JP2007027308A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007027308A
JP2007027308A JP2005205471A JP2005205471A JP2007027308A JP 2007027308 A JP2007027308 A JP 2007027308A JP 2005205471 A JP2005205471 A JP 2005205471A JP 2005205471 A JP2005205471 A JP 2005205471A JP 2007027308 A JP2007027308 A JP 2007027308A
Authority
JP
Japan
Prior art keywords
area
semiconductor chip
electrode
solder
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005205471A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
岳志 藤井
Yoshinari Ikeda
良成 池田
Katsuhiko Yoshihara
克彦 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005205471A priority Critical patent/JP2007027308A/en
Publication of JP2007027308A publication Critical patent/JP2007027308A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which can radiate heat even from the periphery of a semiconductor chip. <P>SOLUTION: An anode area 4 is formed in the surface layer of a semiconductor substrate 3, an insulating film 6 is formed around the outer periphery of the semiconductor substrate 3, and then an anode electrode 7 having a hood 7a is formed on the anode area 4 and the insulating film 6. The anode electrode 7 including the hood 7a is joined with a metal 1 with a first solder layer 9 in-between. The area S3 of the metal 1 is made larger than that S1 of the anode area 4, and smaller than the anode electrode 7. Thus, heat can be radiated even from the outer periphery of the semiconductor chip, and an appropriate solder filet can be also made, resulting in enhancing joint strength by solder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ダイオードやIGBT(絶縁ゲート型バイポーラトランジスタ)などの半導体装置に関する。   The present invention relates to a semiconductor device such as a diode or an IGBT (Insulated Gate Bipolar Transistor).

従来、半導体チップを収納したパッケージの外部取り出し電極(外部導出端子)と、半導体チップとの接続にはアルミ線や金線によるワイヤボンディングが多用されてきた。
パワー半導体モジュールにおいては、半導体チップの裏面側の主電極(裏面電極)は、はんだなどのろう材で支持基板に固着され、一方、半導体チップの表面側の主電極(表面電極)やゲート電極パッドは、アルミワイヤや金ワイヤによるワイヤボンディングでパッケージの外部取り出し電極と接続する。チップサイズが大きくなると半導体チップの表面側の主電極と接続するこのワイヤの本数が増加し、主電極とワイヤとの接続箇所での耐ヒートサイクル性や耐パワーサイクル性の低下が懸念される。また近年、より高温環境での使用などに耐えるように、半導体装置にはさらなる高い信頼性が要求されるようになってきた。
Conventionally, wire bonding using an aluminum wire or a gold wire has been frequently used for connection between an external extraction electrode (external lead-out terminal) of a package containing a semiconductor chip and the semiconductor chip.
In a power semiconductor module, a main electrode (back electrode) on the back side of a semiconductor chip is fixed to a support substrate with a brazing material such as solder, while a main electrode (surface electrode) or gate electrode pad on the front side of the semiconductor chip. Is connected to an external extraction electrode of the package by wire bonding using aluminum wire or gold wire. As the chip size increases, the number of wires connected to the main electrode on the surface side of the semiconductor chip increases, and there is a concern that heat cycle resistance and power cycle resistance may be reduced at the connection point between the main electrode and the wire. In recent years, semiconductor devices have been required to have higher reliability to withstand use in higher temperature environments.

パッケージとしての信頼性向上を考慮し、ワイヤボンディングに変わる方法として銅箔やアルミ箔などの金属箔が接続導体として用いられる。これにより半導体チップの主電極と接続導体の接合面積を増加させ、接合部での温度上昇を抑制して、耐ヒートサイクル性や耐パワーサイクル性の向上が図られ、さらに、この金属箔を用いることにより、抵抗やインダクタンスの低減などによる素子特性の向上も同時に図られている。
図5は、従来の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。また、図6は、図5(b)のC部拡大図である。この半導体装置はダイオードである。
半導体チップ52の裏面側からだけでなく、半導体チップ52の表面側の主電極であるアノード電極57に、この数μmのアノード電極57の厚さよりはるかに厚い数百μm〜数mmのオーダの金属部品51を固着することで、半導体チップ52の表面側からも放熱できる場合を示している。
Considering improvement of reliability as a package, a metal foil such as a copper foil or an aluminum foil is used as a connection conductor as a method instead of wire bonding. This increases the bonding area between the main electrode of the semiconductor chip and the connection conductor, suppresses the temperature rise at the bonding portion, and improves heat cycle resistance and power cycle resistance, and further uses this metal foil. As a result, the device characteristics are improved at the same time by reducing resistance and inductance.
5A and 5B are configuration diagrams of a conventional semiconductor device, in which FIG. 5A is a plan view of the main part, and FIG. 5B is a cross-sectional view of the main part taken along line XX in FIG. . FIG. 6 is an enlarged view of a portion C in FIG. This semiconductor device is a diode.
Not only from the back surface side of the semiconductor chip 52 but also to the anode electrode 57 which is the main electrode on the front surface side of the semiconductor chip 52, a metal on the order of several hundred μm to several mm which is much thicker than the thickness of the anode electrode 57 of several μm. The case where heat can be radiated also from the surface side of the semiconductor chip 52 by fixing the component 51 is shown.

