JP2007026931A - Gasket molding method in porous body peripheral part and die used for it - Google Patents

Gasket molding method in porous body peripheral part and die used for it Download PDF

Info

Publication number
JP2007026931A
JP2007026931A JP2005208368A JP2005208368A JP2007026931A JP 2007026931 A JP2007026931 A JP 2007026931A JP 2005208368 A JP2005208368 A JP 2005208368A JP 2005208368 A JP2005208368 A JP 2005208368A JP 2007026931 A JP2007026931 A JP 2007026931A
Authority
JP
Japan
Prior art keywords
porous body
sealing material
gasket
mold
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005208368A
Other languages
Japanese (ja)
Inventor
Hiroki Yamamoto
博樹 山本
Yoshihiro Kurano
慶宏 蔵野
Tsutomu Ochi
勉 越智
Kazutomo Kato
千智 加藤
Daiyu Yoshikawa
大雄 吉川
Fumihiko Inui
文彦 乾
Yasuyuki Asai
康之 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Toyota Motor Corp
Original Assignee
Nok Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Toyota Motor Corp filed Critical Nok Corp
Priority to JP2005208368A priority Critical patent/JP2007026931A/en
Publication of JP2007026931A publication Critical patent/JP2007026931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasket molding method capable of preventing an impregnating area line of a sealing material G from becoming an undulating shape and thereby accurately linearly forming the impregnating area line to stabilize seal performance, in a method for molding a gasket part 4 by impregnating a sealing material G into a peripheral part of a porous body 3 such as a GDL. <P>SOLUTION: In this gasket molding method for molding a gasket part 4 by impregnating the sealing material G impregnated into a peripheral part of a porous body 3 toward an in-surface direction of the porous body 3, by using a die 11 provided with a groove-like sealing material accumulation part 15 formed along the peripheral part of the porous body 3 around a cavity space 14 for inserting the porous body 3 therein and provided with a required number of injection gates 16 in the sealing material accumulation part 15, the sealing material G is injected into the groove-like seal accumulation part 15 from the injection gates 16 and the sealing material G injected into the groove-like sealing material accumulation part 15 is impregnated into the peripheral part of the porous body 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多孔質体の周縁部にシール用ガスケットを成形するためのガスケット成形方法とこれに用いる金型に関するものである。多孔質体は例えば、燃料電池セルにおけるガス拡散層(GDL)である。   The present invention relates to a gasket molding method for molding a sealing gasket on the peripheral edge of a porous body, and a mold used therefor. The porous body is, for example, a gas diffusion layer (GDL) in a fuel battery cell.

燃料電池は、高分子電解質膜の両面に触媒層を設けた膜電極複合体(MEA)を、ガス流路を設けた導電性のセパレータにて狭持した構成を単セルとし、この単セルを複数段積層したスタックからなる。そして近年では、MEAとセパレータ間のガス流れと集電効率を向上させる目的から、MEAとセパレータ間に導電性の多孔質体からなるGDLが設けられている。この場合、燃料電池スタックには燃料ガスと酸化ガスをMEAの両面に供給することから、MEAとセパレータの間にはガスケットを設ける。但し、GDLを配した構成では、ガスケットで押圧しただけではGDLの多孔質断面からガスがリークしてしまうため、GDLの周縁部にゴム等のシール材を含浸させる手法がとられる。そして、このGDL周縁部にシール材を含浸させたものは、それ自体がガスケットとして作用させることもできる(下記特許文献1参照)。図5はこの構造の燃料電池セルを示しており、MEA1と上下のセパレータ2間にそれぞれGDL3が配置され、多孔質体よりなるGDL3の周縁部にシール材(図上点々を付して示している)が含浸されてガスケット部4が形成されている。   A fuel cell has a structure in which a membrane electrode assembly (MEA) provided with a catalyst layer on both sides of a polymer electrolyte membrane is sandwiched by a conductive separator provided with a gas flow path. It consists of a stack of multiple layers. In recent years, for the purpose of improving the gas flow between the MEA and the separator and the current collection efficiency, a GDL made of a conductive porous material is provided between the MEA and the separator. In this case, since a fuel gas and an oxidizing gas are supplied to both sides of the MEA in the fuel cell stack, a gasket is provided between the MEA and the separator. However, in the configuration in which GDL is arranged, gas is leaked from the porous cross section of GDL only by pressing with a gasket, and therefore, a method of impregnating a peripheral material of GDL with a sealing material such as rubber is used. And what impregnated this GDL peripheral part with the sealing material can also act as a gasket itself (refer the following patent document 1). FIG. 5 shows a fuel cell of this structure, in which GDLs 3 are arranged between the MEA 1 and the upper and lower separators 2, respectively, and a sealing material (shown with dots on the drawing is attached to the periphery of the porous GDL 3). The gasket part 4 is formed.

