JP2007040779A - 燃料コンパクト及び燃料コンパクトの製造方法 - Google Patents

燃料コンパクト及び燃料コンパクトの製造方法 Download PDF

Info

Publication number
JP2007040779A
JP2007040779A JP2005223974A JP2005223974A JP2007040779A JP 2007040779 A JP2007040779 A JP 2007040779A JP 2005223974 A JP2005223974 A JP 2005223974A JP 2005223974 A JP2005223974 A JP 2005223974A JP 2007040779 A JP2007040779 A JP 2007040779A
Authority
JP
Japan
Prior art keywords
fuel
chamfer
fuel compact
compact
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005223974A
Other languages
English (en)
Inventor
Masashi Takahashi
昌史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005223974A priority Critical patent/JP2007040779A/ja
Publication of JP2007040779A publication Critical patent/JP2007040779A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】 プレス時の応力により被覆燃料粒子が破損するのを防止しつつ、簡易にかつ低コストで、燃料コンパクトや燃料スリーブ、黒鉛ブロックの破損を防止する。
【解決手段】 燃料コンパクト10は、被覆燃料粒子12を一体成型して円筒形状に形成されている。この円筒形状の燃料コンパクト10の上端及び下端の隅部10aには、チャンファ16が形成されている。このチャンファ16の厚みt、t´は、0.10mm以上であり、チャンファの面取り角度θ、θ´は30°〜60°の範囲内であり、かつ、チャンファの厚みt、t´はチャンファ面がオーバーコート層14を有する被覆燃料粒子12に接する時の厚みを上限値とする。
【選択図】 図1

