JP2007013042A - Composite magnetic core and reactor employing the same - Google Patents

Composite magnetic core and reactor employing the same Download PDF

Info

Publication number
JP2007013042A
JP2007013042A JP2005195058A JP2005195058A JP2007013042A JP 2007013042 A JP2007013042 A JP 2007013042A JP 2005195058 A JP2005195058 A JP 2005195058A JP 2005195058 A JP2005195058 A JP 2005195058A JP 2007013042 A JP2007013042 A JP 2007013042A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
core
permeability
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005195058A
Other languages
Japanese (ja)
Inventor
Toru Abe
徹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005195058A priority Critical patent/JP2007013042A/en
Publication of JP2007013042A publication Critical patent/JP2007013042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic core having a low cost, a favorable inductance characteristic and a low-loss characteristic, and a reactor employing the same. <P>SOLUTION: The circular complex magnetic core is composed of a high permeability magnetic core composed of a magnetic body of a maximum permeability of 500 or more; a plurality of dust cores including magnetic powder and insulation materials and a gap formed between the magnetic dust cores. In this magnetic core, the high permeability magnetic core is provided adjacently to the dust cores portions, and both the cores have different cross sections in a magnetic path direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ハイブリッド自動車の大出力の電気モータを駆動するような電源回路に用いられるリアクトルとその複合磁心に関するものである。   The present invention relates to a reactor used in a power supply circuit for driving a high output electric motor of a hybrid vehicle and a composite magnetic core thereof.

電源回路用リアクトルの磁心としては、3つに大別することが出来る。数十kHz以下の領域では、珪素鋼板、非晶質軟磁性帯板、微結晶質軟磁性帯板などが磁心材として主に用いられている。これらの磁心材は鉄を主成分とし、飽和磁束密度Bsと透磁率μが大きいという長所をもつが、珪素鋼板は高周波磁心損失が大きいという欠点を有し、非晶質軟磁性帯板と微結晶質軟磁性帯板は、磁芯形状が巻磁心形状や積層磁心形状などに制約され、後述するフェライトのように種々の形状に成型し難い欠点を有する。   The magnetic core of the power circuit reactor can be roughly divided into three. In the region of several tens of kHz or less, silicon steel plates, amorphous soft magnetic strips, microcrystalline soft magnetic strips, etc. are mainly used as magnetic core materials. These magnetic core materials are mainly composed of iron and have the advantages of large saturation magnetic flux density Bs and magnetic permeability μ, but silicon steel plates have the disadvantage of high frequency magnetic core loss. The crystalline soft magnetic strip has a defect that its magnetic core shape is restricted to a wound magnetic core shape or a laminated magnetic core shape and is difficult to be formed into various shapes like ferrite described later.

数十kHz以上の領域では、Mn-Zn系やNi-Zn系に代表されるフェライト磁心が広く用いられている。このフェライト磁心は、高周波磁心損失が小さく、また成形が比較的容易なため、種々の形状を大量生産できる特長を有する。しかしながら、飽和磁束密度Bsが前述の珪素鋼板や非晶質軟磁性帯板、微結晶質軟磁性帯板の3分の1から2分の1程度しかないため、大電流用リアクトルでは磁気飽和を避けるために磁心断面積が大きくなる欠点を有する。   In the region of several tens of kHz or more, ferrite cores typified by Mn-Zn and Ni-Zn are widely used. Since this ferrite core has a small high-frequency core loss and is relatively easy to mold, it has the feature that various shapes can be mass-produced. However, since the saturation magnetic flux density Bs is only about one-third to one-half that of the aforementioned silicon steel plate, amorphous soft magnetic strip, and microcrystalline soft magnetic strip, magnetic saturation is not achieved in the high current reactor. In order to avoid this, there is a disadvantage that the magnetic core cross-sectional area becomes large.

数kHzから数百kHzまでの領域に用いられるものとして圧粉磁心がある。圧粉磁心は、磁性粉末の表面を絶縁処理したのち加工成形したもので、絶縁処理により渦電流損失の発生が抑制されている。しかしながら、高周波磁心損失はフェライト材や非晶質軟磁性帯板、微結晶質軟磁性帯板に比べると大きい。   A dust core is used in a region from several kHz to several hundred kHz. The dust core is formed by subjecting the surface of the magnetic powder to insulation treatment and then processing, and generation of eddy current loss is suppressed by the insulation treatment. However, the high frequency magnetic core loss is larger than that of a ferrite material, an amorphous soft magnetic strip, and a microcrystalline soft magnetic strip.