通常、表面側のアノード電極57の周辺には、耐圧を維持するためのガードリング55のような耐圧構造72が配置される。アノード電極57と金属部品51との固着ははんだ材を供給して形成される第1はんだ層59で行われる。また耐圧構造72箇所は絶縁膜56やポリイミド樹脂などの保護膜61で覆われているので、この箇所でははんだの濡れ性がよくなく、はんだは広がらない。
半導体チップ52は、通電するとエネルギー損失を発生し発熱する。この主な発熱箇所は活性領域71であるアノード領域54であり、パッケージはこの発熱を外部に効率よく放熱できるように設計される。
図6に示すように、アノード電極57はアノード領域54に接続され、アノード領域54の周囲は耐圧構造72で囲まれ、この耐圧構造72の表面は絶縁膜56で被覆されている。アノード領域54上に形成されるアノード電極57の端部はウエハプロセスや耐圧特性を考慮して、絶縁膜56に乗り上げている。半導体チップ52において、アノード領域54が垂直投影された領域がダイオードの活性領域71となり、主な発熱箇所となる。この半導体装置においては、金属部品1の面積S5は活性領域71(アノード領域54)の面積S4より小さい。勿論、アノード電極57より小さい。
Usually, a breakdown voltage structure 72 such as a guard ring 55 for maintaining a breakdown voltage is disposed around the anode electrode 57 on the surface side. The anode electrode 57 and the metal part 51 are fixed to each other by a first solder layer 59 formed by supplying a solder material. In addition, since the 72 pressure-resistant structures are covered with a protective film 61 such as an insulating film 56 or a polyimide resin, solder wettability is not good at this location and the solder does not spread.
When energized, the semiconductor chip 52 generates energy loss and generates heat. This main heat generation location is the anode region 54 which is the active region 71, and the package is designed so that this heat generation can be efficiently radiated to the outside.
As shown in FIG. 6, the anode electrode 57 is connected to the anode region 54, the periphery of the anode region 54 is surrounded by a breakdown voltage structure 72, and the surface of the breakdown voltage structure 72 is covered with an insulating film 56. The end portion of the anode electrode 57 formed on the anode region 54 runs over the insulating film 56 in consideration of the wafer process and the breakdown voltage characteristics. In the semiconductor chip 52, a region in which the anode region 54 is vertically projected becomes an active region 71 of the diode, which is a main heat generation portion. In this semiconductor device, the area S5 of the metal component 1 is smaller than the area S4 of the active region 71 (anode region 54). Of course, it is smaller than the anode electrode 57.

尚、図中の53は半導体基板、60ははんだのフィレット、65は支持基板、66は支持基板65と半導体チップ52の裏面を固着する第2はんだ層である。
このように、半導体チップでの発熱を効率よく放散するため、半導体チップの裏面側からだけでなく、表面側からも放熱を図るため、半導体チップの表面側の主電極に、厚い導体(金属部品)を固着した半導体装置として、例えば特許文献1に記載のものがある。
また、IGBTにおいて、耐圧構造およびゲート電極のそれぞれとエミッタ電極の間に絶縁シートを貼着し、絶縁シートで囲まれたエミッタ電極やゲート電極とはんだを介して銅配線を固着することで、耐圧構造と銅配線との絶縁性、エミッタ電極とゲート電極の間の絶縁性を良好に確保できることが開示されている(例えば、特許文献2)。
特開2001−332664号公報 特開2003−218306号公報
In the figure, 53 is a semiconductor substrate, 60 is a solder fillet, 65 is a support substrate, and 66 is a second solder layer for fixing the support substrate 65 and the back surface of the semiconductor chip 52.
In this way, in order to efficiently dissipate heat generated in the semiconductor chip, heat is dissipated not only from the back surface side of the semiconductor chip but also from the front surface side. For example, there is a semiconductor device described in Patent Document 1 as a semiconductor device to which is fixed.
Also, in an IGBT, an insulating sheet is bonded between each of the withstand voltage structure and the gate electrode and the emitter electrode, and the emitter electrode and gate electrode surrounded by the insulating sheet are bonded to the copper wiring via the solder, whereby the withstand voltage It is disclosed that the insulation between the structure and the copper wiring and the insulation between the emitter electrode and the gate electrode can be ensured satisfactorily (for example, Patent Document 2).
JP 2001-332664 A JP 2003-218306 A