しかしながら、シート状のGDL3の周縁部にシール材を含浸させる方法として、GDL3をインサートするキャビティ空間の周縁部に注入ゲートを所要数設けた金型を用いて射出成形を行なうと、ゲートから注入されたシール材は直接、GDL3の周縁部に含浸し、GDL3内の空隙部をGDL3の面内方向(GDL平面における中心部へ向けての方向)へ向けて浸透し、この浸透は各ゲートを中心として波紋状に拡がってゆくことから、浸透したシール材は図6の模式図に示すように、その浸透領域線5が円弧状となり、GDL3全体としては波打ち状となり、このように浸透領域線5が波打ち状となったシール材はそのままの領域でガスケット部4とされることから、成形されるガスケット部4の奥行き寸法にバラツキが発生し、これにより安定したシール性能が損なわれる虞がある。尚、図6は、GDL3をその平面より見た図であって、GDL3の周縁部にシール材が含浸されてガスケット部4が形成されているが、上記したようにシール材の浸透が各ゲート6を中心として波紋上に拡がってゆくため、その浸透領域線5は円弧状となり、GDL3全体としては波打ち状となってしまう様子が描かれている。   However, as a method of impregnating the peripheral edge of the sheet-like GDL3 with a sealing material, if injection molding is performed using a mold in which a required number of injection gates are provided in the peripheral edge of the cavity space in which the GDL3 is inserted, injection is performed from the gate. The seal material directly impregnates the peripheral edge of GDL3 and permeates the gap in GDL3 toward the in-plane direction of GDL3 (the direction toward the center in the GDL plane). As shown in the schematic diagram of FIG. 6, the permeation region line 5 has an arc shape, and the GDL 3 as a whole has a wavy shape. Since the sealing material having a wavy shape is used as the gasket portion 4 in the region as it is, the depth of the molded gasket portion 4 varies, There is a possibility that more stable sealing performance is impaired. FIG. 6 is a view of the GDL 3 as seen from its plane, and the peripheral portion of the GDL 3 is impregnated with the sealing material to form the gasket portion 4. Since it spreads on the ripples around 6, the permeation region line 5 has an arc shape, and the GDL 3 as a whole is wavy.

また、下記する特許文献2に、裁断したGDL(拡散層)の周辺部のほつれを防ぎ、しかも簡易な工程により量産化に優れるGDLを用いた固体高分子電解質型燃料電池およびその製造方法が掲載されているが、この特許文献で論じられているのはシール材のGDL厚み方向への浸透であって、本発明のようにGDL面内方向への浸透ではない。   Patent Document 2 below describes a solid polymer electrolyte fuel cell using GDL that prevents fraying of the peripheral portion of the cut GDL (diffusion layer) and is excellent in mass production by a simple process, and a method for manufacturing the same. However, this patent document discusses the penetration of the sealing material in the GDL thickness direction, and not the penetration in the GDL in-plane direction as in the present invention.

特開2004−95565号公報JP 2004-95565 A 特開2005−85594号公報JP 2005-85594 A

本発明は以上の点に鑑みて、上記GDL等の多孔質体の周縁部にゴム等のシール材を含浸させてガスケット部を成形する方法において、シール材の浸透領域線が波打ち状となるのを抑えることができ、もって浸透領域線を直線状に精度良く形成してシール性能を安定化することができるガスケット成形方法とこれに用いる金型を提供することを目的とする。   In view of the above points, in the method of forming a gasket portion by impregnating a peripheral portion of a porous body such as the GDL with a sealing material such as rubber, the penetration region line of the sealing material is wavy. It is an object of the present invention to provide a gasket molding method and a mold used therefor, in which the penetration region line can be formed in a straight line with high accuracy and the sealing performance can be stabilized.

上記目的を達成するため、本発明の請求項1によるガスケット成形方法は、多孔質体の周縁部に含浸させたシール材を前記多孔質体の面内方向へ向けて浸透させることによりガスケット部を成形するガスケットの成形方法において、前記多孔質体をインサートするキャビティ空間の周りに前記多孔質体の周縁部に沿って溝状のシール材溜り部を設けるとともに前記シール材溜り部に所要数の注入ゲートを設けた金型を用い、前記注入ゲートから前記溝状のシール材溜り部へシール材を注入し、前記溝状のシール材溜り部へ注入したシール材を前記多孔質体の周縁部に含浸させることを特徴とする。   In order to achieve the above object, a gasket molding method according to claim 1 of the present invention is the gasket part is formed by infiltrating a sealing material impregnated in the peripheral part of the porous body in the in-plane direction of the porous body. In the molding method of the gasket to be molded, a groove-like sealing material reservoir is provided along the peripheral edge of the porous body around the cavity space into which the porous body is inserted, and a required number of injections are injected into the sealing material reservoir. Using a mold provided with a gate, a sealing material is injected from the injection gate into the groove-shaped sealing material reservoir, and the sealing material injected into the groove-shaped sealing material reservoir is applied to the peripheral portion of the porous body. It is impregnated.