最近、急速に普及しはじめたハイブリッド自動車では、大出力の電気モータを有しており、これを駆動する電源回路には高電圧大電流に耐えるリアクトルが用いられている。このリアクトルには小型化、低騒音化、低損失化の要求が強く、リアクトルに用いられる磁心材の磁気特性としては、高い飽和磁束密度Bsと適切な範囲の透磁率μrが要求される。ここでいう適切な範囲の透磁率μrについて以下、説明する。磁界Hと磁束密度Bには、B=μoμrHの関係がある。ここでμoは真空中の透磁率を示し、磁界Hはリアクトルに流れる電流に比例する。このため、透磁率の高い磁心材では小さなリアクトル電流でも飽和磁束密度Bsに達して、磁心飽和を起こす。よって、従来はリアクトル磁心材として高い飽和磁束密度Bsの磁性材を用い、この磁心材に空隙を設けて実効的な透磁率(実効透磁率)μreを低くし、巻線数との調整により必要なインダクタンスを得る設計がなされている。本用途での実用的な実効透磁率μreはおおよそ10から50までの範囲内にある。   Recently, a hybrid vehicle that has begun to spread rapidly has a high-output electric motor, and a power circuit for driving the motor uses a reactor that can withstand a high voltage and a large current. There is a strong demand for miniaturization, low noise and low loss in this reactor, and the magnetic properties of the magnetic core material used in the reactor are required to have a high saturation magnetic flux density Bs and an appropriate range of permeability μr. The appropriate range of permeability μr here will be described below. The magnetic field H and the magnetic flux density B have a relationship of B = μoμrH. Here, μo represents the magnetic permeability in vacuum, and the magnetic field H is proportional to the current flowing through the reactor. For this reason, in a magnetic core material having a high magnetic permeability, even when a small reactor current is reached, the saturation magnetic flux density Bs is reached and the magnetic core is saturated. Therefore, conventionally, a magnetic material with a high saturation magnetic flux density Bs is used as the reactor magnetic core material, and a gap is provided in this magnetic core material to reduce the effective magnetic permeability (effective magnetic permeability) μre, which is necessary by adjusting the number of windings. Designed to obtain a good inductance. The practical effective permeability μre for this application is in the range of approximately 10 to 50.

大電流用のリアクトル磁心には、飽和磁束密度Bsの高い磁性材が用いられる。一般に飽和磁束密度Bsの高い磁性材は透磁率も高いため、リアクトル磁心に用いる場合には空隙(ギャップ)を設ける。このギャップを構成する部材の透磁率は略1である。しかし、ギャップでは磁束が磁路の外側に漏れ出るフリンジング磁束が生じる。このため、ギャップ近傍の磁心側面には渦電流が生じ、磁心損失が大幅に増大する欠点があった。フリンジング磁束による渦電流については特許文献1にも記載されている。なお、特許文献1は、50Hzなどの商用周波数で用いられる一方向性電磁鋼板を使用したリアクトル、変圧器に関するものであり、本発明に係る駆動周波数1kHz以上の電源回路に用いられる磁心、リアクトルとは対象が異なるものである。   A magnetic material having a high saturation magnetic flux density Bs is used for the reactor core for high current. In general, since a magnetic material having a high saturation magnetic flux density Bs has a high magnetic permeability, an air gap (gap) is provided when used for a reactor magnetic core. The magnetic permeability of the member constituting this gap is approximately 1. However, in the gap, a fringing magnetic flux is generated in which the magnetic flux leaks outside the magnetic path. For this reason, an eddy current is generated on the side surface of the magnetic core in the vicinity of the gap, and the magnetic core loss is greatly increased. The eddy current caused by the fringing magnetic flux is also described in Patent Document 1. Patent Document 1 relates to a reactor and a transformer using a unidirectional electrical steel sheet used at a commercial frequency such as 50 Hz, and a magnetic core and a reactor used in a power circuit having a drive frequency of 1 kHz or more according to the present invention. Are different objects.

