JP2007035490A - Connection material - Google Patents

Connection material Download PDF

Info

Publication number
JP2007035490A
JP2007035490A JP2005218468A JP2005218468A JP2007035490A JP 2007035490 A JP2007035490 A JP 2007035490A JP 2005218468 A JP2005218468 A JP 2005218468A JP 2005218468 A JP2005218468 A JP 2005218468A JP 2007035490 A JP2007035490 A JP 2007035490A
Authority
JP
Japan
Prior art keywords
conductive particles
resin
acrylic polymer
connection
insulating adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005218468A
Other languages
Japanese (ja)
Other versions
JP4657047B2 (en
Inventor
Taketoshi Usui
健敏 臼井
Hitoshi Shimada
仁 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2005218468A priority Critical patent/JP4657047B2/en
Publication of JP2007035490A publication Critical patent/JP2007035490A/en
Application granted granted Critical
Publication of JP4657047B2 publication Critical patent/JP4657047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection material which is excellent in repairability, has an excellent reliability of connection of a microarea electrode and a high insulation between fine wirings in an electric connection of a fine pattern, and is excellent in connectability of a broad electrode pattern. <P>SOLUTION: The connection material is formed on a peelable substrate and is constituted of an insulating adhesive and a plurality of conductive particles which are disposed separated from each other in the insulating adhesive. Each conductive particle is coupled with other conductive particles of at least two on average each independently through an acryl polymer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば液晶パネル等において2つの回路基板同士の電極間を電気的に接続するのに好適な接続部材に関する。   The present invention relates to a connection member suitable for electrically connecting electrodes of two circuit boards in a liquid crystal panel or the like, for example.

液晶ディスプレイと半導体チップやTCP(Tape Carrier Package)との接続、FPC(Flexible Printed Circuit)とTCPとの接続、又は、FPCとプリント配線板との接続を簡便に行うための接続部材として、絶縁性の接着剤中に導電粒子を分散させた構造の接続部材が使用されている。例えば、ノート型パソコンや携帯電話の液晶ディスプレイと制御ICとの接続用として、あるいは最近では、半導体チップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装にも上記接続部材が用いられている(特許文献1、2、3)。
この分野では、回路接続部の信頼性を考慮して、接着剤として、エポキシ系などの熱硬化性接着剤が使用されている。これら接着剤での接続後、電気的な接続不良や回路、電気部品の不良が起こると、回路間を剥がした後、溶剤などで接着剤を除去して、再利用されることが一般的に行われ、接着剤には、高い信頼性を維持したままで、簡便に再利用できること、即ち、リペア性が求められている。これに対し、接着剤組成物中にアクリルポリマー等の熱可塑性樹脂を配合する試みが成されている(特許文献4)。
Insulating as a connection member for easily connecting a liquid crystal display and a semiconductor chip or TCP (Tape Carrier Package), connecting an FPC (Flexible Printed Circuit) and TCP, or connecting an FPC and a printed wiring board A connecting member having a structure in which conductive particles are dispersed in an adhesive is used. For example, the connection member is used for connection between a liquid crystal display of a notebook personal computer or a mobile phone and a control IC, or recently for flip chip mounting in which a semiconductor chip is directly mounted on a printed circuit board or a flexible wiring board. (Patent Documents 1, 2, and 3).
In this field, in consideration of the reliability of the circuit connection portion, an epoxy-based thermosetting adhesive is used as the adhesive. After connection with these adhesives, if an electrical connection failure or circuit or electrical component failure occurs, it is generally reused by removing the adhesive with a solvent etc. after peeling between the circuits The adhesive is required to be easily reusable while maintaining high reliability, that is, to have repairability. In contrast, attempts have been made to blend a thermoplastic resin such as an acrylic polymer in the adhesive composition (Patent Document 4).

一方、近年、接続される配線パターンやバンプパターンの寸法が益々微細化され、導電粒子を絶縁性の接着剤にランダムに分散した従来の接続部材では、接続信頼性の高い接続は困難になっている。即ち、微小面積の電極を接続するために導電粒子密度を高めると、導電粒子が凝集し隣接電極間の絶縁性を保持できなくなる。逆に、絶縁性を保持するために導電粒子の密度を下げると、今度は接続されない電極が生じ、接続信頼性を保ったまま微細化に対応することは困難とされていた(特許文献5)。
これに対し、導電粒子が樹脂で連結されている導電粒子密集域を、接続すべき電極の中心点と一致する様に配置した接続部材が検討されている(特許文献6)。
On the other hand, in recent years, the dimensions of wiring patterns and bump patterns to be connected have been increasingly miniaturized, and it has become difficult to connect with high reliability with conventional connection members in which conductive particles are randomly dispersed in an insulating adhesive. Yes. That is, when the density of the conductive particles is increased to connect electrodes having a small area, the conductive particles are aggregated and the insulation between adjacent electrodes cannot be maintained. On the contrary, if the density of the conductive particles is lowered in order to maintain insulation, an electrode that is not connected is generated this time, and it has been difficult to cope with miniaturization while maintaining connection reliability (Patent Document 5). .
On the other hand, a connection member has been studied in which a conductive particle dense region in which conductive particles are connected by a resin is aligned with the center point of an electrode to be connected (Patent Document 6).

特開平03−107888号公報Japanese Patent Laid-Open No. 03-107888 特開平04−366630号公報Japanese Patent Laid-Open No. 04-366630 特開昭61−195179号公報JP-A-61-195179 特開平05−339556号公報JP 05-339556 A 特開平09−312176号公報JP 09-31176 A 特開平04−301382号公報JP 04-301382 A

本発明は、リペア性に優れ、微細パターンの電気的接続において、微小面積の電極の接続信頼性に優れると共に、微細な配線間の絶縁性が高く、幅広い電極パターンの接続を可能にする接続部材の提供を目的とする。   The present invention is excellent in repairability, and in connection with a fine pattern, the connection member is excellent in connection reliability of electrodes in a small area, has high insulation between fine wirings, and enables connection of a wide range of electrode patterns. The purpose is to provide.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、絶縁性接着剤と該絶縁性接着剤中で相互に隔てられて配置された個々の導電粒子が他の導電粒子とそれぞれ独立にアクリルポリマーで連結された導電粒子よりなる接続部材が、上記目的に適合し得ることを見出し、本発明をなすに至った。
上記課題を解決するために本願出願以前に行われた上記開示の技術では、例えば、特許文献4では、接着剤組成物中にアクリルポリマーを配合するため、リペア性を発現するには多量のアクリルポリマーが必要である上、接着剤全体にアクリルポリマーが存在することとなり、信頼性の低下を招く場合があり、特許文献6では、リペア性を向上する効果に乏しい上に、接続時に導電粒子の密集域全体が流動してしまう場合があり、その場合、折角電極パターンにあわせて配置した導電粒子の密集域が電極位置とは異なる場所で接続され、接続信頼性が確保できず、更に、接続すべき電極パターンにあわせて、接続部材も準備する必要があり、在庫管理の観点からも改良が求められる等、満足の行くものが得られていなかった。
As a result of intensive studies to solve the above problems, the present inventors have found that the insulating adhesive and the individual conductive particles arranged separately from each other in the insulating adhesive are different from the other conductive particles. It has been found that a connecting member made of electrically conductive particles independently linked with an acrylic polymer can meet the above-mentioned purpose, and has led to the present invention.
In the technique of the above-mentioned disclosure performed before the filing of the present application in order to solve the above problem, for example, in Patent Document 4, an acrylic polymer is blended in the adhesive composition. In addition to the necessity of a polymer, the acrylic polymer is present in the entire adhesive, which may lead to a decrease in reliability. In Patent Document 6, the effect of improving the repair property is poor, and the conductive particles are not connected at the time of connection. The entire dense area may flow. In this case, the dense area of the conductive particles arranged according to the folded electrode pattern is connected at a place different from the electrode position, and connection reliability cannot be ensured. It is necessary to prepare a connecting member in accordance with the electrode pattern to be obtained, and a satisfactory one has not been obtained, for example, improvement is required from the viewpoint of inventory management.