また、本発明の請求項2による金型は、上記した請求項1の成形方法の実施に用いる金型であって、多孔質体をインサートするキャビティ空間の周りに前記多孔質体の周縁部に沿って溝状のシール材溜り部を設けるとともに前記シール材溜り部に所要数の注入ゲートを設けたことを特徴とする。   A mold according to a second aspect of the present invention is a mold used for carrying out the molding method according to the first aspect described above, and is arranged around a cavity space into which the porous body is inserted, at a peripheral portion of the porous body. A groove-like seal material reservoir is provided along the seal material reservoir, and a required number of injection gates are provided in the seal material reservoir.

また、本発明の請求項3によるガスケット成形方法は、多孔質体の周縁部に含浸させたシール材を前記多孔質体の面内方向へ向けて浸透させることによりガスケット部を成形するガスケットの成形方法において、前記多孔質体をインサートするキャビティ空間の内面に、型締め状態において前記多孔質体を圧縮して前記多孔質体の空隙率を低下させる直線状の絞り部を設けた金型を用い、前記シール材の面内方向へ向けての浸透を前記直線状の絞り部にて停止させることを特徴とする。   According to a third aspect of the present invention, there is provided a gasket molding method in which a gasket member is molded by allowing a sealing material impregnated in a peripheral portion of a porous body to permeate in an in-plane direction of the porous body. In the method, using a die provided with a linear constriction part on the inner surface of the cavity space into which the porous body is inserted to compress the porous body in a clamped state to reduce the porosity of the porous body The penetration of the sealing material in the in-plane direction is stopped at the linear throttle portion.

また、本発明の請求項4による金型は、上記した請求項3の成形方法の実施に用いる金型であって、多孔質体をインサートするキャビティ空間の内面に、型締め状態において前記多孔質体を圧縮して前記多孔質体の空隙率を低下させる直線状の絞り部を設けたことを特徴とする。   A mold according to a fourth aspect of the present invention is a mold used for carrying out the molding method according to the third aspect described above, and the porous body is inserted into a cavity space into which a porous body is inserted, in a mold-clamped state. A linear throttle part is provided for compressing the body and reducing the porosity of the porous body.

上記構成を備えた本発明の請求項1によるガスケット成形方法においては、金型の注入ゲートから注入されるシール材が一旦、溝状のシール材溜り部に貯留され、この溝状のシール材溜り部から多孔質体の周縁部へと含浸される。シール材溜り部は多孔質体の周縁部に沿って溝状に設けられていることから、シール材の含浸やその後の面内方向へ向けての浸透は、この溝状のシール材溜り部の内周縁部から相似をなすかたちにて進行し、結果、シール材の浸透領域線が波打ち状となるのを抑えることができる。したがって本発明所期の目的どおり、シール材の浸透領域線が波打ち状となるのを抑えることができ、もって浸透領域線を直線状に精度良く形成してシール性能を安定化させることができる。また、本発明の請求項2によれば、この成形方法の実施に用いるのに好適な金型が提供される。   In the gasket molding method according to claim 1 of the present invention having the above-described configuration, the sealing material injected from the injection gate of the mold is once stored in the groove-shaped sealing material reservoir, and this groove-shaped sealing material reservoir is stored. It is impregnated from the part into the peripheral part of the porous body. Since the seal material reservoir is provided in a groove shape along the peripheral edge of the porous body, impregnation of the seal material and subsequent penetration in the in-plane direction of the groove-like seal material reservoir is performed. Proceeding in a similar manner from the inner peripheral edge, it is possible to suppress the penetration area line of the sealing material from being wavy. Therefore, as the intended purpose of the present invention, it is possible to suppress the osmotic region line of the sealing material from being wavy and to form the osmotic region line in a straight line with high accuracy and to stabilize the sealing performance. Moreover, according to Claim 2 of this invention, the metal mold | die suitable for using for implementation of this shaping | molding method is provided.

