JP2007015111A - Manufacturing method of heat-resistant heat insulating material - Google Patents

Manufacturing method of heat-resistant heat insulating material Download PDF

Info

Publication number
JP2007015111A
JP2007015111A JP2005195663A JP2005195663A JP2007015111A JP 2007015111 A JP2007015111 A JP 2007015111A JP 2005195663 A JP2005195663 A JP 2005195663A JP 2005195663 A JP2005195663 A JP 2005195663A JP 2007015111 A JP2007015111 A JP 2007015111A
Authority
JP
Japan
Prior art keywords
heat
weight
heat insulating
inorganic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005195663A
Other languages
Japanese (ja)
Inventor
Toshikatsu Ago
利勝 吾郷
Moriharu Owatari
盛治 大渡
Heikichi Iwasaki
平吉 岩崎
Muneo Koyama
宗男 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA DENKEN KOGYO KK
Original Assignee
OSAKA DENKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA DENKEN KOGYO KK filed Critical OSAKA DENKEN KOGYO KK
Priority to JP2005195663A priority Critical patent/JP2007015111A/en
Publication of JP2007015111A publication Critical patent/JP2007015111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a heat-resistant heat insulating material used as a heat-resistant heat insulating member for an electric heat accumulating heater or the like, having a slightly complicated shape, low in production cost, having lightweight properties, prevented from being scorched when exposed to hot air to produce no unpleasant smell, excellent in heat insulating properties in a high temperature region (in the vicinity of 700-800°C) and having no powdery feeling and smooth appearance. <P>SOLUTION: The manufacturing method of the heat-resistant heat insulating member includes a process for preparing a curable water-containing composition by mixing 1-10 wt.% of inorganic fiber chops, 2-10 wt.% of an inorganic binder and water, of which the amount is 10-30 wt.% with respect to the whole system, with 100 pts.wt. of an inorganic powder composition composed of 50-95 pts.wt. of amorphous hydrous silica and 5-40 pts.wt. of an inorganic powder and a press molding process for molding the curable hydrous composition under pressure using a mold constituted so that its surface coming into contact with the curable hydrous composition is anodically oxdized and a coating film comprising a fluorine type copolymer resin is formed on the oxidized surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加圧成形された耐熱性断熱部材の製造方法、それによって製造された電機蓄熱暖房機用や調理用電熱器などの耐熱性断熱部材の製造方法に関する。 The present invention relates to a method for producing a heat-resistant heat-insulating member that has been pressure-molded, and a method for producing a heat-resistant heat-insulating member such as an electric heat storage heater or a cooking heater that is produced thereby.

特に乾式法により製造される微粒子無水シリカを主体にうる断熱材は保形性に難があるため有機弾性体を配合したり、無機繊維を多く配合し高価な断熱材を提案している。(特開2003−202099、特開平7−23795、特開平6−219812、特開平6−279089、特開平5−9083)
一方超微粒子合成含水シリカに酸化チタン、セラミック繊維など混合して板状成形金型で乾式成形して断熱材を製造している。(特開平05−194008)が金型中の流動性が悪く金型枠からの離形成が難しく平滑性に劣り、複雑な形をした断熱材の製造には不向きで工業的な生産に劣る。
In particular, heat insulating materials mainly composed of finely divided anhydrous silica produced by a dry method have difficulty in shape retention, so organic elastic materials are blended, and a lot of inorganic fibers are blended to propose expensive heat insulating materials. (Japanese Patent Laid-Open No. 2003-202099, Japanese Patent Laid-Open No. 7-23795, Japanese Patent Laid-Open No. 6-219812, Japanese Patent Laid-Open No. 6-279089, Japanese Patent Laid-Open No. 5-9083)
On the other hand, titanium oxide, ceramic fibers, etc. are mixed with ultrafine synthetic water-containing silica and dry-molded with a plate-shaped mold to produce a heat insulating material. (Japanese Patent Laid-Open No. 05-194008) is poor in fluidity in a mold and difficult to be separated from a mold frame, inferior in smoothness, unsuitable for manufacturing a heat insulating material having a complicated shape, and inferior in industrial production.

