JP2007035974A - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP2007035974A
JP2007035974A JP2005218028A JP2005218028A JP2007035974A JP 2007035974 A JP2007035974 A JP 2007035974A JP 2005218028 A JP2005218028 A JP 2005218028A JP 2005218028 A JP2005218028 A JP 2005218028A JP 2007035974 A JP2007035974 A JP 2007035974A
Authority
JP
Japan
Prior art keywords
temperature side
low temperature
high temperature
side plate
electrode member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005218028A
Other languages
Japanese (ja)
Inventor
Kazuyuki Ozaki
和之 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2005218028A priority Critical patent/JP2007035974A/en
Publication of JP2007035974A publication Critical patent/JP2007035974A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric converter and a method for manufacturing the same with the joint of a thermoelectric semiconductor chip and the thermoelectric semiconductor chip itself that are hard to be damaged, even if they are heated and thermally deformed, having excellent reliability. <P>SOLUTION: The thermoelectric converter 1 is equipped with a low temperature side board 12; a high temperature side board 17 opposed to the low temperature side board 12; a plurality of low temperature side electrode members 13 and high temperature side electrode members 16 which are arranged so that they contact the each opposed surface of the low temperature side board and the high temperature side board; a plurality of semiconductor chips 14, 15 provided between these low temperature side electrode member and high temperature side electrode member, the one end side of which is contacted to the low temperature side electrode member while the other end side of which is contacted to the high temperature side electrode member and electrically tandem-arranged; and a joint member 18 to hold the mutual position of the low temperature side board and the high temperature side board. A compressing pressure is applied between the low temperature side board and the low temperature side board in the axial direction of the thermoelectric semiconductor chip; and this compressing pressure is held by the joint member 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の熱電半導体チップの吸熱面に吸熱側電極を取り付けるとともに、各熱電半導体チップの放熱面に放熱側電極を取り付け、全ての熱電半導体チップと電気的に直列に、熱的に並列接続してなる熱電変換装置に係わり、特に、製造性がよく、優れた信頼性を有する熱電変換装置に関する。   The present invention attaches an endothermic electrode to the endothermic surfaces of a plurality of thermoelectric semiconductor chips, and attaches an endothermic electrode to the heat dissipating surface of each thermoelectric semiconductor chip so that all thermoelectric semiconductor chips are electrically in series and thermally in parallel. The present invention relates to a thermoelectric conversion device that is connected, and particularly relates to a thermoelectric conversion device that has good manufacturability and excellent reliability.

熱電変換装置は、トムソン効果、ペルチェ効果、ゼーベック効果などの熱電変換効果を利用した熱電半導体チップを組み合わせて構成され、電気を熱に変換する温度調整ユニットとしては、すでに量産化されている。また、発電ユニットとしても研究開発が進められている。   Thermoelectric conversion devices are configured by combining thermoelectric semiconductor chips using thermoelectric conversion effects such as the Thomson effect, Peltier effect, and Seebeck effect, and are already mass-produced as temperature adjustment units that convert electricity into heat. Research and development is also underway as a power generation unit.

発電ユニットとしての熱電変換装置は、複数の熱電半導体チップが電極を有する絶縁基板に挟まれて配列され、電気的に直列に、熱的に並列に接続されている。   A thermoelectric conversion device as a power generation unit is arranged by sandwiching a plurality of thermoelectric semiconductor chips between insulating substrates having electrodes, and is electrically connected in series and thermally in parallel.

熱電変換装置の発電効率を熱電半導体チップ自体の発電効率に近づけるためには、熱電半導体チップの一端部への熱供給と熱電半導体チップの他端部からの放熱がスムースに行われる必要がある。そのため、熱電変換装置を構成する基板には、熱伝導に優れたセラミックス基板が使用されている。さらに、熱電半導体チップの端部に配置される電極は、電気抵抗の低い材料によって構成されている。   In order to bring the power generation efficiency of the thermoelectric conversion device closer to the power generation efficiency of the thermoelectric semiconductor chip itself, it is necessary to smoothly supply heat to one end of the thermoelectric semiconductor chip and release heat from the other end of the thermoelectric semiconductor chip. Therefore, a ceramic substrate excellent in heat conduction is used as the substrate constituting the thermoelectric conversion device. Furthermore, the electrode arranged at the end of the thermoelectric semiconductor chip is made of a material having a low electrical resistance.

このような熱電変換装置においては、各熱電半導体チップの両端の温度差を直接電気エネルギに変換するため、高温側と低温側との熱膨張差により熱変形が生じる。このため、各構成部材の接合部や熱電半導体チップが破損したり、接合部分に隙間ができて熱伝導効率が低下し、熱電変換性能が低下するなどという問題があった。また、高温環境下で各電極や熱電半導体チップなどが酸化して信頼性が低下するという問題も生じていた。   In such a thermoelectric conversion device, the temperature difference between both ends of each thermoelectric semiconductor chip is directly converted into electric energy, so that thermal deformation occurs due to the difference in thermal expansion between the high temperature side and the low temperature side. For this reason, there existed a problem that the junction part and thermoelectric semiconductor chip | tip of each structural member were damaged, or the clearance gap was formed in the junction part, heat conduction efficiency fell, and the thermoelectric conversion performance fell. In addition, there has been a problem that the reliability of each electrode, thermoelectric semiconductor chip, and the like decreases due to oxidation under a high temperature environment.

これらの問題を解決するために、従来から多くの提案がなされている。例えば、配線基板に形成された複数の電極に熱電半導体チップの一端面を固着し、その熱電半導体チップの他端面には接触するように複数の電極を配置し、熱電半導体チップの一端面から他端面方向に圧力を加えて構成した熱電変換装置が開示されている(特許文献1参照)。そして、この構造により、熱電変換装置が加熱されて熱変形しても、各熱電半導体チップと接触配置された電極面ですべりが生じるので、熱電半導体チップの接合部や熱電半導体自身が損傷しにくく、信頼性の高い熱電変換装置であるとしている。   In order to solve these problems, many proposals have been conventionally made. For example, one end face of a thermoelectric semiconductor chip is fixed to a plurality of electrodes formed on a wiring board, and a plurality of electrodes are arranged so as to contact the other end face of the thermoelectric semiconductor chip. A thermoelectric conversion device configured by applying pressure in the end face direction is disclosed (see Patent Document 1). With this structure, even when the thermoelectric conversion device is heated and thermally deformed, slippage occurs on the electrode surface arranged in contact with each thermoelectric semiconductor chip, so that the junction of the thermoelectric semiconductor chip and the thermoelectric semiconductor itself are not easily damaged. It is said that it is a highly reliable thermoelectric conversion device.

しかし、上記の従来技術になる熱電変換装置では、熱電半導体チップの高さのバラツキを吸収するために熱電半導体チップの一端面はハンダで固着された構造である。このため、固着されている接合部には熱電半導体チップと電極(固着部材)の熱変形量の違いによって応力が発生したり、あるいは、熱電半導体チップ自身に内部応力が発生したりする。これらの発生応力は接合部や熱電半導体チップ自身の損傷に繋がるため、信頼性面でなお課題がある。   However, the thermoelectric conversion device according to the above-described prior art has a structure in which one end face of the thermoelectric semiconductor chip is fixed with solder in order to absorb variations in the height of the thermoelectric semiconductor chip. For this reason, stress is generated in the bonded portion due to the difference in thermal deformation between the thermoelectric semiconductor chip and the electrode (fixing member), or internal stress is generated in the thermoelectric semiconductor chip itself. Since these generated stresses lead to damage to the joint and the thermoelectric semiconductor chip itself, there are still problems in terms of reliability.

また、熱電半導体チップと電極が接合材料を用いて接合された構造で、密閉容器を具備し、密閉容器内の湿度を極小に保持して熱電変換装置の劣化による発電効率の低下の少ない熱電変換装置が知られている(特許文献2参照)。   Thermoelectric conversion with a thermoelectric semiconductor chip and electrode bonded using a bonding material, with a sealed container, keeping the humidity inside the sealed container to a minimum, and reducing the decrease in power generation efficiency due to deterioration of the thermoelectric conversion device An apparatus is known (see Patent Document 2).