本発明のように、アクリルポリマーを用いて導電粒子を連結することで、リペア性が向上する上に、微細パターンの電気的接続が可能となり、上記課題を解決できたことは、上述の特許文献に開示の技術に鑑みて、当業者にとって予想だにできなかった、驚くべき知見であった。
即ち、本発明は、下記の通りである。
1)剥離可能な基材上に形成された、絶縁性接着剤と該絶縁性接着剤中で相互に隔てられて配置された複数の導電粒子より構成される接続部材であって、個々の導電粒子が平均2個以上の他の導電粒子とそれぞれ独立にアクリルポリマーで連結されていることを特徴とする接続部材。
As in the present invention, by connecting conductive particles using an acrylic polymer, the repair property is improved and the electrical connection of a fine pattern is possible, and the above-mentioned problems have been solved. In view of the disclosed technology, it was a surprising finding that could not be expected by those skilled in the art.
That is, the present invention is as follows.
1) A connection member formed on an exfoliable base material, which is composed of an insulating adhesive and a plurality of conductive particles arranged in the insulating adhesive so as to be separated from each other. A connecting member, wherein the particles are each independently connected to an average of two or more other conductive particles by an acrylic polymer.

本発明の接続部材は、リペア性に優れ、微細パターンの電気的接続において、微小面積の電極の接続信頼性に優れると共に、微細な配線間の絶縁性が高く、幅広い電極パターンの接続を可能にするという効果を有する。   The connecting member of the present invention is excellent in repairability, and in the electrical connection of a fine pattern, it is excellent in the connection reliability of electrodes in a small area and has high insulation between fine wirings, enabling a wide range of electrode patterns to be connected. Has the effect of

本発明について、以下具体的に説明する。
本発明の接続部材は、剥離可能な基材上に形成された、絶縁性接着剤と該絶縁性接着剤中で相互に隔てられて配置されアクリルポリマーで連結された複数の導電粒子より構成されている。
本発明に用いられる導電粒子としては、金属粒子、炭素からなる粒子や高分子核材に金属薄膜を被覆した粒子等を用いることができる。
金属粒子としては、例えば、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の単体や、2種以上のこれらの金属が層状あるいは傾斜状に組み合わされている粒子が例示される。
The present invention will be specifically described below.
The connecting member of the present invention is composed of an insulating adhesive formed on a peelable substrate and a plurality of conductive particles arranged in the insulating adhesive and spaced apart from each other and connected by an acrylic polymer. ing.
As the conductive particles used in the present invention, metal particles, particles made of carbon, particles obtained by coating a polymer thin film with a metal thin film, and the like can be used.
As the metal particles, for example, a simple substance such as gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc., or two or more of these metals are combined in a layered or inclined manner. Particles are exemplified.

高分子核材に金属薄膜を被覆した粒子としては、エポキシ樹脂、スチレン樹脂、シリコーン樹脂、アクリル樹脂、ポリオレフィン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、ジビニルベンゼン架橋体、NBR、SBR等のポリマーの中から1種あるいは2種以上組み合わせた高分子核材に、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の中から選ばれた1種あるいは2種以上組み合わせてメッキ等により金属被覆した粒子が例示される。金属薄膜の厚さは0.005μm以上1μm以下の範囲が、接続安定性と粒子の凝集性の観点から好ましい。金属薄膜は均一に被覆されていることが接続安定性上好ましい。これら導電粒子の表面を更に絶縁被覆した粒子や微小粒子を表面に付着したコンペイ糖型の粒子も使用することができる。   Particles with a polymer core coated with a metal thin film include epoxy resin, styrene resin, silicone resin, acrylic resin, polyolefin resin, melamine resin, benzoguanamine resin, urethane resin, phenol resin, polyester resin, divinylbenzene crosslinked product, NBR Selected from gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc., as a polymer core material combined with one or more of polymers such as SBR Examples are particles that are metal-coated by plating or the like in combination of one type or two or more types. The thickness of the metal thin film is preferably in the range of 0.005 μm to 1 μm from the viewpoint of connection stability and particle cohesion. It is preferable in terms of connection stability that the metal thin film is uniformly coated. Particles obtained by further insulatingly coating the surface of these conductive particles and complex sugar type particles having fine particles attached to the surface can also be used.

導電粒子は球状のものを用いるのがよく、その場合、真球に近いものほど好ましく、長軸に対する短軸の比は0.5以上が好ましく、0.7が更に好ましく、0.9以上が一層好ましい。長軸に対する短軸の比の最大値は1である。
導電粒子の平均径は、接続しようとする隣接電極間距離よりも小さい必要があると共に、接続する電子部品の電極高さのバラツキよりも大きいことが好ましい。そのために導電粒子の平均径は、0.3μm以上30μm未満の範囲が好ましく、更に好ましくは0.5μm以上20μm未満、更に好ましくは0.7μm以上15μm未満、更に好ましくは1μm以上10μm未満、更に好ましくは2μm以上7μm未満である。導電粒子の粒子径分布の標準偏差は平均粒子径の50%以下が好ましい。
It is preferable to use spherical particles as the conductive particles, in which case the closer to a true sphere is preferable, and the ratio of the short axis to the long axis is preferably 0.5 or more, more preferably 0.7, and 0.9 or more. Even more preferred. The maximum value of the ratio of the short axis to the long axis is 1.
The average diameter of the conductive particles needs to be smaller than the distance between adjacent electrodes to be connected, and is preferably larger than the variation in the electrode height of the electronic component to be connected. Therefore, the average diameter of the conductive particles is preferably in the range of 0.3 μm or more and less than 30 μm, more preferably 0.5 μm or more and less than 20 μm, further preferably 0.7 μm or more and less than 15 μm, more preferably 1 μm or more and less than 10 μm, and still more preferably. Is 2 μm or more and less than 7 μm. The standard deviation of the particle size distribution of the conductive particles is preferably 50% or less of the average particle size.

これら導電粒子は相互に隔てられた状態で配置されている。これら導電粒子は同一面上に配置されていることが好ましい。個々の導電粒子はそれぞれ接触することなく配置されているが、粒子数基準で20%以下の割合で複数の導電粒子が接触していても良い。他の導電粒子と接触している導電粒子の割合は、好ましくは15%以下であり、更に好ましくは10%以下、一層好ましくは5%以下、更に一層好ましくは3%以下であり、最も好ましくは導電粒子同士の接触がないことである。複数の導電粒子が接触している場合、1箇所の接触している導電粒子の最大数は5個以下が好ましい。更に好ましくは3個以下である。   These conductive particles are arranged in a state of being separated from each other. These conductive particles are preferably arranged on the same surface. The individual conductive particles are arranged without being in contact with each other, but a plurality of conductive particles may be in contact with each other at a ratio of 20% or less based on the number of particles. The proportion of conductive particles in contact with other conductive particles is preferably 15% or less, more preferably 10% or less, more preferably 5% or less, still more preferably 3% or less, and most preferably There is no contact between the conductive particles. When a plurality of conductive particles are in contact, the maximum number of conductive particles in contact at one place is preferably 5 or less. More preferably, it is 3 or less.

導電粒子の間隔は、接続信頼性と隣接電極間の絶縁性とのバランスの観点から、導電粒子の粒子間距離の平均が、導電粒子の平均径の1.2倍以上20倍以下が好ましく、更に好ましくは1.3倍以上10倍以下、一層好ましくは1.5倍以上7倍以下である。尚、近接6粒子との中心間距離の平均値をその導電粒子の粒子間距離とした。
電極毎の接続抵抗のバラツキを小さくするために、導電粒子を高い配列性をもって配置することが好ましい。各導電粒子の粒子間距離の変動係数を配列性の尺度とすると、その値は0.6以下が好ましく、更に好ましくは0.002以上0.5以下であり、一層好ましくは0.005以上0.45以下、更に好ましくは0.01以上0.4以下、更に好ましくは0.02以上0.35以下である。
The distance between the conductive particles is preferably 1.2 times or more and 20 times or less the average diameter of the conductive particles from the viewpoint of balance between connection reliability and insulation between adjacent electrodes, More preferably, they are 1.3 times or more and 10 times or less, More preferably, they are 1.5 times or more and 7 times or less. In addition, the average value of the center-to-center distance with 6 adjacent particles was defined as the inter-particle distance of the conductive particles.
In order to reduce the variation in connection resistance for each electrode, it is preferable to dispose the conductive particles with high alignment. When the variation coefficient of the distance between the particles of each conductive particle is used as a measure of the alignment, the value is preferably 0.6 or less, more preferably 0.002 or more and 0.5 or less, and still more preferably 0.005 or more and 0. .45 or less, more preferably 0.01 or more and 0.4 or less, and further preferably 0.02 or more and 0.35 or less.