Description

本発明は、高温ガス炉等の原子炉において燃料として使用され、ウランやトリウム等の核燃料物質の酸化物炭化物の微小球(燃料核)に熱分解炭素層や炭化珪素層等を被覆した被覆燃料粒子を、黒鉛マトリックス中に分散して一体成型して形成される燃料コンパクトや、その製造方法の改良に関し、特に、プレス時の応力による被覆燃料粒子の破損を防止しつつ、燃料コンパクトの破損を簡易にかつ低コストで防止することに関するものである。
高温ガス炉は、燃料を含む炉心構造を、熱容量が大きく高温健全性が良好な黒鉛から形成すると共に、冷却ガスとして高温下でも化学反応を起こさないヘリウムガス等の気体を用いているため、固有の安全性が高く、出口温度が非常に高いヘリウムガスを取り出すことができる原子炉であり、約900℃前後の高温熱を、発電はもちろんのこと水素製造や化学プラント等、幅広い分野において利用することを可能とするものである。
(被覆燃料粒子)
この高温ガス炉の燃料としては、一般に、二酸化ウランやトリウム等をセラミックス状に焼結した直径約350μm〜650μmの燃料核の周囲に、第1層から第4層の計4層の被覆が施された直径約500μm〜1000μmの被覆燃料粒子が使用される。具体的には、次の4つの被覆である。
即ち、一般にバッファ層と呼ばれる最も内側の第1層は、密度約1g/cm3の低密度熱分解炭素(PyC)から成る層で、ガス状の核***生成物(FP)のガスを溜めると共に、核燃料のスウェリングを吸収する機能を併せ持つ。次いで、この第1層の上に施される第2層は、一般に、密度約1.8g/cm3の高密度熱分解炭素から形成された内側熱分解炭素(PyC)層であり、ガス状の核***生成物(FP)の拡散の障壁となってガス状の核***生成物(FP)を保持する機能を有するものである。更に、炭化珪素(SiC)層と呼ばれる第3層は、密度約3.2g/cm3の炭化珪素から成り、主に固体状の核***生成物の拡散の障壁となって固体状の核***生成物を保持すると共に、被覆燃料粒子全体の主要な強度部材としての機能を有するものである。最も外側の第4層である外側熱分解炭素層は、第2層と同様、密度約1.8g/cm3の高密度熱分解炭素から成り、照射収縮により第3層である炭化珪素層に圧縮応力を発生させて照射下での被覆燃料粒子全体の強度を保持すると共にガス状の核***生成物(FP)を保持する機能を有するものである。
このような被覆燃料粒子は、一般的には、次のような工程を経て製造される。即ち、まず、燃料核の生成であるが、具体的には、酸化ウランの粉末を硝酸に溶かして生成した硝酸ウラニル原液に、純水、増粘剤を添加して撹拌することにより滴下原液を生成する。この場合、増粘剤は、滴下された硝酸ウラニル原液の液滴が、落下中に自身の表面張力により真球状になるように添加される。この増粘剤としては、例えば、ポリビニルアルコール樹脂、アルカリ条件下で凝固する性質を有する樹脂、ポリエチレングリコール、メトローズ等を使用することができる。次いで、このようにして調整された滴下原液を、所定の温度に冷却して粘度を調整した後、細径の滴下ノズルを振動させることによりアンモニア水溶液中に滴下する。なお、この場合、液滴に、アンモニア水溶液表面に着水するまでの空間においてアンモニアガスを吹きかけ、液滴の表面をゲル化させることにより、着水時に液滴が変形するのを防止する。
アンモニア水溶液中に滴下された原液は、アンモニア水溶液中で、硝酸ウラニルがアンモニアと充分に反応して重ウラン酸アンモニウムの粒子となる。この重ウラン酸アンモニウムの粒子を、大気中でばい焼して、三酸化ウラン粒子とした後、更に還元、焼結することにより、高密度のセラミックス状二酸化ウランから成る燃料核を得る。このようにして得られた燃料核の粒径や真球度は、次の被覆工程における製造条件に非常に大きな影響を与えることから、燃料核は、篩により粒径選別及び真球度選別を行った上で、被覆工程に送られる。
次に、燃料核の被覆工程においては、燃料核を流動床に装荷し、被覆となるガスを熱分解させることにより第1層から順次、上述した被覆を施していく。この場合、具体的には、第1層の低密度炭素層については、アセチレン(C22)を約1400℃で熱分解して燃料核を被覆する。第2層、第4層の高密度の熱分解炭素層については、プロピレン(C36)を約1400度で熱分解して被覆を施していく。第3層である炭化珪素層は、メチルトリクロロシラン(CH3SiCl3)を約1600℃で熱分解して形成する。このようにして製造された被覆燃料粒子は、更に、黒鉛粉末、粘結剤等から成る黒鉛マトリックス材を、被覆燃料粒子の表面にコーティングしてオーバーコートされる。
(燃料コンパクト)
このオーバーコートされた被覆燃料粒子を燃料コンパクトとして使用する場合には、被覆燃料粒子を黒鉛マトリックス材中に分散させた後、図2(A)に示すように、例えば、中実円筒形又は中空円筒形にプレス成型又はモールド成型した上で焼結させて、図4(A)に示す一定形状の燃料コンパクト10とする(例えば、特許文献1等参照)。この燃料コンパクト10は、図4(B)に示すように、被覆燃料粒子12を圧縮する際に、ダイスやパンチを加熱して黒鉛マトリックス材中に含まれるフェノール樹脂を軟化させてバインダとすることにより、複数の被覆燃料粒子12を一体化して形成されている。
