JP5147049B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film Download PDF

Info

Publication number
JP5147049B2
JP5147049B2 JP2007192856A JP2007192856A JP5147049B2 JP 5147049 B2 JP5147049 B2 JP 5147049B2 JP 2007192856 A JP2007192856 A JP 2007192856A JP 2007192856 A JP2007192856 A JP 2007192856A JP 5147049 B2 JP5147049 B2 JP 5147049B2
Authority
JP
Japan
Prior art keywords
conductive particles
film
less
conductive
insulating adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007192856A
Other languages
Japanese (ja)
Other versions
JP2009029862A (en
Inventor
健敏 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2007192856A priority Critical patent/JP5147049B2/en
Publication of JP2009029862A publication Critical patent/JP2009029862A/en
Application granted granted Critical
Publication of JP5147049B2 publication Critical patent/JP5147049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、微細パターンの電気的接続において、微小面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)が起きにくく、接続時の品質管理が容易な異方性導電フィルムに関する。   The present invention is excellent in the electrical connection of a fine pattern in the electrical connection of a fine pattern, and is resistant to dielectric breakdown (short) between fine wirings, and is easy to control the quality during connection. The present invention relates to a conductive film.

異方性導電フィルムは、絶縁性接着フィルム中に導電粒子を分散させたフィルムであり、液晶ディスプレイと半導体チップやTCPとの接続又はFPCとTCPとの接続、FPCとプリント配線板との接続を簡便に行うために使用される接続部材ある。例えば、ノート型パソコンや携帯電話の液晶ディスプレイと制御ICとの接続用として広範に用いられ、最近では、半導体チップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装にも用いられている(特許文献1、2及び3)。   An anisotropic conductive film is a film in which conductive particles are dispersed in an insulating adhesive film. Connection between a liquid crystal display and a semiconductor chip or TCP, connection between an FPC and TCP, connection between an FPC and a printed wiring board. There is a connecting member used for the sake of simplicity. For example, it is widely used for connecting a liquid crystal display of a notebook personal computer or a cellular phone and a control IC, and recently, it is also used for flip chip mounting in which a semiconductor chip is directly mounted on a printed circuit board or a flexible wiring board ( Patent Documents 1, 2, and 3).

この分野では近年、接続される配線パターンや電極パターンの寸法が益々微細化されている。微細化された配線や電極の幅は10μmレベルにまで微細化される場合も多くなってきている。一方で、これまで用いられてきた導電粒子の平均粒径は、配線や電極の線幅と同レベルの数μmから10μmレベルの粒子であった。微細化された電極パターンを接続する際に、導電粒子がランダムに分散配置されている異方導電性フィルムを用いると、接続すべき電極パターンが導電粒子の存在しない位置に配置されてしまい、電気的に接続されない場合が、確率論として避けられない。これは、用いる異方導電性フィルム自体が、導電粒子の分布に偏差をもっているためである。   In recent years, the dimensions of connected wiring patterns and electrode patterns have been increasingly miniaturized in this field. In many cases, the width of the miniaturized wiring and electrodes is miniaturized to a level of 10 μm. On the other hand, the average particle diameter of the conductive particles that have been used so far was particles of several μm to 10 μm level, which is the same level as the line width of the wiring or electrode. When connecting the miniaturized electrode pattern, if an anisotropic conductive film in which conductive particles are randomly distributed is used, the electrode pattern to be connected is arranged at a position where no conductive particles exist, It is inevitable as a probability theory that they are not connected to each other. This is because the anisotropic conductive film itself used has a deviation in the distribution of the conductive particles.

この問題点を解決するために、例えば、帯電させた導電粒子を絶縁性接着フィルムの表面に散布して、表面に付着した導電粒子を絶縁性接着フィルムの表層中に埋め込む方法(特許文献4)や、所定配置された吸引孔を有する導電粒子吸着治具を用いて、導電粒子を配列する方法(特許文献5)、導電粒子を付着したフィルムを延伸することで導電粒子を配列する方法(特許文献6)によって、導電粒子を単層で整列配置した異方性導電フィルムが検討されている。
しかしながら、導電粒子を単層で整列配置した異方導電性フィルムを用いて、微細化された配線や電極の接続をする場合であっても、接続品質の管理は容易ではなかった。つまり、接続を確認するためには、例えば、高倍率の光学顕微鏡を使って、数100にもおよぶ電極上の導電粒子の数を数えるといった非常に手間のかかる方法を取る必要があった。
In order to solve this problem, for example, a method of dispersing charged conductive particles on the surface of the insulating adhesive film and embedding the conductive particles attached to the surface in the surface layer of the insulating adhesive film (Patent Document 4). Or a method of arranging conductive particles using a conductive particle adsorption jig having suction holes arranged in a predetermined manner (Patent Document 5), a method of arranging conductive particles by stretching a film to which conductive particles are attached (patent 5) Reference 6) discusses an anisotropic conductive film in which conductive particles are arranged in a single layer.
However, even when the miniaturized wiring and electrodes are connected using the anisotropic conductive film in which the conductive particles are arranged in a single layer, it is not easy to manage the connection quality. In other words, in order to confirm the connection, it is necessary to take a very time-consuming method, for example, counting the number of conductive particles on the electrode of several hundreds using a high-magnification optical microscope.

特開平03−107888号公報Japanese Patent Laid-Open No. 03-107888 特開平04−366630号公報Japanese Patent Laid-Open No. 04-366630 特開昭61−195179号公報JP-A-61-195179 特開2000−151084号公報JP 2000-151084 A 特開2002−332461号公報JP 2002-332461 A 特開2007−9176号公報JP 2007-9176 A

本発明は、微細パターンの電気的接続において、微小面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)が起きにくく、接続時の品質管理が容易な異方性導電フィルムの提供を目的とする。   The present invention is excellent in the electrical connection of a fine pattern in the electrical connection of a fine pattern, and is resistant to dielectric breakdown (short) between fine wirings, and is easy to control the quality during connection. An object is to provide a conductive film.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、導電粒子の中心間距離が特定の変動係数を有し、更に、大多数の導電粒子は単独で存在するが、特定個数の導電粒子の集合体を特定頻度で有する様に、導電粒子を絶縁性接着フィルムの表面層に単層として整列配置する事で、上記目的に適合しうることを見出し、本発明をなすに至った。
本発明のように、導電粒子の集合体の大きさと頻度を制御することで、導電粒子が単層で配置した異方性導電フィルムにおいて、接続信頼性と絶縁信頼性を高度に維持したまま、接続時の導電粒子の移動具合を簡便に確認できたことは、当業者にとって容易に予想することができない知見であった。
即ち、本発明は、下記の通りである。
As a result of intensive studies to solve the above problems, the present inventor has a specific coefficient of variation in the distance between the centers of the conductive particles, and the majority of the conductive particles exist alone, but a specific number of conductive particles exist. It has been found that the conductive particles are arranged as a single layer on the surface layer of the insulating adhesive film so as to have an aggregate of conductive particles at a specific frequency, so that the above object can be met, and the present invention has been made. .
As in the present invention, by controlling the size and frequency of the aggregate of conductive particles, the anisotropic conductive film in which the conductive particles are arranged in a single layer, while maintaining high connection reliability and insulation reliability, The fact that the state of movement of the conductive particles at the time of connection could be easily confirmed was a finding that could not be easily predicted by those skilled in the art.
That is, the present invention is as follows.

(1)平均粒径が0.5μm以上6μm以下の導電粒子がその平均粒径よりも大きい厚さの絶縁性接着フィルムの表面層に、単層として配置された異方性導電フィルムにおいて、導電粒子の中心間距離の変動係数が0.5以下であって、導電粒子の90%以上が独立に存在し、4個以上10個以下の導電粒子の集合体を1cm当たり5個以上100個以下の頻度で有し、前記導電粒子の中心間距離の平均が2μm以上15μm以下であり、かつ、15個以上の導電粒子の集合体の頻度が1cm 当たり1個未満である異方性導電フィルム。
(4)(1)に記載の異方性導電フィルムを用いて、相互に対向する端子を有する回路基板と回路部材を接続して得られる接続構造体。
(1) In an anisotropic conductive film in which conductive particles having an average particle size of 0.5 μm or more and 6 μm or less are arranged as a single layer on the surface layer of an insulating adhesive film having a thickness larger than the average particle size, The variation coefficient of the center-to-center distance of the particles is 0.5 or less, 90% or more of the conductive particles exist independently, and an aggregate of 4 to 10 conductive particles is 5 to 100 per 1 cm 2. possess the following frequency, the average distance between the centers of the conductive particles is at 2μm or more 15μm or less, Ru frequency is less than one der per 1 cm 2 of the collection of 15 or more conductive particles anisotropically Conductive film.
(4) A connection structure obtained by connecting a circuit board and a circuit member having terminals facing each other using the anisotropic conductive film according to (1) .

本発明の異方性導電フィルムは、微細面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)を起こしにくく、微細ピッチの接続信頼性に優れると共に、接続時の導電粒子の移動具合を簡便に確認でき、接続時の品質管理の簡便性に優れる効果を有する。   The anisotropic conductive film of the present invention is excellent in electrical connectivity of electrodes having a small area, is less likely to cause dielectric breakdown (short) between fine wirings, is excellent in connection reliability of a fine pitch, and is connected at the time of connection. The movement of the conductive particles can be easily confirmed, and the effect of excellent quality control at the time of connection is obtained.

本発明について、以下具体的に説明する。
本発明の異方性導電フィルムは、絶縁性接着フィルムと導電粒子を含んでなる。
導電粒子としては、例えば、金属粒子又は高分子核材に金属薄膜を被覆した粒子を用いることができる。
金属粒子としては、金属又は合金からなる均一組成を有する粒子が用いられる。金属粒子としては、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム、及び、2種以上のこれらの金属が層状又は傾斜状に組み合わされている粒子が例示される。
The present invention will be specifically described below.
The anisotropic conductive film of the present invention comprises an insulating adhesive film and conductive particles.
As the conductive particles, for example, metal particles or particles obtained by coating a polymer thin film with a metal thin film can be used.
As the metal particles, particles having a uniform composition made of a metal or an alloy are used. Examples of the metal particles include gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, and particles in which two or more of these metals are combined in a layered or inclined manner. The

高分子核材に金属薄膜を被覆した粒子としては、エポキシ樹脂、スチレン樹脂、シリコーン樹脂、アクリル樹脂、ポリオレフィン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、ジビニルベンゼン架橋体、ニトリルゴム(NBR)、及び、スチレン−ブタジエンゴム(SBR)からなる群から選ばれる少なくとも1種のポリマーからなる高分子核材に、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、及び、パラジウムからなる群から選ばれる1種又は2種以上を組み合わせて、金属薄膜を被覆した粒子が例示される。   Particles with a polymer core coated with a metal thin film include epoxy resin, styrene resin, silicone resin, acrylic resin, polyolefin resin, melamine resin, benzoguanamine resin, urethane resin, phenol resin, polyester resin, divinylbenzene crosslinked product, nitrile Gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder on polymer core material made of at least one polymer selected from the group consisting of rubber (NBR) and styrene-butadiene rubber (SBR) Examples thereof include particles coated with a metal thin film by combining one or more selected from the group consisting of nickel, indium and palladium.