大電流用のリアクトル磁心には、飽和磁束密度Bsの高い磁性材が用いられる。一般に飽和磁束密度Bsの高い磁性材は透磁率も高いため、リアクトル磁心に用いる場合には空隙を設け、この空隙を構成する部材の透磁率は略1である。しかし、ギャップでは磁束が磁路の 外側に漏れ出るフリンジング磁束が生じる。このため、ギャップ近傍の磁心側面には渦電流が生じ、磁心損失が大幅に増大する問題点があった。   A magnetic material having a high saturation magnetic flux density Bs is used for the reactor core for high current. In general, a magnetic material having a high saturation magnetic flux density Bs has a high magnetic permeability. Therefore, when used in a reactor magnetic core, a gap is provided, and the magnetic permeability of a member constituting the gap is approximately 1. However, in the gap, a fringing magnetic flux is generated in which the magnetic flux leaks outside the magnetic path. For this reason, an eddy current is generated on the side surface of the magnetic core in the vicinity of the gap, and there is a problem that the core loss is greatly increased.

別の大電流用のリアクトル磁心としては、前述の圧粉磁心がある。圧粉磁心の透磁率は10〜150程度であるため、ギャップを設けることなく使用できるが、素材の高周波磁心損失は非晶質軟磁性帯板、微結晶質軟磁性帯板に比べて大きい。また、初透磁率と大電流時透磁率との差異が大きく、インダクタンスの電流特性が悪いという欠点を持っていた。   As another high-current reactor core, there is the above-described dust core. Since the magnetic permeability of the dust core is about 10 to 150, it can be used without providing a gap, but the high-frequency core loss of the material is larger than that of the amorphous soft magnetic strip and the microcrystalline soft magnetic strip. Further, the difference between the initial permeability and the high-current permeability is large, and the current characteristic of the inductance is poor.

本出願人は、前述の欠点を解決するものとして、ギャップのフリンジング磁束による磁心損失の増大を抑制し、インダクタンスの電流特性の良好な、高透磁率磁心部と、圧粉磁心部と、前記圧粉磁心部間に設けられたギャップから構成される複合磁心として別途出願している。この出願では、両磁心部の飽和磁束密度がほぼ同じで、磁心断面積もほぼ同じであるリアクトルにおいて高特性のものが得られる。ただし、両磁心部の飽和磁束密度や断面積が異なる場合、例えば、高透磁率磁心部側の飽和磁束密度が低く、圧粉磁心磁心側が飽和磁束密度が高い場合に大電流で駆動すると、高透磁率磁心部側が先に磁心飽和してしまい、インダクタンスが大きく低下する問題点があった。
特開2004−186450号公報((0034)〜(0045)、図1)
As a solution to the above-mentioned drawbacks, the present applicant suppresses an increase in magnetic core loss due to the fringing magnetic flux of the gap, and has a high magnetic permeability magnetic core portion having a good inductance current characteristic, a dust core portion, A separate application has been filed as a composite magnetic core composed of a gap provided between dust cores. In this application, a reactor having high characteristics can be obtained in a reactor in which the saturation magnetic flux densities of both magnetic core portions are substantially the same and the cross-sectional areas of the magnetic cores are substantially the same. However, if the saturation magnetic flux density and the cross-sectional area of the two magnetic core parts are different, for example, if the saturation magnetic flux density on the high permeability magnetic core part side is low and the saturation magnetic core side has a high saturation magnetic flux density, There is a problem that the magnetic core portion is saturated first and the inductance is greatly reduced.
JP 2004-186450 A ((0034) to (0045), FIG. 1)

本発明は、前述した従来の複合磁心型の大電流用リアクトルの問題点を解決し、飽和磁束密度の異なる磁心材を用いても、インダクタンスの電流特性の良好であり、磁心の磁束分布も均一な磁心およびリアクトルを提供することである。   The present invention solves the above-mentioned problems of the conventional composite magnetic core type high current reactor, and even if magnetic core materials having different saturation magnetic flux densities are used, the current characteristics of the inductance are good and the magnetic flux distribution of the magnetic core is uniform. Providing a magnetic core and reactor.