しかし、図5および図6に示すように、半導体チップ52の裏面側の放熱は、半導体チップ52の裏面全面から第2はんだ層66および支持基板65を通して行われる。これに対し、表面側からの放熱は、金属部品51を通して行われる。金属部品51は半導体チップ52の活性領域71の面積より小さいため、金属部品51から外れた半導体チップ52の外周部で発生した熱は十分放散できない。
また、前記の特許文献1では、金属部品である導体とはんだを介して接続する主電極であるエミッタ電極が複数個ある場合であり、主電極が単一の場合についての説明はない。また、主電極の大きさと金属部品である導体の大きさの関係についても説明されていない。
また、前記の特許文献2では、エミッタ電極とゲート電極パッドの間に形成された絶縁シートでエミッタ電極とゲート電極パッドの間を絶縁することは記載されているが、放熱に関する説明がなく、また、エミッタ電極の大きさと銅配線の大きさの関係についても説明がない。
However, as shown in FIGS. 5 and 6, heat dissipation on the back surface side of the semiconductor chip 52 is performed from the entire back surface of the semiconductor chip 52 through the second solder layer 66 and the support substrate 65. On the other hand, heat dissipation from the surface side is performed through the metal component 51. Since the metal component 51 is smaller than the area of the active region 71 of the semiconductor chip 52, heat generated at the outer periphery of the semiconductor chip 52 that is out of the metal component 51 cannot be sufficiently dissipated.
Moreover, in the said patent document 1, it is a case where there are several emitter electrodes which are the main electrodes connected with the conductor which is a metal component via solder, and there is no description about the case where there is a single main electrode. Further, the relationship between the size of the main electrode and the size of the conductor which is a metal part is not described.
In addition, the above-mentioned Patent Document 2 describes that the insulating sheet formed between the emitter electrode and the gate electrode pad is insulated between the emitter electrode and the gate electrode pad, but there is no explanation about heat dissipation, There is no description about the relationship between the size of the emitter electrode and the size of the copper wiring.

この発明の目的は、前記の課題を解決して、半導体チップの外周部も含めて放熱できる半導体装置を提供することにある。   An object of the present invention is to solve the above-described problems and provide a semiconductor device that can dissipate heat including the outer periphery of a semiconductor chip.

前記の目的を達成するために、半導体チップと、該半導体チップの第1主面上に該半導体チップの活性領域を取り囲んで形成される絶縁膜と、前記活性領域上から前記第1絶縁膜上に延在するひさし部を有する第1主電極と、前記半導体チップの第2主面側に形成される第2主電極と、前記ひさし部を含む前記第1主電極とはんだを介して固着される導体(ヒートスプレッダーもしくはリードフレームの半導体チップ搭載台など)と、を有する半導体装置であって、前記はんだが接触する側の前記導体の平坦面の面積が、前記活性領域の面積より大きく前記ひさし部を含む第1主電極の面積より小さい構成とする。
また、前記半導体チップの前記第1主面上に該第1主電極と離して形成される制御電極を有する構成とする。
また、良好なはんだのフィレットを形成するために、前記ひさし部の幅を前記はんだの厚さより大きくするとよい。
To achieve the above object, a semiconductor chip, an insulating film formed on the first main surface of the semiconductor chip so as to surround the active region of the semiconductor chip, and the first insulating film from the active region to the first insulating film A first main electrode having an eaves portion extending to the second main electrode, a second main electrode formed on the second main surface side of the semiconductor chip, and the first main electrode including the eaves portion fixed to the first main electrode via solder. A conductor (a heat spreader or a semiconductor chip mounting table of a lead frame), wherein the area of the flat surface of the conductor on the side in contact with the solder is larger than the area of the active region. The configuration is smaller than the area of the first main electrode including the portion.
The semiconductor chip has a control electrode formed on the first main surface of the semiconductor chip so as to be separated from the first main electrode.
Moreover, in order to form a good solder fillet, the width of the eaves portion is preferably made larger than the thickness of the solder.