金属薄膜の厚さは0.005μm以上1μm以下の範囲が、接続安定性と粒子の凝集性の観点から好ましい。金属薄膜は均一に被覆されていることが接続安定性上好ましい。高分子核材に金属薄膜を被覆する方法としては、例えばメッキ法が挙げられる。
中でも、高分子核材に金属薄膜を被覆した粒子が好ましく、高分子核材を金で被覆した粒子が更に好ましく、高分子核材をニッケルで被覆した後に更に金で被覆した粒子が一層好ましい。
高分子核材としては、ベンゾグアナミン樹脂とジビニルベンゼン架橋体、アクリル樹脂が好ましい。
The thickness of the metal thin film is preferably in the range of 0.005 μm to 1 μm from the viewpoint of connection stability and particle cohesion. It is preferable in terms of connection stability that the metal thin film is uniformly coated. An example of a method for coating the polymer core material with a metal thin film is a plating method.
Among these, particles in which a polymer thin film is coated with a metal thin film are preferable, particles in which the polymer core is coated with gold are more preferable, and particles in which the polymer core is coated with nickel and then coated with gold are more preferable.
As the polymer core material, a benzoguanamine resin, a crosslinked divinylbenzene, and an acrylic resin are preferable.

導電粒子の平均粒径は、0.5μm以上6.0μm以下の範囲が、厚み方向の導電性と面方向の絶縁性(以下しばしば異方導電性と称す)と導電粒子の凝集性の観点から好ましい。導電粒子の平均粒径は、より好ましくは1.0μm以上5.5μm以下、更に好ましくは1.5μm以上5.0μm以下、更に好ましくは2.0μm以上4.5μm以下である。導電粒子の粒子径の標準偏差は小さいほど好ましく、平均粒径の50%以下が好ましい。更に好ましくは20%以下、一層好ましくは、10%以下、更に一層好ましくは5%以下である。
本発明における導電粒子の平均粒径はコールターカウンターを用いて測定した値である。
The average particle size of the conductive particles is in the range of 0.5 μm or more and 6.0 μm or less from the viewpoint of thickness direction conductivity, planar direction insulation (hereinafter often referred to as anisotropic conductivity) and conductive particle agglomeration. preferable. The average particle diameter of the conductive particles is more preferably 1.0 μm or more and 5.5 μm or less, further preferably 1.5 μm or more and 5.0 μm or less, and further preferably 2.0 μm or more and 4.5 μm or less. The standard deviation of the particle diameter of the conductive particles is preferably as small as possible, and is preferably 50% or less of the average particle diameter. More preferably, it is 20% or less, More preferably, it is 10% or less, More preferably, it is 5% or less.
The average particle diameter of the conductive particles in the present invention is a value measured using a Coulter counter.

導電粒子は、絶縁性物質で被覆されたものを用いる事もできる。
絶縁性接着フィルムは、硬化性樹脂、及び熱可塑性樹脂からなる群から選ばれた1種類以上の絶縁樹脂を含有してなる。
硬化性樹脂は、熱や光や電子線のエネルギーによって硬化反応を起こす樹脂であり、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、メラミン硬化性樹脂、イソシアネート硬化性樹脂、ビニル樹脂やアクリレート樹脂等の重合性不飽和基含有樹脂が挙げられる。
As the conductive particles, those coated with an insulating material can be used.
The insulating adhesive film contains at least one insulating resin selected from the group consisting of a curable resin and a thermoplastic resin.
The curable resin is a resin that undergoes a curing reaction by heat, light, or electron beam energy, such as an epoxy resin, a phenol resin, a silicone resin, a melamine curable resin, an isocyanate curable resin, a vinyl resin, or an acrylate resin. Examples thereof include polymerizable unsaturated group-containing resins.

熱可塑性樹脂としては、例えば、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、SBR、SBS、NBR、ポリエーテルスルホン樹脂、ポリエーテルテレフタレート樹脂、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリエーテルオキシド樹脂、ポリアセタール樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリイソブチレン樹脂、アルキルフェノール樹脂、スチレンブタジエン樹脂、カルボキシル変性ニトリル樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂等又はそれらの変性樹脂が挙げられる。
特に接続後の長期信頼性を必要とする場合には、絶縁性接着フィルム中には、エポキシ樹脂を含有することが好ましい。
Examples of the thermoplastic resin include urethane resin, acrylic resin, polyimide resin, phenoxy resin, polyvinyl butyral resin, SBR, SBS, NBR, polyether sulfone resin, polyether terephthalate resin, polyphenylene sulfide resin, polyamide resin, polyether oxide. Examples thereof include resins, polyacetal resins, polystyrene resins, polyethylene resins, polyisobutylene resins, alkylphenol resins, styrene butadiene resins, carboxyl-modified nitrile resins, polyphenylene ether resins, polycarbonate resins, polyether ketone resins, and the like or modified resins thereof.
In particular, when long-term reliability after connection is required, the insulating adhesive film preferably contains an epoxy resin.

エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂や、グリシジルエーテルエステル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環族エポキシドが例示される。これらエポキシ樹脂にはハロゲン化や水素添加がされていてもよく、また、変性、例えば、ウレタン変性、ゴム変性、シリコーン変性等の変性されたエポキシ樹脂でもよい。中でも、グリシジルエーテル型エポキシ樹脂が好ましい。   Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, and phenol novolac. Type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, aliphatic ether type epoxy resin, glycidyl ether type epoxy resin, glycidyl ether ester type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin And hydantoin type epoxy resins and alicyclic epoxides. These epoxy resins may be halogenated or hydrogenated, and may be modified epoxy resins such as modified with urethane, modified with rubber, modified with silicone, or the like. Among these, a glycidyl ether type epoxy resin is preferable.

絶縁性接着フィルムとしてエポキシ樹脂を用いた場合には、絶縁性接着フィルムはエポキシ樹脂の硬化剤を含有することができる。エポキシ樹脂の硬化剤は、貯蔵安定性の観点から、潜在性硬化剤が好ましい。潜在性硬化剤としては、例えば、ホウ素化合物、ヒドラジド、3級アミン、イミダゾール、ジシアンジアミド、無機酸、カルボン酸無水物、チオール、イソシアネート、ホウ素錯塩及びそれらの誘導体が好ましい。潜在性硬化剤の中でも、マイクロカプセル型硬化剤が好ましい。   When an epoxy resin is used as the insulating adhesive film, the insulating adhesive film can contain an epoxy resin curing agent. The curing agent for the epoxy resin is preferably a latent curing agent from the viewpoint of storage stability. As the latent curing agent, for example, boron compounds, hydrazides, tertiary amines, imidazoles, dicyandiamides, inorganic acids, carboxylic acid anhydrides, thiols, isocyanates, boron complex salts and derivatives thereof are preferable. Among latent curing agents, a microcapsule type curing agent is preferable.

マイクロカプセル型硬化剤は、前記硬化剤の表面を樹脂皮膜で安定化したものである。マイクロカプセル型硬化剤は、接続作業時の温度や圧力で樹脂皮膜が破壊され、硬化剤がマイクロカプセル外に拡散し、エポキシ樹脂と反応する。マイクロカプセル型潜在性硬化剤の中でも、アダクト型硬化剤、例えば、アミンアダクト、イミダゾールアダクトをマイクロカプセル化した潜在性硬化剤が安定性と硬化性のバランスに優れ好ましい。エポキシ樹脂の硬化剤は、一般に、エポキシ樹脂100質量部に対して、2〜100質量部の量で用いられる。   The microcapsule type curing agent is obtained by stabilizing the surface of the curing agent with a resin film. In the microcapsule type curing agent, the resin film is destroyed by the temperature and pressure at the time of connection work, and the curing agent diffuses out of the microcapsule and reacts with the epoxy resin. Among the microcapsule-type latent curing agents, an adduct-type curing agent, for example, a latent curing agent obtained by microencapsulating an amine adduct or an imidazole adduct is preferable because of excellent balance between stability and curability. The epoxy resin curing agent is generally used in an amount of 2 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin.

本発明に用いられる絶縁性接着フィルムは、フィルム形成性、接着性、硬化時の応力緩和性等を付与する目的で、高分子成分、例えば、フェノキ樹脂、ポリエステル樹脂、アクリルゴム、SBR、NBR、シリコーン樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアセタール樹脂、尿素樹脂、キシレン樹脂、ポリアミド樹脂、ポリイミド樹脂、カルボキシル基、ヒドロシキシル基、ビニル基、アミノ基などの官能基を含有するゴム、エラストマー類を含有することが好ましい。これら高分子成分は重量平均分子量が10,000〜1,000,000のものが好ましい。重量平均分子量は、ポリスチレンを標準物質としたゲル浸透クロマトグラフ法(GPC)によって測定できる。
高分子成分としては、絶縁信頼性に優れた特性を与えるので、フェノキシ樹脂が好ましい。
The insulating adhesive film used in the present invention is a polymer component such as a phenoxy resin, a polyester resin, an acrylic rubber, SBR, NBR, for the purpose of imparting film formability, adhesiveness, stress relaxation during curing, and the like. Contains silicone resins, polyvinyl butyral resins, polyurethane resins, polyacetal resins, urea resins, xylene resins, polyamide resins, polyimide resins, rubbers containing functional groups such as carboxyl groups, hydroxyl groups, vinyl groups, amino groups, and elastomers It is preferable. These polymer components preferably have a weight average molecular weight of 10,000 to 1,000,000. The weight average molecular weight can be measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.
As the polymer component, a phenoxy resin is preferable because it provides characteristics with excellent insulation reliability.

フェノキシ樹脂としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールAビスフェノールF混合型フェノキシ樹脂、ビスフェノールAビスフェノールS混合型フェノキシ樹脂、フルオレン環含有フェノキシ樹脂、カプロラクトン変性ビスフェノールA型フェノキシ樹脂が例示される。   Examples of the phenoxy resin include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A bisphenol F mixed type phenoxy resin, bisphenol A bisphenol S mixed type phenoxy resin, fluorene ring-containing phenoxy resin, and caprolactone-modified bisphenol A type phenoxy resin. Is done.

高分子成分の含有量は、絶縁性接着フィルムに対して2〜80質量%が好ましい。
絶縁性接着フィルムには、更に、例えば、絶縁粒子、充填剤、軟化剤、硬化促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤を含有することもできる。絶縁粒子や充填剤を含有する場合、これらの最大径は導電粒子の平均粒径未満であることが好ましい。カップリング剤としてはケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基含有シランカップリング剤が、接着性の向上の点から好ましい。絶縁性接着フィルム中にカップリング剤を含有する場合の含有量は、絶縁性接着フィルムに対して、0.05質量%以上2質量%以下が好ましい。
The content of the polymer component is preferably 2 to 80% by mass with respect to the insulating adhesive film.
The insulating adhesive film can further contain, for example, insulating particles, fillers, softeners, curing accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, and coupling agents. When the insulating particles and the filler are contained, the maximum diameter is preferably less than the average particle diameter of the conductive particles. As the coupling agent, ketimine group, vinyl group, acrylic group, amino group, epoxy group, and isocyanate group-containing silane coupling agent are preferable from the viewpoint of improving adhesiveness. The content when the coupling agent is contained in the insulating adhesive film is preferably 0.05% by mass or more and 2% by mass or less with respect to the insulating adhesive film.

絶縁性接着フィルムの各成分を混合する場合、必要に応じ、溶剤を用いることができる。溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルイソアミルケトン、シクロヘキサノン、シクロペンタノン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート、エタノール、イソプロパノール、ジメチルホルムアミド、ジメチルアセトアミドが挙げられる。   When mixing each component of an insulating adhesive film, a solvent can be used as needed. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl isoamyl ketone, cyclohexanone, cyclopentanone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, ethanol , Isopropanol, dimethylformamide, and dimethylacetamide.