本発明の接続部材では、個々の導電粒子が平均2個以上の他の導電粒子とそれぞれ独立にアクリルポリマーで連結されている。
ここで独立にとは、1組2個の導電粒子が1本の線状アクリルポリマーで連結され、別の導電粒子とは別の線状アクリルポリマーで連結されていることを意味し、面状や立体状のアクリルポリマーに複数の導電粒子が固定されているものとは異なることを意味する。好ましくは、導電粒子を頂点、アクリルポリマーを辺とする多角形が互いに連結しあった蜘蛛の巣状の構造をとっている。この様な構造をとることで、複数の導電粒子が連結され、接続時に導電粒子の流動が抑制され好ましく、更に、アクリルポリマーが面内に広く分布することができるため、リペア性を向上することができる。
本発明において、個々の導電粒子が連結している導電粒子の数は平均2個以上であり、好ましくは2個以上10個以下、より好ましくは2.5個以上8個以下、一層好ましくは2.7個以上7個以下、更に一層好ましくは3個以上6個以下である。平均2個以上の導電粒子と連結することで導電粒子は接続時に流動しにくくなり好ましい。
本発明においては、アクリルポリマーは導電粒子間で線状に形成されているが、線状アクリルポリマーの最大幅は導電粒子径の2倍以下が好ましい。より好ましくは、0.1〜1.8倍であり、更に好ましくは0.2〜1.6倍、一層好ましくは0.3〜1.4倍、更に一層好ましくは0.4〜1.2倍である。
In the connection member of the present invention, each conductive particle is connected to an average of two or more other conductive particles independently by an acrylic polymer.
Here, independently means that one set of two conductive particles are connected by one linear acrylic polymer, and another conductive particle is connected by another linear acrylic polymer. This means that the conductive particles are different from those fixed to a three-dimensional acrylic polymer. Preferably, it has a spider web-like structure in which polygons having apexes of conductive particles and sides of acrylic polymer as sides are connected to each other. By adopting such a structure, a plurality of conductive particles are connected, the flow of the conductive particles is preferably suppressed at the time of connection, and further, the acrylic polymer can be widely distributed in the plane, so that the repair property is improved. Can do.
In the present invention, the average number of conductive particles connected to individual conductive particles is 2 or more, preferably 2 or more and 10 or less, more preferably 2.5 or more and 8 or less, and still more preferably 2. 7 or more and 7 or less, still more preferably 3 or more and 6 or less. By connecting with an average of two or more conductive particles, the conductive particles are less likely to flow during connection, which is preferable.
In the present invention, the acrylic polymer is linearly formed between the conductive particles, but the maximum width of the linear acrylic polymer is preferably not more than twice the diameter of the conductive particles. More preferably, it is 0.1 to 1.8 times, more preferably 0.2 to 1.6 times, still more preferably 0.3 to 1.4 times, still more preferably 0.4 to 1.2 times. Is double.

ここで用いられるアクリルポリマーは、アクリル酸エステルモノマー、メタクリル酸エステルモノマーおよび共重合可能なその他のモノマーより選ばれたモノマーの共重合体である。アクリル酸エステルモノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸−n−ブチル、アクリル酸イソブチル、アクリル酸−n−ヘキシル、アクリル酸シクロヘキシル、アクリル酸−2−エチルヘキシル、アクリル酸ラウリル等のアクリル酸アルキル、アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、アクリル酸−2−ヒドロキシブチル等の活性水素を有するアクリル酸エステル、アクリル酸グリシジル等、メタクリル酸エステルモノマーとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸−n−ブチル、メタクリル酸イソブチル、メタクリル酸−n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸−2−エチルヘキシル、メタクリル酸ラウリル等のメタクリル酸アルキル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシブチル等の活性水素を有するメタクリル酸エステル、メタクリル酸グリシジル等、共重合可能なその他のモノマーとしては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド等の不飽和アミド、スチレン、ビニルトルエン、酢酸ビニル、アクリロニトリル等が挙げられる。アクリルポリマーの重量平均分子量は10万以上が好ましく、更に好ましくは、20万〜150万、一層好ましくは、30万〜120万である。重量平均分子量が10万以上にすることで接続時の流動抑制効果が発現し易くなる。   The acrylic polymer used here is a copolymer of monomers selected from acrylic acid ester monomers, methacrylic acid ester monomers, and other copolymerizable monomers. Acrylic acid ester monomers include methyl acrylate, ethyl acrylate, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-n-hexyl, acrylic acid cyclohexyl, acrylic acid-2-ethylhexyl, acrylic acid As methacrylic acid ester monomers such as alkyl acrylates such as lauryl, acrylate esters with active hydrogen such as -2-hydroxyethyl acrylate, -2-hydroxypropyl acrylate, -2-hydroxybutyl acrylate, glycidyl acrylate, etc. Are methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, -n-butyl methacrylate, isobutyl methacrylate, methacrylic acid -n-hexyl, cyclohexyl methacrylate, methacrylic acid-2-ethyl Hexyl, methacrylic acid alkyl such as lauryl methacrylate, methacrylic acid ester having active hydrogen such as methacrylic acid-2-hydroxyethyl, methacrylic acid-2-hydroxypropyl, methacrylic acid-2-hydroxybutyl, glycidyl methacrylate, etc. Other monomers that can be polymerized include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, unsaturated amides such as acrylamide, N-methylolacrylamide and diacetoneacrylamide, styrene, vinyltoluene and vinyl acetate. And acrylonitrile. The weight average molecular weight of the acrylic polymer is preferably 100,000 or more, more preferably 200,000 to 1,500,000, and still more preferably 300,000 to 1,200,000. When the weight average molecular weight is 100,000 or more, the effect of suppressing the flow at the time of connection is easily exhibited.

アクリルポリマーにはその他のポリマーを混合して用いることもできる。その他のポリマーの混合割合は60質量%以下が好ましく、更に好ましくは50質量%以下である。その他のポリマーの混合割合を60質量%以下にすることで高いリペア性が期待できる。その他のポリマーとしては、熱や光で硬化した架橋ポリマーや耐熱性の熱可塑ポリマーが好ましい。架橋ポリマーとしては、架橋アクリレート樹脂、架橋ビニル樹脂、架橋ポリエステル樹脂、架橋ポリウレタン樹脂、架橋メラミン樹脂、架橋シロキサン樹脂、架橋エポキシ樹脂、架橋フェノール樹脂等が例示される。耐熱性の熱可塑性ポリマーとしては、ポリイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリスルホン樹脂、フェノキシ樹脂等が例示される。   Other polymers can be mixed with the acrylic polymer. The mixing ratio of other polymers is preferably 60% by mass or less, and more preferably 50% by mass or less. When the mixing ratio of the other polymer is 60% by mass or less, high repairability can be expected. The other polymer is preferably a crosslinked polymer cured by heat or light or a heat-resistant thermoplastic polymer. Examples of the crosslinked polymer include a crosslinked acrylate resin, a crosslinked vinyl resin, a crosslinked polyester resin, a crosslinked polyurethane resin, a crosslinked melamine resin, a crosslinked siloxane resin, a crosslinked epoxy resin, and a crosslinked phenol resin. Examples of the heat-resistant thermoplastic polymer include polyimide resin, polyamide resin, polyester resin, polysulfone resin, phenoxy resin, and the like.