この発明によると、金属部品の面積を半導体チップの活性領域の面積より大きくし、半導体チップの主電極の面積より小さくすることで、はんだ層を介して金属部品と主電極を良好に固着でき、半導体チップの外周部も含めて効率よく放熱することができる。
半導体チップの外周部も含めて効率よく放熱することができることで、放熱効率の高い半導体装置を提供することができる。
According to the present invention, the area of the metal component is larger than the area of the active region of the semiconductor chip and smaller than the area of the main electrode of the semiconductor chip, so that the metal component and the main electrode can be satisfactorily fixed via the solder layer, Heat can be efficiently radiated including the outer periphery of the semiconductor chip.
Since heat can be efficiently radiated including the outer peripheral portion of the semiconductor chip, a semiconductor device with high heat dissipation efficiency can be provided.

実施の形態については、つぎの実施例で説明する。   Embodiments will be described in the following examples.

図1は、この発明の第1実施例の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。この半導体装置はダイオードの場合である。
半導体基板3の表面層にアノード領域4を形成し、半導体基板3の外周部に耐圧構造22を構成する絶縁膜6を形成し、アノード領域4上と絶縁膜6上にひさし部7aを有するアノード電極7を形成する。ひさし部7aは絶縁膜6上に張り出したアノード電極7である。アノード電極7と金属部品1を第1はんだ層9を介して固着する。第1はんだ層9の上部は金属部品1の裏面全面と固着し、第1はんだ層9の下部はアノード電極7のほぼ全面と固着する。半導体基板3の裏面側には図示しないカソード領域とこのカソード領域と接続するカソード電極が形成され、このカソード電極と、配線パターンが形成されたセラミックス基板などの支持基板15は第2はんだ層16を介して固着する。前記のアノード領域4を垂直投影した箇所が活性領域21であり、この活性領域21を取り囲む半導体基板2の外周部が耐圧構造22である。前記の第1はんだ層9と前記の第2はんだ層16による固着はリフロー炉を用いて同時に行われる。また、はんだの塗布方法としては、金属マスクを用いてはんだペーストを所定の範囲に塗布する方法や半導体チップ2の表面にディスペンサーを用いて部分的に塗布する方法がある。
FIG. 1 is a block diagram of a semiconductor device according to a first embodiment of the present invention. FIG. 1 (a) is a plan view of an essential part, and FIG. 1 (b) is cut along line XX in FIG. It is principal part sectional drawing. This semiconductor device is a diode.
An anode region 4 is formed on the surface layer of the semiconductor substrate 3, an insulating film 6 constituting the pressure-resistant structure 22 is formed on the outer periphery of the semiconductor substrate 3, and an anode having eaves 7 a on the anode region 4 and the insulating film 6. The electrode 7 is formed. The eaves portion 7 a is an anode electrode 7 that projects on the insulating film 6. The anode electrode 7 and the metal part 1 are fixed via the first solder layer 9. The upper part of the first solder layer 9 is fixed to the entire back surface of the metal part 1, and the lower part of the first solder layer 9 is fixed to almost the entire surface of the anode electrode 7. A cathode region (not shown) and a cathode electrode connected to the cathode region are formed on the back surface side of the semiconductor substrate 3, and this cathode electrode and a support substrate 15 such as a ceramic substrate on which a wiring pattern is formed have a second solder layer 16. It sticks through. A portion obtained by vertically projecting the anode region 4 is an active region 21, and an outer peripheral portion of the semiconductor substrate 2 surrounding the active region 21 is a breakdown voltage structure 22. The fixing by the first solder layer 9 and the second solder layer 16 is performed simultaneously using a reflow furnace. Also, as a solder application method, there are a method in which a solder paste is applied in a predetermined range using a metal mask, and a method in which the solder paste is partially applied to the surface of the semiconductor chip 2 using a dispenser.