しかし、この熱電変換装置においても、熱電半導体チップと電極とが接合材料を用いて接合された構造であり、熱電半導体チップと電極とが固着されている。それゆえ特許文献1に記載の熱電変換装置と同様に信頼性面で課題がある。
特開2005−64457号公報 特開2004−172481号公報
However, this thermoelectric conversion device also has a structure in which a thermoelectric semiconductor chip and an electrode are bonded using a bonding material, and the thermoelectric semiconductor chip and the electrode are fixed. Therefore, similarly to the thermoelectric conversion device described in Patent Document 1, there is a problem in terms of reliability.
JP 2005-64457 A JP 2004-172481 A

本発明は、上記の課題を解決し、熱電変換装置が加熱され熱変形しても、熱電半導体チップの接合部や熱電半導体チップ自身が損傷しにくい、信頼性に優れた熱電変換装置を提供することを目的とする。   The present invention solves the above-described problems, and provides a highly reliable thermoelectric conversion device in which even if the thermoelectric conversion device is heated and thermally deformed, the joint portion of the thermoelectric semiconductor chip and the thermoelectric semiconductor chip itself are hardly damaged. For the purpose.

本発明の熱電変換装置は、低温側板と、この低温側板に対向する高温側板と、低温側板および高温側板の各対向面に接触するように配置される複数の低温側電極部材および高温側電極部材と、これらの低温側電極部材と高温側電極部材との間に設けられ一端側を低温側電極部材に接触するとともに他端側を高温側電極部材に接触して電気的に直列配列される複数の熱電半導体チップと、低温側板と高温側板の相対位置を保持する結合部材とを備え、低温側板と高温側板との間には熱電半導体チップの軸方向に圧縮圧力が加えられており、この圧縮圧力が結合部材によって保持されていることを特徴とする。   The thermoelectric conversion device of the present invention includes a low temperature side plate, a high temperature side plate opposed to the low temperature side plate, a plurality of low temperature side electrode members and a high temperature side electrode member disposed so as to be in contact with the opposing surfaces of the low temperature side plate and the high temperature side plate. A plurality of electrodes arranged between the low temperature side electrode member and the high temperature side electrode member and electrically arranged in series with one end side contacting the low temperature side electrode member and the other end side contacting the high temperature side electrode member. Thermoelectric semiconductor chip and a coupling member that holds the relative position of the low temperature side plate and the high temperature side plate, and compression pressure is applied between the low temperature side plate and the high temperature side plate in the axial direction of the thermoelectric semiconductor chip. The pressure is held by the coupling member.

本発明の熱電変換装置において、低温側板および高温側板の少なくとも一方は、低温側電極部材および高温側電極部材の位置を規制する位置規制部位を有することが望ましい。   In the thermoelectric conversion device of the present invention, it is desirable that at least one of the low temperature side plate and the high temperature side plate has a position restricting portion that restricts the positions of the low temperature side electrode member and the high temperature side electrode member.

また、本発明の熱電変換装置において、低温側板および高温側板の少なくとも一方は、低温側電極部材および高温側電極部材の位置と熱電半導体チップの位置とを規制する位置規制部位を有することが望ましい。   In the thermoelectric conversion device of the present invention, it is desirable that at least one of the low temperature side plate and the high temperature side plate has a position restricting portion that restricts the position of the low temperature side electrode member and the high temperature side electrode member and the position of the thermoelectric semiconductor chip.

本発明の熱電変換装置において、低温側電極部材及び高温側電極部材の少なくとも一方は、熱電半導体チップの位置を規制する位置規制部位を有することが望ましい。   In the thermoelectric conversion device of the present invention, it is desirable that at least one of the low temperature side electrode member and the high temperature side electrode member has a position restricting portion that restricts the position of the thermoelectric semiconductor chip.

本発明の熱電変換装置において、熱電半導体チップと低温側電極部材との間および熱電半導体チップと高温側電極部材との間の少なくとも一方に、導電性の変形可能な弾性構造部材を有することができる。   In the thermoelectric conversion device of the present invention, a conductive and deformable elastic structural member can be provided between at least one of the thermoelectric semiconductor chip and the low temperature side electrode member and between the thermoelectric semiconductor chip and the high temperature side electrode member. .

また、本発明の熱電変換装置において、低温側板と低温側電極部材との間および高温側板と高温側電極部材との間の少なくとも一方に、熱伝導性のよい変形可能な弾性構造部材を有することが好ましい。   In the thermoelectric conversion device of the present invention, a deformable elastic structural member having good thermal conductivity is provided at least between the low temperature side plate and the low temperature side electrode member and between the high temperature side plate and the high temperature side electrode member. Is preferred.

さらに、本発明の熱電変換装置において、低温側電極部材および高温側電極部材の少なくとも一方は、導電性の変形可能な弾性構造部材であってもよい。   Furthermore, in the thermoelectric conversion device of the present invention, at least one of the low temperature side electrode member and the high temperature side electrode member may be a conductive elastic deformable structural member.

本発明の熱電変換装置において、結合部材と低温側板および高温側板とは溶接またはろう材によって結合されて、熱電半導体チップおよび電極部材を収容する密閉容器を形成することが望ましい。そして、このような密閉容器内の雰囲気は減圧雰囲気、窒素雰囲気および不活性ガス雰囲気の少なくとも1つから選ばれることが好ましい。   In the thermoelectric conversion device of the present invention, it is desirable that the coupling member, the low temperature side plate, and the high temperature side plate are coupled by welding or brazing material to form a sealed container that accommodates the thermoelectric semiconductor chip and the electrode member. The atmosphere in the sealed container is preferably selected from at least one of a reduced pressure atmosphere, a nitrogen atmosphere, and an inert gas atmosphere.

また、熱電変換装置の低温側板または高温側板のいずれかを変形可能な部材として、外部からの圧縮圧力を利用して熱電半導体チップと電極部材との密着を確保するようにしてもよい。   Further, either the low-temperature side plate or the high-temperature side plate of the thermoelectric conversion device may be used as a deformable member, and the close contact between the thermoelectric semiconductor chip and the electrode member may be ensured by using external compression pressure.

本発明の熱電変換装置は、熱電半導体チップの端面と各電極面とは自由度の高い接触構造となっており、固着された剛体構造ではない。従って、各部材の線膨張係数の違いによって異なる熱変形量が生じても、低温側、高温側ともに各熱電半導体チップと各電極面で滑りが生じるので、接触部や熱電半導体チップ自身が損傷しにくい。従って、信頼性の高い熱電変換装置を提供することができる。   In the thermoelectric conversion device of the present invention, the end surface of each thermoelectric semiconductor chip and each electrode surface have a contact structure with a high degree of freedom, and are not a rigid structure that is fixed. Therefore, even if different amounts of thermal deformation occur due to differences in the coefficient of linear expansion of each member, sliding occurs on each thermoelectric semiconductor chip and each electrode surface on both the low temperature side and the high temperature side, so that the contact portion and the thermoelectric semiconductor chip itself are damaged. Hateful. Therefore, a highly reliable thermoelectric conversion device can be provided.

また、接合用のハンダを用いていないため、熱電変換装置の耐熱性がハンダの溶融温度によって左右されない。従って、耐熱性に優れた熱電変換装置を提供することができる。   Further, since no joining solder is used, the heat resistance of the thermoelectric converter is not affected by the melting temperature of the solder. Therefore, it is possible to provide a thermoelectric conversion device having excellent heat resistance.

さらに、複数の電極部材も他部材に固定しない独立させた構造であるため、従来ハンダ材を用いて吸収していた50μm程度の熱電半導体チップの高さバラツキがあっても、個々の電極部材が変形することでこの程度の高さバラツキを吸収することができる。   Furthermore, since the plurality of electrode members are independent structures that are not fixed to other members, even if there is a variation in the height of the thermoelectric semiconductor chip of about 50 μm that has been absorbed by using a solder material, the individual electrode members By deforming, it is possible to absorb this height variation.

本発明の熱電変換装置は、低温側板や高温側板などに低温側電極や熱電半導体チップの位置を規制する部位を有している。このため、熱電変換装置に過度の衝撃が加わった場合にも、各部材の相対位置を保持して各部材間の絶縁性を確保することができる。また、製造時には従来必須であった各部材を整列させる組み付け治具を必要とせず、直接各部材を組み付けることができるので簡単に熱電変換装置を製造することができる。   The thermoelectric conversion device of the present invention has a portion for regulating the positions of the low temperature side electrode and the thermoelectric semiconductor chip on the low temperature side plate, the high temperature side plate, and the like. For this reason, even when an excessive impact is applied to the thermoelectric conversion device, it is possible to maintain the relative position of each member and to ensure insulation between the members. Moreover, since the assembly jig which aligns each member essential in the past at the time of manufacture is not required and each member can be assembled directly, a thermoelectric conversion apparatus can be manufactured easily.