本発明に用いられる絶縁性接着剤は、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂、電子線硬化性樹脂から選ばれた1種類以上の樹脂を含有する。これらの樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、SBR、SBS、NBR、ポリエーテルスルフォン樹脂、ポリエーテルテレフタレート樹脂、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリエーテルオキシド樹脂、ポリアセタール樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリイソブチレン樹脂、アルキルフェノール樹脂、スチレンブタジエン樹脂、カルボキシル変性ニトリル樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂等又はそれらの変性樹脂が挙げられる。特に基板との接着性を必要とする場合には、エポキシ樹脂を含有することが好ましい。   The insulating adhesive used in the present invention contains one or more resins selected from thermosetting resins, thermoplastic resins, photocurable resins, and electron beam curable resins. Examples of these resins include epoxy resins, phenol resins, silicone resins, urethane resins, acrylic resins, polyimide resins, phenoxy resins, polyvinyl butyral resins, SBR, SBS, NBR, polyether sulfone resins, polyether terephthalate resins, polyphenylenes. Sulfide resin, polyamide resin, polyether oxide resin, polyacetal resin, polystyrene resin, polyethylene resin, polyisobutylene resin, alkylphenol resin, styrene butadiene resin, carboxyl-modified nitrile resin, polyphenylene ether resin, polycarbonate resin, polyether ketone resin, etc. Of the modified resin. In particular, when adhesiveness with a substrate is required, an epoxy resin is preferably contained.

ここで用いられるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエーテルエステル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環族エポキサイド等が挙げられ、これらエポキシ樹脂はハロゲン化や水素添加されていても良く、また、ウレタン変性、ゴム変性、シリコーン変性等の変性されたエポキシ樹脂でも良い。   Examples of the epoxy resin used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, and fluorene type epoxy. Resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, glycidyl ether epoxy resin such as aliphatic ether epoxy resin, glycidyl ether ester epoxy resin, glycidyl ester epoxy resin, glycidyl amine Type epoxy resins, hydantoin type epoxy resins, alicyclic epoxides, etc., even if these epoxy resins are halogenated or hydrogenated Ku, or may urethane-modified, rubber-modified, even modified epoxy resins such as silicone-modified.

前記エポキシ樹脂の硬化剤としては、潜在性硬化剤が好ましい。潜在性硬化剤としては、ホウ素化合物、ヒドラジド、3級アミン、イミダゾール、ジシアンジアミド、無機酸、カルボン酸無水物、チオール、イソシアネート、ホウ素錯塩及びそれらの誘導体等の硬化剤が好ましい。潜在性硬化剤の中でも、マイクロカプセル型の硬化剤が好ましい。マイクロカプセル型硬化剤は、前記硬化剤の表面を樹脂皮膜等で安定化したもので、接続作業時の温度や圧力で樹脂皮膜が破壊され、硬化剤がマイクロカプセル外に拡散し、エポキシ樹脂と反応する。マイクロカプセル型潜在性硬化剤の中でも、アミンアダクト、イミダゾールアダクト等のアダクト型硬化剤をマイクロカプセル化した潜在性硬化剤が安定性と硬化性のバランスに優れ好ましい。これらエポキシ樹脂の硬化剤は、エポキシ樹脂100質量部に対して、2〜100質量部の量で用いられるのが好ましい。   As the curing agent for the epoxy resin, a latent curing agent is preferable. As the latent curing agent, curing agents such as boron compounds, hydrazides, tertiary amines, imidazoles, dicyandiamides, inorganic acids, carboxylic acid anhydrides, thiols, isocyanates, boron complex salts and derivatives thereof are preferable. Among latent curing agents, microcapsule type curing agents are preferred. The microcapsule-type curing agent is a material in which the surface of the curing agent is stabilized with a resin film, etc., and the resin film is destroyed by the temperature and pressure during connection work, the curing agent diffuses outside the microcapsule, and the epoxy resin react. Among the microcapsule type latent curing agents, a latent curing agent obtained by microencapsulating an adduct type curing agent such as an amine adduct or an imidazole adduct is preferable because of excellent balance between stability and curability. These epoxy resin curing agents are preferably used in an amount of 2 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin.

本発明に用いられる絶縁性接着剤は、フィルム形成性、接着性、硬化時の応力緩和性等を付与する目的で、フェノキ樹脂、ポリエステル樹脂、アクリルゴム、SBR、NBR、シリコーン樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアセタール樹脂、尿素樹脂、キシレン樹脂、ポリアミド樹脂、ポリイミド樹脂、カルボキシル基、ヒドロシキシル基、ビニル基、アミノ基などの官能基を含有するゴム、エラストマー類等の高分子成分を含有することが好ましい。これら高分子成分は分子量が10,000〜2,000,000のものが好ましい。高分子成分の含有量は、絶縁性接着剤に対して2〜80質量%が好ましい。
絶縁性接着剤には、さらに、絶縁粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤等を含有させることもできる。絶縁粒子や充填剤を含有する場合、これらの最大径は導電粒子の平均粒径未満であることが好ましい。カップリング剤としては、ケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基含有シランカップリング剤が、接着性の向上の点から好ましい。
The insulating adhesive used in the present invention is a phenoxy resin, polyester resin, acrylic rubber, SBR, NBR, silicone resin, polyvinyl butyral resin for the purpose of imparting film formability, adhesiveness, stress relaxation during curing, etc. Polyurethane resin, polyacetal resin, urea resin, xylene resin, polyamide resin, polyimide resin, rubber containing functional groups such as carboxyl group, hydroxyl group, vinyl group, amino group, and polymer components such as elastomers Is preferred. These polymer components preferably have a molecular weight of 10,000 to 2,000,000. The content of the polymer component is preferably 2 to 80% by mass with respect to the insulating adhesive.
The insulating adhesive may further contain insulating particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, and the like. When the insulating particles and the filler are contained, the maximum diameter is preferably less than the average particle diameter of the conductive particles. As the coupling agent, ketimine group, vinyl group, acrylic group, amino group, epoxy group, and isocyanate group-containing silane coupling agent are preferable from the viewpoint of improvement in adhesiveness.

絶縁性接着剤の各成分を混合する場合、必要に応じて、溶剤を用いることができる。溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート等が挙げられる。
絶縁性接着剤はフィルム状であることが好ましい。その厚みは5μm以上50μm以下が好ましく、更に好ましくは6μm以上35μm以下、更に好ましくは7μm以上25μm以下、更に好ましくは8μm以上20μm以下である。
絶縁性接着剤は単一組成であっても構わないし、異なる組成の接着剤が2層以上積層されていても構わない。単一組成のほうが、内部応力の蓄積がなく好ましい。
絶縁性接着剤の製造は、例えば、各成分を溶剤中で混合、塗工液を作成し、剥離可能な基材上にアプリケーター塗装等により塗工、オーブン中で溶剤を揮散させることにより製造できる。
When mixing each component of an insulating adhesive agent, a solvent can be used as needed. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like.
The insulating adhesive is preferably in the form of a film. The thickness is preferably 5 μm to 50 μm, more preferably 6 μm to 35 μm, still more preferably 7 μm to 25 μm, and still more preferably 8 μm to 20 μm.
The insulating adhesive may have a single composition, or two or more layers of adhesives having different compositions may be laminated. A single composition is preferred because there is no accumulation of internal stress.
Insulating adhesives can be produced, for example, by mixing each component in a solvent, creating a coating solution, coating the substrate by means of applicator coating, etc., and evaporating the solvent in an oven. .

絶縁性接着剤は、アクリルポリマーよりも高い流動性を有する温度領域が存在することが好ましい。それによって、絶縁性接着剤を優先的に流動させる接続条件を選択することができる。絶縁性接着剤を優先的に流動させる温度領域としては、100℃以上300℃以下が好ましく、より好ましくは120℃以上280℃以下、更に好ましくは130℃以上260℃以下、一層好ましくは140℃以上240℃以下である。
本発明の接続部材は、剥離可能な基材上に形成される。剥離可能な基材としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエステル、ナイロン、塩化ビニル、ポリビニルアルコール等のフィルムや、これらフィルムをシリコーン処理、フッ素処理、アルキド処理やコロナ処理等をして剥離性を制御したフィルム等の基材が挙げられる。
本発明の接続部材は、例えば、枚葉タイプの形態や長尺タイプの形態のものが挙げられる。
The insulating adhesive preferably has a temperature region having a higher fluidity than the acrylic polymer. Thereby, the connection conditions for preferentially flowing the insulating adhesive can be selected. The temperature range for preferentially flowing the insulating adhesive is preferably 100 ° C. or higher and 300 ° C. or lower, more preferably 120 ° C. or higher and 280 ° C. or lower, more preferably 130 ° C. or higher and 260 ° C. or lower, and even more preferably 140 ° C. or higher. It is 240 degrees C or less.
The connection member of the present invention is formed on a peelable substrate. Examples of peelable substrates include films such as polyethylene, polypropylene, polystyrene, polyester, nylon, vinyl chloride, and polyvinyl alcohol, and these films can be peeled by silicone treatment, fluorine treatment, alkyd treatment, corona treatment, etc. And a substrate such as a film in which is controlled.
Examples of the connection member of the present invention include a single wafer type and a long type.