本耐熱断熱材は蓄熱式暖房機などに利用され、深夜の余剰電力を利用して電気ヒーターにより熱を発生させ、この熱で蓄熱体(レンガ)を温めて、そこに熱を蓄えておき、昼間、その蓄熱体で室内から取り込んだ空気を温め、この温められた空気(熱風)を室内に放出することにより、室内を暖房しようとするものである。(例えば、特開平11−51488)蓄熱体の周囲には、空気の通路空間を開けて断熱部材が配置されており、蓄熱体に蓄えられた熱が逃げないように工夫されている。断熱部材はやや複雑な形状をしており、当然のことながら、耐熱性が要求され、800℃程度の熱を受けても優れた断熱性を有し、形が崩れないこと、高熱により有機物の燃焼によって室内に異臭が発生しない事が要求される。
特開2003−202099 特開平7−23795 特開平6−219812 特開平6−279089 特開平5−9083 特開平5−194008
This heat-resistant insulation is used for regenerative heaters, etc., using surplus electricity at midnight to generate heat with an electric heater, warming the heat storage body (brick) with this heat, and storing heat there, During the daytime, the air stored in the room is warmed by the heat accumulator, and the warmed air (hot air) is discharged into the room to heat the room. (For example, Japanese Patent Laid-Open No. 11-51488) Around the heat storage body, an air passage space is opened, and a heat insulating member is arranged, so that heat stored in the heat storage body does not escape. The heat insulating member has a slightly complicated shape, and naturally, heat resistance is required, it has excellent heat insulating properties even when subjected to heat of about 800 ° C., the shape does not collapse, and high heat It is required that no odor is generated in the room by combustion.
JP2003-202099 JP-A-7-23795 JP-A-6-211981 JP-A-6-279089 JP-A-5-9083 JP-A-5-194008

本発明者らは、電気蓄熱暖房器の開発者から要請を受け、電気蓄熱暖房器用の耐熱性断熱部材の研究開発に着手した。このとき、課題は、
(イ)断熱部材はやや複雑な形状をしているが、より多くの市場性を持つように、製造コスト(材料費、加工費)が安価であること。(ロ)軽いこと。(ハ)有機繊維や有機弾性体など有機物を含まないこと(有機繊維は800℃程度の熱風にさらされたとき、焦げて不快な臭いを出す)。(ニ)高温域(700℃から800℃付近)での断熱性に優れること。(ホ)表面性状が滑らかで、粉っぽくなく、外観が平滑で良いこと。
In response to a request from the developer of an electric heat storage heater, the present inventors have started research and development of a heat-resistant heat insulating member for an electric heat storage heater. At this time, the challenge is
(B) The heat insulating member has a slightly complicated shape, but the manufacturing cost (material cost, processing cost) is low so as to have more marketability. (B) Be light. (C) It does not contain organic substances such as organic fibers and organic elastic bodies (organic fibers burn and give off an unpleasant odor when exposed to hot air of about 800 ° C.). (D) Excellent heat insulation in a high temperature range (around 700 ° C to 800 ° C). (E) The surface texture should be smooth, not powdery, and the appearance should be smooth.

鋭意研究の結果、本発明者らは、以下に説明する本発明に到達した。
(1)非晶質含水シリカ50〜95重量部と、無機粉体5〜40重量部からなる無機微粉体組成物100重量部に対して無機繊維チョップ1〜10重量%と、無機結合剤2〜10重量%、及び水を系全体に対して10〜30重量%とを混合した硬化性含水組成物を形成する工程と、(2)硬化性含水組成物と接する表面を陽極酸化した上に、フッ素系共重合体樹脂のコーテイング膜を形成した成形金型を用いて、含水組成物を成形圧20〜80kgf/平方センチメートル程度で成形する工程と、を含むことを特徴とする耐熱断熱部材からなることを特徴として、比重が0.3〜0.8で、かつ有機繊維や有機弾性体などの有機物を含まない成形された耐熱性断熱部材の製造方法。
As a result of intensive studies, the present inventors have reached the present invention described below.
(1) Inorganic fiber chop 1 to 10% by weight and inorganic binder 2 with respect to 100 parts by weight of inorganic fine powder composition comprising 50 to 95 parts by weight of amorphous hydrous silica and 5 to 40 parts by weight of inorganic powder A step of forming a curable water-containing composition in which 10 to 30% by weight of water and 10 to 30% by weight of water are mixed with respect to the whole system, and (2) the surface in contact with the curable water-containing composition is anodized And a step of molding the water-containing composition at a molding pressure of about 20 to 80 kgf / square centimeter using a molding die on which a coating film of a fluorine-based copolymer resin is formed. A method for producing a molded heat-resistant heat insulating member having a specific gravity of 0.3 to 0.8 and containing no organic matter such as organic fiber or organic elastic body.