また、上記構成を備えた本発明の請求項3によるガスケット成形方法においては、金型内にて多孔質体に含浸したシール材の面内方向へ向けての浸透が、予め金型に設けられた直線状の絞り部にて停止せしめられ、結果、シール材の浸透領域線が波打ち状となるのを抑えることができる。したがって本発明所期の目的どおり、シール材の浸透領域線が波打ち状となるのを抑えることができ、もって浸透領域線を直線状に精度良く形成してシール性能を安定化させることができる。また、本発明の請求項4によれば、この成形方法の実施に用いるのに好適な金型が提供される。   In the gasket molding method according to claim 3 of the present invention having the above-described configuration, the mold is previously provided with infiltration in the in-plane direction of the sealing material impregnated in the porous body in the mold. It is possible to prevent the penetration area line of the sealing material from being wavy. Therefore, as the intended purpose of the present invention, it is possible to suppress the osmotic region line of the sealing material from being wavy and to form the osmotic region line in a straight line with high accuracy and to stabilize the sealing performance. Moreover, according to Claim 4 of this invention, the metal mold | die suitable for using for implementation of this shaping | molding method is provided.

尚、本発明には、以下の実施形態が含まれる。
(a) 本発明は、MEAとセパレータに狭持されるGDLの周縁部にゴム層を含浸させたGDL一体ガスケットの製造方法に係るものでもある。
(b) 当該製造方法は、スタックに組み込むGDLの寸法よりも大きいGDLシートを用意し、そのスタックに組み込む寸法形状の外周側一方面にゴム溜り部形成溝を設けた金型を用い、ゴム溜り部に設けたゲートを介して所定領域までのゴム含浸を行なう。次に、周縁部にゴムが含浸したGDLをスタック組み込み形状に切り出し、ゴム溜りを含む成形代を取り除く。
(c) 当該製造方法によれば、ゲート痕が残らないため、ガスケットとして信頼性が向上する。また、ゴム溜りをGDL外周の形成代に設けることで、GDL内部へのゴム含浸がGDLの外側より均一に進行し、含浸部の境界部の任意制御が容易となる(図6に示したような境界部の波打ちは抑制される)。
The present invention includes the following embodiments.
(A) The present invention also relates to a method for producing a GDL-integrated gasket in which a rubber layer is impregnated in the peripheral portion of the GDL held between the MEA and the separator.
(B) The manufacturing method uses a mold in which a GDL sheet larger than the size of the GDL to be incorporated into the stack is prepared, and a rubber reservoir forming groove is provided on one outer peripheral side surface of the dimension and shape to be incorporated into the stack. Rubber impregnation up to a predetermined region is performed through a gate provided in the section. Next, GDL whose peripheral portion is impregnated with rubber is cut into a stack-embedded shape, and a molding allowance including a rubber pool is removed.
(C) According to the said manufacturing method, since a gate trace does not remain, reliability as a gasket improves. Also, by providing a rubber reservoir at the GDL outer periphery, rubber impregnation into the GDL progresses uniformly from the outside of the GDL, making it easy to arbitrarily control the boundary of the impregnation part (as shown in FIG. 6). The undulation of the border is suppressed.)

つぎに本発明の実施例を図面にしたがって説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

当該実施例に係るガスケット成形方法は、多孔質体よりなるGDL3の周縁部にゴム等のシール材を含浸させてGDL3の周縁部にガスケット部4を成形する方法であって、以下の工程を有している。尚、当該実施例は、請求項1ないし4に係る発明についての共通の実施例である。   The gasket forming method according to the embodiment is a method of forming the gasket portion 4 on the peripheral portion of the GDL 3 by impregnating the peripheral portion of the GDL 3 made of a porous body with a sealing material such as rubber, and has the following steps. is doing. In addition, the said Example is a common Example about the invention which concerns on Claims 1 thru | or 4.

すなわち先ず、図1に示すように、製品部3Aの周りに、後の工程で切除する成形代部3Bを一体に備えたシート状のGDL3を用意する。成形代部3Bは製品部3Aの周りに全周に亙って帯状に設けられており、よってGDL3は全体として製品形状よりも一回り寸法が大きく形成されている。製品部3Aと成形代部3Bの境界は図上符号3Cをもって示されており、GDL3はのちにこの境界線3Cにて切断される。   That is, first, as shown in FIG. 1, a sheet-like GDL 3 that is integrally provided with a forming margin 3B to be cut out in a later process is prepared around the product portion 3A. The molding allowance portion 3B is provided in a band shape around the entire circumference of the product portion 3A. Therefore, the GDL 3 is formed to have a size that is slightly larger than the product shape as a whole. The boundary between the product portion 3A and the molding allowance portion 3B is indicated by reference numeral 3C in the figure, and the GDL 3 is later cut at the boundary line 3C.