(炉心への装填)
このようにして形成された燃料コンパクト10には、中実円筒型、中空円筒型の2種類が考えられるが、いずれの場合も、1)黒鉛から形成された燃料スリーブ(筒)に一定数量入れて上下に栓をした燃料棒の形態とした上で、高温ガス炉の六角柱型黒鉛ブロックの複数の挿入口に装填されるか、あるいは、2)高温ガス炉の六角柱型黒鉛ブロックの複数の挿入口に直接装填されて、最終的に、この六角柱型黒鉛ブロックを多数個ハニカム配列に複数段重ねることにより、燃料として炉心に装荷される。
(燃料コンパクトの欠損)
この場合、これらの燃料スリーブや黒鉛ブロックへの装填等の燃料コンパクト10のハンドリング時に、燃料コンパクト10が燃料スリーブや黒鉛ブロックの内面と機械的に接触して燃料コンパクト10に衝撃が加わり、燃料コンパクト10の円筒形の角部10b(図4(B)参照)が欠けるおそれがあった。
このように、燃料コンパクト10に欠損が生じると、高温ガス炉内で燃料コンパクト10が高温となり、熱膨張した時に、欠片が燃料コンパクト10と燃料スリーブ又は黒鉛ブロックの内面との間に挟まり、当該箇所において高い応力が発生して、燃料コンパクト10や燃料スリーブ、黒鉛ブロックが破損する原因となる。
また、燃料コンパクト10は、高温ガス炉での使用時に、中心部と外周部とで冷却効率の差から温度差が生じ、中心部は外周部に比較して高温となるため、中心部の方が、外周部よりも熱膨張が大きくなり、その結果、鼓型に変形する傾向がある。このように鼓型に変形した燃料コンパクト10においては、その角部10bが、燃料スリーブや黒鉛ブロックの内面と機械的に接触して、燃料コンパクト10に割れを発生させる原因となるおそれがあった。
従って、このような燃料コンパクト10の破損を防止することが必要となるが、その際には、プレス時の応力により被覆燃料粒子12が破損しないように配慮することも必要となる。
特開2000−284084号公報
本発明が解決しようとする課題は、上記の問題点に鑑み、プレス時の応力により被覆燃料粒子が破損するのを防止しつつ、簡易にかつ低コストで、燃料コンパクトや燃料スリーブ、黒鉛ブロックの破損を防止することができる燃料コンパクト及びそのような燃料コンパクトの製造方法を提供することにある。
本発明は、上記の課題を解決するための第1の手段として、被覆燃料粒子を一体成型して形成された燃料コンパクトにおいて、隅部にチャンファが形成されていることを特徴とする燃料コンパクトを提供するものである。
本発明は、上記の課題を解決するための第2の手段として、上記第1の解決手段において、燃料コンパクトは円筒形状を有し、チャンファは円筒形状の燃料コンパクトの隅部に形成されていることを特徴とする燃料コンパクトを提供するものである。
本発明は、上記の課題を解決するための第3の手段として、上記第1又は第2のいずれかの解決手段において、チャンファは、燃料コンパクトの上端及び下端の隅部に形成されていることを特徴とする燃料コンパクトを提供するものである。
本発明は、上記の課題を解決するための第4の手段として、上記第1乃至第3のいずれかの解決手段において、チャンファの厚みが0.10mm以上であることを特徴とする燃料コンパクトを提供するものである。
本発明は、上記の課題を解決するための第5の手段として、上記第1乃至第4のいずれかの解決手段において、チャンファの面取り角度は30°〜60°の範囲内であり、かつ、チャンファの厚みはチャンファ面が被覆燃料粒子の外周面に接する時の厚みを上限値とすることを特徴とする燃料コンパクトを提供するものである。
本発明は、上記の課題を解決するための第6の手段として、上記第5の解決手段において、チャンファの面取り角度が45°以外である場合には、チャンファの厚みは、チャンファ面が被覆燃料粒子の外周面に接する時に特定される2つのチャンファの厚みのうち、大きい側の値を上限値とすることを特徴とする燃料コンパクトを提供するものである。
また、本発明は、上記第1乃至第6のいずれかの解決手段である燃料コンパクトを製造するのに適した以下の解決手段をも提供するものである。即ち、本発明は、上記の課題を解決するための第7の手段として、被覆燃料粒子を金型により一体成型して燃料コンパクトを製造する燃料コンパクトの製造方法において、金型の隅部にテーパを形成して、燃料コンパクトの隅部にチャンファを形成することを特徴とする燃料コンパクトの製造方法を提供するものである。
本発明は、上記の課題を解決するための第8の手段として、上記第7の解決手段において、テーパ面を有するリング状のテーパ部材を金型に装着することにより金型の隅部にテーパを形成することを特徴とする燃料コンパクトの製造方法を提供するものである。
本発明によれば、上記のように、円筒形状の燃料コンパクトの隅部にチャンファ(面取り)を形成しているため、ハンドリング時や熱膨張時に、燃料コンパクトが燃料スリーブや黒鉛ブロックの内面と機械的に接触しても、燃料コンパクトに加わる応力が低減するので、燃料コンパクトに欠損や割れが生じるのを防止することができ、ひいては燃料スリーブや黒鉛ブロックが破損することがない実益がある。