絶縁性接着フィルムは、例えば、各成分を溶剤中で混合して塗工液を作成し、該塗工液を基材上にアプリケーター塗装により塗工し、オーブン中で溶剤を揮散させることにより製造できる。塗工液の25℃での粘度は、50mPa・s以上10000mPa・s以下が好ましい。更に好ましくは、200mPa・s以上8000mPa・s以下、一層好ましくは、500mPa・s以上5000mPa・s以下である。各成分を溶剤中に混合する場合、溶解性を向上させるために、加熱しても構わない。混合温度は室温以上100℃以下が好ましい。50℃以上80℃以下が更に好ましい。オーブン中での溶剤の揮散は50℃以上100℃以下が好ましく、60℃以上90℃以下が更に好ましい。時間は2分以上20分以下が好ましい。   Insulating adhesive film is manufactured, for example, by mixing each component in a solvent to create a coating liquid, coating the coating liquid on a substrate by applicator coating, and volatilizing the solvent in an oven. it can. The viscosity at 25 ° C. of the coating solution is preferably 50 mPa · s or more and 10,000 mPa · s or less. More preferably, it is 200 mPa * s or more and 8000 mPa * s or less, More preferably, it is 500 mPa * s or more and 5000 mPa * s or less. When mixing each component in a solvent, in order to improve solubility, you may heat. The mixing temperature is preferably from room temperature to 100 ° C. 50 degreeC or more and 80 degrees C or less are still more preferable. The volatilization of the solvent in the oven is preferably 50 ° C. or higher and 100 ° C. or lower, and more preferably 60 ° C. or higher and 90 ° C. or lower. The time is preferably 2 minutes or more and 20 minutes or less.

絶縁性接着フィルムは単一組成であっても構わないし、異なる組成の接着剤が2層以上積層されていても構わない。接続時の導電粒子の移動を抑えるために、2層以上積層することが好ましい。2層以上積層する場合、導電粒子が存在する表面層の一部または全部が他の層よりも、高粘度である高粘度層となっている事が好ましい。   The insulating adhesive film may have a single composition, or two or more layers of adhesives having different compositions may be laminated. In order to suppress the movement of the conductive particles at the time of connection, it is preferable to stack two or more layers. When two or more layers are laminated, it is preferable that a part or all of the surface layer on which the conductive particles exist is a high viscosity layer having a higher viscosity than the other layers.

高粘度層の180℃での溶融粘度は、導電粒子の移動を抑えるため、10Pa・s以上30000Pa・s以下、より好ましくは、50Pa・s以上10000Pa・s以下、一層好ましくは80Pa・s以上5000Pa・s以下、更に一層好ましくは100Pa・s以上2000Pa・s以下である。接続信頼性の観点から、更に好ましくは、150Pa・s以上1500Pa・s以下である。   The melt viscosity at 180 ° C. of the high-viscosity layer is 10 Pa · s or more and 30000 Pa · s or less, more preferably 50 Pa · s or more and 10000 Pa · s or less, more preferably 80 Pa · s or more and 5000 Pa or less in order to suppress the movement of the conductive particles. · S or less, more preferably 100 Pa · s or more and 2000 Pa · s or less. From the viewpoint of connection reliability, it is more preferably 150 Pa · s or more and 1500 Pa · s or less.

その他の層の180℃での溶融粘度は、導電粒子の移動を抑えるため、0.1Pa・s以上150Pa・s以下、より好ましくは、0.2Pa・s以上120Pa・s以下、一層好ましくは0.5Pa・s以上100Pa・s以下、更に一層好ましくは0.7Pa・s以上70Pa・s以下である。接続信頼性の観点から、更に好ましくは、1Pa・s以上50Pa・s以下である。
なお、ここで、絶縁性接着フィルムが熱硬化性樹脂を含む場合、その溶融粘度とは、絶縁性接着フィルムから硬化剤を除去した、あるいは、硬化剤が未配合の状態での溶融粘度を指す。
The melt viscosity at 180 ° C. of the other layers is 0.1 Pa · s or more and 150 Pa · s or less, more preferably 0.2 Pa · s or more and 120 Pa · s or less, more preferably 0 in order to suppress the movement of the conductive particles. It is from 5 Pa · s to 100 Pa · s, and even more preferably from 0.7 Pa · s to 70 Pa · s. From the viewpoint of connection reliability, it is more preferably 1 Pa · s to 50 Pa · s.
Here, when the insulating adhesive film contains a thermosetting resin, the melt viscosity refers to the melt viscosity in which the curing agent is removed from the insulating adhesive film or the curing agent is not blended. .

高粘度層の膜厚は、低い接続抵抗を実現するために、導電粒子の平均粒径と同等以下であることが好ましい。好ましくは、高粘度層の膜厚が導電粒子の平均粒径に対して、0.05倍以上1.2倍以下である。より好ましくは、0.07倍以上1.0倍以下、更に好ましくは、0.1倍以上0.9倍以下、一層好ましくは、0.12倍以上0.8倍以下、更に一層好ましくは、0.15倍以上0.6倍以下である。
高粘度層の膜厚は、好ましくは、0.1μm以上7μm以下であり、より好ましくは0.2μm以上5μm以下であり、一層好ましくは、0.3μm以上3μm以下であり、更に一層好ましくは、0.4μm以上2μm以下である。
The film thickness of the high viscosity layer is preferably equal to or less than the average particle diameter of the conductive particles in order to realize low connection resistance. Preferably, the film thickness of the high viscosity layer is 0.05 times or more and 1.2 times or less with respect to the average particle diameter of the conductive particles. More preferably, 0.07 times to 1.0 times, still more preferably 0.1 times to 0.9 times, still more preferably 0.12 times to 0.8 times, and still more preferably, It is 0.15 times or more and 0.6 times or less.
The film thickness of the high viscosity layer is preferably 0.1 μm or more and 7 μm or less, more preferably 0.2 μm or more and 5 μm or less, more preferably 0.3 μm or more and 3 μm or less, and still more preferably, 0.4 μm or more and 2 μm or less.

絶縁性接着フィルムの厚みは、導電粒子の平均粒径よりも大きく、好ましくは、5μm以上50μm以下である。更に好ましくは6μm以上35μm以下、更に好ましくは7μm以上25μm以下、更に好ましくは8μm以上20μm以下である。   The thickness of the insulating adhesive film is larger than the average particle diameter of the conductive particles, and is preferably 5 μm or more and 50 μm or less. More preferably, they are 6 micrometers or more and 35 micrometers or less, More preferably, they are 7 micrometers or more and 25 micrometers or less, More preferably, they are 8 micrometers or more and 20 micrometers or less.

本発明の異方性導電フィルムは、絶縁性接着フィルムの表面層に導電粒子が単層として配置されている。
ここで表面層に配置するとは、導電粒子の一部または全体が絶縁性接着フィルムの表面に埋め込まれている状態を意味し、全体が埋め込まれている状態が、基板への貼付性が高く好ましい。
In the anisotropic conductive film of the present invention, the conductive particles are arranged as a single layer on the surface layer of the insulating adhesive film.
Here, disposing on the surface layer means a state in which part or all of the conductive particles are embedded in the surface of the insulating adhesive film, and the state in which the entire conductive particles are embedded is preferable because of its high adhesiveness to the substrate. .

導電粒子の一部が埋め込まれている場合、導電粒子はその平均粒径に対して1/3以上が絶縁性接着フィルムに埋め込まれていることで絶縁性接着フィルムからの脱離が起こりにくくなり好ましい。更に好ましくは1/2以上埋め込まれていることであり、更に好ましくは2/3以上埋め込まれていることであり、更に好ましくは4/5以上埋め込まれていることであり、更に好ましくは9/10以上埋め込まれていることである。一方、導電粒子が絶縁性接着フィルム層に完全に埋め込まれている場合、導電粒子と絶縁性接着フィルムの表面との間の絶縁性接着フィルムの厚み(即ち、導体粒子表面と絶縁性接着フィルム表面との間の最短距離)は、導電性を得るための加圧の際に導電粒子の移動を抑えるために、導電粒子の平均粒径に対して1.0倍未満が好ましい。更に好ましくは0.8倍未満、更に好ましくは0.5倍未満、更に好ましくは0.3倍未満、更に好ましくは0.1倍未満である。   When a part of the conductive particles are embedded, the conductive particles are less than 1/3 of the average particle size embedded in the insulating adhesive film, so that the conductive particles are less likely to be detached from the insulating adhesive film. preferable. More preferably 1/2 or more, more preferably 2/3 or more, more preferably 4/5 or more, and even more preferably 9 /. 10 or more are embedded. On the other hand, when the conductive particles are completely embedded in the insulating adhesive film layer, the thickness of the insulating adhesive film between the conductive particles and the surface of the insulating adhesive film (that is, the surface of the conductive particles and the surface of the insulating adhesive film) Is preferably less than 1.0 times the average particle diameter of the conductive particles in order to suppress the movement of the conductive particles during pressurization for obtaining conductivity. More preferably, it is less than 0.8 times, more preferably less than 0.5 times, more preferably less than 0.3 times, and still more preferably less than 0.1 times.

本発明では、異方導電性を高レベルで確保するために、絶縁性接着フィルムに導電粒子は単層で配置される。ここで、単層で配置されるとは、導電粒子の存在する表面層の厚みが導電粒子の平均粒径に対して2倍未満であることを意味する。好ましくは1倍以上1.8倍未満、更に好ましくは1倍以上1.5倍未満、更に好ましくは1倍以上1.3倍未満である。本発明では、導電粒子が絶縁性接着フィルムの表面層に単層として存在することにより、特に、半導体チップと液晶パネルの接続の様に、接続する電極高さが高いものとほぼ平らなものとの接続において、配列した導電粒子が接続時に大きく移動してしまう事を抑制することが可能となっている。
本発明においては、単層配置した導電粒子以外に、導電粒子より小粒径の導電材料が、絶縁性に影響が出ない程度に絶縁性接着フィルムの上記表面層以外の層に混合されていても構わない。
In the present invention, in order to ensure anisotropic conductivity at a high level, the conductive particles are arranged in a single layer on the insulating adhesive film. Here, being arranged in a single layer means that the thickness of the surface layer in which the conductive particles are present is less than twice the average particle diameter of the conductive particles. Preferably they are 1 time or more and less than 1.8 times, More preferably, they are 1 time or more and less than 1.5 times, More preferably, they are 1 time or more and less than 1.3 times. In the present invention, since the conductive particles exist as a single layer on the surface layer of the insulating adhesive film, the connection electrode has a high height and a substantially flat connection, such as connection between a semiconductor chip and a liquid crystal panel. In this connection, it is possible to prevent the arranged conductive particles from largely moving during the connection.
In the present invention, in addition to the conductive particles arranged in a single layer, a conductive material having a smaller particle size than the conductive particles is mixed in a layer other than the surface layer of the insulating adhesive film to such an extent that the insulating property is not affected. It doesn't matter.