また併せて、図示するような射出成形用の金型11を用意する。この金型11は、上下一対の分割型12,13の組み合わせよりなり、パーティング面に上記GDL3をインサートするためのキャビティ空間14を有し、このキャビティ空間14の内面であってGDL3の成形代部3Bに面する部位に溝状のシール材溜り部15を有し、この溝状のシール材溜り部15の底部に注入ゲート16を有している。また、キャビティ14空間の内面にはGDL3の製品部3Aに面する部位に、上下一対の突起18,18の組み合わせよりなり、GDL3の製品部3Aを厚さ方向に圧縮してその空隙率を低下させるための直線状の絞り部17が設けられている。上記溝状のシール材溜り部15は全周に亙って直線状に設けられており、注入ゲート16は複数がシール材溜り部15の溝方向に沿って設けられている。また、絞り部17はこれも全周に亙って直線状に設けられている。   In addition, a mold 11 for injection molding as shown is prepared. The mold 11 is a combination of a pair of upper and lower divided molds 12 and 13, and has a cavity space 14 for inserting the GDL 3 on the parting surface, and is an inner surface of the cavity space 14 and a molding allowance for GDL 3. A groove-like sealing material reservoir 15 is provided at a portion facing the portion 3B, and an injection gate 16 is provided at the bottom of the groove-like sealing material reservoir 15. Further, the inner surface of the cavity 14 space is a combination of a pair of upper and lower protrusions 18 and 18 at the portion facing the product portion 3A of the GDL3, and the product portion 3A of the GDL3 is compressed in the thickness direction to reduce its porosity. A linear throttle portion 17 is provided for this purpose. The groove-shaped sealing material reservoir 15 is provided linearly over the entire circumference, and a plurality of injection gates 16 are provided along the groove direction of the sealing material reservoir 15. The diaphragm 17 is also provided in a straight line over the entire circumference.

次いで、上記GDL3を金型11のキャビティ空間14にインサートして型締めし、図2に示すように、ゲート16からシール材Gを注入する。注入されたシール材Gはシール材溜り部15に貯留され、シール材溜り部15からこれに面するGDL3の成形代部3Bに含浸し、更にGDL3の面内方向へ向けて製品部3Aへと含浸する。GDL3としては、外力に応じて収縮する特性を有するものを用いることになる。シール材Gとしては、液状のシリコーンゴム、エチレンプロピレンジエンゴム(EPDM)またはフッ素ゴム(FKM)等を用いる。   Next, the GDL 3 is inserted into the cavity space 14 of the mold 11 and clamped, and the sealing material G is injected from the gate 16 as shown in FIG. The injected sealing material G is stored in the sealing material reservoir 15, impregnated from the sealing material reservoir 15 into the molding allowance portion 3B of the GDL3 facing this, and further toward the in-plane direction of the GDL3 toward the product portion 3A. Impregnate. As GDL3, GDL3 having a property of contracting according to external force is used. As the sealing material G, liquid silicone rubber, ethylene propylene diene rubber (EPDM), fluorine rubber (FKM) or the like is used.

上記成形を終了したGDL3を金型11から取り出すと、図3に示すようになり、シール材GはGDL3の成形代部3Bおよび製品部3Aの所定領域まで含浸および浸透せしめられている。製品部3Aは、浸透領域線5を境として、その内側のGDL単体部(非含浸部)3Aと、外側のガスケット部(含浸部)4とに分けられ、その外側に成形代部3Bが配置されている。また、この成形代部3Bの一面上には、シール材溜り部15によって形成されたバリ19が一体に付着している。 When the GDL 3 that has been molded is taken out of the mold 11, it is as shown in FIG. 3, and the sealing material G is impregnated and infiltrated into a predetermined region of the molding allowance portion 3B and the product portion 3A of the GDL 3. The product portion 3A is divided into an inner GDL single portion (non-impregnated portion) 3A 1 and an outer gasket portion (impregnated portion) 4 with a permeation region line 5 as a boundary, and a molding allowance portion 3B is formed on the outer side. Has been placed. Further, a burr 19 formed by the seal material reservoir 15 is integrally attached on one surface of the forming margin 3B.

次いで、上記GDL3を、製品部3Aと成形代部3Bの境界線3Cにてトムソン刃などにより切断し、図4に示す所望形状のGDL3を得る。   Next, the GDL 3 is cut with a Thomson blade or the like at the boundary line 3C between the product portion 3A and the forming allowance portion 3B to obtain a GDL 3 having a desired shape shown in FIG.