本発明は、環状の複合磁心であって、最大比透磁率500以上の磁性体よりなる高透磁率磁心部と、磁性粉末と絶縁材を含む複数の圧粉磁心部と、前記圧粉磁心部間に設けられたギャップとより構成される複合磁心において、前記高透磁率磁心部と隣り合う圧粉磁心部の断面積が磁路方向に連続的に変化していることを特徴とする複合磁心である。
飽和磁束密度の低い磁心側の断面積をその分大きくし、両方の磁心の飽和磁束量をほぼ同一にすることができ、各磁心部を不必要に大きくする不要がなくなるためコストの削減が図れる。また断面積の小さい磁心部に巻線を施すことにより、巻線長は短くなり、従来よりも銅損を低減することができる。
この圧粉磁心部は、前記高透磁率磁心部に隣接する側の断面積が磁路方向に連続的に変化していることが好ましい。両磁心部が隣接し合う面で、磁路の断面積が急激に変化するように形成してしまうと、磁束分布に不均一が生じて、部分的に過大な発熱部が生じてしまう。端面側から徐々に磁路の断面積を小さく、若しくは大きくなるよう磁心部を形成させることで上記の問題が抑制できる。全ての圧粉磁心部が、断面積が磁路方向に連続的に変化しているように形成される必要はなく、高透磁率磁心部に隣接する圧粉磁心部だけ前記形状に成形してもよい。また、1つの圧粉磁心部で、断面積が磁路方向に連続的に変化している部分と、一律同じ部分とができるような形状でも良い。
The present invention provides an annular composite magnetic core, a high permeability magnetic core portion made of a magnetic material having a maximum relative magnetic permeability of 500 or more, a plurality of dust core portions including magnetic powder and an insulating material, and the dust core portion. A composite magnetic core comprising a gap provided therebetween, wherein the cross-sectional area of the dust core adjacent to the high permeability magnetic core is continuously changed in the magnetic path direction. It is.
The cross-sectional area on the side of the magnetic core having a low saturation magnetic flux density can be increased by that amount, and the saturation magnetic flux amount of both magnetic cores can be made substantially the same, eliminating the need to unnecessarily enlarge each magnetic core, thereby reducing costs. . Further, by winding the magnetic core portion having a small cross-sectional area, the winding length is shortened, and the copper loss can be reduced as compared with the conventional case.
In the dust core portion, it is preferable that the cross-sectional area on the side adjacent to the high permeability core portion is continuously changed in the magnetic path direction. If the magnetic path is formed so that the cross-sectional area of the magnetic path changes abruptly on the surface where the two magnetic cores are adjacent to each other, the magnetic flux distribution is non-uniform, resulting in a partially excessive heat generating part. The above-described problem can be suppressed by forming the magnetic core portion so that the cross-sectional area of the magnetic path gradually decreases or increases from the end face side. It is not necessary for all the powder magnetic cores to be formed so that the cross-sectional area continuously changes in the magnetic path direction, and only the powder magnetic core adjacent to the high permeability magnetic core is formed into the above shape. Also good. Moreover, the shape in which the part where the cross-sectional area is continuously changing in the magnetic path direction and the same part can be formed in one dust core may be used.

また、本発明は、前記複合磁心は略長円形状であり、前記高透磁率磁心部からなる曲率を有するコーナー部と、前記圧粉磁心部と前記ギャップから形成される直線状のストレート部からなることを特徴とする。コンバータ損失を少なくするため、高透磁率磁心部と圧粉磁心部は接触していることが好ましい。   Further, according to the present invention, the composite magnetic core has a substantially oval shape, and includes a corner portion having a curvature composed of the high permeability magnetic core portion, and a straight straight portion formed from the dust core portion and the gap. It is characterized by becoming. In order to reduce converter loss, it is preferable that the high permeability magnetic core and the dust core are in contact with each other.

また、本発明は、前記磁性体が非晶質軟磁性帯板、または微結晶質軟磁性帯板であることを特徴とする。また、前記磁性粉末が鉄−珪素系合金粉末、または鉄−珪素−アルミニウム系合金粉末、または非晶質軟磁性粉末、または微結晶質軟磁粉末であることを特徴とする。   Further, the present invention is characterized in that the magnetic material is an amorphous soft magnetic strip or a microcrystalline soft magnetic strip. The magnetic powder may be iron-silicon alloy powder, iron-silicon-aluminum alloy powder, amorphous soft magnetic powder, or microcrystalline soft magnetic powder.

また、本発明は、これら前述の複合磁心に巻線を施したリアクトルである。また、巻線を断面積の小さい磁心部に設けたリアクトルである。前記したように、断面積の小さい圧粉磁心部に巻線を施すことにより、巻線長は短くなり、銅損が低減される。   The present invention is also a reactor in which the above-described composite magnetic core is wound. Moreover, it is a reactor which provided the coil | winding in the magnetic core part with a small cross-sectional area. As described above, by winding the dust core portion having a small cross-sectional area, the winding length is shortened and the copper loss is reduced.