導電粒子の配列性の尺度である、導電粒子の中心間距離の変動係数は、導電粒子の中心間距離の標準偏差をその平均値で割った値であり、本発明においては0.5以下である。導電粒子の中心間距離の変動係数を0.5以下にすることによって、微小面積の電極において電気的接続性に優れ、接続抵抗の低い接続を実現すると共に、微細な配線間の絶縁破壊が起きにくくなる。
導電粒子の中心間距離の変動係数は、好ましくは0.01以上0.45以下であり、一層好ましくは0.02以上0.4以下、更に好ましくは0.03以上0.35以下、更に好ましくは0.04以上0.3以下である。電極ごとの接続抵抗のバラツキを小さくするために、更に一層好ましくは、0.05以上0.25以下である。
The variation coefficient of the distance between the centers of the conductive particles, which is a measure of the arrangement of the conductive particles, is a value obtained by dividing the standard deviation of the distance between the centers of the conductive particles by the average value. In the present invention, it is 0.5 or less. is there. By setting the coefficient of variation in the distance between the centers of the conductive particles to 0.5 or less, it is possible to achieve a connection with excellent electrical connectivity and low connection resistance in a small area electrode, and dielectric breakdown between fine wirings occurs. It becomes difficult.
The variation coefficient of the distance between the centers of the conductive particles is preferably 0.01 or more and 0.45 or less, more preferably 0.02 or more and 0.4 or less, further preferably 0.03 or more and 0.35 or less, and further preferably Is 0.04 or more and 0.3 or less. In order to reduce the variation in connection resistance for each electrode, it is more preferably 0.05 or more and 0.25 or less.

導電粒子の中心間距離の平均は、異方導電性の観点から、2μm以上15μm以下が好ましい。更に好ましくは2.5μm以上14μm以下、更に好ましくは3μm以上12μm以下である。長期接続信頼性を確保するためには、更に好ましくは3.5μm以上11μm以下である。
尚、導電粒子の中心間距離は、異方性導電フィルムの面方向に導電粒子を投影した画像において、各導電粒子の中心点を母点として、デローニ三角分割を行い、それによってできる三角形の辺の長さで定義した。
The average distance between the centers of the conductive particles is preferably 2 μm or more and 15 μm or less from the viewpoint of anisotropic conductivity. More preferably, they are 2.5 micrometers or more and 14 micrometers or less, More preferably, they are 3 micrometers or more and 12 micrometers or less. In order to ensure long-term connection reliability, it is more preferably 3.5 μm or more and 11 μm or less.
Note that the distance between the centers of the conductive particles is determined by performing Delaunay triangulation with the center point of each conductive particle as a base point in an image obtained by projecting the conductive particles in the plane direction of the anisotropic conductive film. Defined by the length of.

本発明の異方性導電フィルムは、導電粒子の90%(粒子数を基準とする)以上が個々に独立に存在している。90%以上が独立に存在する事で、接続時の電極間における接続抵抗のバラツキを小さく抑えることができる。好ましくは、95%以上の導電粒子が独立に存在することであり、より好ましくは、98%以上、更に好ましくは99%以上、一層好ましくは99.5%以上が個々に独立に存在する事である。   In the anisotropic conductive film of the present invention, 90% or more of the conductive particles (based on the number of particles) or more exist independently. When 90% or more exists independently, variation in connection resistance between electrodes at the time of connection can be reduced. Preferably, 95% or more of the conductive particles are present independently, more preferably 98% or more, still more preferably 99% or more, and even more preferably 99.5% or more are individually present. is there.

本発明では、独立に存在する導電粒子以外に、4個以上10個以下の導電粒子の集合体(以下、「特定導電粒子集合体」と称す)を有している。好ましくは、特定粒子集合体の頻度が1cm当たり5個以上100個以下であり、更に好ましくは、1cm当たり10個以上80個以下であり、更に好ましくは、15個以上60個以下である。
特定導電粒子集合体が1cm当たり5個未満では、導電粒子の移動具合を安定的に検査できるICチップサイズが大きいものに限定されてしまう。また、1cm当たり100個以下にすることで、高い絶縁信頼性が確保できる。
In the present invention, there are aggregates of 4 to 10 conductive particles (hereinafter referred to as “specific conductive particle aggregate”) in addition to the conductive particles that exist independently. Preferably, the frequency of the specific particle aggregate is 5 or more and 100 or less per 1 cm 2, more preferably 10 or more and 80 or less per 1 cm 2 , more preferably 15 or more and 60 or less. .
If the number of specific conductive particle aggregates is less than 5 per 1 cm 2 , the size of the IC chip that can stably inspect the movement of the conductive particles is limited. Also, by 100 or less per 1 cm 2, a high insulation reliability can be ensured.

導電粒子が2個あるいは3個の導電粒子集合体を導電粒子の移動具合を検査するための目印とすると、低倍率レンズでは、単独の導電粒子と区別しづらく、簡易な方法で導電粒子の移動具合を検査するには、不向きであった。
一方、10個を超える導電粒子の集合体は、少ない方が好ましく、特に15個以上の導電粒子の集合体は、1cm当たり1個未満であることが、隣接電極間隔が狭い電極の接続においてもショートを起こさず接続することができ、好ましい。更に好ましくは、1cm当たり0.5個以下であり、更に好ましくは、1cm当たり0.3個以下であり、更に好ましくは、1cm当たり0.15個以下である。
If the aggregate of conductive particles having two or three conductive particles is used as a mark for inspecting the movement of the conductive particles, the low magnification lens is difficult to distinguish from the single conductive particles. It was unsuitable for checking the condition.
On the other hand, it is preferable that the number of aggregates of conductive particles exceeding 10 is small, and in particular, the aggregate of aggregates of 15 or more conductive particles is less than 1 per 1 cm 2 , in connection of electrodes having a narrow interval between adjacent electrodes. Can be connected without causing a short circuit, which is preferable. More preferably, it is 0.5 or less per 1 cm 2, more preferably 0.3 or less per 1 cm 2 , and further preferably 0.15 or less per 1 cm 2 .

異方性導電フィルムの面積に占める、導電粒子の投影面積の合計で規定される導電粒子の面積率が2%以上40%以下の範囲が導電性と絶縁性のバランスが取れて好ましい。より好ましくは、4%以上35%以下、更に好ましくは6%以上30%以下、一層好ましくは、8%以上27%以下、更に一層好ましくは10%以上25%以下である。   The area ratio of the conductive particles defined by the total projected area of the conductive particles occupying the area of the anisotropic conductive film is preferably in the range of 2% or more and 40% or less in view of balance between conductivity and insulation. More preferably, they are 4% or more and 35% or less, More preferably, they are 6% or more and 30% or less, More preferably, they are 8% or more and 27% or less, More preferably, they are 10% or more and 25% or less.

本発明において、導電粒子が絶縁性接着フィルムの表層に単層として配列し、特定導電粒子集合体を有する異方性導電フィルム作る方法としては、例えば下記の様な方法がある。
即ち、まず、表面を粘着剤で被覆した導電粒子と粘着剤で被覆していない導電粒子とを良く混合することで、粘着剤で被覆した導電粒子を中心に4個〜10個程度の導電粒子の集合体ができる。このとき、粘着剤で被覆した導電粒子の数は、導電粒子全体に対して、例えば、5ppm〜100ppm程度用いられる。
In the present invention, as a method for producing an anisotropic conductive film in which conductive particles are arranged as a single layer on the surface layer of an insulating adhesive film and have a specific conductive particle aggregate, there are the following methods, for example.
That is, first, the conductive particles whose surface is coated with an adhesive and the conductive particles which are not coated with an adhesive are mixed well, so that about 4 to 10 conductive particles centered on the adhesive particles coated with the adhesive. An assembly of At this time, the number of the conductive particles coated with the adhesive is, for example, about 5 ppm to 100 ppm with respect to the entire conductive particles.

次に、延伸可能なフィルム上に、好ましくは、導電粒子の膜厚以下で、粘着剤を塗布し、その上に導電粒子の集合体を含む導電粒子を必要量以上に載せて、密に充填する。
次に、粘着剤層に届かず、他の導電粒子の上に乗った導電粒子を排除する。一方、導電粒子の集合体はそのまま残し、排除しない。これによって、導電粒子の集合体を有し、密に充填された導電粒子層が得られる。
ここで得られた導電粒子層の乗った延伸可能なフィルムを、所望の延伸倍率で延伸することで、大部分の導電粒子が独立して、本発明に必要な変動係数と、所望の中心間距離をもって配置される。導電粒子の集合体は、塊状から面状に形状を変化する。
次に、延伸したフィルムの導電粒子が配置された側に、絶縁性接着フィルムを重ね、絶縁性接着フィルムに導電粒子を埋め込み、粘着剤の付いた延伸可能なフィルムを剥離することで、本発明の異方性導電フィルムが得られる。
Next, a pressure-sensitive adhesive is applied on the stretchable film, preferably with a thickness equal to or less than the thickness of the conductive particles, and the conductive particles containing the aggregate of conductive particles are placed thereon more than necessary and densely packed. To do.
Next, conductive particles that do not reach the pressure-sensitive adhesive layer and are on other conductive particles are excluded. On the other hand, the aggregate of conductive particles is left as it is and not excluded. Thus, a conductive particle layer having an aggregate of conductive particles and closely packed can be obtained.
The stretchable film carrying the conductive particle layer obtained here is stretched at a desired stretching ratio, so that most of the conductive particles are independently independent of the coefficient of variation required between the present invention and the desired center. Arranged at a distance. The aggregate of conductive particles changes in shape from a lump shape to a planar shape.
Next, the insulating adhesive film is stacked on the side of the stretched film where the conductive particles are disposed, the conductive particles are embedded in the insulating adhesive film, and the stretchable film with the adhesive is peeled off, thereby the present invention. An anisotropic conductive film is obtained.

延伸可能なフィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、PET、PEN等のポリエステル、ナイロン、塩化ビニル、ポリビニルアルコールのフィルムが例示される。   Examples of the stretchable film include films of polyester such as polyethylene, polypropylene, polystyrene, PET, and PEN, nylon, vinyl chloride, and polyvinyl alcohol.

粘着剤としては、例えば、ウレタン樹脂、アクリル樹脂、ユリア樹脂、メラミン樹脂、フェノール樹脂、酢酸ビニル樹脂、クロロプレンゴム、ニトリルゴム、スチレン−ブタジエンゴム、イソプレンゴム、天然ゴムが例示される。導電粒子の被覆に用いられる粘着剤と延伸可能なフィルムに塗布される粘着剤は、同種でも良いし異なっていても良い。同種であることが好ましい。   Examples of the adhesive include urethane resin, acrylic resin, urea resin, melamine resin, phenol resin, vinyl acetate resin, chloroprene rubber, nitrile rubber, styrene-butadiene rubber, isoprene rubber, and natural rubber. The pressure-sensitive adhesive used for coating the conductive particles and the pressure-sensitive adhesive applied to the stretchable film may be the same or different. The same kind is preferable.

余剰の導電粒子を排除する方法としては、エアブローによって吹き飛ばす方法、吸引によって吸い取る方法等が挙げられる。このとき、導電粒子の凝集体を排除せずに独立の導電粒子のみを排除できる様に、ブロー圧や、吸引圧をコントロールする必要がある。   Examples of a method for removing surplus conductive particles include a method of blowing off by air blow and a method of sucking by suction. At this time, it is necessary to control the blow pressure and the suction pressure so that only independent conductive particles can be excluded without eliminating aggregates of conductive particles.