本発明の接続部材を製造する方法としては、例えば、相互に隔てられて配置され、アクリルポリマーで連結された導電粒子を、絶縁性接着剤に埋め込む方法が挙げられる。
導電粒子をアクリルポリマーで連結する方法としては、例えば、アクリルポリマー上に、導電粒子を単層に充填し、アクリルポリマーの凝集を起こさせながら延伸し、凝集力と延伸力のバランスを取ることによって、導電粒子の連結構造を作ることができる。具体的には、例えば、フィルム状のアクリルポリマーや、延伸可能な基材上に好ましくは導電粒子径の30%〜200%の厚みで塗布されたアクリルポリマーの表面または内部に導電粒子を単層として充填する。単層として形成する方法としては、例えば、アクリルポリマー表面が粘着性を有する条件で、その表面を覆う以上に導電粒子を配置し、その後アクリルポリマー層に到達していない導電粒子をエアーブロー等により排除することにより得ることができる。必要に応じて、単層に配置した導電粒子をアクリルポリマー内に埋め込むことができる。
As a method for producing the connection member of the present invention, for example, a method of embedding conductive particles arranged at a distance from each other and connected by an acrylic polymer in an insulating adhesive can be mentioned.
As a method of connecting the conductive particles with an acrylic polymer, for example, the conductive particles are filled in a single layer on the acrylic polymer and stretched while causing the acrylic polymer to coagulate, thereby balancing the cohesive force and the stretching force. The connection structure of conductive particles can be made. Specifically, for example, a single layer of conductive particles on the surface or inside of a film-like acrylic polymer or an acrylic polymer coated on a stretchable substrate, preferably with a thickness of 30% to 200% of the conductive particle diameter. As filling. As a method of forming as a single layer, for example, on the condition that the acrylic polymer surface is sticky, conductive particles are disposed more than covering the surface, and then the conductive particles that have not reached the acrylic polymer layer are removed by air blow or the like. It can be obtained by eliminating. If necessary, the conductive particles arranged in a single layer can be embedded in the acrylic polymer.

次に、導電粒子が充填されたアクリルポリマーをアクリルポリマーおよび必要に応じ用いた延伸可能な基材の軟化温度以上にして、所望の延伸倍率で延伸する。このとき、延伸温度、延伸速度および冷却速度を制御することで、相互に隔てられて配置された複数の導電粒子がアクリルポリマーで連結された構造をとることができる。
延伸は縦方向延伸と横方向延伸の両方が行われる、所謂二軸延伸法であり、例えば、クリップ等でフィルムの2辺または4辺を挟んで引っ張る方法や、2以上のロールで挟んでロールの回転速度を変えることで延伸する方法等が挙げられる。延伸は縦方向と横方向を同時に延伸する同時二軸延伸でも良いし、一方向を延伸した後、他方を延伸する逐次二軸延伸でも良い。延伸した後に、熱や光でアクリルポリマーや併用されたその他のポリマーの硬化反応を進行させることができる。
Next, the acrylic polymer filled with the conductive particles is set to a temperature equal to or higher than the softening temperature of the acrylic polymer and the stretchable base material used as necessary, and stretched at a desired stretch ratio. At this time, by controlling the stretching temperature, the stretching speed, and the cooling speed, it is possible to take a structure in which a plurality of conductive particles arranged separated from each other are connected by an acrylic polymer.
Stretching is a so-called biaxial stretching method in which both longitudinal stretching and lateral stretching are performed. For example, a method of pulling two or four sides of a film with a clip or the like, or a roll sandwiched between two or more rolls The method of extending | stretching by changing the rotational speed of is mentioned. The stretching may be simultaneous biaxial stretching in which the machine direction and the transverse direction are stretched simultaneously, or may be sequential biaxial stretching in which the other is stretched after stretching in one direction. After stretching, the curing reaction of the acrylic polymer or other polymer used in combination can be advanced by heat or light.

延伸可能な基材としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、PET、PEN等のポリエステル、ナイロン、塩化ビニル、ポリビニルアルコール等が例示される。
アクリルポリマーで連結された導電粒子を絶縁性接着剤中に埋め込む方法としては、剥離可能な基材上に形成された絶縁性接着剤上にアクリルポリマーで連結された導電粒子を重ね、熱ロールやラミネーターを用いて、絶縁性接着剤中に埋め込む方法が例示される。導電粒子は絶縁性接着剤中に完全に埋め込まれても良いし、導電粒子の一部が埋め込まれていても構わない。必要に応じて用いた延伸可能な基材は、必要に応じ剥離される。
本発明の接続部材は所望の幅にスリットしてから使用しても良い。
Examples of the base material that can be stretched include polyesters such as polyethylene, polypropylene, polystyrene, PET, and PEN, nylon, vinyl chloride, and polyvinyl alcohol.
As a method for embedding the conductive particles connected with the acrylic polymer in the insulating adhesive, the conductive particles connected with the acrylic polymer are stacked on the insulating adhesive formed on the peelable substrate, A method of embedding in an insulating adhesive using a laminator is exemplified. The conductive particles may be completely embedded in the insulating adhesive, or a part of the conductive particles may be embedded. The stretchable substrate used as necessary is peeled off as necessary.
The connecting member of the present invention may be used after being slit to a desired width.

本発明を実施例などを用いてさらに詳細に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。
[実施例1]
100μm無延伸ポリプロピレンフィルム上にブレードコーターを用いて酢酸エチルで樹脂分3質量%に希釈したアクリルポリマーを塗布、80℃で10分間乾燥し、粘着性を有するアクリルポリマーを厚さ3μmで形成した。ここで用いたアクリルポリマーは、アクリル酸メチル62質量部、アクリル酸−2−エチルヘキシル30.6質量部、アクリル酸−2−ヒドロキシエチル7質量部、アクリル酸0.4質量部を、酢酸エチル233質量部中で、アゾビスイソブチロニトリル0.2質量部を開始剤とし、窒素ガス気流中65℃で8時間重合して得られた重量平均分子量が95万のものである。尚、重量平均分子量はゲル浸透クロマトグラフ法(GPC)により測定した(以下同じ)。
The present invention will be described in more detail with reference to examples and the like, but the present invention is not limited to the examples.
[Example 1]
An acrylic polymer diluted with ethyl acetate to a resin content of 3% by mass with a blade coater was applied onto a 100 μm unstretched polypropylene film and dried at 80 ° C. for 10 minutes to form an adhesive acrylic polymer with a thickness of 3 μm. The acrylic polymer used here was 62 parts by mass of methyl acrylate, 30.6 parts by mass of 2-ethylhexyl acrylate, 7 parts by mass of 2-hydroxyethyl acrylate, and 0.4 parts by mass of acrylic acid. In a mass part, 0.2 weight part of azobisisobutyronitrile is used as an initiator, and the weight average molecular weight obtained by polymerizing in a nitrogen gas stream at 65 ° C. for 8 hours is 950,000. The weight average molecular weight was measured by gel permeation chromatography (GPC) (hereinafter the same).