また、本発明の熱電変換装置は、熱電半導体チップと各電極との間に弾性構造部材を備えている。このため、吸収できる熱電半導体チップの高さバラツキの大きさが弾性構造部材の弾性量分向上し、より一層信頼性を高めることができる。   Moreover, the thermoelectric conversion device of the present invention includes an elastic structural member between the thermoelectric semiconductor chip and each electrode. For this reason, the size of the height variation of the thermoelectric semiconductor chip that can be absorbed is improved by the amount of elasticity of the elastic structural member, and the reliability can be further enhanced.

さらに、本発明の熱電変換装置は、熱電半導体チップが減圧雰囲気又は不活性ガス雰囲気内に密閉して配置される。このため、熱電変換装置が高温に加熱されても、酸化や腐食による熱電半導体チップなどの劣化を防止することができる。   Furthermore, in the thermoelectric conversion device of the present invention, the thermoelectric semiconductor chip is hermetically disposed in a reduced pressure atmosphere or an inert gas atmosphere. For this reason, even if the thermoelectric conversion device is heated to a high temperature, deterioration of the thermoelectric semiconductor chip or the like due to oxidation or corrosion can be prevented.

以下、本発明の熱電変換装置について実施例によって図面を参照しながら説明する。   Hereinafter, the thermoelectric conversion device of the present invention will be described with reference to the drawings by way of examples.

図1は、実施例1の熱電変換装置1の構成を示す断面概要図である。   FIG. 1 is a schematic cross-sectional view illustrating a configuration of a thermoelectric conversion device 1 according to the first embodiment.

熱電変換装置1は、低温側板12と、この低温側板12に接触するように配置される複数の低温側電極部材13と、複数の高温側電極部材16と、この高温側電極部材16と接触するように配置される高温側板17と、一端面で低温側電極部材13に接触し、他端面で高温側電極部材16と接触するとともに電気的に直列配列される複数の熱電半導体チップ14、15と、低温側板12と高温側板17との相対位置を保持する結合部材18とを備えている。そして、低温側板12と高温側板17との間には熱電半導体チップ14、15の軸方向に圧縮するように圧力が加えられており、この圧縮圧力が結合部材18によって保持されている。   The thermoelectric conversion device 1 is in contact with the low temperature side plate 12, the plurality of low temperature side electrode members 13 arranged to be in contact with the low temperature side plate 12, the plurality of high temperature side electrode members 16, and the high temperature side electrode member 16. A plurality of thermoelectric semiconductor chips 14, 15 that are in contact with the low temperature side electrode member 13 at one end surface and are in contact with the high temperature side electrode member 16 at the other end surface and are electrically arranged in series. And a coupling member 18 that holds the relative position of the low temperature side plate 12 and the high temperature side plate 17. A pressure is applied between the low temperature side plate 12 and the high temperature side plate 17 so as to compress in the axial direction of the thermoelectric semiconductor chips 14 and 15, and this compression pressure is held by the coupling member 18.

ここで、低温側板12は絶縁性のアルミナセラミックスであり低温側板12と低温側電極部材13とを絶縁している。また、低温側板12には、位置規制部位である凹部12aと凸部12bとが形成されており、凹部12aに所定の低温側電極部材13を嵌着することで複数の各低温側電極部材13の位置を規制すると同時に、凸部12bで複数の低温側電極部材13同士を絶縁している。また、高温側板17は絶縁性のアルミナセラミックスであり高温側板17と高温側電極部材16とを絶縁している。この高温側板17には凹部17aと凸部17bとが形成されており、凹部17aに所定の高温側電極部材16を嵌着することで複数の各高温側電極部材16の位置を規制すると同時に、凸部17bで複数の高温側電極部材16同士を絶縁している。ここで、本明細書において「嵌着」とは、一方の部材が他方の部材に対してある程度の相対的変位が可能なように保持される形態を意味する。また、「嵌入」も同様に互いの部材が相対変位可能に保持される形態を意味する。   Here, the low temperature side plate 12 is an insulating alumina ceramic, and insulates the low temperature side plate 12 from the low temperature side electrode member 13. Further, the low temperature side plate 12 is formed with a concave portion 12a and a convex portion 12b which are position restricting portions, and a plurality of low temperature side electrode members 13 are fitted by fitting predetermined low temperature side electrode members 13 into the concave portions 12a. At the same time, the plurality of low temperature side electrode members 13 are insulated from each other by the convex portion 12b. The high temperature side plate 17 is an insulating alumina ceramic, and insulates the high temperature side plate 17 from the high temperature side electrode member 16. Concave portions 17a and convex portions 17b are formed in the high temperature side plate 17, and by restricting the positions of the plurality of high temperature side electrode members 16 by fitting predetermined high temperature side electrode members 16 into the concave portions 17a, The plurality of high temperature side electrode members 16 are insulated from each other by the convex portions 17b. Here, in this specification, “fitting” means a form in which one member is held so as to allow a certain degree of relative displacement with respect to the other member. Similarly, “insertion” means a form in which the members are held so as to be capable of relative displacement.

低温側電極部材13は、低温側板12とともに熱電半導体チップ14、15の位置を規制する凹部(位置規制部位)13aを有しており、所定の熱電半導体チップを嵌挿することで、複数の熱電半導体チップの各々の相対位置を規制することができる。また、高温側電極部材16は高温側板17の凹部17aに嵌入するバスタブ形状であり、バスタブの側壁に沿って熱電半導体チップ14、15を配置することでそれらの相対位置を規制することができる。電極部材は、良好な導電性を有するとともに、圧縮圧力で熱電半導体チップと密着接触できる変形可能な材料であることが望ましく、銅やアルミニウムあるいは銀などを好適に用いることができる。   The low temperature side electrode member 13 has a recess (position restricting portion) 13a for regulating the positions of the thermoelectric semiconductor chips 14 and 15 together with the low temperature side plate 12, and a plurality of thermoelectric semiconductor chips are inserted by inserting a predetermined thermoelectric semiconductor chip. The relative position of each semiconductor chip can be regulated. The high temperature side electrode member 16 has a bathtub shape that fits into the recess 17a of the high temperature side plate 17, and the thermoelectric semiconductor chips 14 and 15 can be arranged along the side wall of the bathtub to restrict their relative positions. The electrode member is preferably a deformable material that has good conductivity and can be brought into close contact with the thermoelectric semiconductor chip under compression pressure, and copper, aluminum, silver, or the like can be suitably used.

以上のように熱電変換装置1は、各部材(絶縁板、電極部材、熱電半導体チップ)が相互に所定の位置規制部位により位置決めされており、また各部材はそれぞれ固着されていないので、圧縮圧力により密着接触できるように変形に対する自由度を持った接触構造となっている。   As described above, in the thermoelectric conversion device 1, each member (insulating plate, electrode member, thermoelectric semiconductor chip) is positioned by a predetermined position restricting portion, and each member is not fixed. The contact structure has a degree of freedom for deformation so that it can be brought into close contact with each other.

熱電半導体チップは複数のP型熱電半導体チップ14とN型熱電半導体チップ15とからなり、各々は一端面で低温側電極部材13に接触し、他端面で高温側電極部材16と接触して交互に配置されており、各電極部材を介して電気的に直列配列されている。   The thermoelectric semiconductor chip is composed of a plurality of P-type thermoelectric semiconductor chips 14 and N-type thermoelectric semiconductor chips 15, each of which is in contact with the low temperature side electrode member 13 at one end surface and in contact with the high temperature side electrode member 16 at the other end surface. Are arranged in series electrically via each electrode member.

低温側板12の周縁部と高温側板17の側面部と、これらに対向する枠18の対向面にはメタライズ21が施され、低温側板12と高温側板17とはろう材22で枠18に接合されている。   Metallization 21 is applied to the peripheral edge portion of the low temperature side plate 12, the side surface portion of the high temperature side plate 17, and the opposing surface of the frame 18 facing these, and the low temperature side plate 12 and the high temperature side plate 17 are joined to the frame 18 by the brazing material 22. ing.