上記成形方法によると、金型11の注入ゲート16から注入されるシール材Gが一旦、溝状のシール材溜り部15に貯留され、この溝状のシール材溜り部15からGDL3の周縁部へと含浸される。シール材溜り部15はGDL3の周縁部に沿って溝状に設けられていることから、シール材Gの含浸やその後の面内方向へ向けての浸透は、この溝状のシール材溜り部15の内周縁部から相似をなすかたちにて進行し、よって浸透領域線5は直線状となり、波打ち状となるのを抑えることができる。   According to the above molding method, the sealing material G injected from the injection gate 16 of the mold 11 is temporarily stored in the groove-shaped sealing material reservoir 15, and from the groove-shaped sealing material reservoir 15 to the peripheral portion of the GDL 3. And impregnated. Since the seal material reservoir 15 is provided in a groove shape along the peripheral edge of the GDL 3, impregnation of the seal material G and subsequent permeation in the in-plane direction is performed in the groove seal material reservoir 15. It progresses in a similar manner from the inner peripheral edge of the slag, so that the permeation region line 5 becomes a straight line and can be suppressed from being wavy.

また、上記成形方法では併せて、金型11内にてGDL3に含浸したシール材Gの面内方向へ向けての浸透が、予め金型11に設けられた直線状の絞り部17にて停止せしめられることから、これによってもシール材Gの浸透領域線5が波打ち状となるのを抑えることができる。GDL3は、絞り部17によって圧縮されることにより多孔質材料としての空隙が減少することから、流体(シール材G)の面内方向の移動が抑制されることになる。   In addition, in the molding method, the penetration of the sealing material G impregnated in the GDL 3 in the mold 11 toward the in-plane direction is stopped at the linear throttle portion 17 provided in the mold 11 in advance. As a result, the penetration region line 5 of the sealing material G can be prevented from being wavy. The GDL 3 is compressed by the throttle portion 17 to reduce the voids as the porous material. Therefore, the movement of the fluid (seal material G) in the in-plane direction is suppressed.

したがってこれらのことから、シール材Gの浸透領域線5が波打ち状となるのを抑えることができ、もって浸透領域線5を直線状に精度良く形成してシール性能を安定化させることができる。   Therefore, from these, it is possible to suppress the penetration region line 5 of the sealing material G from being wavy, and thus the penetration region line 5 can be formed in a straight line with high accuracy to stabilize the sealing performance.

また、上記成形方法によると、ゲート痕がGDL3の製品部3Aではなく、製品部3Aから切除されるその周りの成形代部3Bに形成されるために、GDL3の製品部3Aからゲート痕を無くすことができ、ゲート痕によるシール性能の低下を抑えることもできる。   In addition, according to the above molding method, the gate trace is not formed in the product portion 3A of the GDL3, but in the molding margin portion 3B around the product portion 3A, so that the gate trace is eliminated from the product portion 3A of the GDL3. It is also possible to suppress deterioration of the sealing performance due to gate marks.

尚、上記実施例におけるGDL寸法等の数値の一例を示すと、以下のとおりである。   In addition, it is as follows when an example of numerical values, such as a GDL dimension in the said Example, is shown.

すなわち、縦横各210mm、厚さ0.2mmのGDL3に対してシリコーンゴムの成形を成形温度100℃、射出圧力3MPaで行なったところ(成形代部3Bを含む含浸領域:10mm)、図4(A)および(B)に示す所望形状のGDL3を得ることができた。   That is, when GDL3 having a length and width of 210 mm and a thickness of 0.2 mm was molded with silicone rubber at a molding temperature of 100 ° C. and an injection pressure of 3 MPa (impregnation region including molding margin 3B: 10 mm), FIG. ) And GDL3 having the desired shape shown in (B) could be obtained.

本発明の実施例に係るガスケット成形方法の工程説明図Process explanatory drawing of the gasket molding method concerning the example of the present invention. 同ガスケット成形方法の工程説明図Process explanatory drawing of the gasket molding method 金型から取り出した成形品の図であって、(A)はその平面図、(B)は(A)におけるA−A線拡大断面図It is the figure of the molded product taken out from the metal mold | die, Comprising: (A) is the top view, (B) is the AA line expanded sectional view in (A). 同成形方法によって成形されたGDLの図であって、(A)はその平面図、(B)は(A)におけるB−B線拡大断面図It is the figure of GDL shape | molded by the same shaping | molding method, Comprising: (A) is the top view, (B) is the BB line expanded sectional view in (A). 燃料電池セルの構造説明図Structure diagram of fuel cell 従来技術に係るガスケット成形方法によって成形されたGDLの平面図Plan view of GDL molded by gasket molding method according to prior art

