JP2007035775A - 基板処理装置 - Google Patents

基板処理装置 Download PDF

Info

Publication number
JP2007035775A
JP2007035775A JP2005214309A JP2005214309A JP2007035775A JP 2007035775 A JP2007035775 A JP 2007035775A JP 2005214309 A JP2005214309 A JP 2005214309A JP 2005214309 A JP2005214309 A JP 2005214309A JP 2007035775 A JP2007035775 A JP 2007035775A
Authority
JP
Japan
Prior art keywords
wafer
boat
central axis
processing apparatus
rotational motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005214309A
Other languages
English (en)
Inventor
Kenji Takaishi
賢治 高石
Masaru Kojima
賢 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005214309A priority Critical patent/JP2007035775A/ja
Publication of JP2007035775A publication Critical patent/JP2007035775A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】 大口径なウェーハであってもガス分布及び温度分布の均一化を図ることができ均一性の高い薄膜を形成することができる基板処理装置を提供する。
【解決手段】 本発明に係る縦型基板処理装置は、反応管内において基板を保持するボート2が、中心軸を軸心として回転する中心軸回転運動と中心軸に対して偏心した位置を軸心として回転する偏心軸回転運動とを同時に行うように構成されている。これにより、図(a)にように、ボート2は反応管1の内部において矢印A1のように中心軸回転運動しながら矢印A2のように偏心軸回転運動を行う。従って、ウェーハ3の上にあるq点の軌跡は、図(b)のようにハイポサイクロイド曲線を描き、同心円の軌跡は描かない。従って、ウェーハ3を回転してもそのウェーハ3の全面において温度分布を均一にすることができる。同様にして、ガス分布もウェーハ3の全面において均一にすることができる。
【選択図】 図1