枠18はステンレス鋼や鉄・ニッケル・コバルト合金(例えば、商品名:コバール)などの金属材料からなり、低温側板12と高温側板17とともに、熱電半導体チップ14、15や低温側電極部材13、高温側電極部材16などを収容して周囲環境から密閉封止する密封構造を形成する。この密封構造の内部は酸化や腐食防止のために減圧雰囲気となっており、所望によりヘリウムやアルゴンなどの不活性ガスや窒素ガスなどが充填される。   The frame 18 is made of a metal material such as stainless steel or iron / nickel / cobalt alloy (for example, trade name: Kovar), and together with the low-temperature side plate 12 and the high-temperature side plate 17, the thermoelectric semiconductor chips 14 and 15, the low-temperature side electrode member 13, The side electrode member 16 and the like are accommodated to form a sealing structure that hermetically seals from the surrounding environment. The inside of this sealed structure is a reduced pressure atmosphere to prevent oxidation and corrosion, and is filled with an inert gas such as helium or argon, nitrogen gas, or the like as desired.

次に、熱電変換装置1の作用を説明する。熱電変換装置1には、図1に示すように複数の熱電半導体チップ14、15が電気的に直列配置されている。熱電変換装置1の高温側板17に熱源などからの高温、例えば、400℃〜800℃の放射熱が吸熱される。この放射熱は高温側板17および高温側電極部材16などを経て熱電半導体チップ14、15に熱伝導され、熱電半導体チップ14、15を高温側から低温側に熱流となって流れ、その間にゼーベック効果により起電力が生じる。発生した電力は電気的に直列配列された各熱電半導体チップ14、15からリード線19を介して外部へ取り出される。   Next, the effect | action of the thermoelectric conversion apparatus 1 is demonstrated. As shown in FIG. 1, a plurality of thermoelectric semiconductor chips 14 and 15 are electrically arranged in series in the thermoelectric conversion device 1. The high temperature side plate 17 of the thermoelectric converter 1 absorbs high temperature from a heat source or the like, for example, radiant heat of 400 ° C. to 800 ° C. This radiant heat is thermally conducted to the thermoelectric semiconductor chips 14 and 15 via the high temperature side plate 17 and the high temperature side electrode member 16, and flows through the thermoelectric semiconductor chips 14 and 15 from the high temperature side to the low temperature side, during which the Seebeck effect occurs. Due to this, an electromotive force is generated. The generated electric power is taken out from the thermoelectric semiconductor chips 14 and 15 arranged in series electrically via the lead wire 19.

各熱電半導体チップ14、15により熱エネルギが電気エネルギに変換されることにより温度降下した熱流は、低温側電極部材13から低温側板12を経て熱伝導され外部へ放熱される。   The heat flow that has fallen in temperature due to the thermal energy converted into electrical energy by the thermoelectric semiconductor chips 14 and 15 is thermally conducted from the low temperature side electrode member 13 through the low temperature side plate 12 and is radiated to the outside.

本実施例では、低温側電極部材13と熱電半導体チップ14、15および高温側電極部材16と熱電半導体チップ14、15とはハンダなどの接合によって固定される剛体構造ではなく、熱膨張に対する自由度の高い接触構造となっている。このため、線膨張係数の違いによって各部材に異なる熱変形量が生じても、低温側、高温側ともに各熱電半導体チップ14、15と各電極面13、16との間で滑りを生じて熱変形量の差を吸収することができる。従って、電極部材と熱電半導体チップとの接触部や熱電半導体チップ14、15自身が損傷しにくく、信頼性の高い熱電変換装置1を提供することができる。   In the present embodiment, the low temperature side electrode member 13 and the thermoelectric semiconductor chips 14 and 15 and the high temperature side electrode member 16 and the thermoelectric semiconductor chips 14 and 15 are not rigid structures fixed by bonding such as solder, but are free from thermal expansion. It has a high contact structure. For this reason, even if different amounts of thermal deformation occur in each member due to a difference in linear expansion coefficient, slippage occurs between the thermoelectric semiconductor chips 14 and 15 and the electrode surfaces 13 and 16 on both the low temperature side and the high temperature side, resulting in heat. The difference in deformation amount can be absorbed. Therefore, the contact portion between the electrode member and the thermoelectric semiconductor chip and the thermoelectric semiconductor chips 14 and 15 themselves are hardly damaged, and the thermoelectric conversion device 1 with high reliability can be provided.

本実施形態の熱電変換装置1は例えば、以下のような工程により製造する。   For example, the thermoelectric conversion device 1 of the present embodiment is manufactured by the following process.

まず第1工程では、図2に示すように低温側板12と枠18とのメタライズ21が施されている接合部を、ろう材22を用いて接合する。ここで、低温側板12は絶縁性を有しかつ熱伝導が良好な例えば、窒化珪素セラミックス、窒化アルミセラミックス、高純度のアルミナセラミックスであることが望ましい。また、低温側板12は2層からなる多層構造とし、熱電変換された電力を外部に取り出すための内部配線19を備え、この内部配線19と外部配線20とをろう材22によって接合する。なお、上記のように枠18と低温側板12とをろう付けする構造ではなく、低温側板12をバスタブ状の箱形の構造体として枠18を用いない構造としてもよい。   First, in the first step, as shown in FIG. 2, the joint portion on which the metallization 21 between the low-temperature side plate 12 and the frame 18 is applied is joined using a brazing material 22. Here, it is desirable that the low-temperature side plate 12 is made of, for example, silicon nitride ceramics, aluminum nitride ceramics, or high-purity alumina ceramics having insulating properties and good thermal conductivity. The low-temperature side plate 12 has a multilayer structure composed of two layers, and includes an internal wiring 19 for taking out thermoelectrically converted power to the outside. The internal wiring 19 and the external wiring 20 are joined by a brazing material 22. Instead of brazing the frame 18 and the low-temperature side plate 12 as described above, the low-temperature side plate 12 may be a bathtub-like box-shaped structure that does not use the frame 18.

第2工程では、低温側板12の凹部12aに所定の低温側電極部材13を嵌着する。低温側電極部材13及び高温側電極部材16とP型熱電半導体チップ14およびN型熱電半導体チップ15は、加圧されて接触される構造である。従って、加圧力を保持するために枠18はP型熱電半導体チップ14やN型熱電半導体チップ15よりも線膨張係数が小さくかつ熱伝導性の低い材質であることが好ましく、例えば、ステンレス鋼や鉄・ニッケル・コバルト合金(例えば、商品名:コバール)などの金属材料、あるいはジルコニア、アルミナ、ムライトなどのセラミックスが望ましい。   In the second step, a predetermined low temperature side electrode member 13 is fitted into the recess 12 a of the low temperature side plate 12. The low temperature side electrode member 13 and the high temperature side electrode member 16, the P-type thermoelectric semiconductor chip 14 and the N-type thermoelectric semiconductor chip 15 have a structure in which they are pressed and contacted. Therefore, the frame 18 is preferably made of a material having a smaller coefficient of linear expansion and lower thermal conductivity than the P-type thermoelectric semiconductor chip 14 and the N-type thermoelectric semiconductor chip 15 in order to maintain the applied pressure. A metal material such as iron / nickel / cobalt alloy (for example, trade name: Kovar) or ceramics such as zirconia, alumina, and mullite is desirable.

次に、第3工程では、図3に示すように低温側板12と低温側電極部材13によって形成される凹部13aにP型熱電半導体チップ14とN型熱電半導体チップ15とを嵌挿する。P型熱電半導体チップ14とN型熱電半導体チップ15とは低温側電極部材13上に交互に配置されるので、第4工程では、図4のようにバスタブ形状の箱形の高温側電極部材16を隣り合う一対のP型熱電半導体チップ14とN型熱電半導体チップ15の高温側端面の上に跨設する。この時、高温側電極部材16をすでに配置されている低温側電極部材13と交互にジグザグ状に配置して、全ての熱電半導体チップ14、15が電気的に直列に、また、熱的には並列に配置されるようにする。   Next, in the third step, as shown in FIG. 3, the P-type thermoelectric semiconductor chip 14 and the N-type thermoelectric semiconductor chip 15 are inserted into the recess 13 a formed by the low temperature side plate 12 and the low temperature side electrode member 13. Since the P-type thermoelectric semiconductor chips 14 and the N-type thermoelectric semiconductor chips 15 are alternately arranged on the low-temperature side electrode member 13, in the fourth step, a bathtub-shaped box-shaped high-temperature side electrode member 16 as shown in FIG. Is straddled on the high-temperature side end surfaces of a pair of adjacent P-type thermoelectric semiconductor chips 14 and N-type thermoelectric semiconductor chips 15. At this time, the high temperature side electrode members 16 are alternately arranged in a zigzag manner with the already arranged low temperature side electrode members 13 so that all the thermoelectric semiconductor chips 14 and 15 are electrically connected in series and thermally. Try to arrange them in parallel.