本発明は、原料と組成を工夫すること及び成形金型枠を使った成形(機械加工が不要)し断熱部材を製造することにより、課題(イ)製造コストと(ロ)表面性状を解決し、原料と組成を工夫することで、課題(ハ)軽さ=小さな比重と(ニ)加熱時に有機繊維や有機弾性体及び金型の塗布する離形剤などの燃焼した場合の臭いがしない(ホ)高温域での断熱性を解決し、有機繊維や有機弾性体を使用せずとも強度が得られるように原料と組成を工夫することで、課題(へ)臭いを解決したものである。 The present invention solves the problems (b) manufacturing cost and (b) surface properties by devising the raw materials and composition and forming a heat insulating member by molding using a molding die (no machining is required). , By devising the raw materials and composition, the problem (c) Light weight = small specific gravity and (d) No smell when burned, such as mold release agent applied to organic fiber and organic elastic body and mold during heating ( E) The problem (f) odor is solved by devising the raw materials and the composition so as to solve the heat insulation in the high temperature range and obtain the strength without using organic fibers or organic elastic bodies.

以上、本発明によれば、比重が0.2〜0.85と軽く、それでいて有機繊維や有機弾性体を含まないでも曲げ強度があり、高温域(800℃付近)での断熱性が良好で、800℃の熱風に長時間さらされても変化がない優れた耐熱性を示し、表面性状も平滑で外観が美しく、しかも所定の形状をした耐熱断熱部材が安価に製造される。本発明の部材は、電気蓄熱暖房器用などの断熱部材として有用である。 As described above, according to the present invention, the specific gravity is as light as 0.2 to 0.85, yet there is bending strength even when organic fibers and organic elastic bodies are not included, and heat insulation in a high temperature range (around 800 ° C.) is good. A heat-resistant and heat-insulating member having an excellent heat resistance that does not change even when exposed to hot air at 800 ° C. for a long time, having a smooth surface and a beautiful appearance, and having a predetermined shape is inexpensively produced. The member of the present invention is useful as a heat insulating member for an electric heat storage heater or the like.

本発明を構成要件ごとに更に詳しく説明する。
非晶質含水シリカ50〜95重量部と、無機微粉末5〜40重量部からなる無機軽量骨材組成物粉体に対して無機繊維チョップ1〜10重量%と、無機結合剤2〜10重量%、及び水を系全体に対して10〜30重量%とを混合した硬化性含水組成物における合成非晶質シリカは湿式法で製造される含水シリカで吸油性が200cm/100gr以上、 好ましくは250cm/100gr以上、更に平均粒径50μm以下である、非晶質含水シリカである。
非晶質含水シリカはシリカ分子表面にシラノール基が乾式法で製造する無水珪酸と(例えばアエロジル)とは異なり、より多く分布しているため水系との親和性が富み、加圧下の流動性が良く、更に無定形の構造性と微粒子であることによって、粒子中に大量の空気を包含するため、大変に嵩の高い粉体あり断熱性に優れる原料であった。
The present invention will be described in more detail for each component.
Inorganic fiber chop 1 to 10% by weight and inorganic binder 2 to 10% by weight with respect to the inorganic lightweight aggregate composition powder comprising 50 to 95 parts by weight of amorphous hydrous silica and 5 to 40 parts by weight of inorganic fine powder %, and synthetic amorphous silica in water curable water-containing composition obtained by mixing 10 to 30 weight percent of the total system oil absorbing hydrous silica produced by a wet process is 200 cm 3/100 gr or more, preferably the 250 cm 3/100 gr or more, and further below an average particle size of 50 [mu] m, an amorphous hydrated silica.
Amorphous hydrous silica is different from silicic anhydride (such as Aerosil) in which silanol groups are produced on the surface of the silica molecules by a dry process, and is distributed more so that it has a high affinity with aqueous systems and has fluidity under pressure. In addition, since it has an amorphous structure and fine particles, it contains a large amount of air in the particles, so it is a very bulky powder and a material with excellent heat insulation.