本発明のリアクトルでは、非晶質軟磁性帯板や微結晶質軟磁性帯板などからなる高透磁率磁心部と、磁性粉末と絶縁材、結合材を混合成型してなる圧粉磁心部と、前記圧粉磁心部内に設けられたギャップとより構成された複合磁心で、前記高透磁率磁心部より前記圧粉磁心部の飽和磁束密度が高く、前記高透磁率磁心部と隣り合う圧粉磁心部の断面積が磁路方向に連続的に変化している。これに対して従来のリアクトルの複合型磁心は、珪素鋼板、非晶質軟磁性帯板、微結晶質軟磁性帯板などからなる高透磁率磁心部とギャップから構成される。この高透磁率磁心部に用いられる鋼板(または帯板)は電気抵抗の低い材質であるため、空隙により発生するフリンジング漏れ磁束が鋼板、薄板の面部分に垂直に近い角度で侵入し、過大な渦電流を発生させ、大きな損失となる。本発明では、圧粉磁心部内に空隙が設けられているので、ギャップに発生するフリンジング漏れ磁束は同様に圧粉磁芯の面方向にほぼ垂直に進入するが、圧粉磁芯は既述したように磁性粉末表面を絶縁処理しているため、電気抵抗が大きく僅かな渦電流しか発生せず、損失は小さい。よって実効透磁率μeを低くするために空隙を設けても、磁心損失は増大せず、20A以上の電源回路に用いる大電流リアクトル用として好適である。ここでギャップとは磁気的に空隙部と同等の透磁率を持つ部分を有し、エアギャップだけでなく、樹脂などの非磁性材による板状部材などでも良い。この板状部材により位置決めを容易に行うことができる。
さらに、従来のリアクトルの複合型磁心は、高透磁率磁心部と圧粉磁心部の断面積がほぼ同一に設定されており、高透磁率磁心部の飽和磁束密度が圧粉磁心部に比べて低い場合には、高透磁率磁心部が先に磁心飽和に至る問題が生じる。それは、大電流で駆動した時に、高透磁率磁心部が先に飽和して複合磁心の実効透磁率が大幅に低下するため、リアクトルのインダクタンスが大きく低下することである。本発明の複合磁心は、磁心の異なる飽和磁束密度に対応して、飽和磁束密度の小さい高透磁率磁心部の磁路断面積を大きくし、飽和磁束量をほぼ同じにするとともに、高透磁率磁心部と隣り合う圧粉磁心部は、磁路断面積が高透磁率磁心側端面から連続的に減少してもう一方の磁心端面に至る構造をとる。最小となった前記端面は、ギャップを介して隣の圧粉磁心部と対向するが、この対向面同士は略同一の断面積を有する。
In the reactor of the present invention, a high permeability magnetic core portion made of an amorphous soft magnetic strip or a microcrystalline soft magnetic strip, a powder magnetic core portion formed by mixing magnetic powder, an insulating material, and a binder, and A dust core provided with a gap provided in the dust core portion, wherein the dust core has a higher saturation magnetic flux density than the high permeability core portion, and is adjacent to the high permeability core portion. The cross-sectional area of the magnetic core portion continuously changes in the magnetic path direction. On the other hand, a conventional composite magnetic core of a reactor is composed of a high permeability magnetic core portion made of a silicon steel plate, an amorphous soft magnetic strip, a microcrystalline soft magnetic strip, and the like, and a gap. Since the steel plate (or strip) used for this high permeability core is a material with low electrical resistance, the fringing leakage magnetic flux generated by the air gap penetrates the surface of the steel plate and thin plate at an angle close to the vertical, and is excessive. Eddy current is generated, resulting in a large loss. In the present invention, since the air gap is provided in the dust core, the fringing leakage magnetic flux generated in the gap similarly enters substantially perpendicular to the surface direction of the dust core. As described above, since the magnetic powder surface is insulated, only a small eddy current is generated with a large electric resistance, and the loss is small. Therefore, even if an air gap is provided to reduce the effective magnetic permeability μe, the core loss does not increase, and it is suitable for a large current reactor used in a power supply circuit of 20 A or more. Here, the gap has a portion having a magnetic permeability equivalent to that of the gap, and may be not only an air gap but also a plate-like member made of a nonmagnetic material such as a resin. Positioning can be easily performed by this plate-like member.
Furthermore, in the conventional composite magnetic core of the reactor, the cross-sectional areas of the high permeability core and the dust core are set to be substantially the same, and the saturation magnetic flux density of the high permeability core is higher than that of the dust core. If it is low, there arises a problem that the high permeability magnetic core part reaches the core saturation first. That is, when driven with a large current, the high permeability magnetic core is saturated first and the effective permeability of the composite core is greatly reduced, so that the inductance of the reactor is greatly reduced. The composite magnetic core of the present invention increases the magnetic path cross-sectional area of the high permeability magnetic core portion with a small saturation magnetic flux density corresponding to the saturation magnetic flux density of different magnetic cores so that the saturation magnetic flux amount is substantially the same, and the high magnetic permeability The dust core portion adjacent to the magnetic core portion has a structure in which the magnetic path cross-sectional area continuously decreases from the high permeability magnetic core side end surface to reach the other magnetic core end surface. The end face that has become the minimum faces the adjacent dust core part through a gap, and the opposing faces have substantially the same cross-sectional area.