符号の説明Explanation of symbols

1 MEA
2 セパレータ
3 GDL(多孔質体)
3A 製品部
3B 成形代部
3C 境界線
3A GDL単体部
4 ガスケット部
5 浸透領域線
11 金型
12,13 分割型
14 キャビティ空間
15 シール材溜り部
16 注入ゲート
17 絞り部
18 突起
19 バリ
G シール材
1 MEA
2 Separator 3 GDL (Porous material)
3A Product part 3B Molding allowance part 3C Boundary line 3A 1 GDL single part 4 Gasket part 5 Penetration area line 11 Mold 12, 13 Split mold 14 Cavity space 15 Seal material reservoir 16 Injection gate 17 Restriction part 18 Protrusion 19 Burr G Seal Material

Claims (4)

多孔質体の周縁部に含浸させたシール材を前記多孔質体の面内方向へ向けて浸透させることによりガスケット部を成形するガスケットの成形方法において、
前記多孔質体をインサートするキャビティ空間の周りに前記多孔質体の周縁部に沿って溝状のシール材溜り部を設けるとともに前記シール材溜り部に所要数の注入ゲートを設けた金型を用い、前記注入ゲートから前記溝状のシール材溜り部へシール材を注入し、前記溝状のシール材溜り部へ注入したシール材を前記多孔質体の周縁部に含浸させることを特徴とする多孔質体周縁部におけるガスケット成形方法。
In the gasket molding method of molding the gasket portion by infiltrating the sealing material impregnated in the peripheral portion of the porous body toward the in-plane direction of the porous body,
A mold having a groove-shaped sealing material reservoir around the peripheral edge of the porous body and a required number of injection gates in the sealing material reservoir is provided around a cavity space in which the porous body is inserted. A porous material is characterized in that a sealing material is injected from the injection gate into the groove-shaped sealing material reservoir, and the peripheral portion of the porous body is impregnated with the sealing material injected into the groove-shaped sealing material reservoir. A gasket molding method in the periphery of a material body.
請求項1の成形方法の実施に用いる金型であって、
多孔質体をインサートするキャビティ空間の周りに前記多孔質体の周縁部に沿って溝状のシール材溜り部を設けるとともに前記シール材溜り部に所要数の注入ゲートを設けたことを特徴とする金型。
A mold used for carrying out the molding method according to claim 1,
A groove-like seal material reservoir is provided around a peripheral space of the porous body around a cavity space into which the porous body is inserted, and a required number of injection gates are provided in the seal material reservoir. Mold.
多孔質体の周縁部に含浸させたシール材を前記多孔質体の面内方向へ向けて浸透させることによりガスケット部を成形するガスケットの成形方法において、
前記多孔質体をインサートするキャビティ空間の内面に、型締め状態において前記多孔質体を圧縮して前記多孔質体の空隙率を低下させる直線状の絞り部を設けた金型を用い、前記シール材の面内方向へ向けての浸透を前記直線状の絞り部にて停止させることを特徴とする多孔質体周縁部におけるガスケット成形方法。
In the gasket molding method of molding the gasket portion by infiltrating the sealing material impregnated in the peripheral portion of the porous body toward the in-plane direction of the porous body,
Using the mold provided with a linear constriction part on the inner surface of the cavity space into which the porous body is inserted to compress the porous body in a mold-clamped state and reduce the porosity of the porous body, A method for forming a gasket on a peripheral edge of a porous body, wherein the penetration of the material toward the in-plane direction is stopped at the linear throttle portion.
請求項3の成形方法の実施に用いる金型であって、
多孔質体をインサートするキャビティ空間の内面に、型締め状態において前記多孔質体を圧縮して前記多孔質体の空隙率を低下させる直線状の絞り部を設けたことを特徴とする金型。
A mold used for carrying out the molding method of claim 3,
A metal mold characterized in that a linear constriction portion is provided on an inner surface of a cavity space into which a porous body is inserted to compress the porous body in a mold-clamping state and reduce the porosity of the porous body.
JP2005208368A 2005-07-19 2005-07-19 Gasket molding method in porous body peripheral part and die used for it Pending JP2007026931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208368A JP2007026931A (en) 2005-07-19 2005-07-19 Gasket molding method in porous body peripheral part and die used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208368A JP2007026931A (en) 2005-07-19 2005-07-19 Gasket molding method in porous body peripheral part and die used for it

Publications (1)

Publication Number Publication Date
JP2007026931A true JP2007026931A (en) 2007-02-01