本発明によれば、上記のように、チャンファの厚みや面取り角度を適切に調整しているため、チャンファを形成してもプレス時の応力により被覆燃料粒子が破損することがなく、被覆燃料粒子の破損を防止しつつ燃料コンパクトの機械的衝撃に対する強度を向上させることができる実益がある。
本発明によれば、上記のように、金型の隅部にテーパを形成して、円筒形状の燃料コンパクトの隅部にチャンファを形成しているため、簡易に、燃料コンパクトの破損を防止することができる実益がある。
この場合、本発明によれば、上記のように、この金型の隅部のテーパを、テーパ面を有するリング状のテーパ部材により形成してチャンファを形成しているため、テーパ部材を金型の内部に装着するだけで、大幅な変更を加えることなく既存の製造設備を利用することができるので、簡易に、かつ、低コストで、燃料コンパクトの破損を防止することができる実益がある。
本発明を実施するための形態を図面を参照しながら詳細に説明すると、図1は本発明の製造方法により製造された燃料コンパクト10を示し、この燃料コンパクト10は、図1(B)に示すように、複数の被覆燃料粒子12を、プレス成型又はモールド成型により加熱しながら圧縮して一体成型することにより、形成されている。
具体的には、燃料コンパクト10は、所定量の被覆燃料粒子12を、黒鉛粉末、粘結剤等から成る黒鉛マトリックス中に分散させて、この黒鉛マトリックス材と共に、図2(B)に示すように、ダイス1内に投入して、ダイス1内で上下のパンチ2A、2Bにより圧縮することにより製造される。
この被覆燃料粒子12の圧縮に際しては、金属製のダイス1やパンチ2、また、被覆燃料粒子12を加熱することにより、黒鉛マトリックス材に含まれるフェノール樹脂を軟化させて被覆燃料粒子12間のバインダとして一体化し、図1に示す円筒形状の燃料コンパクト10に成型する。なお、図2において、符合3は、円筒形状の燃料コンパクト10に中空部を形成するためのコアロッドを示し、必要に応じて設置される。また、これらのダイス1、パンチ2、コアロッド3は、例えば、合金工具鋼から形成することができる。
なお、被覆燃料粒子12は、圧縮する前に予め、その表面に、図1(B)に示すように、黒鉛粉末、粘結剤等から成る黒鉛マトリックス材をコーティングして形成されたオーバーコート層14が被覆されている。このオーバーコート層14は、1)プレス成型時等の圧力によって、被覆燃料粒子12を破損することを防止すると共に、2)被覆燃料粒子12間の介在として、燃料コンパクト10内において被覆燃料粒子12を均一に分散させて、焼結時に被覆燃料粒子12が熱的機械的に破損するのを防止するために形成される。このため、被覆燃料粒子12が均一に分散されるよう、オーバーコート層14が形成された被覆燃料粒子12の直径を均一に揃えた上で、燃料コンパクト10とすることが一般的である。
なお、このオーバーコート層14は、被覆燃料粒子12を、黒鉛粉末や粘結剤等から成る黒鉛マトリックス材中に分散させることにより形成することができるが、その際、オーバーコート層14の厚みは、このオーバーコート工程の途中及び最後にオーバーコート層14が形成された被覆燃料粒子12を篩い分けする際に、その篩のメッシュサイズを適切に設定すると共に、オーバーコートのための時間を長く調整することにより、適切な厚みに調整することができる。
本発明の燃料コンパクト10においては、図1に示すように、円筒形状の燃料コンパクト10の隅部10aにチャンファ16(面取り)が形成されている。このチャンファ16は、図1(A)に示すように、円筒形状の燃料コンパクト10の上端及び下端の隅部10aの全周にわたって形成することが望ましい。
このチャンファ16により、図4に示す従来の燃料コンパクト10において、その角部10b一極に荷重が加わる場合に比し、隅部10aに加わった機械的衝撃が分散されて応力が低減し、燃料コンパクト10、ひいては、その欠片等による図示しない燃料スリーブ、黒鉛ブロックの破損を防止することができる。
このチャンファ16は、図2(B)に示すように、上下のパンチ2A、2B等の金型の隅部にテーパ2aを形成して、オーバーコート層14を有する被覆燃料粒子12を圧縮することにより形成することができる。この場合、このテーパ2aは、図2(B)に示すように、テーパ面を有するリング状のテーパ部材4を、上下のパンチ2A、2Bに装着することにより形成することができる。
このため、図2(A)に示す従来からの一般的なパンチ2A、2Bに大幅な変更を加えることなくテーパ部材4を装着するだけで、本発明の製造方法に対応することができる。従って、既存の製造設備を有効に利用することができるので、簡易に、かつ、低コストで、チャンファ16を有する本発明の燃料コンパクト10を製造することができる。なお、テーパ部材4は、その直径を、上下のパンチ2A、2Bの直径と等しく設定しておくことにより、上下のパンチ2A、2Bの隅部に取り付けることができる。
このチャンファ16の厚みt、t´(図1(B)参照)は、少なくとも0.10mm以上とすることが望ましい。これは、チャンファ16の厚みt、t´が大きい方が、チャンファ16のチャンファ面の面積を大きく取ることができ、燃料コンパクト10に加わる機械的衝撃を分散して、応力を充分に低減することにより、燃料コンパクト10の欠損を充分に防止することができるからである。なお、本発明において、チャンファ16の厚みt、t´とは、図1(B)に示すように、燃料コンパクト10の直交する上面(又は下面)10Aと側面10Bとに跨って形成されるチャンファ16において、一方の端面(上面(あるいは下面)10A又は側面10B)の位置から、チャンファ16が他方の端面(側面10B又は上面(あるいは下面)10A)と交差する位置までの距離をいう。