第5工程では、図5に示すように高温側電極部材16を位置決めする凹部17aを備えた高温側板17を高温側電極部材16上に嵌合載置して、複数の高温側電極部材16同士を絶縁するとともに、各々の相対位置を維持するようにする。   In the fifth step, as shown in FIG. 5, the high temperature side plate 17 having a recess 17 a for positioning the high temperature side electrode member 16 is fitted and placed on the high temperature side electrode member 16, and a plurality of high temperature side electrode members 16 are connected to each other. And maintain their relative positions.

続いて、第6工程では、図6に示すように減圧雰囲気23中で低温側板12と高温側板17に上下に圧力を加えながら、高温側板17と枠18とをろう材22を用いて密閉接合する。なお、高温側板17の側面と対向する枠18の接合部には、ろう付けを容易にするために上記のように銅薄膜などのメタライズ21を施しておく。   Subsequently, in the sixth step, as shown in FIG. 6, the high-temperature side plate 17 and the frame 18 are hermetically sealed using the brazing material 22 while applying a pressure to the low-temperature side plate 12 and the high-temperature side plate 17 in a reduced pressure atmosphere 23. To do. It should be noted that the metallization 21 such as a copper thin film is applied to the joint portion of the frame 18 facing the side surface of the high temperature side plate 17 in order to facilitate brazing.

上記の熱電変換装置1では、低温側、高温側ともに熱電半導体チップと電極部材とが加圧接触するように配置された構造であり、各熱電半導体チップと各電極部材との間ですべりを生じることで各部材の熱膨張量の差を吸収することができる。このため、接触部や熱電半導体チップ自身が損傷しにくく、熱電変換装置の信頼性が大幅に向上するという優れた効果がある。また、複数の電極部材が他の部材に固着されることなく容易に変形可能な独立した構造であるため、熱電半導体チップの高さにバラツキがあっても独立した複数の電極部材が個々に変形して、その高さバラツキを吸収することができる。また、接合用のハンダや変形可能な導電性部材を必要としないので、従来技術による熱電変換装置に比べて、部品点数と工数の低減が可能となる。さらに、従来技術では、製造時に熱電半導体チップや電極部材を整列させるための治具が必要であるのに対して、本実施例ではこのような整列用の治具を使用することなく、電極部材や熱電半導体チップなどを予め形成されている所定の位置へ嵌着することができ、簡単に熱電変換装置を製造することができる。   The thermoelectric conversion device 1 has a structure in which the thermoelectric semiconductor chip and the electrode member are placed in pressure contact on both the low temperature side and the high temperature side, and slip occurs between each thermoelectric semiconductor chip and each electrode member. Thus, the difference in the amount of thermal expansion between the members can be absorbed. For this reason, there is an excellent effect that the contact portion and the thermoelectric semiconductor chip itself are not easily damaged, and the reliability of the thermoelectric conversion device is greatly improved. In addition, since the plurality of electrode members has an independent structure that can be easily deformed without being fixed to other members, the independent electrode members are individually deformed even if the height of the thermoelectric semiconductor chip varies. Then, the height variation can be absorbed. Further, since no joining solder or deformable conductive member is required, the number of parts and man-hours can be reduced as compared with the conventional thermoelectric conversion device. Furthermore, in the prior art, a jig for aligning the thermoelectric semiconductor chip and the electrode member at the time of manufacture is required, whereas in this embodiment, the electrode member is used without using such an alignment jig. Or a thermoelectric semiconductor chip or the like can be fitted into a predetermined position, and a thermoelectric conversion device can be easily manufactured.

実施例2の熱電変換装置2は図7の断面概要図に示すように、実施例1のアルミナセラミックからなる高温側板17を絶縁材25をコーティングした導電性板24とし、アルミナセラミックの枠18を導電性板24と溶接しやすい同種の金属材料の枠18’とした以外は、実施例1と同様の部材を用いて同様のの構成としたものである。なお、図7で実施例1と同様の箇所については同一の符号を付して説明を省略する。   As shown in the schematic cross-sectional view of FIG. 7, the thermoelectric conversion device 2 of Example 2 uses the high-temperature side plate 17 made of alumina ceramic of Example 1 as a conductive plate 24 coated with an insulating material 25, and an alumina ceramic frame 18. Except for the frame 18 'of the same kind of metal material that can be easily welded to the conductive plate 24, the same configuration is used using the same members as in the first embodiment. In FIG. 7, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

熱電変換装置2では、導電性板24と枠18’には金属材料である鉄・ニッケル・コバルト合金(コバール)を用い、また、絶縁材25としてはアルミナセラミックスを用いた。枠18’と導電性板24とは同種の金属材料であるのでレーザ溶接により容易に接合することができ、実施例1と同様に減圧雰囲気中で圧縮圧力を加えながら密閉接合する。   In the thermoelectric conversion device 2, iron / nickel / cobalt alloy (Kovar), which is a metal material, is used for the conductive plate 24 and the frame 18 ′, and alumina ceramics is used for the insulating material 25. Since the frame 18 ′ and the conductive plate 24 are made of the same metal material, they can be easily joined by laser welding, and are hermetically joined while applying a compression pressure in a reduced pressure atmosphere as in the first embodiment.

このようにして形成された熱電変換装置2は、高温側板24に実施例1で用いたセラミックスよりも耐衝撃性が高い金属を用いているので、高温側板24の耐衝撃性が向上し、熱電変換装置2の耐衝撃性を向上することができる。このような熱電変換装置2は、設備の駆動部分など耐衝撃性や耐振動性を必要とする部位に装着する熱電変換装置として好適である。   Since the thermoelectric conversion device 2 formed in this way uses a metal having higher impact resistance than the ceramic used in Example 1 for the high temperature side plate 24, the impact resistance of the high temperature side plate 24 is improved, and the thermoelectric conversion device 2 is improved. The impact resistance of the conversion device 2 can be improved. Such a thermoelectric conversion device 2 is suitable as a thermoelectric conversion device that is attached to a portion that requires impact resistance and vibration resistance, such as a drive portion of equipment.

図8に実施例3の熱電変換装置3の断面構造を示す。熱電変換装置3は実施例1の熱電変換装置1の高温側電極部材16とP型熱電半導体チップ14およびN型熱電半導体チップ15との間に弾性構造体27を介挿し、その他の構成は実施例1と同様としたものである。図8で実施例1と同様の箇所については同一の符号を付して説明を省略する。   FIG. 8 shows a cross-sectional structure of the thermoelectric conversion device 3 according to the third embodiment. In the thermoelectric conversion device 3, an elastic structure 27 is inserted between the high temperature side electrode member 16 of the thermoelectric conversion device 1 of the first embodiment and the P-type thermoelectric semiconductor chip 14 and the N-type thermoelectric semiconductor chip 15, and other configurations are carried out. The same as in Example 1. In FIG. 8, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

弾性構造体27はP型熱電半導体チップ14とN型熱電半導体チップ15とを電気的に接続するために導電性の材質からなる構造体が必要である。ここでは厚さ方向に弾性変形する銅細線からなる金属細線網を用いた。なお、この他に銅、アルミニウム、あるいは銀などからなる金属製の板ばねを用いてもよい。   The elastic structure 27 requires a structure made of a conductive material in order to electrically connect the P-type thermoelectric semiconductor chip 14 and the N-type thermoelectric semiconductor chip 15. Here, a metal fine wire network made of copper fine wires elastically deformed in the thickness direction was used. In addition, a metal leaf spring made of copper, aluminum, silver, or the like may be used.

このような熱電変換装置3は、弾性構造体27を使用する構造であるため、熱電半導体チップの高さバラツキをこの弾性構造体27によっても吸収することができ、さらに安定した導通を得ることが可能になる。つまり、熱電半導体チップの高さバラツキの大きさが弾性構造体27の弾性変形量分向上するという優れた効果がある。   Since such a thermoelectric conversion device 3 has a structure using the elastic structure 27, the height variation of the thermoelectric semiconductor chip can be absorbed by the elastic structure 27, and more stable conduction can be obtained. It becomes possible. That is, there is an excellent effect that the height variation of the thermoelectric semiconductor chip is improved by the amount of elastic deformation of the elastic structure 27.