Family

ID=37787438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208368A Pending JP2007026931A (en) 2005-07-19 2005-07-19 Gasket molding method in porous body peripheral part and die used for it

Country Status (1)

Country Link
JP (1) JP2007026931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008047117A1 (en) 2007-10-17 2009-04-23 Hitachi, Ltd. Variable displacement pump, valve timing control device using the variable displacement pump, and valve timing control system using the positive displacement pump for use in an internal combustion engine
US8329355B2 (en) 2009-06-30 2012-12-11 Nok Corporation Fuel cell separator and gas diffusion layer
JP2015516677A (en) * 2012-03-21 2015-06-11 ブルー ソリューションズ Energy storage assembly with an electrically insulating elastic ring
KR101850438B1 (en) 2010-09-03 2018-04-19 엔오케이 가부시키가이샤 Method for producing molded gasket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185174A (en) * 1999-01-13 2001-07-06 Nok Corp Gasket for fuel cell and method of molding the same
JP2001510932A (en) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド Elastic seal for a membrane electrode assembly (MEA) in an electrochemical fuel cell and method of making the seal
JP2003157867A (en) * 2001-11-22 2003-05-30 Nok Corp Gasket for fuel cell
JP2005085594A (en) * 2003-09-09 2005-03-31 Fuji Electric Holdings Co Ltd Solid polymer electrolyte type fuel cell and manufacturing method of the same
JP2005516350A (en) * 2002-01-22 2005-06-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Integrated membrane electrode assembly and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510932A (en) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド Elastic seal for a membrane electrode assembly (MEA) in an electrochemical fuel cell and method of making the seal
JP2001185174A (en) * 1999-01-13 2001-07-06 Nok Corp Gasket for fuel cell and method of molding the same
JP2003157867A (en) * 2001-11-22 2003-05-30 Nok Corp Gasket for fuel cell
JP2005516350A (en) * 2002-01-22 2005-06-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Integrated membrane electrode assembly and method for manufacturing the same
JP2005085594A (en) * 2003-09-09 2005-03-31 Fuji Electric Holdings Co Ltd Solid polymer electrolyte type fuel cell and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008047117A1 (en) 2007-10-17 2009-04-23 Hitachi, Ltd. Variable displacement pump, valve timing control device using the variable displacement pump, and valve timing control system using the positive displacement pump for use in an internal combustion engine
US8329355B2 (en) 2009-06-30 2012-12-11 Nok Corporation Fuel cell separator and gas diffusion layer
KR101850438B1 (en) 2010-09-03 2018-04-19 엔오케이 가부시키가이샤 Method for producing molded gasket
JP2015516677A (en) * 2012-03-21 2015-06-11 ブルー ソリューションズ Energy storage assembly with an electrically insulating elastic ring

Similar Documents

Publication Publication Date Title
JP5062389B2 (en) Fuel cell and manufacturing method thereof
EP2357698B1 (en) Solid polymer fuel cell-purpose electrolyte membrane, production method therefor and membrane-electrode assembly
US8609299B2 (en) Fuel cell sealing structure and manufacture method
JP6383200B2 (en) Manufacturing method of plate-integrated gasket
JP5067528B2 (en) Manufacturing method of fuel cell seal structure
US20140220472A1 (en) Component for constituting fuel cell
JP2007026931A (en) Gasket molding method in porous body peripheral part and die used for it
JP5142080B2 (en) Method for manufacturing seal structure
JP4193059B2 (en) Fuel cell components
JP5224035B2 (en) Method for manufacturing seal structure
JP4888628B2 (en) Manufacturing method of fuel cell component
CN112368419A (en) Method for producing a sealing element on a gas diffusion layer of an electrochemical cell, and component comprising a gas diffusion layer and a sealing element
JP2009230876A (en) Sealing structure for fuel cell and method for manufacturing the same
JP6013261B2 (en) Manufacturing method of plate-integrated gasket
JP3952154B2 (en) Fuel cell components
JP2011090802A (en) Sealing structure for fuel cell and method of manufacturing the same
JP5376128B2 (en) Fuel cell manufacturing method and fuel cell manufacturing apparatus
JP5067527B2 (en) Manufacturing method of fuel cell seal structure
JP2010165473A (en) Fuel cell, and method of manufacturing sealing structure for the same
KR101731845B1 (en) Composite separation plate for fuel cell and method for manufacturing the same
JP2009226641A (en) Gasket molding mold
JP5418784B2 (en) Seal structure for fuel cell and manufacturing method thereof
JP5024503B2 (en) Fuel cell seal
JP2006172816A (en) Fuel cell, and manufacturing method of fuel cell
JP2010277742A (en) Battery cell, and fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120307