延伸は縦方向延伸と横方向延伸の両方が行われる、所謂、二軸延伸であり、公知の方法で実施することができる。例えば、クリップ等でフィルムの2辺または4辺を挟んで引っ張る方法や、2以上のロールで挟んでロールの回転速度を変えることで延伸する方法等が挙げられる。延伸は縦方向と横方向を同時に延伸する同時二軸延伸でも良いし、一方向を延伸した後、他方を延伸する逐次二軸延伸でも良い。延伸時の導電粒子の配列乱れを起こし難いので同時二軸延伸が好ましい。延伸を精度良く行うために、延伸可能なフィルムを軟化させて行うのが好ましく、使用する延伸可能なフィルムによるが、例えば、70℃以上250℃以下で延伸を行うのが好ましい。   Stretching is so-called biaxial stretching in which both longitudinal stretching and lateral stretching are performed, and can be performed by a known method. Examples of the method include a method of pulling between two or four sides of the film with a clip or the like, and a method of stretching by changing the rotation speed of the roll while sandwiching between two or more rolls. The stretching may be simultaneous biaxial stretching in which the machine direction and the transverse direction are stretched simultaneously, or may be sequential biaxial stretching in which the other is stretched after stretching in one direction. Simultaneous biaxial stretching is preferred because it is difficult to cause disorder in the arrangement of the conductive particles during stretching. In order to perform stretching with high accuracy, it is preferable to soften a stretchable film. Depending on the stretchable film used, for example, it is preferable to perform stretching at 70 ° C. or higher and 250 ° C. or lower.

延伸したフィルムの導電粒子が配置された側に、絶縁性接着フィルム層を重ね、絶縁性接着フィルム層に導電粒子を埋め込む方法としては、例えば、絶縁性接着フィルムと溶剤を含む塗工液を、延伸したフィルムの導電粒子が配置された側に、所望の膜厚になる様に塗工し、溶剤を飛散させて乾燥する方法や、セパレーター上に形成されたフィルム状の絶縁性接着フィルムを、延伸したフィルムの導電粒子が配置された側に、ラミネーター等を用いてラミネートし、ローラーを用いて絶縁性接着フィルム層に導電粒子を埋め込む方法等が挙げられる。延伸したフィルムを剥離した後、必要に応じ、本発明の異方性導電フィルムはスリットされる。   As a method of overlaying the insulating adhesive film layer on the side where the conductive particles of the stretched film are arranged and embedding the conductive particles in the insulating adhesive film layer, for example, a coating liquid containing an insulating adhesive film and a solvent, On the side where the conductive particles of the stretched film are disposed, a method of applying a desired film thickness, scattering the solvent and drying, or a film-like insulating adhesive film formed on the separator, Examples include a method of laminating using a laminator or the like on the side of the stretched film where the conductive particles are arranged, and embedding the conductive particles in the insulating adhesive film layer using a roller. After peeling the stretched film, the anisotropic conductive film of the present invention is slit as necessary.

セパレーターとしては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエステル、例えば、PET、PEN、ナイロン、塩化ビニル、ポリビニルアルコールのフィルムが例示される。好ましい保護フィルム用の樹脂としては、ポリプロピレン、PETが挙げられる。該セパレーターはフッ素処理、Si処理、アルキド処理等の表面処理を行っていることが好ましい。セパレーターの膜厚は、20μm以上100μm以下が好ましい。   Examples of the separator include polyethylene, polypropylene, polystyrene, and polyester films such as PET, PEN, nylon, vinyl chloride, and polyvinyl alcohol. Preferred resins for the protective film include polypropylene and PET. The separator is preferably subjected to surface treatment such as fluorine treatment, Si treatment or alkyd treatment. The film thickness of the separator is preferably 20 μm or more and 100 μm or less.

本発明において、導電粒子が絶縁性接着フィルムの表層に単層として配列し、特定導電粒子集合体を有する異方性導電フィルム作る他の方法としては、導電粒子の平均粒子径よりも小さい内径を有し、所望の中心間距離と中心間距離の変動係数を有する吸引孔を多数有し、更に、該吸引孔と同じ内径の吸引孔の集合体であって、特定頻度で、導電粒子の平均粒径の1.0倍より大きく1.1倍以内の中心間距離を有する4個〜10個の吸引孔の集合体を設けた吸引治具に、導電粒子を吸引した後、絶縁性接着フィルムに転写する方法が挙げられる。   In the present invention, the conductive particles are arranged as a single layer on the surface layer of the insulating adhesive film, and as another method of making an anisotropic conductive film having a specific conductive particle aggregate, an inner diameter smaller than the average particle diameter of the conductive particles is used. A plurality of suction holes having a desired center-to-center distance and a coefficient of variation of the center-to-center distance, and a collection of suction holes having the same inner diameter as the suction holes, the average of the conductive particles at a specific frequency After the conductive particles are sucked into a suction jig provided with an assembly of 4 to 10 suction holes having a center-to-center distance greater than 1.0 times and within 1.1 times the particle size, an insulating adhesive film The method of transferring to is mentioned.

ここで用いられる吸引治具の吸引孔の内径は導電粒子の平均粒子径よりも小さいことが必要であり、導電粒子の平均粒子径の90%以下が好ましい。30%〜80%の径が更に好ましい。吸引孔の集合体の頻度は、集合体に含まれる吸引孔の数が、全吸引孔の数の、10ppm〜2000ppmとなる範囲で設けられているもが好ましい。
ここで用いられる吸引治具は、例えば、吸引孔をなす貫通孔が所定の配置で形成された孔開きシート部品と、吸引機構、例えば、真空ポンプ等に接続する接続口と孔開きシート部品を保持する部分を有するハウジング部から構成された治具が挙げられる。
The inner diameter of the suction hole of the suction jig used here needs to be smaller than the average particle diameter of the conductive particles, and preferably 90% or less of the average particle diameter of the conductive particles. A diameter of 30% to 80% is more preferable. The frequency of the collection of suction holes is preferably such that the number of suction holes included in the collection is in the range of 10 ppm to 2000 ppm of the number of all suction holes.
The suction jig used here includes, for example, a perforated sheet component in which through holes forming a suction hole are formed in a predetermined arrangement, and a connection port and a perforated sheet component connected to a suction mechanism such as a vacuum pump. An example of the jig includes a housing portion having a holding portion.

孔開きシート部品の製造方法としては、合成樹脂、例えば、ポリイミドからなる厚さ1μm以上1000μm以下の板状物の所定位置に高エネルギー線を照射することにより、当該板状物に、吸引孔に対応させた配置で貫通孔を形成する方法が挙げられる。高エネルギー線を照射するときに、孔開きシート部品の貫通孔に対応した開口部を有する金属マスクを用いることで所定位置に照射することができる。高エネルギー線としては、例えば、エキシマレーザー、YAGレーザー、炭酸ガスレーザー、電子線、分子線、各種のイオン線、収束イオン線を用いることができる。あるいは、微小領域に収束できる高エネルギー線を用いて、ガルバノミラーや電磁石等を用いて高エネルギー線の収束ビームを走査することで、あるいは貫通孔を形成する板状物をXYステージ上で移動させることで、合成樹脂等からなる板状物に所定配置で貫通孔を形成することができる。   As a method of manufacturing a perforated sheet component, a high energy ray is irradiated to a predetermined position of a plate-like material made of a synthetic resin, for example, polyimide, having a thickness of 1 μm or more and 1000 μm or less, so that the plate-like material is provided with a suction hole. The method of forming a through-hole by the arrangement | positioning matched is mentioned. When irradiating a high energy ray, it is possible to irradiate a predetermined position by using a metal mask having an opening corresponding to the through hole of the perforated sheet component. As the high energy beam, for example, an excimer laser, a YAG laser, a carbon dioxide laser, an electron beam, a molecular beam, various ion beams, and a focused ion beam can be used. Alternatively, a high-energy beam that can be focused on a minute region is used to scan a convergent beam of a high-energy beam using a galvanometer mirror or an electromagnet, or a plate-like object that forms a through hole is moved on an XY stage. Thus, the through holes can be formed in a predetermined arrangement in a plate-like object made of synthetic resin or the like.

微小領域に収束できない高エネルギー線の場合には、上述のように金属マスクを用いるか、フォトマスクを用いて照射を行う。あるいは、貫通孔を形成する板状物に感光性樹脂層を設け、フォトリソグラフィとエッチングを行うことによって、当該板状物に所定配置で貫通孔を形成してもよい。   In the case of high energy rays that cannot converge on a minute region, irradiation is performed using a metal mask as described above or using a photomask. Or you may form a through-hole by the predetermined arrangement | positioning by providing the photosensitive resin layer in the plate-shaped object which forms a through-hole, and performing photolithography and an etching.

板状物の材料としては、ポリイミド以外にも、寸法安定性の良い樹脂、例えば、各種液晶ポリマー、アラミド、ポリエステルを使用することができる。また、合成樹脂以外にも、金属、例えば、ニッケル、クロム、タングステンや、半導体、例えば、シリコンが挙げられる。この方法によれば、数μm程度の微小な貫通孔が所定配置で形成されている孔開きシート部品が容易に得られる。
吸引治具のハウジング内には、孔開きシート部品を支持するために、孔開きシート部品の貫通孔よりも小さい孔を有する多孔質材、例えば、セラミックからなる多孔質材が固定されていて、その外側に孔開きシート部品が固定されている構造が好ましい。
As a material for the plate-like material, in addition to polyimide, resins having good dimensional stability, for example, various liquid crystal polymers, aramids, and polyesters can be used. In addition to synthetic resins, metals such as nickel, chromium, tungsten, and semiconductors such as silicon can be used. According to this method, a perforated sheet component in which minute through holes of about several μm are formed in a predetermined arrangement can be easily obtained.
In the housing of the suction jig, in order to support the perforated sheet component, a porous material having a hole smaller than the through hole of the perforated sheet component, for example, a porous material made of ceramic is fixed, A structure in which a perforated sheet component is fixed to the outside is preferable.

吸引治具を用いて、本発明の異方性導電フィルムを製造する方法としては、吸引治具を吸引機構、例えば、真空ポンプに接続し、孔開きシート部品側を、多数の導電粒子が入った容器内に挿入し、吸引状態にして、全ての吸引孔に導電粒子が吸着されるようにし、吸引孔以外の部分に付着した導電粒子をエアーブローといった手段で除去する。   As a method of producing the anisotropic conductive film of the present invention using a suction jig, the suction jig is connected to a suction mechanism, for example, a vacuum pump, and a large number of conductive particles enter the perforated sheet component side. The conductive particles are inserted into the container and brought into a suction state so that the conductive particles are adsorbed to all the suction holes, and the conductive particles adhering to portions other than the suction holes are removed by means such as air blowing.

次に、絶縁性接着フィルムを、吸引治具の導電粒子を吸着している面に向けて押し付ける。次に、吸引状態を解除し、絶縁性接着フィルムを吸引治具から引き離すことで導電粒子は絶縁性接着フィルムに所定の配置で転写される。これで導電粒子は絶縁性接着フィルムの表面層に単層として所定配置される。導電粒子の絶縁性接着フィルム中への埋め込みが不十分であれば、表面にカバー、例えばPETフィルムを掛けてロール等で埋め込むことができる。必要に応じ、本発明の異方性導電フィルムはスリットされる。   Next, the insulating adhesive film is pressed toward the surface of the suction jig that adsorbs the conductive particles. Next, the suction state is released, and the conductive adhesive particles are transferred to the insulating adhesive film in a predetermined arrangement by pulling the insulating adhesive film away from the suction jig. Thus, the conductive particles are arranged as a single layer on the surface layer of the insulating adhesive film. If the conductive particles are not sufficiently embedded in the insulating adhesive film, a cover such as a PET film can be hung on the surface and embedded with a roll or the like. If necessary, the anisotropic conductive film of the present invention is slit.