前記の金属部品1は、熱を伝導・拡散するための四角形の厚い導電ブロックの冷却体であるヒートスプレッダーまたはチップと固着するリードフレームなどの導体である。この金属部品1とパッケージの外部引き出し導体との接続は図示しないワイヤや接続導体などで行う。
また、前記のアノード電極7は一般的なアルミ系電極の表面に、はんだの接合性(密着性や濡れ性)を考慮して、図示しないシード層としてニッケル膜や金膜が形成される。これらの膜は、主に無電解メッキで形成されるが、電解メッキ、スッパタリングまたは蒸着などで形成しても良い。
後述の図2で示すように、前記の金属部品1の面積S3(第1はんだ層9と接触する側の平坦面の面積)を、前記の活性領域21(アノード領域4)の面積S1より大きく、前記のひさし部7aを含むアノード電極7の面積S2より小さくする。
The metal component 1 is a conductor such as a heat spreader which is a cooling body of a rectangular thick conductive block for conducting and diffusing heat, or a lead frame fixed to a chip. The metal part 1 and the external lead conductor of the package are connected by a wire or a connection conductor (not shown).
The anode electrode 7 is formed with a nickel film or a gold film as a seed layer (not shown) on the surface of a general aluminum-based electrode in consideration of solder bonding (adhesion and wettability). These films are mainly formed by electroless plating, but may be formed by electrolytic plating, sputtering or vapor deposition.
As shown in FIG. 2 described later, the area S3 of the metal component 1 (the area of the flat surface on the side in contact with the first solder layer 9) is larger than the area S1 of the active region 21 (anode region 4). The area S2 of the anode electrode 7 including the eaves 7a is made smaller.

図2は、図1(b)のA部拡大図である。耐圧構造22の箇所では、半導体基板3の表面層にガードリング5が形成され、表面は絶縁膜6で被覆され、開口部を介してガードリング5と金属膜8が接続している。また、絶縁膜6上に保護膜としてポリイミド膜11を被覆する場合もある。
前記したように、耐圧構造22の絶縁層6の上に張り出すように、半導体チップ2のアノード電極7をひさし状(ひさし部7a)に形成し、このアノード電極7の面積S2を半導体チップ2の活性領域21の面積S1より大きくする。金属部品1の面積S3(平坦部の面積)を半導体チップ2の活性領域21の面積S1より大きくし、絶縁層6上に張り出すように形成されたアノード電極7の面積S2より小さくする。この金属部品1とアノード電極7をはんだ層9を介して固着する。
FIG. 2 is an enlarged view of a portion A in FIG. A guard ring 5 is formed on the surface layer of the semiconductor substrate 3 at the location of the breakdown voltage structure 22, the surface is covered with an insulating film 6, and the guard ring 5 and the metal film 8 are connected via an opening. Further, the polyimide film 11 may be coated on the insulating film 6 as a protective film.
As described above, the anode electrode 7 of the semiconductor chip 2 is formed in an elongate shape (elongation portion 7a) so as to overhang the insulating layer 6 of the pressure-resistant structure 22, and the area S2 of the anode electrode 7 is defined as the semiconductor chip 2. The area S1 of the active region 21 is made larger. The area S3 (area of the flat part) of the metal part 1 is made larger than the area S1 of the active region 21 of the semiconductor chip 2 and made smaller than the area S2 of the anode electrode 7 formed so as to protrude on the insulating layer 6. The metal part 1 and the anode electrode 7 are fixed through the solder layer 9.

このように、主な発熱箇所である活性領域21(アノード領域4)の面積S1より広い面積(S3)の金属部品1が固着されることにより、半導体チップ2の外周部も含めて金属部品1を介して効率よく放熱することができる。
信頼性特性を考慮し金属部品1周辺にフィレット10を形成する場合、例えば45°の傾斜をもつ第1はんだ層9のフィレット10を金属部品1の周辺に形成しようとすると、フィレット10高さ程度の濡れ広がりの余裕をもった幅を、アノード電極7のひさし部7aに持たせれば良好なフィレット10を形成できる。これは、金属部品1の面積S3にひさし部7aの面積を足した面積になるようにアノード電極7の面積S2を決めるとよい。つまり、金属部品1の面積S3よりアノード電極7の面積S2を大きくする。
例えば高さ200μmのフィレット10を形成するような場合、金属部品1の端から200μm以上の余裕をもたせ、アノード電極7のひさし部7aの幅Wを決定すれば良好なフィレット10が得られ、第1はんだ層9による固着が強化されて接合信頼性を向上させることができる。つまり、第1はんだ層9の厚さTよりひさし部7aの幅Wを大きくするとよい。
As described above, the metal component 1 having an area (S3) wider than the area S1 of the active region 21 (anode region 4), which is the main heat generation location, is fixed, so that the metal component 1 including the outer peripheral portion of the semiconductor chip 2 is also included. It is possible to efficiently dissipate heat through the.
When the fillet 10 is formed around the metal part 1 in consideration of reliability characteristics, for example, if the fillet 10 of the first solder layer 9 having an inclination of 45 ° is formed around the metal part 1, the height of the fillet 10 is about A good fillet 10 can be formed if the eaves 7a of the anode electrode 7 has a width with a margin for the spread of wetting. It is preferable that the area S2 of the anode electrode 7 is determined so as to be an area obtained by adding the area of the eaves portion 7a to the area S3 of the metal part 1. That is, the area S2 of the anode electrode 7 is made larger than the area S3 of the metal part 1.
For example, when forming a fillet 10 having a height of 200 μm, a good fillet 10 can be obtained by providing a margin of 200 μm or more from the end of the metal part 1 and determining the width W of the eaves portion 7 a of the anode electrode 7. Adhesion by one solder layer 9 is strengthened, and joint reliability can be improved. That is, the width W of the eaves part 7 a is preferably larger than the thickness T of the first solder layer 9.