Description

本発明は、加熱しながら基板に所定の処理を施す基板処理装置に関し、特に、回転軸を備えて炉内を回転させながら基板に処理を施す縦型の基板処理装置に関するものである。
近年、半導体製品のコストダウンを図るために、半導体デバイスは基板(以下、ウェーハという)の大口径化が進みつつあり、現在ではウェーハの直径が300mmのものが主流となっている。また、半導体デバイスの高性能化を図るために微細化が進み、ウェーハを構成する薄膜の均一性をさらに向上させる必要性が生じている。大口径のウェーハに対して均一に薄膜を形成させるために、縦型の基板処理装置(以下、縦型基板処理装置という)では、ウェーハを保持するボート(石英治具)を回転させることで、薄膜を形成するために必要なガスの均一化と、ウェーハを加熱させるのに必要なヒータ(加熱機構)の温度ムラを減少させることができる。
図6は、一般的な縦型基板処理装置の概略的な縦断面構成図である。縦型基板処理装置10は、反応管1の内部に中心軸(図示せず)によって自在に回転できるボート2が配置されていて、ボート2の各棚にはウェーハ3が載置されている。また、反応管1の内部には反応用のガス4が供給されている。さらに、反応管1の周囲には加熱手段としてのヒータ5が配置され、反応管1の内部を加熱している。このような構成によって、ウェーハ3に所望の処理を施すことができる。
図7は、図6に示す縦型基板処理装置の横断面図であってボートを回転させた状態を示す概念図である。図7(a)に示すように、反応管1に収納されたボート2の中心には中心軸6が設けられていて、この中心軸6を軸心としてボート2が矢印の方向へ回転すると、ボート2に載置されたウェーハ3も同方向に回転する。従って、図7(b)に示すように、ボート2が回転した際のウェーハ3の回転軌跡(丸印P点の軌跡)も中心軸6に対して同心円となっている。このように、縦型基板処理装置10の運転中においては、中心軸6を軸心としてボート2を回転させる(以下、中心軸回転という)ことによって、ウェーハ3に薄膜を形成するために必要なガス4の均一化と、ウェーハ3を加熱させるヒータ5の温度ムラを低減させている。
なお、反応管の中心部に回転軸を備えた基板処理装置の技術は、例えば、下記の特許文献1などに開示されている。この技術によれば、回転軸パージ用のガスを回転軸に供給することによって基板表面のガスを不均一にさせないようにし、基板上に形成される膜厚の均一化を図っている。これによって、基板の製品歩留りを向上させることができる。
特開平10−335317号公報
しかしながら、上記従来の縦型基板処理装置のように反応管の中心軸による回転(中心軸回転)だけでは、大口径なウェーハを処理する場合にはウェーハ近傍のガス及び温度分布の均一化を図ることができない。従って、ウェーハに対して微細化に対応した均一な薄膜形成を行うことができない場合がある。すなわち、半導体デバイスの高性能化を図るためには、さらに均一な薄膜形成を行う必要があるが、反応管の中心軸回転だけでは高精度な薄膜形成を行うことができない。
図8は、図6に示す縦型基板処理装置において反応管を中心軸回転させたときのウェーハの温度分布を示す概念図である。一般的には、上述のようにボート2の中心軸を介してウェーハ3を回転させることによって(つまり、中心軸回転を行うことによって)、原料ガスの供給が均一となり、かつヒータ5からの放射熱に対しても均一な加熱を得ることが出来るので、ウェーハ表面の薄膜の均一性を向上させることができる。
しかし、ボート2の中心軸回転だけでは、図7(b)に示したP点の軌跡はウェーハ3の表面に同心円の軌跡を描くために、図8(a)に示す同心円状のヒータ5からの加熱エネルギ(図8(a)の矢印)が均一な場合は、ウェーハ3の温度分布は均一とはならない。すなわち、図8(b)に示すようにヒータ5に近いウェーハ3の周辺部分の温度が高くなり、ウェーハ3の中心部分の温度が低くなる。いいかえれば、図8(c)に示すように、ウェーハ3の同心円状に同じ温度分布であれば、ウェーハ3を中心軸回転させてもウェーハ3の温度分布は周辺に高く中心に低い勾配となるため、ウェーハ3の温度均一性は向上しない。
本発明は、以上のような問題点に鑑みてなされたものであり、大口径なウェーハであってもガス分布及び温度分布の均一化を図ることができ、均一性の高い薄膜を形成することができる基板処理装置を提供することを目的とする。
