065139B2 (en) 2009-02-04 2015-06-23 National Institute Of Advanced Industrial Science And Technology Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
US9281539B2 (en) 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
JP2012119079A (ja) * 2010-11-29 2012-06-21 Hiramatsu Sangyo Kk 負極活物質、負極製造方法、負極、及び二次電池
WO2023056774A1 (zh) * 2021-10-09 2023-04-13 广东邦普循环科技有限公司 一种复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110574210B (zh) 非水电解质溶液添加剂和包括该添加剂的用于锂二次电池的非水电解质溶液及锂二次电池
CN110268573B (zh) 用于锂二次电池的混合固态电解质
KR101440884B1 (ko) 표면 처리된 음극 활물질을 포함하는 음극 및 이를 채용한리튬 전지
JP2007042601A (ja) 炭素材電極及びその製造方法、並びに非水電解液二次電池
EP1711971A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
KR101243913B1 (ko) 음극활물질, 이를 채용한 음극과 리튬전지 및 그 제조방법
KR20160081692A (ko) 실리콘계 음극 활물질, 이의 제조방법, 상기 실리콘계 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
KR20180025686A (ko) 복합음극활물질, 이를 포함하는 음극 및 리튬전지
KR20190129767A (ko) 안전성이 향상된 리튬 금속 이차전지 및 그를 포함하는 전지모듈
JP2008066128A (ja) リチウムイオン電池用負極活物質及びその製造方法、リチウムイオン電池用負極、並びにリチウムイオン電池
KR102587533B1 (ko) 이차 전지용 전해질 및 이를 포함하는 이차 전지
JP5093992B2 (ja) リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2007042603A (ja) 非水電解液二次電池
JP2007042602A (ja) ポリマー電池
JP4785735B2 (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2005190873A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2004006301A (ja) 非水電解液2次電池用の正極及びその製造方法、並びに該正極を備えた非水電解液2次電池
JP2007018794A (ja) 炭素材電極及びその製造方法、並びに非水電解液二次電池
KR20200033198A (ko) 리튬 전지
JP2006286570A (ja) リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2021525449A (ja) リチウム二次電池用正極活物質及びリチウム二次電池
JP2020107601A (ja) コバルト酸リチウム正極活物質及びそれを用いた二次電池
JP2001185215A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
KR102597205B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
JP4703156B2 (ja) 非水電解液2次電池

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901