逆に、フィレット10形成をあまり考慮しないのであれば、ひさし状部7aの幅Wは広く取る必要はない。この場合でも金属部品1の面積S3を、アノード領域4の面積S1より大きく、アノード電極7の面積S2より小さくする。
一般的に絶縁膜6は厚さが数μm程度であり、アノード電極7の表面はこれに対応した段差が形成される。しかし、固着部分の信頼性を確保するには、第1はんだ層9の厚さは50μmから100μm以上を必要とするようになり、アノード電極7の表面の数μm程度の段差により第1はんだ層9の密着性が低下するなどの問題は発生しない。
アノード電極7のひさし部7aの端付近から、絶縁膜6(耐圧構造22)にかけてポリイミド膜11などでコーティングすることにより、第1はんだ層9の絶縁膜6への濡れ広がりを抑制することができる。
On the contrary, if the fillet 10 formation is not considered much, the width W of the eaves-like portion 7a does not need to be wide. Even in this case, the area S3 of the metal component 1 is larger than the area S1 of the anode region 4 and smaller than the area S2 of the anode electrode 7.
In general, the insulating film 6 has a thickness of about several μm, and a step corresponding to this is formed on the surface of the anode electrode 7. However, in order to ensure the reliability of the fixed portion, the thickness of the first solder layer 9 needs to be 50 μm to 100 μm or more, and the first solder layer is formed by a step of about several μm on the surface of the anode electrode 7. No problems such as a decrease in the adhesion of 9 occur.
By coating with the polyimide film 11 or the like from the vicinity of the end of the eaves portion 7a of the anode electrode 7 to the insulating film 6 (withstand voltage structure 22), wetting and spreading of the first solder layer 9 to the insulating film 6 can be suppressed. .

このように、金属部品1の面積S3(平坦部の面積)を半導体チップ2の活性領域21の面積S1より大きくし、ひさし部7aを有するアノード電極7の面積S2より小さくすることで、第1はんだ層9を介して金属部品1とアノード電極7を良好に固着でき、半導体チップ2の外周部も含めて効率よく放熱することができる。例えば、第1はんだ層9の厚さが50μm〜100μmの場合、ひさし部7aの幅を50μm〜100μmとすることで、第1はんだ層9のフィレット10を良好にすることができる。フィレット10を良好にすることで、金属部品1と半導体チップ2の接着強度が増強され、接合信頼性を向上させることができる。   As described above, the area S3 (the area of the flat portion) of the metal component 1 is made larger than the area S1 of the active region 21 of the semiconductor chip 2 and smaller than the area S2 of the anode electrode 7 having the eaves portion 7a. The metal component 1 and the anode electrode 7 can be satisfactorily fixed via the solder layer 9 and heat can be efficiently radiated including the outer peripheral portion of the semiconductor chip 2. For example, when the thickness of the first solder layer 9 is 50 μm to 100 μm, the fillet 10 of the first solder layer 9 can be improved by setting the width of the eaves part 7 a to 50 μm to 100 μm. By making the fillet 10 good, the adhesive strength between the metal component 1 and the semiconductor chip 2 is enhanced, and the bonding reliability can be improved.