本発明の異方性導電フィルムの厚みは、5μm以上50μm以下が好ましく、更に好ましくは6μm以上35μm以下、更に好ましくは7μm以上25μm以下、更に好ましくは8μm以上20μm以下である。   The thickness of the anisotropic conductive film of the present invention is preferably 5 μm or more and 50 μm or less, more preferably 6 μm or more and 35 μm or less, further preferably 7 μm or more and 25 μm or less, and further preferably 8 μm or more and 20 μm or less.

異方性導電フィルムはセパレーターを有していてもよい。該セパレーターとしては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエステル、例えば、PET、PEN、ナイロン、塩化ビニル、ポリビニルアルコール等のフィルムが例示される。好ましい保護フィルム用の樹脂としては、ポリプロピレン、PETが挙げられる。該セパレーターはフッ素処理、Si処理、アルキド処理等の表面処理を行っていることが好ましい。セパレーターの膜厚は、20μm以上100μm以下が好ましい。   The anisotropic conductive film may have a separator. Examples of the separator include films of polyethylene, polypropylene, polystyrene, polyester, such as PET, PEN, nylon, vinyl chloride, and polyvinyl alcohol. Preferred resins for the protective film include polypropylene and PET. The separator is preferably subjected to surface treatment such as fluorine treatment, Si treatment or alkyd treatment. The film thickness of the separator is preferably 20 μm or more and 100 μm or less.

このようにして製造された本発明の異方性導電フィルムは、ファインピッチ接続用途に好適に用いることができ、液晶ディスプレイとTCP、TCPとFPC、FPCとプリント配線基板との接続、あるいは、半導体チップを直接基板に実装するフリップチップ実装に好適に用いることができる。   The anisotropic conductive film of the present invention produced as described above can be suitably used for fine pitch connection applications, and is a connection between a liquid crystal display and TCP, TCP and FPC, FPC and printed wiring board, or semiconductor. It can be suitably used for flip chip mounting in which a chip is directly mounted on a substrate.

本発明の接続部材は、ITO配線や金属配線等によって回路と電極を形成したガラス基板等の回路基板と、回路基板の電極と対を成す位置に電極を形成したICチップ等の回路部材とを準備し、回路基板上の回路部材を配置する位置に、本発明の異方導電性フィルムを貼り付け、次に、回路基板と回路部材をそれぞれの電極が互いに対を成すように位置を合わせた後、熱圧着されることで製造される。熱圧着は、80℃以上250℃以下の温度範囲で、1秒以上30分以下で行うのが好ましい。加える圧力は、回路部材面積に対して、0.1MPa以上50MPa以下が好ましい。   The connection member of the present invention comprises a circuit board such as a glass substrate in which a circuit and an electrode are formed by ITO wiring, metal wiring, etc., and a circuit member such as an IC chip in which an electrode is formed at a position that makes a pair with the electrode of the circuit board. Prepare and paste the anisotropic conductive film of the present invention at the position where the circuit member is arranged on the circuit board, and then align the circuit board and the circuit member so that the respective electrodes are paired with each other. Then, it is manufactured by thermocompression bonding. The thermocompression bonding is preferably performed in a temperature range of 80 ° C. to 250 ° C. for 1 second to 30 minutes. The applied pressure is preferably 0.1 MPa or more and 50 MPa or less with respect to the circuit member area.

本発明を実施例によりさらに詳細に説明する。
溶融粘度測定は以下のようにして行った。
<溶融粘度測定>
HAAKE社製、RHeoStress600 Thermoを用い、20mm径のコーン(PP20H)を用いて測定した。
The invention is explained in more detail by means of examples.
The melt viscosity was measured as follows.
<Melt viscosity measurement>
The measurement was performed using a 20 mm diameter cone (PP20H) using an RHEo Stress 600 Thermo manufactured by HAAKE.

[実施例1]
フェノキシ樹脂(東都化成株式会社製、商品名フェノトートYP50、以下同じ)78質量部、ナフタレン型エポキシ樹脂(大日本インキ化学工業株式会社製、商品名:HP4032D、以下同じ)23質量部、シランカップリング剤(日本ユニカー社製、商品名:A−187、以下同じ)0.5質量部、酢酸エチル300質量部を混合し、ワニスを得た。このワニスを離型処理した38μmのPETフィルム上にブレードコーターを用いて塗布、溶剤を乾燥除去して、膜厚2μmのフィルム状の絶縁性接着フィルム1を得た。絶縁性接着フィルム1の180℃溶融粘度は、400Pa・sであった。
[Example 1]
78 parts by mass of phenoxy resin (manufactured by Tohto Kasei Co., Ltd., trade name phenotote YP50, the same shall apply), 23 parts by mass of naphthalene type epoxy resin (manufactured by Dainippon Ink & Chemicals, Inc., trade name: HP4032D; A varnish was obtained by mixing 0.5 parts by mass of a ring agent (manufactured by Nippon Unicar Co., Ltd., trade name: A-187, the same shall apply hereinafter) and 300 parts by mass of ethyl acetate. The varnish was subjected to a release treatment on a 38 μm PET film using a blade coater, and the solvent was removed by drying to obtain a film-like insulating adhesive film 1 having a thickness of 2 μm. The insulating adhesive film 1 had a 180 ° C. melt viscosity of 400 Pa · s.

フェノキシ樹脂100質量部、ナフタレン型エポキシ樹脂88質量部、マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物(旭化成ケミカルズ株式会社製、商品名:ノバキュア)60質量部(液状エポキシ樹脂は40質量部含有)、シランカップリング剤1.0質量部、酢酸エチル300質量部を混合し、ワニスを得た。このワニスを離型処理した50μmのPETフィルム上にブレードコーターを用いて塗布、溶剤を乾燥除去して、膜厚20μmのフィルム状の絶縁性接着フィルム2を得た。別途マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物60質量部に替えて、液状エポキシ樹脂40質量部を配合して同様に作成した絶縁性接着フィルムの溶融粘度を測定した結果、絶縁性接着フィルム2の180℃溶融粘度は、11.5Pa・sであった。
絶縁性接着フィルム1と絶縁性接着フィルム2とを、PETフィルムを設けていない側の面を向かい合わせて50℃、0.3MPaでラミネートし、次いで絶縁性接着フィルム1に設けたPETフィルムを剥離して絶縁性接着フィルムAを得た。
100 parts by mass of phenoxy resin, 88 parts by mass of naphthalene type epoxy resin, 60 parts by mass of a mixture of a microcapsule type latent curing agent and a liquid epoxy resin (trade name: Novacure, manufactured by Asahi Kasei Chemicals Co., Ltd., 40 parts by mass of liquid epoxy resin) Content), 1.0 part by mass of a silane coupling agent and 300 parts by mass of ethyl acetate were mixed to obtain a varnish. The varnish was applied onto a 50 μm PET film with a release coater using a blade coater, and the solvent was removed by drying to obtain a film-like insulating adhesive film 2 having a thickness of 20 μm. Separately, instead of 60 parts by mass of the mixture of the microcapsule type latent curing agent and the liquid epoxy resin, 40 parts by mass of the liquid epoxy resin was blended and the melt viscosity of the insulating adhesive film prepared in the same manner was measured. The 180 ° C. melt viscosity of the film 2 was 11.5 Pa · s.
The insulating adhesive film 1 and the insulating adhesive film 2 are laminated at 50 ° C. and 0.3 MPa with the surfaces on which the PET film is not provided facing each other, and then the PET film provided on the insulating adhesive film 1 is peeled off. Thus, an insulating adhesive film A was obtained.

平均粒径4μmの導電粒子(積水化学社製、商品名:ミクロパールAU、以下同じ)0.005質量部をトルエンで樹脂分4質量%に希釈したイソプレンゴム溶液1質量部中に入れ10分間撹拌した後、3μmのメンブレンフィルターでろ過しフィルター上に残った導電粒子を大きめのトレーに移し乾燥し、表面を粘着剤で被覆した導電粒子を得た。これを別のトレーに移し、そこに平均粒径4μの導電粒子100質量部を混合して、更に、容器に移して良く撹拌し、導電粒子の集合体を含む導電粒子が得られた。   Conductive particles having an average particle size of 4 μm (manufactured by Sekisui Chemical Co., Ltd., trade name: Micropearl AU, the same shall apply hereinafter) are placed in 1 part by mass of an isoprene rubber solution diluted with toluene to a resin content of 4% by mass for 10 minutes. After stirring, the mixture was filtered through a 3 μm membrane filter, and the conductive particles remaining on the filter were transferred to a large tray and dried to obtain conductive particles whose surfaces were coated with an adhesive. This was transferred to another tray, and 100 parts by mass of conductive particles having an average particle diameter of 4 μm were mixed therewith, and further transferred to a container and stirred well to obtain conductive particles containing an aggregate of conductive particles.

次に、100μm無延伸共重合ポリプロピレンフィルム上にブレードコーターを用いてトルエンで樹脂分4質量%に希釈したイソプレンゴムを塗布、80℃で10分間乾燥し、厚さ1.2μmの粘着剤層を形成した。
この粘着剤上に、上記で得た導電粒子の集合体を含む導電粒子を一面に充填し、0.1MPa圧のエアブローにより、粘着剤によって保持されていない導電粒子を排除した。これをマイクロスコープ(株式会社キーエンス製、商品名:VHX−100、以下同じ)で観察したところ、特定導電粒子集合体が、単層で敷き詰められた導電粒子上に、およそ0.28mmに1個の頻度で存在していた。
この導電粒子が敷き詰められたフィルムを、試験用二軸延伸装置を用いて、135℃で、縦横共に10%/秒の比率で2.2倍まで延伸し、徐々に室温まで冷却した。
Next, isoprene rubber diluted with toluene to a resin content of 4% by mass using a blade coater was applied onto a 100 μm unstretched copolymer polypropylene film and dried at 80 ° C. for 10 minutes to form a 1.2 μm thick adhesive layer. Formed.
On this pressure-sensitive adhesive, the conductive particles containing the aggregate of conductive particles obtained above were filled on one side, and the conductive particles not held by the pressure-sensitive adhesive were eliminated by air blowing at 0.1 MPa. When this was observed with a microscope (manufactured by Keyence Co., Ltd., trade name: VHX-100, the same shall apply hereinafter), the specific conductive particle aggregate was 1 in about 0.28 mm 2 on the conductive particles spread in a single layer. Was present at a frequency of
The film on which the conductive particles were spread was stretched to 135 times at 135 ° C. at a rate of 10% / second in both longitudinal and lateral directions using a test biaxial stretching apparatus and gradually cooled to room temperature.

次に、延伸されたフィルムの粒子側と、絶縁性接着フィルムAの絶縁性接着フィルム1側を向かい合わせて、65℃、0.5MPaの条件でラミネートを行い、粒子を絶縁性接着フィルム1中に埋め込み、導電粒子が埋め込まれた絶縁性接着フィルムAから粘着剤の付いた延伸可能なフィルムを剥離し、剥離した面に離型処理した38μmのPETフィルムを載せて、更に、65℃、0.5MPaの条件でラミネートを行い、異方性導電フィルムAを得た。   Next, the particle side of the stretched film and the insulating adhesive film 1 side of the insulating adhesive film A are faced to each other, lamination is performed under the conditions of 65 ° C. and 0.5 MPa, and the particles are contained in the insulating adhesive film 1. Then, the stretchable film with the pressure-sensitive adhesive is peeled from the insulating adhesive film A in which the conductive particles are embedded, and a 38 μm PET film subjected to a release treatment is placed on the peeled surface. Lamination was performed under a condition of 5 MPa to obtain an anisotropic conductive film A.