上記の課題を解決するため、本発明に係る基板処理装置は、基板保持手段によって基板を保持しながらその基板に対して所望の処理を施す処理室と、処理室の内部を加熱する加熱手段と、基板保持手段の中心軸を軸心としてその基板保持手段を回転させる第1の回転機構と、基板保持手段の中心軸とは偏心した位置を軸心としてその基板保持手段と共に第1の回転機構を回転させる第2の回転機構とを備える構成を採っている。
すなわち、本発明の基板処理装置は、例えば、縦型基板処理装置であって、処理室となる反応管内において基板を保持する基板保持手段(ボート)が、中心軸を軸心としてボートを回転させる中心軸回転運動と、中心軸に対して偏心した位置を軸心としてボートを回転させる偏心軸回転運動とを同時に行うように構成されている。
本発明の基板処理装置によれば、ボートに対して中心軸回転運動と偏心軸回転運動とを行わせることにより、基板に対して高品質な膜生成を行うことが可能となる。これによって、半導体素子の性能をさらに向上させることができ、かつウェーハの生産性を高めることができる。また、ウェーハの面上における温度分布の均一性がさらに向上するため、ウェーハに対して均一性の高い高品質な膜形成を行うことができる。さらに、CVDにおいて、反応管の加工不良や経時変化によって反応管の形状が設計値通りとならない場合でも、ウェーハに対して均一性の高い高品質な膜形成を行うことができる。
<発明の概要>
本発明に係る縦型基板処理装置は、反応管内において基板を保持する石英治具のボートが、中心軸回転運動と偏心軸回転運動とを同時に行うように構成されている。なお、中心軸回転運動とは、ボートの中心軸を軸心としてそのボートを回転させる回転状態であり、偏心軸回転運動とは、ボートの中心軸に対して偏心した位置を軸心としてボートを回転させる回転状態である。このようにして、ボートに対して中心軸回転運動と偏心軸回転運動とを加えた複合回転運動を行わせることにより、ボートに載置されたウェーハの温度分布及びガス分布を均一にすることができ、結果的に、ウェーハに対して均一な薄膜を形成することができる。
<第1の実施の形態>
以下、図面を参照しながら、本発明に係る基板処理装置の実施の形態について、縦型基板処理装置を例に挙げて説明する。本発明に係る基板処理装置の基本的な構造は図6の縦型基板処理装置と同じである。すなわち、縦型基板処理装置10は、反応管1の内部に回転自在なボート2が配置されていて、ボート2の各棚にはウェーハ3が載置されている。また、反応管1の内部には反応用のガス4が供給されている。さらに、反応管1の周囲には加熱手段としてのヒータ5が配置され、反応管1の内部を加熱している。
図1は、本発明の実施の形態による縦型基板処理装置のボートの動きを示す概念図であり、(a)はボートを中心軸回転運動させながら偏心軸回転運動させた状態を示す概念図、(b)は(a)のq点の軌跡を示すハイポサイクロイド曲線である。
図1(a)は、ボート2が、反応管1の内部において、矢印A1のように中心軸回転運動しながら矢印A2のように偏心軸回転運動を行っている状態を示している。従って、この図はボート2の偏心軸回転運動の軌跡を示しているのであって、ボート2が3個あるわけではない。なお、ボート2に偏心軸回転運動を行わせるための偏心軸は図には示されていない。
ボート2が、図1(a)のように中心軸回転運動と偏心軸回転運動とを加えた複合回転運動を行うと、ウェーハ3の上にあるq点の軌跡は、図1(b)のようにハイポサイクロイド曲線を描き、同心円の軌跡は描かない。従って、このような複合回転運動を行うことによって、ウェーハ3は同心円状に同じ温度分布となることはなく、ウェーハ3を回転してもそのウェーハ3の全面において温度分布を均一にすることができる。同様にして、ガス分布もウェーハ3の全面において均一にすることができる。
図2は、縦型基板処理装置において、ボートを中心軸回転運動させたときと複合回転運動させたときのウェーハの温度分布の様子を示す概念図である。図2(a)に示すように、ウェーハ3を回転させない状態ではヒータ5に近いウェーハ3の周辺部分の温度が高くなり、ウェーハ3の中心部分の温度が低くなる。このように、ウェーハ3が同心円状に同じ温度分布であれば、ウェーハ3を中心軸回転運動させても、図2(b)に示すように、ウェーハ3は周辺部分の温度が高く中心部分の温度が低くなる同心円状に同じ温度分布となり、ウェーハ3の温度均一性は向上しない。
ところが、ウェーハ3に対して図1(a)に示すような中心軸回転運動と偏心軸回転運動とを加えた複合回転運動を行えば、ウェーハ3上のq点の軌跡は図1(b)に示すようなハイポサイクロイド曲線となるので、結果的には、図2(c)に示すように、ウェーハ3は周辺部分から中心部分に亘ってほぼ均一な温度分布となる。これによって、ウェーハ3に対して均一な膜厚の薄膜を形成することができる。