実施例4の熱電変換装置4は、図9に断面構造を示すように実施例1の高温側電極部材16と高温側板17との間に弾性構造体27を介挿し、その他の構成は実施例1と同様としたものである。なお、図9で実施例1と同様の箇所については同一の符号を付して説明を省略する。   The thermoelectric conversion device 4 of Example 4 has an elastic structure 27 interposed between the high temperature side electrode member 16 and the high temperature side plate 17 of Example 1 as shown in the cross-sectional structure of FIG. 1 is the same. In FIG. 9, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

ここで、弾性構造体27は熱抵抗を少なくするために高熱伝導性材料からなる構造体が望ましい。ここでは、上記の実施例3と同様の金属細線網を用いた。この他にシリコン系などの熱伝導性シートを用いてもよい。また、介挿する弾性構造体27が銅や銀などのように高い導電性を有する材料であれば、電気抵抗を低減することもできるのでさらに好適である。   Here, the elastic structure 27 is preferably a structure made of a highly thermally conductive material in order to reduce thermal resistance. Here, the same fine metal wire network as used in Example 3 was used. In addition, a silicon-based heat conductive sheet may be used. Further, if the elastic structure 27 to be inserted is a material having high conductivity such as copper or silver, it is more preferable because the electric resistance can be reduced.

このような熱電変換装置4は、上記の実施例3と同様に弾性構造体27を使用する構造であるため、吸収できる熱電半導体チップの高さバラツキの大きさが弾性構造体の弾性変形量分向上するという優れた効果がある。   Since such a thermoelectric conversion device 4 has a structure using the elastic structure 27 as in the third embodiment, the size variation of the thermoelectric semiconductor chip that can be absorbed is the amount of elastic deformation of the elastic structure. There is an excellent effect of improving.

実施例5の熱電変換装置5は、低温側板12と高温側板17との相対位置を保持する結合部材に、実施例1の枠18に代えてボルト28とナット30とを用いたものである。図10に熱電変換装置5の断面構造を示す。   The thermoelectric conversion device 5 of the fifth embodiment uses a bolt 28 and a nut 30 instead of the frame 18 of the first embodiment as a coupling member that holds the relative positions of the low temperature side plate 12 and the high temperature side plate 17. FIG. 10 shows a cross-sectional structure of the thermoelectric conversion device 5.

熱電変換装置5においては、ボルト28とナット30との締結によって低温側板12’と高温側板17’とに加圧力を負荷すると同時に、加圧力を保持する。なお、本実施例ではボルト28は一本であるが複数本用いてもよい。   In the thermoelectric conversion device 5, the applied pressure is applied to the low temperature side plate 12 ′ and the high temperature side plate 17 ′ by fastening the bolt 28 and the nut 30, and at the same time, the applied pressure is held. In this embodiment, one bolt 28 is used, but a plurality of bolts may be used.

熱電変換装置5では、ボルト締結により各部材の相対的位置を保持している。従って、低温側板12’と高温側板17’とは、例えば、鋼、モリブデン、タングステン、あるいはタングステンカーバイドなどの剛性の高い、かつ相対的に板厚の厚い材料で構成されている。それゆえ、低温側板12と低温側電極部材13及び高温側板17と高温側電極部材16との間に窒化珪素セラミックの絶縁部材31を介装することで、各部材間の絶縁を図った。   In the thermoelectric converter 5, the relative position of each member is held by bolt fastening. Therefore, the low-temperature side plate 12 'and the high-temperature side plate 17' are made of a material having a high rigidity and a relatively large thickness, such as steel, molybdenum, tungsten, or tungsten carbide. Therefore, the insulating member 31 made of silicon nitride ceramic is interposed between the low temperature side plate 12 and the low temperature side electrode member 13 and between the high temperature side plate 17 and the high temperature side electrode member 16 to achieve insulation between the members.

このような熱電変換装置5は、ナットの回転量で締結力を調整することができるので、加圧力が所望の圧縮力となるように容易に管理することができる。   Since such a thermoelectric conversion device 5 can adjust a fastening force with the rotation amount of a nut, it can be easily managed so that a pressurizing force becomes a desired compression force.

なお、本発明の熱電変換装置は上記の実施例1〜5に限定されるものではなく、本発明の要旨を逸脱しない範囲で変更することができる。   In addition, the thermoelectric conversion apparatus of this invention is not limited to said Examples 1-5, It can change in the range which does not deviate from the summary of this invention.

例えば、上記の実施例では、熱電変換装置の組み立て時に熱電半導体チップの軸方向に圧縮圧力を加えて枠などの結合部材でこの圧縮圧力を保持するようにしたが、熱電変換装置を所定の位置へ取り付ける時の締結力などの外部からの圧力を必要な圧縮圧力として利用してもよい。   For example, in the above-described embodiment, when the thermoelectric conversion device is assembled, the compression pressure is applied in the axial direction of the thermoelectric semiconductor chip and the compression pressure is held by the coupling member such as a frame. A pressure from the outside such as a fastening force at the time of attachment to the head may be used as a necessary compression pressure.

図11は熱電変換装置6の断面構造を示すもので、高温側板17を周縁部にV字溝32を形成した変形可能な高温側部材33としている。なお、図示はしないが、高温側部材33と高温側電極部材16及び低温側板12と低温側電極部材13及び複数の電極部材13,16同士は適宜の方法で絶縁されている。また、外部からの圧力を利用して加圧を行うために熱電半導体チップ14、15には圧力は負荷されておらず、空隙dがある状態で低温側板12と高温側部材33とを接合している。しかし、あえて空隙dを設けて熱電半導体チップに圧力を加えない構造とする必要はなく、熱電半導体チップの両端面を各電極部材に接触させて仮圧力をかける構造としてもよい。   FIG. 11 shows a cross-sectional structure of the thermoelectric conversion device 6, in which the high temperature side plate 17 is a deformable high temperature side member 33 in which a V-shaped groove 32 is formed in the peripheral portion. Although not shown, the high temperature side member 33, the high temperature side electrode member 16, the low temperature side plate 12, the low temperature side electrode member 13, and the plurality of electrode members 13, 16 are insulated by an appropriate method. Further, since pressure is not applied to the thermoelectric semiconductor chips 14 and 15 in order to perform pressurization using pressure from the outside, the low temperature side plate 12 and the high temperature side member 33 are joined in a state where there is a gap d. ing. However, it is not necessary to provide a structure in which the gap d is provided and no pressure is applied to the thermoelectric semiconductor chip, but a structure in which temporary pressure is applied by bringing both end surfaces of the thermoelectric semiconductor chip into contact with each electrode member may be employed.

図12は熱電変換装置6を高温廃熱管などの所定の部位に装着した状態を示す。熱電変換装置6は、低温側取付部材34と高温側取付部材35とに挟持され、ボルトB、Bの締結の圧力を利用することで、熱電変換装置6に必要な圧縮圧力が負荷されている。なお、この時に高温側部材33が変形して各部材の接触を可能にしている。このような熱電変換装置6は、高温側部材33を変形させる構造であるので、高温側部材33を薄くして熱抵抗を減少することで発電効率を向上させることができる。   FIG. 12 shows a state where the thermoelectric conversion device 6 is attached to a predetermined part such as a high-temperature waste heat pipe. The thermoelectric conversion device 6 is sandwiched between the low temperature side mounting member 34 and the high temperature side mounting member 35, and the compression pressure necessary for the thermoelectric conversion device 6 is loaded by using the fastening pressure of the bolts B and B. . At this time, the high temperature side member 33 is deformed to allow contact of each member. Since such a thermoelectric conversion device 6 has a structure in which the high temperature side member 33 is deformed, the power generation efficiency can be improved by reducing the thermal resistance by thinning the high temperature side member 33.

また、実施例3では図8において高温側電極部材16とP型熱電半導体チップ14およびN型熱電半導体チップ15との間に弾性構造体27を介挿したが、弾性構造体27は導電性材料からなっているので高温側電極部材16を設けることなく弾性構造体27で高温側電極部材16に代替してもよい。高温側電極部材16を弾性構造体27で代替することで部品点数を削減しながら実施例3と同様の効果を得ることができる。   Further, in Example 3, the elastic structure 27 is inserted between the high temperature side electrode member 16 and the P-type thermoelectric semiconductor chip 14 and the N-type thermoelectric semiconductor chip 15 in FIG. 8, but the elastic structure 27 is made of a conductive material. Therefore, the high temperature side electrode member 16 may be replaced with the elastic structure 27 without providing the high temperature side electrode member 16. By replacing the high temperature side electrode member 16 with the elastic structure 27, the same effects as in the third embodiment can be obtained while reducing the number of parts.