このように、チャンファ16は、燃料コンパクト10の欠損防止のためには、その厚みt、t´をできるだけ大きく設定することが望ましいが、その一方で、チャンファ16の厚みt、t´をあまりに大きく設定すると、圧縮時にオーバーコート層14を有する被覆燃料粒子12の強度に影響を与える。同時に、このチャンファ16の厚みt、t´を大きくとるために、チャンファ16の面取り角度θ、θ´(図1(B)参照:燃料コンパクト10の端面からのチャンファ16の傾斜角度:θ+θ´=90°)を必要以上に大きく(他方の面取り角度を小さく)設定すると、却って、チャンファ16としての応力低減機能が低下する。
このため、このチャンファ16の面取り角度θ、θ´(図1(B)参照)は30°〜60°の範囲内で設定し、かつ、チャンファ16の厚みt、t´(図1(B)参照)は、チャンファ面が被覆燃料粒子12の外周面に接する時の厚みを上限値とすることが望ましい。具体的には、例えば、オーバーコート層14を有する被覆燃料粒子12の直径(オーバーコート層14を含む直径)を1mm、チャンファ16の面取り角度θ、θ´を、図1(B)に示すように、45°に設定した図1に示す実施の形態においては、チャンファ16の厚みt、t´の上限値は0.29mmとなる。
上記の具体例において、0.29mm以上の値の厚みt、t´とすると、チャンファ16が、いわばオーバーコート層14を有する被覆燃料粒子12の一部を切り欠くように配置されることになるため、オーバーコートされた被覆燃料粒子12の圧縮時等に、オーバーコート層14、ひいては、被覆燃料粒子12に必要以上の負荷が加わり、被覆燃料粒子12が破損して、核***生成物の保持上好ましくない状態となるおそれがある。即ち、チャンファ16の厚みt、t´は、少なくともチャンファ面がオーバーコート層14の外周と重なる位置に設定した場合における厚みをもって上限値とし、それ以上には設定しないことが必要となる。これにより、オーバーコート層14を有する被覆燃料粒子12の破損を防止しつつ、製造された燃料コンパクト10の機械的衝撃に対する強度を向上させることができる。
なお、チャンファ16の面取り角度を、図示の実施の形態のように、45°に設定した場合には、面取り角度θ、θ´のいずれも45°となり、チャンファ16の厚みも、燃料コンパクト10の上面(又は下面)10Aからの厚みtと側面10Bからの厚みt´とが等しくなるが、面取り角度を45°以外に設定する場合には、図3(A)(B)に示すように、チャンファ16において異なる値の面取り角度θ、θ´が存在することになり(例えば、30°と60°)、その結果、上記の意味でのチャンファ16の厚みも、図3(A)(B)に示すように、異なる値の厚みが特定されることになる。
即ち、図3(A)に示す実施の形態においては、上面10Aからの厚みX1と、側面10Bからの厚みX2、図3(B)に示す実施の形態においては、上面10Aからの厚みY1と、側面10Bからの厚みY2である。この場合には、チャンファ16の厚みは、チャンファ面がオーバーコート層14を有する被覆燃料粒子12の外周面に接する時のチャンファの厚みX1又はX2(Y1又はY2)のうち、それぞれ、大きい側の値を上限値として設定し、チャンファ16の厚みが、それ以上の値とならないように設定する。
具体的には、図3(A)に示す実施の形態においては、上面(下面)10Aからの距離である厚みX1の値を、図3(B)に示す実施の形態においては、側面10Bからの距離である厚みY2の値を、それぞれ上限値として、チャンファ16の厚みが、それ以上の値とならないように設定することにより、他方の厚み(X2、Y1)も必ず上限値である厚み(X1、Y2)よりも小さくなり、チャンファ16がオーバーコート層14を含む被覆燃料粒子12に影響を与えることがなく、オーバーコート層14を有する被覆燃料粒子12の破損を防止することができる。
本発明は、オーバーコートされた燃料粒子を、燃料棒等の種々の形態の燃料コンパクトに加工することに適用することができる。
図1は、本発明の燃料コンパクトを示し、同図(A)はその斜視図、同図(B)はその一部拡大断面図である。 燃料コンパクトの製造方法を実施する状態の概略断面図である。 本発明の燃料コンパクトの他の実施の形態の一部拡大断面図である。 図3は、従来の燃料コンパクトを示し、同図(A)はその斜視図、同図(B)はその一部拡大断面図である。
符号の説明
1 ダイス
2 パンチ
2A 上パンチ
2B 下パンチ
2a テーパ
3 コアロッド
4 テーパ部材
10 燃料コンパクト
10A 燃料コンパクトの上面(下面)
10B 燃料コンパクトの側面
10a 燃料コンパクトの隅部
10b 燃料コンパクトの角部
12 被覆燃料粒子
14 オーバーコート層
16 チャンファ
t、t´、X1、X2、Y1、Y2 チャンファの厚み
θ、θ´ チャンファの面取り角度