<第2の実施の形態>
また、CVD(Chemical Vapor Deposition)処理では、膜厚分布を均一にするためには、気相反応を抑えて表面反応律速(粒子表面における化学反応支配)に近い条件で成膜することが望ましい。しかし、使用するガスによっては気相反応が抑えられない場合がある。例えば、SiH4ガスとN20ガスを使用してウェーハにシリコン酸化膜を生成しようとする場合は気相反応が抑えられない。このような気相反応は、表面反応とは異なって、ウェーハの表面で反応するのではなく、ウェーハから離れた反応室の空間で反応する。従って、ウェーハと反応管の位置関係(つまり、ウェーハと反応管のクリアランス)や反応管の形状が気相反応に大きく影響する。
図3は、縦型基板処理装置において、ボートを中心軸で回転させることによってウェーハと反応管のクリアランスが異なる状態を示す概念図であり、(a)はボートの回転角0度の状態、(b)はボートの回転角180度の状態を示している。また、図4は、図3の横断面図であり、(a)はボートの回転角0度の状態、(b)はボートの回転角180度の状態を示している。
ボートを中心軸で回転させた場合は、図4(a)、(b)に示すように、ウェーハ3と反応管1のクリアランスの狭いところは、ボート2を回転してもやはり狭い。つまり、ボート2を中心軸回転運動した場合はクリアランスが狭いところは変化がない。
図3及び図4に示すように、ボートの回転角度によってウェーハ3と反応管1のクリアランス(隙間、距離)が異なると、空間の広さが異なるために反応速度が変わり、ウェーハ3の膜厚分布が悪くなってしまう。つまり、ウェーハ3と反応管1の空間が狭いと反応するスペースが狭くなるので成膜速度が遅くなり、ウェーハ3と反応管1の空間が広いと反応するスペースが広くなるので成膜速度が速くなる。従って、ボート2の回転中にウェーハ3と反応管1のクリアランスが変動することによって成膜速度が変動するので、ウェーハ3の膜厚分布が不均一になってしまう。
このように、ボートの回転角度によってクリアランスが異なる原因としては、反応管1の加工不良や、経時変化によって反応管1の形状に歪が生じて、反応管1の各部の寸法が設計値の通りにならないためである。そのため、ある程度のクリアランスを吸収できるためのマージンを確保したり、ウェーハ3の処理枚数を減らしたりして、ウェーハ3の膜厚分布の均一性の確保、及び基板処理装置の運転中におけるトラブルの抑止を図っている。
しかし、ウェーハ3処理で気相反応を使用する場合において、ウェーハ3の処理枚数を減らせば生産性が低下してコストアップにつながり、クリアランスの吸収マージンを大きく取れば製品歩留りが低下するなどの不具合が生じる。そこで、本発明の基板処理装置では、ウェーハの処理で気相反応を使用する場合においても、前述のように、中心軸回転運動と偏心軸回転運動とを加えた複合回転運動を行うことによって、ウェーハ3と反応管1のクリアランスを均等化して反応管1の形状が気相反応に影響を及ぼさないようにしている。
図5は、縦型基板処理装置において、ウェーハと反応管のクリアランスが異なる場合に中心軸回転運動と偏心軸回転運動とを加えた複合回転運動を行う状態を示す概念図であり、(a)はウェーハの回転状態を示す概念図、(b)は(a)のq点の軌跡を示すハイポサイクロイド曲線である。
ボートに対して中心軸回転運動と偏心軸回転運動とを加えた複合回転運動を行わせることによって、図5(a)におけるウェーハ3のq点が示す軌跡は、図5(b)のようにハイポサイクロイド曲線の軌跡を描くので、ボートの傾きによってウェーハ3と反応管1のクリアランスが変化しても、ウェーハ3の面上における見かけのクリアランスは回転に関わらず一定である。つまり、図4で示したような、中心軸回転運動のときに発生したクリアランスの狭いウェーハ3の部分は回転しても狭いという状態は解消される。
このように、ウェーハの処理で気相反応を使用する場合においても、ボートに対して中心軸回転運動と偏心軸回転運動とを組み合わせて行うことにより、反応管1とボート2のクリアランスの変動に関わらず、ウェーハ3のクリアランスを均一化することができるので、結果的に、ウェーハ3に対して均一な膜厚分布で成膜処理を行うことが可能となる。
つまり、図5(a)に示すように、ウェーハ3が中心軸回転と偏心軸回転を行うことによって、反応管1とボード2とのクリアランスがずれていた場合でも、ウェーハ3がハイポサイクロイド曲線の動きを呈するので、ウェーハ3のクリアランスの狭いところは同じ位置とはならない。よって、ウェーハ3に対して均一な膜厚で成膜処理を行うことができる。なお、反応管1の寸法を広げてボート2との接触を避ければパーティクルの抑制を行うこともできる。