無機微粉体としては、例えば、珪酸カルシウム、パーライト、バームキュライト、膨張頁岩、軽石、シラスバルーン、スラグの造粒発泡物、アルミナ中空骨材、けいそう土、酸化チタン、ムライトなどが挙げられる。何れも微粉末を原料として使用する。 Examples of the inorganic fine powder include calcium silicate, perlite, balm curite, expanded shale, pumice, shirasu balloon, slag granulated foam, alumina hollow aggregate, diatomaceous earth, titanium oxide, mullite and the like. In either case, fine powder is used as a raw material.

硬化性含水組成物における無機繊維チョップは特に耐熱性に優れる無機繊維チョップとして例えば、ガラス繊維、セラミック繊維、シリカ繊維、アルミナ繊維等の添加が好ましい。 The inorganic fiber chop in the curable water-containing composition is preferably an addition of glass fiber, ceramic fiber, silica fiber, alumina fiber, etc. as an inorganic fiber chop that is particularly excellent in heat resistance.

硬化性含水組成物において、無機結合剤としてはコロイダルシリカ、合成マイカ、などコロイダル系無機バインダーが良く、無機微粉体組成物に対して2〜10重量%添加で成形物の曲げ強度や乾燥時の収縮を防ぎ、寸法精度の良好な耐熱断熱材を作る事ができる。 In the curable water-containing composition, as the inorganic binder, colloidal inorganic binders such as colloidal silica and synthetic mica are good, and the addition of 2 to 10% by weight with respect to the inorganic fine powder composition gives the bending strength of the molded product and when dried. It can prevent shrinkage and make heat-resistant insulation with good dimensional accuracy.

硬化性含水組成物に於ける水の添加量は、無機微粉体組成物100重量部当たり、10〜30重量%を添加する。そして均一に混ぜれば、硬化性含水組成物が得られる。水が30重量%以上になると硬性生含水組成物はスラリー状になり金型枠外側面に開けた6から10mmの微細な穴(10個)から水や無機結合剤などが流れ出し均一な成形物がえられず、また成形圧力が充分かからず実用的な強度の製品が得られない。10重量%以下の場合は水硬性組成物、は粉状でパサパサであり金型枠中での加圧成形物の流動性が悪く、特に複雑な形状の断熱材の製造には不利であり、更に表面平滑にならないばかりか寸法精度がでない。 The amount of water added to the curable water-containing composition is 10 to 30% by weight per 100 parts by weight of the inorganic fine powder composition. When mixed uniformly, a curable water-containing composition is obtained. When the water content is 30% by weight or more, the hard raw water-containing composition becomes a slurry, and water or inorganic binder flows out from 6 to 10mm fine holes (10) opened on the outer surface of the mold frame to form a uniform molded product. In addition, the molding pressure is not sufficient and a product with practical strength cannot be obtained. In the case of 10% by weight or less, the hydraulic composition is powdery and crumbly, and the fluidity of the pressure-molded product in the mold frame is poor, which is disadvantageous particularly for the production of a heat insulating material having a complicated shape. Furthermore, not only the surface is not smooth, but also the dimensional accuracy is not.

硬化性含水組成物をプレス成形金型枠を使ってプレス成形することによって未乾燥成形物を製造する方法において、陽極酸化された金属に、フッ素樹脂系共重合体が陽極酸化皮膜中に形成された微小な孔に入り込むこと、金型表面にフッ素系共重合体樹脂が露出する(例えば旭テクノプロデュース(株)テクノマイト、アルバックテクノ(株)タフラム、三菱マテリアル(株)タフラム)。従って、フッ素系共重合体樹脂による耐久性に優れ、成形品の耐熱断熱材に付着して高温、時焼けて臭いの発生する低分子離型剤を塗布することなく、金型枠から製品の取り出しが容易で、表面平滑性が優れる、高い離型性の維持が可能となる。発明の目的の一つである耐熱断熱材が800℃になっても離型剤による異臭の発生も無く室内で使われる電気蓄熱暖房器には有効である。 In a method for producing an undried molded product by press molding a curable water-containing composition using a press mold frame, a fluororesin copolymer is formed in the anodized film on the anodized metal. Fluorine copolymer resin is exposed on the mold surface (for example, Asahi Techno Produce Co., Ltd. Technomite, ULVAC Techno Co., Ltd. Tafram, Mitsubishi Materials Co., Ltd. Tafram). Therefore, it is excellent in durability due to the fluorinated copolymer resin, and it can be applied to the product from the mold frame without applying a low-molecular release agent that adheres to the heat-resistant heat insulating material of the molded product and generates odor due to high temperature and time. It can be easily taken out, has excellent surface smoothness, and can maintain high releasability. Even if the heat-resistant heat insulating material, which is one of the objects of the invention, reaches 800 ° C., it is effective for an electric heat storage heater used indoors without generation of a strange odor due to the release agent.