異方性導電フィルムAを、レーザー顕微鏡で観察した所、いずれの導電粒子も絶縁性接着フィルムAから少し突き出した状態で埋め込まれており、絶縁性接着フィルムAからの突き出している導電粒子の部分は0.05μm〜0.15μmの範囲内にあり、単層の導電粒子層が形成されていた。   When the anisotropic conductive film A is observed with a laser microscope, each conductive particle is embedded in a state protruding slightly from the insulating adhesive film A, and the portion of the conductive particle protruding from the insulating adhesive film A Was in the range of 0.05 μm to 0.15 μm, and a single-layer conductive particle layer was formed.

更に、異方性導電フィルムAをマイクロスコープで観察した画像から、画像処理ソフト(旭化成株式会社製、商品名:A像くん、以下同じ)を用いて、導電粒子の中心間距離の平均値、その変動係数、および独立に存在する導電粒子の割合を求めた結果、平均値が9.9μm、変動係数が0.21であり、独立に存在する導電粒子の割合は、99.1%であった。また、導電粒子の面積率は15.1%であった。なお、導電粒子の中心間距離は、各粒子の中心点を用いたデローニ三角分割でできる三角形の辺の長さを使用し、導電粒子の観察は高倍率レンズ(株式会社キーエンス製、VH−Z100、以下同じ)を用いて、0.35mm内の粒子について行った。 Furthermore, from an image obtained by observing the anisotropic conductive film A with a microscope, image processing software (trade name: A image-kun, manufactured by Asahi Kasei Co., Ltd., the same shall apply hereinafter) is used. As a result of obtaining the coefficient of variation and the proportion of electrically conductive particles present independently, the average value was 9.9 μm, the coefficient of variation was 0.21, and the proportion of electrically conductive particles present independently was 99.1%. It was. The area ratio of the conductive particles was 15.1%. The distance between the centers of the conductive particles is the length of the sides of the triangle formed by Deloni triangulation using the center point of each particle, and the conductive particles are observed using a high magnification lens (VH-Z100, manufactured by Keyence Corporation). , The same shall apply hereinafter) for particles within 0.35 mm 2 .

更に、異方性導電フィルムAをマイクロスコープ(高倍率レンズ使用)で観察した画像から画像処理ソフトを用いて、4個以上10個以下の導電粒子の集合体(特定導電粒子集合体)の頻度を求めた結果、88個/cmであった。一方、15個以上の導電粒子の集合体は、0.3個/cmの頻度であった。ここで、特定導電粒子集合体の頻度計算は、0.1cm以上の面積でかつ、特定導電粒子集合体が5個以上の頻度となる面積について行った。但し、観察面積が1cmに達しても、頻度が5個に達しない時は、観察面積が1cmの時の頻度を使用した。
また、15個以上の導電粒子の集合体については、2個以上の頻度となる面積について行った。但し、観察面積が1cmに達しても、頻度が2個に達しない時は、観察面積が1cmの時の頻度を使用した場合もある。
Furthermore, using an image processing software from an image obtained by observing the anisotropic conductive film A with a microscope (using a high-magnification lens), the frequency of an assembly of 4 to 10 conductive particles (specific conductive particle assembly) As a result, it was 88 pieces / cm 2 . On the other hand, the aggregate of 15 or more conductive particles had a frequency of 0.3 particles / cm 2 . Here, the frequency calculation of the specific conductive particle aggregates was performed for an area having an area of 0.1 cm 2 or more and a frequency of five or more specific conductive particle aggregates. However, even if the observation area reaches 1 cm 2, when the frequency does not reach five, the observation area using the frequency when the 1 cm 2.
Moreover, about the aggregate | assembly of 15 or more electroconductive particles, it carried out about the area used as the frequency of 2 or more. However, when the observation area reaches 1 cm 2 and the frequency does not reach two, the frequency when the observation area is 1 cm 2 may be used.

次に、20μm×100μmの金バンプがピッチ40μmで並んだ1.6mm×15mmのベアチップとベアチップに対応した接続ピッチを有するITO(Indium Tin Oxide)ガラス基板を準備し、ガラス基板のチップ実装位置に、導電粒子側がガラス基板面に来る様に異方性導電フィルムAを載せて、70℃、5Kg/cm、2秒間の条件で熱圧着し、ベアチップをフリップチップボンダー(東レエンジニアリング株式会社製FC2000、以下同じ)を用いて位置合わせをして、所定位置に仮付けした後、コンスタントヒートで2秒後に200℃に到達し、その後一定温度となる条件で30Kg/cm、10秒間加熱加圧し、ベアチップとITOガラス基板を接続した。 Next, a 1.6 mm × 15 mm bare chip in which gold bumps of 20 μm × 100 μm are arranged at a pitch of 40 μm and an ITO (Indium Tin Oxide) glass substrate having a connection pitch corresponding to the bare chip are prepared, and the chip mounting position of the glass substrate is prepared. The anisotropic conductive film A is placed so that the conductive particle side comes to the glass substrate surface, and thermocompression bonding is performed at 70 ° C., 5 kg / cm 2 for 2 seconds, and the bare chip is flip chip bonder (FC2000 manufactured by Toray Engineering Co., Ltd.). , The same is applied below), and after temporarily attaching to a predetermined position, the temperature reaches 200 ° C. after 2 seconds by constant heat, and then heated and pressurized at 30 Kg / cm 2 for 10 seconds under the condition of constant temperature. The bare chip and the ITO glass substrate were connected.

仮付け後と接続後の2回ベアチップとITOガラス基板間の状態を、マイクロスコープを用いて、倍率20倍(低倍率レンズ:VH−Z05使用)で、接続領域全体を観察した。結果、特定導電粒子集合体の配置パターンが変動しておらず、導電粒子の移動がほとんどないことが判った。この結果は、安定した接続が行われていることを示す。接続状態の確認性を評価するために、同様の接続を20個行った結果、20個全てにおいて、特定導電粒子集合体の配置パターンが変動していないことを確認でき、簡易な方法で接続状態の確認ができることが判った。   The state between the bare chip and the ITO glass substrate after the temporary attachment and the connection was observed with a microscope at a magnification of 20 (using a low magnification lens: VH-Z05) and the entire connection region. As a result, it was found that the arrangement pattern of the specific conductive particle aggregate was not changed, and there was almost no movement of the conductive particles. This result indicates that a stable connection is being made. In order to evaluate the confirmation of the connection state, as a result of performing 20 similar connections, it can be confirmed that the arrangement pattern of the specific conductive particle aggregates has not changed in all 20 connections, and the connection state can be achieved by a simple method. It was found that can be confirmed.

次に、接続したベアチップとITOガラス電極によって形成された64対のデイジーチェーン回路による導通抵抗測定と40対の櫛型電極による絶縁抵抗測定を行った結果、配線抵抗を含む導通抵抗は2.7kΩであり、64対の全ての電極が接続されていた。一方、絶縁抵抗は10Ω以上であり、40対の櫛型電極間でショートの発生がなかった。更に、温度85℃、相対湿度85%の環境下、櫛型電極部には10Vの直流電圧をかけて1000時間放置した後に、導通抵抗と絶縁抵抗を、同様に測定した結果、導通抵抗は2.9kΩ、絶縁抵抗は8.2×10Ωであり、接続信頼性、絶縁信頼性共に問題なく、ファインピッチ接続において有用であった。 Next, as a result of conducting conduction resistance measurement with 64 pairs of daisy chain circuits formed of connected bare chips and ITO glass electrodes and insulation resistance measurement with 40 pairs of comb-shaped electrodes, conduction resistance including wiring resistance is 2.7 kΩ. And all 64 pairs of electrodes were connected. On the other hand, the insulation resistance was 10 9 Ω or more, and no short circuit occurred between the 40 pairs of comb-shaped electrodes. Further, under the environment of a temperature of 85 ° C. and a relative humidity of 85%, the comb-shaped electrode portion was applied with a DC voltage of 10 V and left for 1000 hours, and then the conduction resistance and the insulation resistance were measured in the same manner. It was .9 kΩ and the insulation resistance was 8.2 × 10 8 Ω, and there was no problem in connection reliability and insulation reliability, and it was useful in fine pitch connection.

[実施例2,3、比較例1,2]
表面を粘着剤で被覆した導電粒子を表1に示す添加量で用いた以外は、実施例1と同様にして、異方性導電フィルムを作成し、評価した。得られた評価結果を表1に示す。
特定導電粒子集合体が100個/cmを超える比較例1,2は、1000時間後の絶縁抵抗が低かった。
[Examples 2 and 3, Comparative Examples 1 and 2]
An anisotropic conductive film was prepared and evaluated in the same manner as in Example 1 except that the conductive particles whose surfaces were coated with an adhesive were used in the addition amount shown in Table 1. The obtained evaluation results are shown in Table 1.
In Comparative Examples 1 and 2 in which the specific conductive particle aggregate exceeded 100 particles / cm 2 , the insulation resistance after 1000 hours was low.

[比較例3]
表面を粘着剤で被覆した導電粒子を用いなかった以外は、実施例1と同様にして、異方性導電フィルムを作成し、評価した。得られた評価結果を表1に示す。特定導電粒子集合体が5個未満の比較例3では、接続状態の簡易な確認は困難であった。
[Comparative Example 3]
An anisotropic conductive film was prepared and evaluated in the same manner as in Example 1 except that the conductive particles whose surfaces were coated with an adhesive were not used. The obtained evaluation results are shown in Table 1. In Comparative Example 3 in which the number of specific conductive particle aggregates was less than 5, it was difficult to easily confirm the connection state.

[実施例4〜6、比較例4]
表2に示す平均粒径の導電粒子を用い、粘着剤層を表2に示す厚みにした以外は実施例1と同様にして、異方性導電フィルムを作成し、評価した。得られた評価結果を表2に示す。
平均粒径が6μmを超える比較例4では、接続信頼性、絶縁信頼性共に低かった。
[Examples 4 to 6, Comparative Example 4]
An anisotropic conductive film was prepared and evaluated in the same manner as in Example 1 except that conductive particles having an average particle size shown in Table 2 were used and the pressure-sensitive adhesive layer was changed to the thickness shown in Table 2. The obtained evaluation results are shown in Table 2.
In Comparative Example 4 in which the average particle size exceeds 6 μm, both connection reliability and insulation reliability were low.

[実施例7]
金属マスクを通してエキシマレーザーを照射することにより、直径3μmの貫通孔を中心間距離の平均値が10.5μm、中心間距離の変動係数が0.05で開けて、かつ、1cm当たり7箇所は、1辺4.2μmの正六角形の頂点とその中心の7箇所に直径3μmの貫通孔が開いている領域のある、25μm厚のポリイミドフィルムを作成し、それを孔開きシート部品とする吸引治具を作成し、その吸引治具の全ての吸引孔に、実施例1で用いた導電粒子を吸引し、吸引孔以外の部分に付着した導電粒子をエアブローにより除去した。次に、実施例1で得られた絶縁性接着フィルムAの絶縁性接着フィルム1側を吸引治具の導電粒子を吸着している面に押し付け、吸引状態を解除し、絶縁性接着フィルムAを吸引治具から引き離すことで、導電粒子が絶縁性接着フィルムAに転写した。更に、導電粒子側に38μmのPETフィルムを載せて、65℃、0.5MPaの条件でラミネートを行い、異方性導電フィルムを得た。次に、実施例1と同様に評価した。得られた評価結果を表3に示す。
[Example 7]
By irradiating an excimer laser through a metal mask, 10.5 [mu] m is the average value of the distance between the centers of the through holes with a diameter of 3 [mu] m, opened coefficient of variation of the center-to-center distance is 0.05, and the 7 positions per 1 cm 2 Create a 25 μm thick polyimide film with a 3 μm diameter through-hole at the top of a regular hexagon with a side of 4.2 μm and 7 in its center, and use it as a perforated sheet component A tool was prepared, and the conductive particles used in Example 1 were sucked into all the suction holes of the suction jig, and the conductive particles adhering to portions other than the suction holes were removed by air blowing. Next, the insulating adhesive film 1 side of the insulating adhesive film A obtained in Example 1 is pressed against the surface of the suction jig that adsorbs the conductive particles, the suction state is released, and the insulating adhesive film A is removed. The conductive particles were transferred to the insulating adhesive film A by being separated from the suction jig. Further, a 38 μm PET film was placed on the conductive particle side and laminated under the conditions of 65 ° C. and 0.5 MPa to obtain an anisotropic conductive film. Next, it evaluated similarly to Example 1. FIG. The obtained evaluation results are shown in Table 3.