図3は、この発明の第2実施例の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。
また、図4は、図3(b)のB部拡大図である。この半導体装置は、ゲート電極を有する半導体装置であり、ここではIGBTを例に挙げた。
金属部品31にはゲート電極パッド40を避けるように切り込みが形成されている。このゲート電極40の周辺もフィレット10が形成される程度、分離層6a上に乗り上げるエミッタ電極3のひさし部37bを形成しておく。分離層6aはウェル領域34とゲート電極パッド40の間の絶縁を確保するために形成した絶縁膜である。
第1実施例と同様に、フィレット10の形成をあまり考慮しないのであれば、ひさし部37aの幅は広く取る必要はない。前記の金属部品31の面積S3(平坦部の面積)を活性領域21の面積S1より大きくエミッタ電極37の面積S2より小さくする。
FIG. 3 is a block diagram of a semiconductor device according to a second embodiment of the present invention. FIG. 3 (a) is a plan view of an essential part, and FIG. 3 (b) is cut along line XX in FIG. 3 (a). It is principal part sectional drawing.
FIG. 4 is an enlarged view of a portion B in FIG. This semiconductor device is a semiconductor device having a gate electrode, and an IGBT is taken as an example here.
A cut is formed in the metal part 31 so as to avoid the gate electrode pad 40. An eaves portion 37b of the emitter electrode 3 that runs on the separation layer 6a is formed to the extent that the fillet 10 is also formed around the gate electrode 40. The isolation layer 6 a is an insulating film formed to ensure insulation between the well region 34 and the gate electrode pad 40.
Similar to the first embodiment, if the formation of the fillet 10 is not considered much, the eaves portion 37a does not need to be wide. The area S3 (the area of the flat portion) of the metal part 31 is made larger than the area S1 of the active region 21 and smaller than the area S2 of the emitter electrode 37.

一般的に絶縁膜6と分離層6aの厚さは数μm程度であり、エミッタ電極37の表面にこれに対応した段差が形成される。しかし、固着部分の信頼性を確保するには、第1はんだ層9の厚さは50μmから100μm以上を必要とするようになり、エミッタ電極37の表面の数μmの段差は前記したいように問題とならない。
エミッタ電極37のひさし部37a、37bの端付近から、絶縁膜6および分離層6aの露出部をポリイミド膜42などでコーティングすることにより、はんだの濡れ広がりを抑制することができる。
このように、主発熱部分である活性領域21(最外周のウェル領域34で囲まれた領域)より広い面積で金属部品31を固着するこにより、半導体チップ32の外周部を含めて金属部品31を介して効率よく放熱することができる。
In general, the thickness of the insulating film 6 and the separation layer 6 a is about several μm, and a step corresponding to the thickness is formed on the surface of the emitter electrode 37. However, in order to ensure the reliability of the fixed part, the thickness of the first solder layer 9 needs to be 50 μm to 100 μm or more, and the step of several μm on the surface of the emitter electrode 37 is a problem as described above. Not.
By coating the exposed portions of the insulating film 6 and the separation layer 6a from the vicinity of the ends of the eaves portions 37a and 37b of the emitter electrode 37 with the polyimide film 42 or the like, the spread of the solder can be suppressed.
In this way, the metal component 31 including the outer peripheral portion of the semiconductor chip 32 is fixed by fixing the metal component 31 in an area larger than the active region 21 (region surrounded by the outermost well region 34) which is the main heat generating portion. It is possible to efficiently dissipate heat through the.

尚、図中の35はエミッタ領域、36はゲート絶縁膜、40aはゲート電極、41は層間絶縁膜である。ゲート電極40aとゲート電極パッド40とは図示しないゲート配線により接続する。   In the figure, 35 is an emitter region, 36 is a gate insulating film, 40a is a gate electrode, and 41 is an interlayer insulating film. The gate electrode 40a and the gate electrode pad 40 are connected by a gate wiring (not shown).

この発明の第1実施例の半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the semiconductor device of 1st Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). 図1(b)のA部拡大図Part A enlarged view of FIG. この発明の第2実施例の半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図It is a block diagram of the semiconductor device of 2nd Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). 図3(b)のB部拡大図Part B enlarged view of FIG. 従来の半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図FIG. 2 is a configuration diagram of a conventional semiconductor device, where (a) is a plan view of the main part, and (b) is a cross-sectional view of the main part taken along line XX of (a). 図5(b)のC部拡大図C part enlarged view of FIG.5 (b)

符号の説明Explanation of symbols

1、31 金属部品
2、32 半導体チップ
3、33 半導体基板
4 アノード領域
5 ガードリング
6 絶縁膜
6a 分離層
7 アノード電極
7a、37a、37b ひさし部
8 金属膜
9 第1はんだ層
10 フィレット
11、42 ポリイミド膜
15 支持基板
16 第2はんだ層
21 活性領域
22 耐圧構造
34 ウェル領域
35 エミッタ領域
36 ゲート酸化膜
37 エミッタ電極
40 ゲート電極パッド
40a ゲート電極
41 層間絶縁膜
DESCRIPTION OF SYMBOLS 1,31 Metal component 2,32 Semiconductor chip 3,33 Semiconductor substrate 4 Anode area | region 5 Guard ring 6 Insulating film 6a Separation layer 7 Anode electrode 7a, 37a, 37b Eaves part 8 Metal film 9 1st solder layer 10 Fillet 11, 42 Polyimide film 15 Support substrate 16 Second solder layer 21 Active region 22 Withstand voltage structure 34 Well region 35 Emitter region 36 Gate oxide film 37 Emitter electrode 40 Gate electrode pad 40a Gate electrode 41 Interlayer insulating film