このアクリルポリマー上に、直径4μmの導電粒子を充填した後、エアーブローによりアクリルポリマーに到達していない導電粒子を排除し、全面積に対する導電粒子の充填面積率で定義される充填率が81%の単層導電粒子層を形成した。ここで導電粒子は、ジビニルベンゼン系樹脂をコアとし、その表層に無電解メッキで0.07μmのニッケル層を形成し、更に電気メッキで0.04μmの金層を形成した、長軸に対する短軸の比が0.95、粒径の標準偏差が0.2μmのものを用いた。
次に、この導電粒子がアクリルポリマー層に保持されたポリプロピレンフィルムを、試験用二軸延伸装置を用いて、135℃で、縦横共に6%/秒の比率で1.5倍に延伸した後、延伸比率を2%/秒に落として、初期値の2.5倍まで延伸し、徐々に室温まで冷却し、アクリルポリマーで連結された導電粒子を得た。
After the conductive particles having a diameter of 4 μm are filled on the acrylic polymer, the conductive particles not reaching the acrylic polymer are eliminated by air blowing, and the filling rate defined by the filling area ratio of the conductive particles with respect to the total area is 81%. A single-layer conductive particle layer was formed. Here, the conductive particles have divinylbenzene resin as a core, a nickel layer of 0.07 μm is formed on the surface layer by electroless plating, and a gold layer of 0.04 μm is further formed by electroplating. The ratio was 0.95 and the standard deviation of particle diameter was 0.2 μm.
Next, after the polypropylene film in which the conductive particles are held in the acrylic polymer layer is stretched 1.5 times at 135 ° C. at a rate of 6% / second in both longitudinal and lateral directions using a test biaxial stretching apparatus, The drawing rate was lowered to 2% / second, the film was drawn to 2.5 times the initial value, and gradually cooled to room temperature to obtain conductive particles connected with an acrylic polymer.

次に、このアクリルポリマーで連結された導電粒子をフィルム状の絶縁性接着剤上に載せた後熱ロールを使って導電粒子を絶縁性接着剤に埋め込んだ。その後ポリプロピレンフィルムを剥離し、本発明の接続部材−1を得た。ここで用いた絶縁性接着剤は、フェノキシ樹脂(東都化成株式会社製、商品名:YP50)100質量部、ビスフェノールA型液状エポキシ樹脂(旭化成ケミカルズ株式会社製、商品名:AER2603)50質量部、マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物(旭化成ケミカルズ株式会社製、商品名:ノバキュアHX−3941HP)50質量部、3−グリシドキシプロピルトリメトキシシラン0.25質量部、酢酸エチル200質量部を混合して接着剤ワニスとし、この接着剤ワニスを離型処理した50μmのポリエチレンテレフタレート(PET)フィルム製セパレーター(本発明の剥離可能な基材に相当)上にブレードコーターを用いて塗布し、溶剤を乾燥除去して得た平均膜厚20μmのフィルム状の絶縁性接着剤である。   Next, the conductive particles connected with the acrylic polymer were placed on a film-like insulating adhesive, and then the conductive particles were embedded in the insulating adhesive using a heat roll. Thereafter, the polypropylene film was peeled off to obtain the connection member-1 of the present invention. The insulating adhesive used here is 100 parts by mass of phenoxy resin (manufactured by Toto Kasei Co., Ltd., trade name: YP50), 50 parts by mass of bisphenol A type liquid epoxy resin (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name: AER2603), Mixture of microcapsule type latent curing agent and liquid epoxy resin (Asahi Kasei Chemicals Corporation, trade name: Novacure HX-3941HP) 50 parts by mass, 0.25 part by mass of 3-glycidoxypropyltrimethoxysilane, ethyl acetate 200 A mass coater is used to form an adhesive varnish, and this adhesive varnish is applied onto a 50 μm polyethylene terephthalate (PET) film separator (corresponding to the peelable substrate of the present invention) using a blade coater. Insulating adhesion in the form of a film having an average film thickness of 20 μm obtained by removing the solvent by drying It is an agent.

得られた接続部材−1をマイクロスコープ(株式会社キーエンス製、商品名:VHX−100、以下同じ)で観察した結果、導電粒子は相互に隔てられて配置し、個々の導電粒子は平均5.1個の他の導電粒子とそれぞれ独立にアクリルポリマーで連結された構造を有し、アクリルポリマーで連結された導電粒子はフィルム状の絶縁性接着剤の表面層に完全に埋め込まれており、導電粒子の上には絶縁性接着剤層が約0.1μm存在していた。またマイクロスコープで得られた画像から、画像処理ソフト(旭化成株式会社製、商品名:A像くん、以下同じ)を用いて、導電粒子の近接6粒子との中心間距離の平均値およびその変動係数を求めた結果、平均値が10.3μm、変動係数が0.16であった。   As a result of observing the obtained connecting member-1 with a microscope (manufactured by Keyence Corporation, trade name: VHX-100, the same applies hereinafter), the conductive particles are separated from each other, and each conductive particle has an average of 5. Each of the conductive particles connected with the acrylic polymer is independently embedded with one other conductive particle, and the conductive particle connected with the acrylic polymer is completely embedded in the surface layer of the film-like insulating adhesive. An insulating adhesive layer was present at about 0.1 μm on the particles. In addition, from an image obtained with a microscope, using an image processing software (trade name: A image-kun, manufactured by Asahi Kasei Co., Ltd., the same shall apply hereinafter), the average value of the center-to-center distance of adjacent conductive particles and the variation thereof. As a result of obtaining the coefficient, the average value was 10.3 μm and the variation coefficient was 0.16.

次に、25μm×100μmの金バンプがピッチ40μmで並んだ1.6mm×15mmのベアチップとベアチップに対応した接続ピッチを有するITO(Indium Tin Oxide)ガラス基板のセットを2組準備し、接続部材の接続信頼性とリペア性の評価を実施した。まず、ITOガラス基板の接続位置に接続部材を乗せて、80℃、0.5MPa、2秒間の条件で熱圧着し、セパレーターを剥がした後、ベアチップを位置合わせして、200℃、3MPa、20秒間加熱加圧し、ベアチップとITOガラス基板を接続した。接続後に金バンプとITO電極間に挟まれている導電粒子、即ち、接続に有効に働いた導電粒子の数を10バンプ分カウントした結果、平均が7.7個、標準偏差1.03個であり、平均−3×標準偏差で定義される最小接続間粒子数は4.6個であった。このことから安定した電気的接続が可能であることが判る。   Next, two sets of 1.6 mm × 15 mm bare chips in which gold bumps of 25 μm × 100 μm are arranged at a pitch of 40 μm and ITO (Indium Tin Oxide) glass substrates having a connection pitch corresponding to the bare chips are prepared. Connection reliability and repairability were evaluated. First, a connecting member is placed on the connection position of the ITO glass substrate, thermocompression bonded under the conditions of 80 ° C., 0.5 MPa, 2 seconds, the separator is peeled off, the bare chip is aligned, and 200 ° C., 3 MPa, 20 It was heated and pressurized for 2 seconds to connect the bare chip and the ITO glass substrate. As a result of counting the number of conductive particles sandwiched between gold bumps and ITO electrodes after connection, that is, the number of conductive particles that worked effectively for connection for 10 bumps, the average was 7.7 and the standard deviation was 1.03. Yes, the minimum number of inter-connected particles defined by mean −3 × standard deviation was 4.6. This shows that stable electrical connection is possible.

信頼性試験としては、ベアチップとITOガラス基板よりなる300対のデイジーチェーン回路による導通抵抗測定と80対の櫛型電極による絶縁抵抗測定を行った。その結果、配線抵抗を含む導通抵抗は9.5kΩであり、300対の全ての電極が電気接続されていた。一方、絶縁抵抗は109 Ω以上であり、80対の櫛型電極間でショートの発生がなかった。更に、温度85℃、湿度85%の環境で1000時間置いた後、絶縁抵抗と導通抵抗を測定した結果、導通抵抗9.6kΩ、絶縁抵抗109 Ω以上であり、長期信頼性も高く、本発明の連結構造体がファインピッチ接続において有用であった。
次に、リペア性を評価した。接続されているITOガラス基板とベアチップの1組みをアセトンに30分間浸漬した後、ベアチップをITOガラス基板から剥離した。ITOガラス基板に残存する接続部材を、アセトンを染み込ませた綿棒で拭き取るのに要した時間をリペア性の指標とした所、リペア性は25秒であり、優れたリペア性を示した。
As the reliability test, 300 pairs of daisy chain circuits composed of a bare chip and an ITO glass substrate were used to measure conduction resistance and 80 pairs of comb electrodes were used to measure insulation resistance. As a result, the conduction resistance including the wiring resistance was 9.5 kΩ, and all 300 pairs of electrodes were electrically connected. On the other hand, the insulation resistance was 10 9 Ω or more, and no short circuit occurred between 80 pairs of comb-shaped electrodes. Furthermore, after 1000 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, the insulation resistance and conduction resistance were measured. As a result, the conduction resistance was 9.6 kΩ and the insulation resistance was 10 9 Ω or more. The linked structure of the invention was useful in fine pitch connections.
Next, the repair property was evaluated. One set of the ITO glass substrate and the bare chip connected was immersed in acetone for 30 minutes, and then the bare chip was peeled from the ITO glass substrate. When the time required for wiping the connection member remaining on the ITO glass substrate with a cotton swab soaked with acetone was used as an index of repairability, the repairability was 25 seconds, indicating excellent repairability.