なお、本実施形態においては、熱電変換装置として、低温側板と高温側板との間の熱量の差に基づいて起電力を生じるゼーベック素子について説明したが、熱電半導体チップに電流を通電して高温側板と低温側板との間に温度差を生じさせるペルチェ素子にも本発明を採用することができる。   In the present embodiment, as the thermoelectric conversion device, the Seebeck element that generates an electromotive force based on the difference in the amount of heat between the low-temperature side plate and the high-temperature side plate has been described. The present invention can also be applied to a Peltier element that causes a temperature difference between the low temperature side plate and the low temperature side plate.

本発明の熱電変換装置は、従来の熱電変換装置のように各部材をハンダなどで接合する剛体構造ではなく、加圧力により各部材の相対位置を保持すると同時に電気の導通を確保する自由度の高い接触構造になっている。従って、熱膨張に対する自由度が大きく、熱膨張量差による熱電半導体の変形を吸収することができる。例えば、高温側は600℃で、低温側が100℃といった温度差の大きな熱電変換装置であっても熱電半導体やその電極部材との接触部が損傷しにくく、長期間にわたって高い信頼性を維持することができる。   The thermoelectric conversion device of the present invention is not a rigid body structure in which each member is joined with solder or the like as in the conventional thermoelectric conversion device, but the relative position of each member is maintained by applying pressure, and at the same time, electrical conduction is ensured. High contact structure. Therefore, the degree of freedom with respect to thermal expansion is large, and the deformation of the thermoelectric semiconductor due to the difference in thermal expansion amount can be absorbed. For example, even in a thermoelectric conversion device with a large temperature difference such as 600 ° C. on the high temperature side and 100 ° C. on the low temperature side, the contact portion with the thermoelectric semiconductor and its electrode member is not easily damaged, and high reliability is maintained over a long period of time. Can do.

このような特性を有する本発明の熱電変換装置は、工場などの廃熱回収装置として好適に用いることができる。   The thermoelectric conversion device of the present invention having such characteristics can be suitably used as a waste heat recovery device in a factory or the like.

実施例1の熱電変換装置1の主要構成を示す断面概要図である。1 is a schematic cross-sectional view showing the main configuration of a thermoelectric conversion device 1 of Example 1. FIG. 熱電変換装置1を製造する第1工程を説明する断面概要図である。It is a cross-sectional schematic diagram explaining the 1st process which manufactures the thermoelectric conversion apparatus. 熱電変換装置1を製造する第2工程を説明する断面概要図である。It is a cross-sectional schematic diagram explaining the 2nd process which manufactures the thermoelectric conversion apparatus. 熱電変換装置1を製造する第3工程を説明する断面概要図である。It is a cross-sectional schematic diagram explaining the 3rd process which manufactures the thermoelectric conversion apparatus 1. FIG. 熱電変換装置1を製造する第4工程を説明する断面概要図である。It is a cross-sectional schematic diagram explaining the 4th process which manufactures the thermoelectric conversion apparatus. 熱電変換装置1を製造する第5工程を説明する断面概要図である。It is a cross-sectional schematic diagram explaining the 5th process which manufactures the thermoelectric conversion apparatus 1. FIG. 実施例2の熱電変換装置2の主要構成を示す断面概要図である。It is a cross-sectional schematic diagram which shows the main structures of the thermoelectric conversion apparatus 2 of Example 2. FIG. 実施例3の熱電変換装置3の主要構成を示す断面概要図である。It is a cross-sectional schematic diagram which shows the main structures of the thermoelectric conversion apparatus 3 of Example 3. FIG. 実施例4の熱電変換装置4の主要構成を示す断面概要図である。It is a cross-sectional schematic diagram which shows the main structures of the thermoelectric conversion apparatus 4 of Example 4. FIG. 実施例5の熱電変換装置5の主要構成を示す断面概要図である。6 is a schematic cross-sectional view showing the main configuration of a thermoelectric conversion device 5 of Example 5. FIG. その他の例の熱電変換装置6の主要構成を示す断面概要図である。It is a cross-sectional schematic diagram which shows the main structures of the thermoelectric conversion apparatus 6 of the other example. 熱電変換装置6を高温廃熱管の所定の部位に介装した状態を示す断面概要図である。It is a cross-sectional schematic diagram which shows the state which interposed the thermoelectric conversion apparatus 6 in the predetermined | prescribed site | part of the high temperature waste heat pipe.

符号の説明Explanation of symbols

1:熱電変換装置 12:低温側板 13:低温側電極部材 14:P型熱電半導体チップ 15:N型熱電半導体チップ 16:高温側電極部材 17:高温側板 18:枠(結合部材)24:導電性板 25:絶縁材 27:弾性構造体31:絶縁部材 1: Thermoelectric conversion device 12: Low temperature side plate 13: Low temperature side electrode member 14: P type thermoelectric semiconductor chip 15: N type thermoelectric semiconductor chip 16: High temperature side electrode member 17: High temperature side plate 18: Frame (coupling member) 24: Conductivity Plate 25: Insulating material 27: Elastic structure 31: Insulating member

Claims (9)

低温側板と、該低温側板に対向する高温側板と、
前記低温側板および前記高温側板の各対向面に接触するように配置される複数の低温側電極部材および高温側電極部材と、
前記低温側電極部材と前記高温側電極部材との間に設けられ一端側を前記低温側電極部材に接触するとともに他端側を前記高温側電極部材に接触して電気的に直列配列される複数の熱電半導体チップと、
前記低温側板と前記高温側板の相対位置を保持する結合部材とを備え、
前記低温側板と前記高温側板との間には前記熱電半導体チップの軸方向に圧縮圧力が加えられており、該圧縮圧力が前記結合部材によって保持されていることを特徴とする熱電変換装置。
A low temperature side plate, and a high temperature side plate facing the low temperature side plate,
A plurality of low temperature side electrode members and a plurality of high temperature side electrode members disposed so as to be in contact with the opposing surfaces of the low temperature side plate and the high temperature side plate;
A plurality of electrodes arranged between the low temperature side electrode member and the high temperature side electrode member and electrically arranged in series with one end contacting the low temperature side electrode member and the other end contacting the high temperature side electrode member. Thermoelectric semiconductor chip of
A coupling member for holding the relative position of the low temperature side plate and the high temperature side plate;
A thermoelectric conversion device, wherein a compression pressure is applied between the low temperature side plate and the high temperature side plate in an axial direction of the thermoelectric semiconductor chip, and the compression pressure is held by the coupling member.
前記低温側板および前記高温側板の少なくとも一方は、前記低温側電極部材および前記高温側電極部材の位置を規制する位置規制部位を有する請求項1に記載の熱電変換装置。   2. The thermoelectric conversion device according to claim 1, wherein at least one of the low temperature side plate and the high temperature side plate has a position restricting portion that restricts a position of the low temperature side electrode member and the high temperature side electrode member. 前記低温側板および前記高温側板の少なくとも一方は、前記低温側電極部材および前記高温側電極部材の位置と前記熱電半導体チップの位置とを規制する位置規制部位を有する請求項1に記載の熱電変換装置。   2. The thermoelectric conversion device according to claim 1, wherein at least one of the low temperature side plate and the high temperature side plate has a position restricting portion that regulates a position of the low temperature side electrode member and the high temperature side electrode member and a position of the thermoelectric semiconductor chip. . 前記低温側電極部材及び前記高温側電極部材の少なくとも一方は、前記熱電半導体チップの位置を規制する位置規制部位を有する請求項1に記載の熱電変換装置。   2. The thermoelectric conversion device according to claim 1, wherein at least one of the low temperature side electrode member and the high temperature side electrode member has a position restricting portion that restricts a position of the thermoelectric semiconductor chip. 前記熱電半導体チップと前記低温側電極部材との間および前記熱電半導体チップと前記高温側電極部材との間の少なくとも一方に、導電性の変形可能な弾性構造部材を有する請求項1に記載の熱電変換装置。   2. The thermoelectric device according to claim 1, further comprising an electrically conductive and deformable elastic structural member between at least one of the thermoelectric semiconductor chip and the low temperature side electrode member and between the thermoelectric semiconductor chip and the high temperature side electrode member. Conversion device. 前記低温側電極部材および前記高温側電極部材の少なくとも一方は、導電性の変形可能な弾性構造部材である請求項1に記載の熱電変換装置。   The thermoelectric conversion device according to claim 1, wherein at least one of the low temperature side electrode member and the high temperature side electrode member is a conductive and deformable elastic structural member. 前記低温側板と前記低温側電極部材との間および前記高温側板と前記高温側電極部材との間の少なくとも一方に、熱伝導性のよい変形可能な弾性構造部材を有する請求項1に記載の熱電変換装置。   The thermoelectric device according to claim 1, further comprising a deformable elastic structural member having good thermal conductivity between at least one of the low temperature side plate and the low temperature side electrode member and between the high temperature side plate and the high temperature side electrode member. Conversion device. 前記結合部材と前記低温側板および前記高温側板とは溶接またはろう材によって結合されて前記熱電半導体チップおよび前記電極部材を収容する密閉容器を形成する請求項1に記載の熱電変換装置。   The thermoelectric conversion device according to claim 1, wherein the coupling member, the low-temperature side plate, and the high-temperature side plate are coupled by welding or brazing material to form a sealed container that accommodates the thermoelectric semiconductor chip and the electrode member. 前記密閉容器内の雰囲気は減圧雰囲気、窒素雰囲気および不活性ガス雰囲気の少なくとも1つから選ばれる請求項8に記載の熱電変換装置。   The thermoelectric conversion device according to claim 8, wherein the atmosphere in the sealed container is selected from at least one of a reduced pressure atmosphere, a nitrogen atmosphere, and an inert gas atmosphere.
JP2005218028A 2005-07-27 2005-07-27 Thermoelectric converter Pending JP2007035974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218028A JP2007035974A (en) 2005-07-27 2005-07-27 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218028A JP2007035974A (en) 2005-07-27 2005-07-27 Thermoelectric converter