通常のプレス成形であり、その成形圧が20〜80kgf/平方センチメートルであることを特徴とし、得られた予備成形物は型から外したり、次の養生乾燥工程に運ぶと言った取扱いをしても、型が崩れることはない。金型枠を使う予備成形はできるだけ短い方が生産性が高い。 It is a normal press molding, characterized in that the molding pressure is 20 to 80 kgf / square centimeter, and the obtained preform can be removed from the mold or handled to be transported to the next curing and drying process. The mold will not collapse. The shorter the preforming using the mold frame, the higher the productivity.

そのためプレス成形のとき、硬化反応をある程度促進し、金型からの剥離し易さや形状保持するため、硬化性含水組成物を30〜120℃程度好ましくは30〜90℃に加熱してもよい。予備成形の時間は、一般に3〜60分である。プレス成形時のプレス圧力は、20〜80kgf/平方センチメートルが適当である。余り高くすると、目的とする軽い比重の部材が得られなくなる恐れがある。逆に余り低くすると、成形物の表面性状が粗くなり粉ぽくなるほか、曲げ強度が小くなる。 Therefore, at the time of press molding, the curable water-containing composition may be heated to about 30 to 120 ° C., preferably 30 to 90 ° C., in order to accelerate the curing reaction to some extent and to maintain the shape and ease of peeling from the mold. The preforming time is generally 3 to 60 minutes. The press pressure at the time of press molding is suitably 20 to 80 kgf / square centimeter. If it is too high, there is a possibility that the desired light specific gravity member cannot be obtained. On the other hand, if it is too low, the surface properties of the molded product become rough and powdery, and the bending strength decreases.

予備成形物が金型を長く占拠することは生産性を悪くする。硬化性含水組成物の予備成形物が得られたなら、それを型から外して養生乾燥させる。これにより成形物は強度を増し、最終目的物として使用可能となる。養生乾燥工程は、予備成形物を50〜200℃で5〜30時間程度放置する。 Longer occupancy of the mold by the preform reduces productivity. When a preformed curable water-containing composition is obtained, it is removed from the mold and cured and dried. This increases the strength of the molded product and enables it to be used as a final object. In the curing and drying step, the preform is left at 50 to 200 ° C. for about 5 to 30 hours.

こうして、目的とする比重が0.2〜0.8で、かつ有機繊維や有機弾性体を含まないでも曲げ強度のある、成形された耐熱性断熱部材が得られる。この後、場合により多少の機械加工を施すことにより形状を修正しても良い。 Thus, a molded heat-resistant heat insulating member having a target specific gravity of 0.2 to 0.8 and having bending strength even without including organic fibers or organic elastic bodies can be obtained. Thereafter, the shape may be corrected by performing some machining according to circumstances.