Claims (8)

  1. 被覆燃料粒子を一体成型して形成された燃料コンパクトにおいて、隅部にチャンファが形成されていることを特徴とする燃料コンパクト。
  2. 請求項1に記載された燃料コンパクトであって、前記燃料コンパクトは円筒形状を有し、前記チャンファは前記円筒形状の燃料コンパクトの隅部に形成されていることを特徴とする燃料コンパクト。
  3. 請求項1又は請求項2のいずれかに記載された燃料コンパクトであって、前記チャンファは、前記燃料コンパクトの上端及び下端の隅部に形成されていることを特徴とする燃料コンパクト。
  4. 請求項1乃至請求項3のいずれかに記載された燃料コンパクトであって、前記チャンファの厚みが0.10mm以上であることを特徴とする燃料コンパクト。
  5. 請求項1乃至請求項4のいずれかに記載された燃料コンパクトであって、前記チャンファの面取り角度は30°〜60°の範囲内であり、かつ、前記チャンファの厚みはチャンファ面が前記被覆燃料粒子の外周面に接する時の厚みを上限値とすることを特徴とする燃料コンパクト。
  6. 請求項5に記載された燃料コンパクトであって、前記チャンファの面取り角度が45°以外である場合には、前記チャンファの厚みは、前記チャンファ面が前記被覆燃料粒子の外周面に接する時に特定される2つの前記チャンファの厚みのうち、大きい側の値を上限値とすることを特徴とする燃料コンパクト。
  7. 被覆燃料粒子を金型により一体成型して燃料コンパクトを製造する燃料コンパクトの製造方法において、前記金型の隅部にテーパを形成して、前記燃料コンパクトの隅部にチャンファを形成することを特徴とする燃料コンパクトの製造方法。
  8. 請求項7に記載された燃料コンパクトの製造方法であって、テーパ面を有するリング状のテーパ部材を前記金型に装着することにより前記金型の隅部にテーパを形成することを特徴とする燃料コンパクトの製造方法。
JP2005223974A 2005-08-02 2005-08-02 燃料コンパクト及び燃料コンパクトの製造方法 Withdrawn JP2007040779A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223974A JP2007040779A (ja) 2005-08-02 2005-08-02 燃料コンパクト及び燃料コンパクトの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223974A JP2007040779A (ja) 2005-08-02 2005-08-02 燃料コンパクト及び燃料コンパクトの製造方法