<第3の実施の形態>
本発明に適用される縦型の減圧CVD処理炉の実施例モデルについて説明する。図9は、本発明に適用される縦型の減圧CVD処理炉の構成図である。以下、図9に示す減圧CVD処理炉について説明する。
外管(以下、アウターチューブ205)は、例えば石英(SiO2)等の耐熱性材料からなり、上端が閉塞されて下端に開口を有する円筒状の形態である。内管(以下、インナーチューブ204)は、上端及び下端の両端に開口を有する円筒状の形態を有し、アウターチューブ205内に同心円状に配置されている。アウターチューブ205とインナーチューブ204の間の空間は筒状空間250をなしている。また、インナーチューブ204の上部開口から上昇したガスは、筒状空間250を通過して排気管231から排気されるようになっている。
アウターチューブ205及びインナーチューブ204の下端には、例えば、ステンレス等よりなるマニホールド209が係合され、このマニホールド209にアウターチューブ205及びインナーチューブ204が保持されている。このマニホールド209は保持手段(以下ヒータベース251)に固定される。アウターチューブ205の下端部及びマニホールド209の上部開口端部には、それぞれ環状のフランジが設けられ、これらのフランジ間には気密部材(以下Oリング220)が配置され、両者の間が気密にシールされている。
マニホールド209の下端開口部には、例えば、ステンレス等よりなる円盤状の蓋体(以下、シールキャップ219)がOリング220を介して気密シール可能に着脱自在に取付けられている。また、シールキャップ219には、ガスの供給管232が貫通するように設けられている。これらのガスの供給管232により、処理用のガスがアウターチューブ205内に供給されるようになっている。これらのガスの供給管232はガスの流量制御手段(以下マスフローコントローラ(MFC)241)に連結されており、MFC241はガス流量制御部に接続されており、供給するガスの流量を所定の量に制御することができる。
マニホールド209の上部には、圧力調節器(例えば、APC、N2バラスト制御器があり、以下、ここではAPC242とする)及び、排気装置(以下、真空ポンプ246)に連結されたガスの排気管231が接続されており、アウターチューブ205とインナーチューブ204との間の筒状空間250を流れるガスを排出し、アウターチューブ205内をAPC242により圧力を制御することにより、所定の圧力の減圧雰囲気にするように圧力検出手段(以下圧力センサ245)により検出し、圧力制御部により制御を行っている。
シールキャップ219には、回転機構(以下、回転軸254a,b)が連結されており、回転軸254a,bにより、基板保持手段(以下、ボート217)及びボート217上に保持されている基板(以下、ウェーハ200)を回転させる。すなわち、ボート217の中心軸を軸心として回転する回転軸254aと、ボート217の中心軸を軸心とせずに偏心した回転軸254bとにより、ボート217及びボート217上に保持されているウェーハ200を回転させる。又、シールキャップ219は昇降手段(以下、ボートエレベータ115)に連結されていて、ボート217を昇降させる。回転軸254a,b及びボートエレベータ115を所定のスピードにするように、駆動制御部によって制御を行っている。
アウターチューブ205の外周には加熱手段(以下、ヒータ207)が同心円状に配置されている。ヒータ207は、アウターチューブ205内の温度を所定の処理温度にするよう温度検出手段(以下、熱電対263)により温度を検出し、温度制御部によって制御を行っている。
図9に示した処理炉による減圧CVD処理方法の一例を説明すると、まず、ボートエレベータ115によりボート217を下降させる。そして、ボート217に複数枚のウェーハ200を保持する。次いで、ヒータ207により加熱しながら、アウターチューブ205内の温度を所定の処理温度にする。また、ガスの供給管232に接続されたMFC241により、予めアウターチューブ205内を不活性ガスで充填しておき、ボートエレベータ115によりボート217を上昇させてアウターチューブ205内に移し、アウターチューブ205の内部温度を所定の処理温度に維持する。