[実施例8]
実施例7で得た異方性導電フィルムを使用して、チップサイズが1cm角のベアチップとベアチップに対応した接続ピッチを有するITOガラス基板を用いて、実施例1と同様に評価した。得られた評価結果を表3に示す。
実施例7で得た異方性導電フィルムは、大面積のベアチップを使う場合は、接続状態確認性において問題なかった。
[Example 8]
Using the anisotropic conductive film obtained in Example 7, a chip size of 1 cm 2 square bare chip and an ITO glass substrate having a connection pitch corresponding to the bare chip were evaluated in the same manner as in Example 1. The obtained evaluation results are shown in Table 3.
The anisotropic conductive film obtained in Example 7 had no problem in connection state confirmation when a large-area bare chip was used.

[比較例5]
直径3μmの貫通孔が、1辺4.2μmの正六角形の頂点とその中心の7箇所に開いている領域を作らなかった以外は、実施例7と同様にして、異方性導電フィルムを作成し、実施例8と同様に評価した。得られた評価結果を表3に示す。比較例5で作成した異方性導電フィルムでは、接続状態の簡易な確認は困難であった。
[Comparative Example 5]
An anisotropic conductive film was prepared in the same manner as in Example 7, except that a through hole having a diameter of 3 μm did not form a regular hexagonal apex having a side of 4.2 μm and an open area at seven locations in the center thereof. Then, evaluation was made in the same manner as in Example 8. The obtained evaluation results are shown in Table 3. In the anisotropic conductive film prepared in Comparative Example 5, it was difficult to easily confirm the connection state.

[比較例6]
貫通孔を、中心間距離の平均値が11.5μm、中心間距離の変動係数が0.51となる様に開けて、かつ、直径3μmの貫通孔が1辺4.2μmの正六角形の頂点とその中心の7箇所に開いている領域の頻度を、1cm当たり85箇所にした以外は、実施例7と同様にして異方性導電フィルムを作成し、実施例1と同様にして評価した。得られた評価結果を表3に示す。比較例6で用いた異方性導電フィルムでは、導電粒子の中心間距離の変動係数が0.5を超えるため、接続信頼性、絶縁信頼性共に、低かった。
[Comparative Example 6]
Perforated holes are opened so that the average value of the center-to-center distance is 11.5 μm and the coefficient of variation of the center-to-center distance is 0.51. An anisotropic conductive film was prepared in the same manner as in Example 7 except that the frequency of the open area at 7 places in the center was 85 places per 1 cm 2 and evaluated in the same manner as in Example 1. . The obtained evaluation results are shown in Table 3. In the anisotropic conductive film used in Comparative Example 6, since the coefficient of variation of the center-to-center distance of the conductive particles exceeded 0.5, both connection reliability and insulation reliability were low.

[比較例7]
実施例1で用いた平均粒径4μmの導電粒子(積水化学社製、商品名:ミクロパールAU)を、帯電させた後気流と共に飛散させ、実施例1で用いた絶縁性接着フィルム1の表面に付着させ、その上に、50μmPET製のカバーフィルムを被せてロールで導電粒子を絶縁性接着剤中に埋め込んだ後、カバーフィルムを剥離し、異方性導電フィルムを得た。この異方性導電フィルムをマイクロスコープで観察し、得られた画像から、画像処理ソフトを用いて、導電粒子の中心間距離の平均値およびその変動係数を求めた結果、平均値が9.7μm、変動係数が0.61であった。
結果、接続信頼性、絶縁信頼性共に低かった。
[Comparative Example 7]
The electrically conductive particles having an average particle diameter of 4 μm used in Example 1 (trade name: Micropearl AU, manufactured by Sekisui Chemical Co., Ltd.) are charged and then scattered with an air flow, and the surface of the insulating adhesive film 1 used in Example 1 is used. Then, a cover film made of 50 μm PET was placed thereon and the conductive particles were embedded in the insulating adhesive with a roll, and then the cover film was peeled off to obtain an anisotropic conductive film. The anisotropic conductive film was observed with a microscope, and the average value of the distance between the centers of the conductive particles and the coefficient of variation thereof were obtained from the obtained image using image processing software. As a result, the average value was 9.7 μm. The coefficient of variation was 0.61.
As a result, both connection reliability and insulation reliability were low.

Figure 0005147049
Figure 0005147049

Figure 0005147049
Figure 0005147049

Figure 0005147049
Figure 0005147049

本発明の異方性導電フィルムは、微細面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)を起こしにくく、長期に渡り接続安定性を保持できると共に、接続時の導電粒子の移動具合を簡便に確認できて、接続時の品質管理の簡便性に優れており、微細パターンの電気的接続用途において好適に利用できる。   The anisotropic conductive film of the present invention is excellent in electrical connectivity of electrodes having a small area, hardly causes dielectric breakdown (short) between fine wirings, can maintain connection stability for a long time, Thus, the state of movement of the conductive particles can be easily confirmed, and the quality control at the time of connection is excellent, and it can be suitably used for electrical connection of fine patterns.

Claims (2)

平均粒径が0.5μm以上6μm以下の導電粒子がその平均粒径よりも大きい厚さの絶縁性接着フィルムの表面層に、単層として配置された異方性導電フィルムにおいて、導電粒子の中心間距離の変動係数が0.5以下であって、導電粒子の90%以上が独立に存在し、4個以上10個以下の導電粒子の集合体を1cm当たり5個以上100個以下の頻度で有し、前記導電粒子の中心間距離の平均が2μm以上15μm以下であり、かつ、15個以上の導電粒子の集合体の頻度が1cm 当たり1個未満である異方性導電フィルム。 In an anisotropic conductive film in which conductive particles having an average particle size of 0.5 μm or more and 6 μm or less are arranged as a single layer on the surface layer of an insulating adhesive film having a thickness larger than the average particle size, the center of the conductive particles The coefficient of variation of the inter-distance is 0.5 or less, 90% or more of the conductive particles exist independently, and the frequency of 4 to 10 conductive particles is 5 to 100 per 1 cm 2. in Yes, and the average distance between the centers of the conductive particles is at 2μm or more 15μm or less, and 15 or more conductive anisotropic conductive film frequency Ru less than one der per 1 cm 2 of the aggregation of particles. 請求項に記載の異方性導電フィルムを用いて、相互に対向する端子を有する回路基板と回路部材を接続して得られる接続構造体。 A connection structure obtained by connecting a circuit board having terminals facing each other and a circuit member using the anisotropic conductive film according to claim 1 .
JP2007192856A 2007-07-25 2007-07-25 Anisotropic conductive film Active JP5147049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192856A JP5147049B2 (en) 2007-07-25 2007-07-25 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192856A JP5147049B2 (en) 2007-07-25 2007-07-25 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2009029862A JP2009029862A (en) 2009-02-12
JP5147049B2 true JP5147049B2 (en) 2013-02-20

Family

ID=40400733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192856A Active JP5147049B2 (en) 2007-07-25 2007-07-25 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP5147049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10827625B2 (en) 2015-11-26 2020-11-03 Dexerials Corporation Anisotropic conductive film

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802214B2 (en) 2005-06-13 2014-08-12 Trillion Science, Inc. Non-random array anisotropic conductive film (ACF) and manufacturing processes
JP5410387B2 (en) * 2010-08-31 2014-02-05 デクセリアルズ株式会社 Conductive particles, method for producing the same, anisotropic conductive film, joined body, and connection method
US9102851B2 (en) 2011-09-15 2015-08-11 Trillion Science, Inc. Microcavity carrier belt and method of manufacture
US9475963B2 (en) 2011-09-15 2016-10-25 Trillion Science, Inc. Fixed array ACFs with multi-tier partially embedded particle morphology and their manufacturing processes
JP7119288B2 (en) * 2016-05-05 2022-08-17 デクセリアルズ株式会社 filler placement film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249922A (en) * 1995-10-31 1996-09-27 Hitachi Chem Co Ltd Coated particle
JP4572562B2 (en) * 2004-04-01 2010-11-04 住友電気工業株式会社 Film adhesive
JP2006049783A (en) * 2004-06-29 2006-02-16 Yuji Suda Manufacturing method and electrode connection method for anisotropic conductive adhesive film
JP4925405B2 (en) * 2005-10-03 2012-04-25 旭化成イーマテリアルズ株式会社 Method for manufacturing connection structure
JP4684087B2 (en) * 2005-11-21 2011-05-18 旭化成イーマテリアルズ株式会社 Connected structure
JP4994653B2 (en) * 2005-12-12 2012-08-08 旭化成イーマテリアルズ株式会社 Anisotropic conductive adhesive sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10827625B2 (en) 2015-11-26 2020-11-03 Dexerials Corporation Anisotropic conductive film

Also Published As

Publication number Publication date
JP2009029862A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5147048B2 (en) Anisotropic conductive film
KR101115271B1 (en) Electroconductive particle placement sheet and anisotropic electroconductive film
JP4789738B2 (en) Anisotropic conductive film
JP2006233203A (en) Anisotropically electroconductive adhesive film
JP2007217503A (en) Anisotropically electroconductive adhesive film
JP5147049B2 (en) Anisotropic conductive film
JPWO2007058142A1 (en) Method for manufacturing a circuit board on which electronic components are mounted
JP5099987B2 (en) Circuit connection method and connection structure
JP2007009176A (en) Anisotropically electroconductive adhesive film
JP5581605B2 (en) Method for producing anisotropic conductive adhesive film
JP2016031888A (en) Method for manufacturing anisotropic conductive film and connection structure
JP4936775B2 (en) Conductive particle connection structure
JP4684087B2 (en) Connected structure
JP2006233202A (en) Anisotropically electroconductive adhesive film for circuit connection
JP4657047B2 (en) Connecting member
JP2013214417A (en) Circuit connection material, circuit connection material structure and manufacturing method of circuit connection material structure
JP2006233200A (en) Anisotropically electroconductive adhesive film
JP2011175846A (en) Circuit member connecting adhesive film, and circuit member connecting structure and method of manufacturing the same
JP4953685B2 (en) Connecting material
JP4703306B2 (en) Conductive particle connection structure
JP6900741B2 (en) Growing method of anisotropic conductive film, connection structure and connection structure
JP5202662B2 (en) Circuit connection film
JP5682720B2 (en) Anisotropic conductive adhesive film and manufacturing method thereof
JP6705516B2 (en) Method for producing anisotropically conductive film
JP2008130588A (en) Electronic device substrate with adhesive composition for semiconductor, electronic device system employing the same, and manufacturing method of the electronic device system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5147049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250