Publications (1)

Publication Number Publication Date
JP2007040779A true JP2007040779A (ja) 2007-02-15

Family

ID=37798910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223974A Withdrawn JP2007040779A (ja) 2005-08-02 2005-08-02 燃料コンパクト及び燃料コンパクトの製造方法

Country Status (1)

Country Link
JP (1) JP2007040779A (ja)

Similar Documents

Publication Publication Date Title
US10902956B2 (en) Nuclear fuel pebble and method of manufacturing the same
US10770187B2 (en) Nuclear fuel pebble and method of manufacturing the same
US11501885B2 (en) Nuclear fuel pellet having enhanced thermal conductivity and method of manufacturing the same
JP4689573B2 (ja) 燃料コンパクト
JP4522924B2 (ja) 燃料コンパクト
US8599993B2 (en) Fuel compact
JP2005308522A (ja) 高温ガス炉用被覆燃料粒子の製造装置
JP2007040779A (ja) 燃料コンパクト及び燃料コンパクトの製造方法
US8557148B2 (en) Method for fabricating sintered annular nuclear fuel pellet through rod-inserted sintering
KR20150135679A (ko) 산화물 핵연료 소결체 및 이의 제조방법
JP4697938B2 (ja) 高温ガス炉用被覆燃料粒子の製造法
JPH0273192A (ja) 核燃料要素
CN110164573B (zh) 导热率提高的核燃料粒料及其制备方法
JP2006300547A (ja) 高温ガス炉用燃料
JP2006267010A (ja) 燃料コンパクトの製造方法及び燃料コンパクト並びに被覆燃料粒子のオーバーコート方法
JP6473602B2 (ja) 黒鉛ブロック
JP4545695B2 (ja) 高温ガス炉用燃料の製造方法
JP2007147335A (ja) ぺブルベッド型燃料及びぺブルベッド型燃料の製造方法
JP4790257B2 (ja) 高温ガス炉用成型燃料の製造方法
JP2007147450A (ja) ペブルベッド型燃料の製造方法
JP2006300770A (ja) 燃料コンパクトの製造方法
JP2006064442A (ja) 高温ガス炉用中空燃料コンパクトの製造装置
JP2006292587A (ja) 燃料コンパクトの製造装置
JP2006112838A (ja) 高温ガス炉用燃料コンパクトの製造方法
JP2007183150A (ja) 燃料の製造方法及び高温ガス炉用燃料

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007