[実施例2]
200μm無延伸ポリプロピレンフィルム上にブレードコーターを用いて酢酸エチルで樹脂分3質量%に希釈したアクリルポリマーを塗布、80℃で10分間乾燥し、粘着性を有するアクリルポリマーを厚さ2μmで形成した。ここで用いたアクリルポリマーは、アクリル酸メチル67.1質量部、アクリル酸−2−エチルヘキシル10.9質量部、アクリル酸−2−ヒドロキシエチル3.5質量部、アクリル酸3.5質量部、アクリロニトリル15質量部を、酢酸エチル233質量部中で、アゾビスイソブチロニトリル0.25質量部を開始剤とし、窒素ガス気流中65℃で8時間重合して得られた重量平均分子量が60万のものである。
このアクリルポリマー上に、直径2.5μmの導電粒子を充填した後、エアーブローによりアクリルポリマーに到達していない導電粒子を排除し、全面積に対する導電粒子の充填面積率で定義される充填率が59%の単層導電粒子層が形成された。ここで導電粒子はベンゾグアナミン系樹脂をコアとし、その表層に無電解メッキで0.12μmのニッケル層を形成し、更に電気メッキで0.02μmの金層を形成した、長軸に対する短軸の比が0.95、粒径の標準偏差が0.2μmのものを用いた。
[Example 2]
An acrylic polymer diluted with ethyl acetate to a resin content of 3% by mass using a blade coater was applied onto a 200 μm unstretched polypropylene film and dried at 80 ° C. for 10 minutes to form an adhesive acrylic polymer with a thickness of 2 μm. The acrylic polymer used here was methyl acrylate 67.1 parts by mass, acrylic acid-2-ethylhexyl 10.9 parts by mass, acrylic acid-2-hydroxyethyl 3.5 parts by mass, acrylic acid 3.5 parts by mass, The weight average molecular weight obtained by polymerizing 15 parts by mass of acrylonitrile in 233 parts by mass of ethyl acetate and 0.25 parts by mass of azobisisobutyronitrile as an initiator at 65 ° C. for 8 hours in a nitrogen gas stream. It is a thing.
After filling the acrylic polymer with conductive particles having a diameter of 2.5 μm, the conductive particles not reaching the acrylic polymer are eliminated by air blowing, and the filling rate defined by the filling area ratio of the conductive particles with respect to the total area is A 59% single-layer conductive particle layer was formed. Here, the conductive particles have a benzoguanamine-based resin as a core, a nickel layer of 0.12 μm is formed on the surface layer by electroless plating, and a gold layer of 0.02 μm is further formed by electroplating. Of 0.95 and a standard deviation of particle diameter of 0.2 μm were used.

次に、この導電粒子がアクリルポリマー層に保持されたポリプロピレンフィルムを、試験用二軸延伸装置を用いて、145℃で、縦横共に6%/秒の比率で1.5倍に延伸した後、延伸比率を2%/秒に落として、初期値の3倍まで延伸し、徐々に室温まで冷却し、アクリルポリマーで連結された導電粒子を得た。
次に、このアクリルポリマーで連結された導電粒子を実施例1で用いた絶縁性接着剤上に載せた後、熱ロールを使って導電粒子を絶縁性接着剤に埋め込んだ。その後ポリプロピレンフィルムを剥離し、本発明の接続部材−2を得た。
得られた接続部材−2をマイクロスコープで観察した結果、導電粒子は相互に隔てられて配置し、個々の導電粒子は平均3.9個の他の導電粒子とそれぞれ独立にアクリルポリマーで連結された構造を有し、アクリルポリマーで連結された導電粒子はフィルム状の絶縁性接着剤の表面層に完全に埋め込まれており、導電粒子の上には絶縁性接着剤層が約0.1μm存在していた。またマイクロスコープで得られた画像から、画像処理ソフトを用いて、導電粒子の近接6粒子との中心間距離の平均値およびその変動係数を求めた結果、平均値が8.3μm、変動係数が0.48であった。
Next, after the polypropylene film in which the conductive particles are held in the acrylic polymer layer is stretched 1.5 times at 145 ° C. at a rate of 6% / second in both longitudinal and lateral directions using a test biaxial stretching apparatus, The drawing rate was lowered to 2% / second, the film was drawn up to 3 times the initial value, and gradually cooled to room temperature to obtain conductive particles connected with an acrylic polymer.
Next, the conductive particles connected with the acrylic polymer were placed on the insulating adhesive used in Example 1, and then the conductive particles were embedded in the insulating adhesive using a hot roll. Thereafter, the polypropylene film was peeled off to obtain the connection member-2 of the present invention.
As a result of observing the obtained connecting member-2 with a microscope, the conductive particles are arranged to be separated from each other, and each conductive particle is independently connected to an average of 3.9 other conductive particles by an acrylic polymer. The conductive particles connected with acrylic polymer are completely embedded in the surface layer of the film-like insulating adhesive, and there is an insulating adhesive layer of about 0.1 μm on the conductive particles. Was. Moreover, as a result of obtaining the average value of the center-to-center distance of the adjacent conductive particles and the coefficient of variation thereof from the image obtained by the microscope using the image processing software, the average value is 8.3 μm and the coefficient of variation is 0.48.

得られた接続部材−2を用いて、実施例1と同様にして、ベアチップとITOガラス基板を接続し、金バンプとITO電極間に挟まれた導電粒子をカウントした結果、平均が8.9個、標準偏差2.1個で、最小接続間粒子数は2.6個であり、安定した電気的接続が可能であった。更に、実施例1と同様にして、接続信頼性とリペア性を評価した結果、配線抵抗を含む導通抵抗は9.8kΩであり、300対の全ての電極が電気接続されていた。一方、絶縁抵抗は109 Ω以上であり、80対の櫛型電極間でショートの発生がなかった。更に、温度85℃、湿度85%の環境で1000時間置いた後、絶縁抵抗と導通抵抗を測定した結果、導通抵抗9.9kΩ、絶縁抵抗109 Ω以上であり、長期信頼性も高く、本発明の連結構造体がファインピッチ接続において有用であった。更に、リペア性は18秒であり、優れたリペア性を示した。 Using the obtained connection member-2, the bare chip and the ITO glass substrate were connected in the same manner as in Example 1, and the number of conductive particles sandwiched between the gold bump and the ITO electrode was counted. As a result, the average was 8.9. With a standard deviation of 2.1 and a minimum inter-connection particle number of 2.6, stable electrical connection was possible. Furthermore, as a result of evaluating connection reliability and repairability in the same manner as in Example 1, the conduction resistance including the wiring resistance was 9.8 kΩ, and all 300 pairs of electrodes were electrically connected. On the other hand, the insulation resistance was 10 9 Ω or more, and no short circuit occurred between 80 pairs of comb-shaped electrodes. Furthermore, after 1000 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, the insulation resistance and conduction resistance were measured. As a result, the conduction resistance was 9.9 kΩ and the insulation resistance was 10 9 Ω or more. The linked structure of the invention was useful in fine pitch connections. Further, the repairability was 18 seconds, indicating excellent repairability.