そして、アウターチューブ205内を所定の真空状態まで排気した後、回転軸254a,bにより、ボート217及びボート217上に保持されているウェーハ200を回転させる。すなわち、ボート217の中心軸を軸心として回転する回転軸254aと、ボート217の中心軸を軸心とせずに偏心した回転軸254bとにより、ボート217及びボート217上に保持されているウェーハ200を回転させる。同時にガスの供給管232から処理用のガスを供給する。供給されたガスは、アウターチューブ205内を上昇し、ウェーハ200に対して均等に供給される。
減圧CVD処理中のアウターチューブ205内は、排気管231を介して排気され、所定の真空になるようにAPC242により圧力が制御され、所定時間に亘って減圧CVD処理を行う。
このようにして減圧CVD処理が終了すると、次のウェーハ200の減圧CVD処理に移るため、アウターチューブ205内のガスを不活性ガスで置換すると共に圧力を常圧にする。その後、ボートエレベータ115によりボート217を下降させて、ボート217及び処理済のウェーハ200をアウターチューブ205から取出す。アウターチューブ205から取出されたボート217上の処理済のウェーハ200は、未処理のウェーハ200と交換され、再度、前述と同様にしてアウターチューブ205内に上昇され、減圧CVD処理が成される。
なお、一例として、本実施の形態のCVD処理炉で処理される処理条件は、シリコン窒化膜の成膜において、処理室温度300〜900℃、ガス種供給量はSiCl2H2(ジクロロシラン)、NH3(アンモニア)、処理圧力は5〜260Paであり、この処理室温度や処理圧力から選択される条件にて、所定の時間維持され、処理がなされる。例えば、処理室温度300℃、処理圧力は5Paにて所定の時間維持され、処理がなされる。また、ガス種としては、シリコン窒化膜の成膜において、シリコンソースとして、SiH4、SiCl2H2、Si2H6、SiCl3H、SiCl4、BTBAS、HCD(Si2H6) 、HSi(OC2H5)3、TEOSのいずれか、窒素ソースとして、NH3、N、N2O、NO、NO2、H2NNH2のいずれかから選択される。また、シリコン酸化膜の成膜において、ガス種はシリコンソースとして、SiH4、SiCl2H2、Si2H6、SiCl3H、SiCl4、BTBAS、HCD(Si2H6) 、HSi(OC2H5)3、TEOSのいずれか、窒素ソースとして、O3、NO、NO2、N2Oのいずれかから選択される。また、Poly膜の成膜において、ガス種はシリコンソースとして、SiH4、SiCl2H2、Si2H6、SiCl3H、SiCl4、BTBAS、HCD(Si2H6) 、HSi(OC2H5)3、TEOSのいずれか、ドーピングソースとして、PH3、B2H6、BCl3、AsH3のいずれかから選択される。また、その他Ta2O5やTiN、Al2O3、HfO2等にも適用可能である。尚、回転軸254bは、アウターチューブ205もしくは、インナーチューブ204もしくは、ヒータ207の中心軸を軸心として回転するように設けると、ウェーハ200全面において、より温度分布を均一にすることができる。同様にしてガス分布もウェーハ200の全面において、より均一にすることができる。
本発明の実施の形態による縦型基板処理装置のボートの動きを示す概念図であり、(a)はボートを中心軸回転運動させながら偏心軸回転運動させた状態を示す概念図、(b)は(a)のq点の軌跡を示すハイポサイクロイド曲線である。 縦型基板処理装置において、ボートを中心軸回転運動させたときと複合回転運動させたときのウェーハの温度分布の様子を示す概念図である。 縦型基板処理装置において、ボートを中心軸で回転させることによってウェーハと反応管のクリアランスが異なる状態を示す概念図であり、(a)はボートの回転角0度の状態、(b)はボートの回転角180度の状態を示している。 図3の横断面図であり、(a)はボートの回転角0度の状態、(b)はボートの回転角180度の状態を示している。 縦型基板処理装置において、ウェーハと反応管のクリアランスが異なる場合に中心軸回転運動と偏心軸回転運動とを加えた複合回転運動を行う状態を示す概念図であり、(a)はウェーハの回転状態を示す概念図、(b)は(a)のq点の軌跡を示すハイポサイクロイド曲線である。 一般的な縦型基板処理装置の概略的な縦断面構成図である。 図6に示す縦型基板処理装置の横断面図であってボートを回転させた状態を示す概念図である。 図6に示す縦型基板処理装置において反応管を中心軸回転させたときのウェーハの温度分布を示す概念図である。 本発明に適用される縦型の減圧CVD処理炉の構成図である。
符号の説明
1 反応管
2 ボート
3 ウェーハ
4 ガス
5 ヒータ
6 中心軸
10 縦型基板処理装置