以下、実施例及び比較例により本発明をより具体的に説明する。但し、下記例における部及び%はそれぞれ重量部及び重量%を示し、また各種物性はそれぞれ次の様な方法で測定したものである。
(ア)外観:加圧プレスで成形した含水成形物を恒量になるまで乾燥した後の成形物表面の平滑性、割れ破損の発生などを観察して記録
(イ)断熱性:200mm×200mm×厚さ20mmの板状の耐熱断熱材試験版を接電気炉の口(縦150mm×横150mm)に当て耐熱断熱材の炉温度非接触側(外側)の中心に熱電対を銅版で押さえ固定し、外から蓋で固定した。750℃で60分放置後の温度を測定した。値が低いほど断熱性が良好と判断した。
(ウ)曲げ強度(曲げ歪量):試験片 縦30mm×横30mm×長さ358mm、中心から左右125mmの位置を支え、中心に10kgの荷重(分銅)を置き30分放置後の歪量(mm)を測定する。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, parts and% in the following examples represent parts by weight and% by weight, respectively, and various physical properties were measured by the following methods, respectively.
(A) Appearance: Recorded by observing the smoothness of the surface of the molded product after it was dried to a constant weight, cracked breakage, etc. (a) Thermal insulation: 200 mm x 200 mm x Place a 20mm thick plate-shaped heat-resistant insulation test plate on the mouth of the electric furnace (length 150mm x width 150mm) and hold the thermocouple in the center of the heat-resistant insulation on the non-contact side (outside) with a copper plate. And fixed with a lid from the outside. The temperature after standing at 750 ° C. for 60 minutes was measured. The lower the value, the better the heat insulation.
(C) Bending strength (bending strain amount): Test piece 30 mm long × 30 mm wide × 358 mm long, supporting a position 125 mm from the center to the left and right, placing a 10 kg load (weight) at the center, and the strain after standing for 30 minutes ( mm).

合成非晶質シリカ(吸油量260cm/100g、平均粒径11μm)685gr(74.5%)珪酸カルシウム235gr(25.5%)、の無機微粉体920grに対して無機結合剤としてコロイダルシリカ(SiOが30〜31重量%、PH9〜9.5の液体)半透明200gr(2.2%)、ガラス繊維チョップ 80gr(8.7%)、に更にイオン交換水240gr(20.0%)を高速回転ミキサーで均一混合した硬化性水混合組成物を得た、しかる後側面に5個の微細な穴を開け陽極酸化フッ素樹脂共重合体をコートした(アルバックテクノ(株)タフラム)縦220mm×横358mm×深さ115mm試験用金型に硬化性水混合組成物投入し油圧式プレスで80℃、50kgf/平方センチメートルの圧力を7分間保ちながら成形した。しかる後開圧して常圧に戻し金型から含水した成形物を取り出し、更に120℃15時間熱風養生乾燥し耐熱断熱材成形物を得た。
耐熱断熱材の外観は平滑で、比重が0.55、曲げ歪量は破断することなく1.7mm、養生乾燥後の成形物各辺の寸法変化は認められず、断熱性は115℃であった。
Synthetic amorphous silica (oil absorption 260 cm 3/100 g, average particle diameter 11μm) 685gr (74.5%) of colloidal silica (SiO 2 calcium silicate 235gr (25.5%), relative to the inorganic fine powder 920gr as an inorganic binder 30 to 31 wt%, PH 9 to 9.5 liquid) Translucent 200gr (2.2%), glass fiber chop 80gr (8.7%), and ion-exchanged water 240gr (20.0%) were mixed uniformly with a high-speed rotary mixer. An aqueous mixed composition was obtained, and 5 minute holes were formed on the back side and coated with an anodized fluororesin copolymer (ULVAC Techno Co., Ltd. Tafram) 220 mm long × 358 mm wide × 115 mm deep test gold The mold was filled with the curable water mixture composition and molded with a hydraulic press at 80 ° C. and a pressure of 50 kgf / square centimeter for 7 minutes. Thereafter, the pressure was opened, the pressure was returned to normal pressure, and the molded product containing water was taken out from the mold.
The appearance of the heat-resistant heat insulating material was smooth, the specific gravity was 0.55, the bending strain was 1.7 mm without breaking, the dimensional change of each side of the molded product after curing and drying was not observed, and the heat insulating property was 115 ° C. It was.

実施例1において珪酸カルシウムをルチル型酸化チタンに置き換えた以外は全く同様に実験を行った。得た耐熱断熱材の曲げ強度(曲げ歪量)1.3mm、養生乾燥後の成形物各辺の寸法変化は認められず、断熱性は110℃であった。 An experiment was performed in exactly the same manner as in Example 1 except that calcium silicate was replaced with rutile titanium oxide. The obtained heat-resistant heat insulating material had a bending strength (bending strain amount) of 1.3 mm, no dimensional change was observed on each side of the molded product after curing and drying, and the heat insulating property was 110 ° C.