Claims (3)

半導体チップと、該半導体チップの第1主面上に該半導体チップの活性領域を取り囲んで形成される絶縁膜と、前記活性領域上から前記第1絶縁膜上に延在するひさし部を有する第1主電極と、前記半導体チップの第2主面側に形成される第2主電極と、前記ひさし部を含む前記第1主電極とはんだを介して固着される導体と、を有する半導体装置であって、前記はんだが接触する側の前記導体の平坦面の面積が、前記活性領域の面積より大きく前記ひさし部を含む第1主電極の面積より小さいことを特徴とする半導体装置。 A semiconductor chip; an insulating film formed on the first main surface of the semiconductor chip so as to surround the active region of the semiconductor chip; and a protuberance extending from the active region to the first insulating film. A semiconductor device having one main electrode, a second main electrode formed on the second main surface side of the semiconductor chip, and a conductor fixed to the first main electrode including the eaves portion via solder. The area of the flat surface of the conductor on the side in contact with the solder is larger than the area of the active region and smaller than the area of the first main electrode including the eaves. 前記半導体チップの前記第1主面上に該第1主電極と離して形成される制御電極を有することを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, further comprising a control electrode formed on the first main surface of the semiconductor chip so as to be separated from the first main electrode. 前記ひさし部の幅が前記はんだの厚さより大きいことを特徴とする請求項1〜2のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein a width of the eaves portion is larger than a thickness of the solder.
JP2005205471A 2005-07-14 2005-07-14 Semiconductor device Withdrawn JP2007027308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205471A JP2007027308A (en) 2005-07-14 2005-07-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205471A JP2007027308A (en) 2005-07-14 2005-07-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2007027308A true JP2007027308A (en) 2007-02-01

Family

ID=37787710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205471A Withdrawn JP2007027308A (en) 2005-07-14 2005-07-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2007027308A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134998A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Semiconductor device
JP2014192500A (en) * 2013-03-28 2014-10-06 Shindengen Electric Mfg Co Ltd Method of manufacturing mesa type semiconductor device
JP2017147418A (en) * 2016-02-19 2017-08-24 トヨタ自動車株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103664A (en) * 2002-09-05 2004-04-02 Toshiba Corp Vertical transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103664A (en) * 2002-09-05 2004-04-02 Toshiba Corp Vertical transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134998A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Semiconductor device
JP2014192500A (en) * 2013-03-28 2014-10-06 Shindengen Electric Mfg Co Ltd Method of manufacturing mesa type semiconductor device
JP2017147418A (en) * 2016-02-19 2017-08-24 トヨタ自動車株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP4984485B2 (en) Semiconductor device
JP6479036B2 (en) Semiconductor device and method of manufacturing the same
JP4645406B2 (en) Semiconductor device
JP2015005681A (en) Semiconductor device and method of manufacturing the same
JP2017139406A (en) Semiconductor device
KR102228945B1 (en) Semiconductor package and method of fabricating the same
JP6448418B2 (en) Power semiconductor device
JP2019054069A (en) Semiconductor device
JP2005197435A (en) Power semiconductor device
JP2000049281A (en) Semiconductor device
JP6638620B2 (en) Semiconductor device
JP2007027308A (en) Semiconductor device
JP2006190728A (en) Electric power semiconductor device
JP5145715B2 (en) Semiconductor device and manufacturing method thereof
US10658253B2 (en) Semiconductor device including a warped printed circuit board disposed in a case and method of manufacturing same
JP2003289129A (en) Semiconductor device
JP2013008748A (en) Semiconductor device
JP2019212808A (en) Manufacturing method of semiconductor device
JP2010177710A (en) Semiconductor device
JP5418654B2 (en) Semiconductor device
JP6064845B2 (en) Semiconductor device
JP2013506310A (en) Circuit device and manufacturing method thereof
JP2021093441A (en) Semiconductor module
JP4861200B2 (en) Power module
WO2021240944A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110620