Claims (1)

  1. 基板保持手段によって基板を保持しながらその基板に対して所望の処理を施す処理室と、
    前記処理室の内部を加熱する加熱手段と、
    前記基板保持手段の中心軸を軸心としてその基板保持手段を回転させる第1の回転機構と、
    前記基板保持手段の中心軸とは偏心した位置を軸心としてその基板保持手段と共に前記第1の回転機構を回転させる第2の回転機構と、
    を備えることを特徹とする基板処理装置。
JP2005214309A 2005-07-25 2005-07-25 基板処理装置 Withdrawn JP2007035775A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214309A JP2007035775A (ja) 2005-07-25 2005-07-25 基板処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214309A JP2007035775A (ja) 2005-07-25 2005-07-25 基板処理装置

Publications (1)

Publication Number Publication Date
JP2007035775A true JP2007035775A (ja) 2007-02-08

Family

ID=37794684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214309A Withdrawn JP2007035775A (ja) 2005-07-25 2005-07-25 基板処理装置

Country Status (1)

Country Link
JP (1) JP2007035775A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500608A (ja) * 2010-10-14 2014-01-09 ユ−ジーン テクノロジー カンパニー.リミテッド 3次元構造のメモリ素子を製造する方法及び装置
JP2018522401A (ja) * 2015-06-22 2018-08-09 ビーコ インストゥルメンツ インコーポレイテッド 化学蒸着のための自己心合ウエハキャリアシステム
JP2019004096A (ja) * 2017-06-19 2019-01-10 東京エレクトロン株式会社 基板保持具及びこれを用いた基板処理装置
JP2022118470A (ja) * 2021-02-02 2022-08-15 株式会社Kokusai Electric 基板処理装置、基板保持装置及び半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500608A (ja) * 2010-10-14 2014-01-09 ユ−ジーン テクノロジー カンパニー.リミテッド 3次元構造のメモリ素子を製造する方法及び装置
JP2018522401A (ja) * 2015-06-22 2018-08-09 ビーコ インストゥルメンツ インコーポレイテッド 化学蒸着のための自己心合ウエハキャリアシステム
JP2019004096A (ja) * 2017-06-19 2019-01-10 東京エレクトロン株式会社 基板保持具及びこれを用いた基板処理装置
JP2022118470A (ja) * 2021-02-02 2022-08-15 株式会社Kokusai Electric 基板処理装置、基板保持装置及び半導体装置の製造方法
JP7222003B2 (ja) 2021-02-02 2023-02-14 株式会社Kokusai Electric 基板処理装置、基板保持装置、半導体装置の製造方法およびプログラム
TWI808537B (zh) * 2021-02-02 2023-07-11 日商國際電氣股份有限公司 基板處理裝置,基板保持裝置,半導體裝置的製造方法及程式

Similar Documents

Publication Publication Date Title
US11495477B2 (en) Substrate processing apparatus
US11282721B2 (en) Vertical heat treatment apparatus
US10475641B2 (en) Substrate processing apparatus
JP6616258B2 (ja) 基板処理装置、蓋部カバーおよび半導体装置の製造方法
JP6550029B2 (ja) 基板処理装置、ノズル基部および半導体装置の製造方法
KR101222396B1 (ko) 성막 장치, 성막 방법, 및 이 성막 방법을 성막 장치에 실시시키는 프로그램을 기억하는 컴퓨터 판독 가능 기억 매체
CN100435312C (zh) 基板处理装置、基板保持器、和半导体装置的制造方法
US20160083844A1 (en) Substrate Processing Apparatus, Gas Introduction Shaft and Gas Supply Plate
JP6478847B2 (ja) 基板処理装置
US10907253B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and recording medium
JP6257008B2 (ja) 基板処理装置および反応管
US20230119730A1 (en) Substrate Processing Method and Substrate Processing Apparatus
US20180151347A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6894521B2 (ja) 基板処理装置、石英反応管、クリーニング方法並びにプログラム
KR102237780B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
JP6557992B2 (ja) 成膜装置、成膜方法及び記憶媒体
JP6080253B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
US20090197402A1 (en) Substrate processing apparatus, method for manufacturing semiconductor device, and process tube
JP2007035775A (ja) 基板処理装置
JP4971954B2 (ja) 基板処理装置、半導体装置の製造方法、および加熱装置
US20220411933A1 (en) Film forming apparatus
JP2013135126A (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
US11913115B2 (en) Substrate processing apparatus and substrate processing method
JP2007027426A (ja) 基板処理装置
JP3056241B2 (ja) 熱処理装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007