実施例2の配合でガラス繊維チョップをアルミナシリカ繊維(イソライト工業)に置き換えた以外は同様に陽極酸化フッ素樹脂コートした金型で加圧成形した
耐熱断熱材の外観は平滑で曲げの歪量は1.3mm、成形物各辺の寸法変化は認められず、断熱性は105℃であった。
Except that the glass fiber chop was replaced with alumina silica fiber (Isolite Industry) in the formulation of Example 2, the appearance of the heat-resistant heat insulating material pressure-molded with a mold coated with an anodized fluororesin was smooth and the amount of bending strain was 1.3 mm, no dimensional change was observed on each side of the molded product, and the heat insulating property was 105 ° C.

〔比較例〕
比較例1)実施例1において陽極酸化フッ素樹脂コートしてない金型を用いた以外、他はすべて同じ条件下での製造では耐熱断熱材は金型に付着して離形ができなかった。
比較例2)実施例1の配合で合成非晶質シリカの平均粒径を130μmに変えた以外は全て同一条件で成形した耐熱断熱材は断熱性は140℃と悪化し品質的に不利である。
比較例3)実施例1の配合で水量を750gr(62.0%)配合した以外は全て同一条件で成形した硬化性水系組成物が金型に付けた孔からスラリーが流れ出て、成形に必要な加圧が出来ず目的の断熱材が得られない。
比較例4)実施例2)の配合で非晶質含水シリカの吸油量180cm/100g、平均粒径14μm以外は全く同一条件で配合、成形、乾燥した、耐熱断熱材の断熱性は150℃であり実用性に乏しい。

[Comparative example]
Comparative Example 1) Except for using a mold that was not coated with an anodized fluororesin in Example 1, the heat-resistant heat insulating material adhered to the mold and could not be released in the production under the same conditions.
Comparative Example 2) The heat-resistant heat insulating material molded under the same conditions except that the average particle size of the synthetic amorphous silica was changed to 130 μm in the formulation of Example 1 was inferior in quality because the heat insulating property deteriorated to 140 ° C. .
Comparative Example 3) Slurry flows out from the holes formed in the mold by the curable aqueous composition molded under the same conditions except that the amount of water is 750 gr (62.0%) in the formulation of Example 1, and the necessary addition for molding is performed. Pressure cannot be produced and the desired heat insulating material cannot be obtained.
Comparative Example 4) Example 2) oil absorption 180cm 3/100 g of amorphous hydrated silica in the formulation of an average particle diameter blended in exactly the same conditions except 14 [mu] m, molding, dry, heat insulation of the heat-resistant insulation 0.99 ° C. It is poor in practicality.

Claims (3)

非晶質含水シリカ50〜95重量部と、無機粉体5〜40重量部からなる無機微粉体組成物100重量部に対して無機繊維チョップ1〜10重量%と、無機結合剤2〜10重量%、及び水を系全体に対して10〜30重量%とを混合した硬化性含水組成物を形成する工程と、かつその少なくとも硬化性含水組成物と接する表面を陽極酸化した上に、フッ素系共重合体樹脂を硬化させてコーテイング膜を形成した成形金型枠を用いて、上記硬化性含水組成物を成形する工程と、を含むことを特徴とする耐熱断熱部材の製造方法。   Inorganic fiber chop 1 to 10% by weight and inorganic binder 2 to 10% by weight with respect to 100 parts by weight of inorganic fine powder composition comprising 50 to 95 parts by weight of amorphous hydrous silica and 5 to 40 parts by weight of inorganic powder %, And a step of forming a curable water-containing composition in which 10 to 30% by weight of water is mixed with respect to the whole system, and at least the surface in contact with the curable water-containing composition is anodized, And a step of molding the curable water-containing composition using a molding die frame formed by curing a copolymer resin to form a coating film. 非晶質含水シリカは吸油性が200cm/100gr以上、好ましくは250cm/100gr以上、更に平均粒径50μm以下である、非晶質含水シリカ50〜95重量部と、無機微粉体5〜40重量部、無機繊維チョップ1〜10重量部と、無機結合剤2〜10重量部と、水を系に対して10〜30重量%とを混合した硬化性含水組成物 Amorphous hydrated silica oil absorption resistance 200 cm 3/100 gr or more, preferably 250 cm 3/100 gr or more, and further below an average particle size of 50 [mu] m, and an amorphous hydrated silica 50 to 95 parts by weight, the inorganic fine powder 5-40 Curable water-containing composition in which 1 part by weight, 1 to 10 parts by weight of an inorganic fiber chop, 2 to 10 parts by weight of an inorganic binder, and 10 to 30% by weight of water with respect to the system are mixed. 請求項1記載の硬化性含水組成物を成形する工程における成形金型枠は、金型枠の、少なくとも硬化性含水組成物と接する表面を陽極酸化した上に、フッ素系共重合体樹脂を塗布して、当該樹脂組成物の一部を陽極酸化膜の微細な孔に入り込ませた状態で硬化させてコーティング膜を形成した成形金型枠。