Publications (1)

Publication Number Publication Date
JP2007035974A true JP2007035974A (en) 2007-02-08

Family

ID=37794851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218028A Pending JP2007035974A (en) 2005-07-27 2005-07-27 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP2007035974A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066987A (en) * 2005-08-29 2007-03-15 Toshiba Corp Thermoelement device and thermoelectric module
WO2011138521A1 (en) * 2010-05-05 2011-11-10 Commissariat à l'Energie Atomique et aux Energies Alternatives Thermoelectric device which provides for varying the effective height of the contacts of a thermocouple, and method for manufacturing the device
WO2013103069A1 (en) * 2012-01-05 2013-07-11 フタバ産業株式会社 Thermoelectric generator
JP2015522943A (en) * 2012-05-07 2015-08-06 フォノニック デバイセズ、インク Thermoelectric heat exchanger components including protective heat spreading lid and optimal thermal interface resistance
JP2016009787A (en) * 2014-06-25 2016-01-18 株式会社Kelk Thermoelectric generator
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
WO2020096228A1 (en) * 2018-11-08 2020-05-14 엘지이노텍 주식회사 Thermoelectric module
JP2021506103A (en) * 2017-12-07 2021-02-18 エルジー イノテック カンパニー リミテッド Thermoelectric module
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module
JP2021520627A (en) * 2018-04-04 2021-08-19 エルジー イノテック カンパニー リミテッド Thermoelectric element

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066987A (en) * 2005-08-29 2007-03-15 Toshiba Corp Thermoelement device and thermoelectric module
JP4728745B2 (en) * 2005-08-29 2011-07-20 株式会社東芝 Thermoelectric device and thermoelectric module
US8110736B2 (en) 2005-08-29 2012-02-07 Kabushiki Kaisha Toshiba Thermoelectric element device and thermoelectric module
WO2011138521A1 (en) * 2010-05-05 2011-11-10 Commissariat à l'Energie Atomique et aux Energies Alternatives Thermoelectric device which provides for varying the effective height of the contacts of a thermocouple, and method for manufacturing the device
FR2959876A1 (en) * 2010-05-05 2011-11-11 Commissariat Energie Atomique THERMOELECTRIC DEVICE HAVING A VARIATION IN THE EFFECTIVE HEIGHT OF THE PLOTS OF A THERMOCOUPLE AND METHOD FOR MANUFACTURING THE DEVICE.
CN102971878A (en) * 2010-05-05 2013-03-13 原子能和代替能源委员会 Thermoelectric device which provides for varying the effective height of the contacts of a thermocouple, and method for manufacturing the device
US9200967B2 (en) 2010-05-05 2015-12-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Thermoelectric device which provides for varying the effective height of the contacts of a thermocouple, and method for manufacturing the device
WO2013103069A1 (en) * 2012-01-05 2013-07-11 フタバ産業株式会社 Thermoelectric generator
JP2013140883A (en) * 2012-01-05 2013-07-18 Futaba Industrial Co Ltd Thermoelectric generator
CN104025326A (en) * 2012-01-05 2014-09-03 双叶产业株式会社 Thermoelectric generator
JP2015522943A (en) * 2012-05-07 2015-08-06 フォノニック デバイセズ、インク Thermoelectric heat exchanger components including protective heat spreading lid and optimal thermal interface resistance
JP2016009787A (en) * 2014-06-25 2016-01-18 株式会社Kelk Thermoelectric generator
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
JP2021506103A (en) * 2017-12-07 2021-02-18 エルジー イノテック カンパニー リミテッド Thermoelectric module
JP7420714B2 (en) 2017-12-07 2024-01-23 エルジー イノテック カンパニー リミテッド thermoelectric module
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module
EP3745480A4 (en) * 2018-01-23 2021-11-10 LG Innotek Co., Ltd. Thermoelectric module
US11730056B2 (en) 2018-01-23 2023-08-15 Lg Innotek Co., Ltd. Thermoelectric module
JP7407718B2 (en) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド thermoelectric module
JP2021520627A (en) * 2018-04-04 2021-08-19 エルジー イノテック カンパニー リミテッド Thermoelectric element
EP3764410A4 (en) * 2018-04-04 2021-12-08 LG Innotek Co., Ltd. Thermoelectric element
EP4277454A3 (en) * 2018-04-04 2024-01-10 LG Innotek Co., Ltd. Thermoelectric element
JP7442456B2 (en) 2018-04-04 2024-03-04 エルジー イノテック カンパニー リミテッド thermoelectric element
WO2020096228A1 (en) * 2018-11-08 2020-05-14 엘지이노텍 주식회사 Thermoelectric module
US11355689B2 (en) 2018-11-08 2022-06-07 Lg Innotek Co., Ltd. Thermoelectric module

Similar Documents

Publication Publication Date Title
JP2007035974A (en) Thermoelectric converter
JP4488778B2 (en) Thermoelectric converter
TWI301333B (en) Thermoelectric device and method of manufacturing the same
TWI299581B (en) Thermoelectric device and method of manufacturing the same
US8003446B2 (en) Flexible diode package and method of manufacturing
WO2009101685A1 (en) Semiconductor element module and method for manufacturing the same
US20050211288A1 (en) Thermoelectric device
JP2008010764A (en) Thermoelectric conversion device
JP2012079914A (en) Power module and method for manufacturing the same
JP3312169B2 (en) How to install thermoelectric generation module
JP6200759B2 (en) Semiconductor device and manufacturing method thereof
JP5899680B2 (en) Power semiconductor module
WO2020225097A1 (en) Semiconductor module comprising a semiconductor body electrically contected to a shaped metal body, as well as the method of obtaining the same
JP5187148B2 (en) Semiconductor device and manufacturing method thereof
JP2021515403A (en) Thermoelectric module and its manufacturing method
JP4737436B2 (en) Thermoelectric conversion module assembly
JP3469811B2 (en) Line type thermoelectric conversion module
JP6010941B2 (en) Thermoelectric conversion module with airtight case
JP5010208B2 (en) Semiconductor element module and manufacturing method thereof
JP5761123B2 (en) Thermoelectric converter
JP4961398B2 (en) Semiconductor device
US8018042B2 (en) Integrated circuit with flexible planar leads
JP2001168447A (en) Laser diode optical module
WO2017130461A1 (en) Thermoelectric conversion module and method for manufacturing same
JP2001308397A (en) Peltier module