[比較例1]
実施例1で用いた導電粒子を、帯電させた後気流と共に飛散させ、実施例1で用いたセパレーター付のフィルム状絶縁性接着剤の表面に付着させ、その上に、50μmPET製のカバーフィルムを被せてロールで導電粒子を絶縁性接着剤中に埋め込んだ後、カバーフィルムを剥離し、接続部材−3を得た。この接続部材をマイクロスコープで観察し、得られた画像から、画像処理ソフトを用いて、導電粒子の近接6粒子との中心間距離の平均値およびその変動係数を求めた結果、平均値が9.7μm、変動係数が0.61であった。
次に該接続部材−3を用いて実施例1と同様にしてベアチップとITOガラス基板を接続し、接続後の金バンプとITO電極間に挟まれている導電粒子をカウントした結果、平均が5.7個、標準偏差3.1個であり、最小接続間粒子数は−3.6個であった。このことから確率的に導電粒子が存在しない接続箇所が発生し、安定した接続が期待できないことが判る。
更に、実施例1と同様にして、接続信頼性とリペア性を評価した結果、配線抵抗を含む導通抵抗、絶縁抵抗ともに109 Ω以上であり、80対の櫛型電極間でショートの発生がなかったものの、300対の何れかで電極がオープンと成っており、導電粒子がアクリルポリマーで連結した構造をしていない接続部材−3ではファインピッチ接続は不向きであった。
更に、リペア性を評価したところ120秒以内で接続部材は剥離できず、リペア性に劣っていた。
[Comparative Example 1]
The electrically conductive particles used in Example 1 were charged and then scattered with an air current, and adhered to the surface of the film-like insulating adhesive with a separator used in Example 1, and a cover film made of 50 μm PET was further formed thereon. After covering and embedding the conductive particles in the insulating adhesive with a roll, the cover film was peeled off to obtain connection member-3. The connecting member is observed with a microscope, and the average value of the center-to-center distance between the adjacent conductive particles and the coefficient of variation thereof is obtained from the obtained image using image processing software. 0.7 μm and coefficient of variation was 0.61.
Next, the connection member-3 was used to connect the bare chip and the ITO glass substrate in the same manner as in Example 1, and as a result of counting the conductive particles sandwiched between the gold bump and the ITO electrode after connection, the average was 5 0.7, standard deviation 3.1, and the minimum number of particles between connections was -3.6. From this, it can be understood that a connection portion where the conductive particles do not exist stochastically occur and stable connection cannot be expected.
Further, as a result of evaluating the connection reliability and the repairability in the same manner as in Example 1, both the conduction resistance including the wiring resistance and the insulation resistance are 10 9 Ω or more, and a short circuit occurs between 80 pairs of comb-shaped electrodes. Although there was no electrode, the electrode was open in any of the 300 pairs, and the fine pitch connection was unsuitable in the connection member-3 that did not have a structure in which the conductive particles were connected by an acrylic polymer.
Furthermore, when the repair property was evaluated, the connecting member could not be peeled off within 120 seconds, and the repair property was poor.

本発明の接続部材は、リペア性に優れ、微細パターンの電気的接続において、微小面積の電極の接続信頼性に優れると共に、微細な配線間の絶縁性が高く、幅広い電極パターンの接続を可能にし、微細パターンの電気的接続用途において好適に利用できる。   The connecting member of the present invention is excellent in repairability, and in the electrical connection of a fine pattern, it is excellent in the connection reliability of electrodes in a small area and has high insulation between fine wirings, enabling a wide range of electrode patterns to be connected. It can be suitably used in electrical connection applications for fine patterns.

Claims (1)

剥離可能な基材上に形成された、絶縁性接着剤と該絶縁性接着剤中で相互に隔てられて配置された複数の導電粒子より構成される接続部材であって、個々の導電粒子が平均2個以上の他の導電粒子とそれぞれ独立にアクリルポリマーで連結されていることを特徴とする接続部材。   A connection member comprising an insulating adhesive and a plurality of conductive particles arranged on a peelable substrate and spaced from each other in the insulating adhesive, each of the conductive particles being A connecting member characterized in that it is independently connected with an average of two or more other conductive particles by an acrylic polymer.
JP2005218468A 2005-07-28 2005-07-28 Connecting member Active JP4657047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218468A JP4657047B2 (en) 2005-07-28 2005-07-28 Connecting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218468A JP4657047B2 (en) 2005-07-28 2005-07-28 Connecting member

Publications (2)

Publication Number Publication Date
JP2007035490A true JP2007035490A (en) 2007-02-08
JP4657047B2 JP4657047B2 (en) 2011-03-23

Family

ID=37794487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218468A Active JP4657047B2 (en) 2005-07-28 2005-07-28 Connecting member

Country Status (1)

Country Link
JP (1) JP4657047B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141712A (en) * 2005-11-21 2007-06-07 Asahi Kasei Electronics Co Ltd Coupling structure
JP2007141711A (en) * 2005-11-21 2007-06-07 Asahi Kasei Electronics Co Ltd Coupling structure of conductive particle
JP2013045565A (en) * 2011-08-23 2013-03-04 Dexerials Corp Anisotropic conductive film, method for producing anisotropic conductive film, connection method, and assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237372A (en) * 1987-03-25 1988-10-03 日立化成工業株式会社 Connection member for circuit
JPH04237903A (en) * 1991-01-18 1992-08-26 Shin Etsu Polymer Co Ltd Anisotropic electrically conductive adhesive
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
JP2001084831A (en) * 1999-09-16 2001-03-30 Daikin Ind Ltd Conductive fluorine-containing material
WO2002028574A1 (en) * 2000-10-02 2002-04-11 Asahi Kasei Kabushiki Kaisha Functional alloy particles
JP2004119063A (en) * 2002-09-24 2004-04-15 Sumitomo Electric Ind Ltd Anisotropic conductive membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237372A (en) * 1987-03-25 1988-10-03 日立化成工業株式会社 Connection member for circuit
JPH04237903A (en) * 1991-01-18 1992-08-26 Shin Etsu Polymer Co Ltd Anisotropic electrically conductive adhesive
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
JP2001084831A (en) * 1999-09-16 2001-03-30 Daikin Ind Ltd Conductive fluorine-containing material
WO2002028574A1 (en) * 2000-10-02 2002-04-11 Asahi Kasei Kabushiki Kaisha Functional alloy particles
JP2004119063A (en) * 2002-09-24 2004-04-15 Sumitomo Electric Ind Ltd Anisotropic conductive membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141712A (en) * 2005-11-21 2007-06-07 Asahi Kasei Electronics Co Ltd Coupling structure
JP2007141711A (en) * 2005-11-21 2007-06-07 Asahi Kasei Electronics Co Ltd Coupling structure of conductive particle
JP4684086B2 (en) * 2005-11-21 2011-05-18 旭化成イーマテリアルズ株式会社 Conductive particle connection structure
JP4684087B2 (en) * 2005-11-21 2011-05-18 旭化成イーマテリアルズ株式会社 Connected structure
JP2013045565A (en) * 2011-08-23 2013-03-04 Dexerials Corp Anisotropic conductive film, method for producing anisotropic conductive film, connection method, and assembly
US9924599B2 (en) 2011-08-23 2018-03-20 Dexerials Corporation Anisotropic conductive film, anisotropic conductive film production method, connecting method, and bonded structure

Also Published As

Publication number Publication date
JP4657047B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP5825373B2 (en) Conductive particle arrangement sheet and method for producing the same
JP4789738B2 (en) Anisotropic conductive film
JP2007217503A (en) Anisotropically electroconductive adhesive film
JP5147048B2 (en) Anisotropic conductive film
KR20070106039A (en) Curing resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, conductive connection paste, conductive connection sheet, and electronic component joined body
JP5099987B2 (en) Circuit connection method and connection structure
JP5581605B2 (en) Method for producing anisotropic conductive adhesive film
JP2007009176A (en) Anisotropically electroconductive adhesive film
JP5147049B2 (en) Anisotropic conductive film
JP4657047B2 (en) Connecting member
JP4684087B2 (en) Connected structure
JP2006233202A (en) Anisotropically electroconductive adhesive film for circuit connection
JP4936775B2 (en) Conductive particle connection structure
JP4703306B2 (en) Conductive particle connection structure
JP2006233201A (en) Anisotropically electroconductive adhesive film
JP4953685B2 (en) Connecting material
JP2006233200A (en) Anisotropically electroconductive adhesive film
JP5046581B2 (en) Adhesive for circuit connection
JP5202662B2 (en) Circuit connection film
KR20110059274A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
JP4684086B2 (en) Conductive particle connection structure
JP2012097231A (en) Anisotropically electroconductive adhesive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250