The molding die frame in the step of molding the curable water-containing composition according to claim 1 is anodized at least on the surface of the mold frame in contact with the curable water-containing composition, and then coated with a fluorine-based copolymer resin. Then, a molding die frame in which a coating film is formed by curing a part of the resin composition in a state where it enters a fine hole of the anodized film.





JP2005195663A 2005-07-05 2005-07-05 Manufacturing method of heat-resistant heat insulating material Pending JP2007015111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195663A JP2007015111A (en) 2005-07-05 2005-07-05 Manufacturing method of heat-resistant heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195663A JP2007015111A (en) 2005-07-05 2005-07-05 Manufacturing method of heat-resistant heat insulating material

Publications (1)

Publication Number Publication Date
JP2007015111A true JP2007015111A (en) 2007-01-25

Family

ID=37752690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195663A Pending JP2007015111A (en) 2005-07-05 2005-07-05 Manufacturing method of heat-resistant heat insulating material

Country Status (1)

Country Link
JP (1) JP2007015111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446305A (en) * 2014-11-17 2015-03-25 广州大学 Calcium sulphate whisker aerogel heat-insulating composite material and preparation method thereof
CN109414136A (en) * 2016-04-25 2019-03-01 佩利科技有限公司 Use the heating cooker and its manufacturing method of ceramic heating element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446305A (en) * 2014-11-17 2015-03-25 广州大学 Calcium sulphate whisker aerogel heat-insulating composite material and preparation method thereof
CN109414136A (en) * 2016-04-25 2019-03-01 佩利科技有限公司 Use the heating cooker and its manufacturing method of ceramic heating element
CN109414136B (en) * 2016-04-25 2024-03-19 佩利科技有限公司 Heating cooker using ceramic heating element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Cao et al. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications
CN101433944B (en) High-efficient exothermic riser sleeve for casting
TWI403490B (en) Thermal insulating material and method for manufacturing the same
US6599953B1 (en) Precision casting and dead-mold casting in plastic/carbon aerogels
JPS6141875B2 (en)
BR112014001493B1 (en) massalote for use in the foundry industry, moldable composition for the production of massalotes for the foundry industry, moldable composition and process for the preparation of a moldable composition for the production of massalotes for the foundry industry
CN104086116A (en) Nano microporous heat insulation board and preparation method thereof
JP2007015111A (en) Manufacturing method of heat-resistant heat insulating material
JP2007532357A5 (en)
Li et al. Effect of reclaimed sand additions on mechanical properties and fracture behavior of furan no-bake resin sand
CN101219906A (en) Zirconium corundum porzite flame-proof sphere
CN104350024A (en) Gypsum composition for refractory moulds
CN107253863B (en) Light heat-insulating material containing silica micropowder
PT105270B (en) LAYER OF SILICA WITH SLOW RELEASE OF FRAGRANCE, CERAMIC TILE AND RESPECTIVE PRODUCTION PROCESS
CN101219905A (en) Flame-proof sphere of aluminum zirconium chromium
CN103952582A (en) Preparation method of aluminum-based composite material applied to light brake disc
CN101434487A (en) Porous silicon carbide sagger for dewaxing and manufacturing method thereof
Uthaman et al. Porous ceramic properties and its different fabrication process
JP5590453B2 (en) Manufacturing method of heat insulating material or refractory brick
JP2000061583A5 (en)
JP2000001379A (en) Production of heat-insulating lightweight porcelain
CN103951372A (en) High-strength fire-resistant thermal insulation material
JP2009166376A (en) Method of manufacturing inorganic molding, and inorganic molding
JPH0769743A (en) Thermally insulating castable
CN101152744B (en) Fibre pouring material for glory hole inner lining and manufacturing method of the same