本発明の高透磁率磁心部で用いる非晶質軟磁性帯板として、合金組成がFeaSibBcCdM′α(原子%)(但し、M′はCr,Mo,Zr,Hf及びNbからなる群から選ばれた少なくとも1種の元素であり、76≦a≦84%、0<b≦30%、0<c≦25%、0≦d≦3%、0≦α≦5%を満たす非晶質軟磁性帯板を用いることができる。不可避な不純物としてMn, S, P, Sn, Cu, Al, Ti, から少なくとも1種以上の元素を0.50%以下含有してもよい。例えば米国Metglas社製の鉄系非晶質軟磁性材2605SA1が用いえる。
また、微結晶質軟磁性帯板として、一般式:Fe100−x−y−z−α−β−γCuSiM′αM″βγ(原子%)(但し、M′はNb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素、M″はV,Cr,Mn,Al,白金属元素,Sc,Y,Au,Zn,Sn,Reからなる群から選ばれた少なくとも1種の元素、XはC,P,Ge,Ga,Sb,In,Be,Asからなる群から選ばれた少なくとも1種の元素であり、x,y,z,α,β,及びγはそれぞれ0.1≦x≦3,0<y≦30,0<z≦25,5≦y+z≦30,0.1≦α≦30,0≦β≦10及び0≦γ≦10を満たす。)により表わされる組成を有し、組織の少なくとも50%が微細な結晶粒からなり、各結晶粒の最大寸法で測定した粒径の平均が1000Å以下であるFe基合金を用いることができる。例えば、日立金属製のナノ結晶質軟磁性材ファインメット(登録商標)が用いえる。
As an amorphous soft magnetic strip used in the high permeability core of the present invention, the alloy composition is Fe a Si b B c C d M ′ α (atomic%) (where M ′ is Cr, Mo, Zr, Hf And at least one element selected from the group consisting of Nb, 76 ≦ a ≦ 84%, 0 <b ≦ 30%, 0 <c ≦ 25%, 0 ≦ d ≦ 3%, 0 ≦ α ≦ 5 Amorphous soft magnetic strips satisfying% can be used and may contain 0.50% or less of at least one element from Mn, S, P, Sn, Cu, Al, Ti, as an inevitable impurity. For example, an iron-based amorphous soft magnetic material 2605SA1 manufactured by Metglas, USA can be used.
Further, as a fine crystalline soft magnetic strip, the general formula: Fe 100-x-y- z-α-β-γ Cu x Si y B z M 'α M "β X γ ( atomic%) (wherein, M ′ Is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, M ″ is V, Cr, Mn, Al, a white metal element, Sc, Y, Au, Zn , Sn, Re, at least one element selected from the group consisting of X, X is at least one element selected from the group consisting of C, P, Ge, Ga, Sb, In, Be, As, and x , y, z, α, β, and γ are 0.1 ≦ x ≦ 3, 0 <y ≦ 30, 0 <z ≦ 25, 5 ≦ y + z ≦ 30, 0.1 ≦ α ≦ 30, 0 ≦ β ≦ 10 and 0, respectively. ≦ γ ≦ 10.) Fe-based alloy in which at least 50% of the structure is composed of fine crystal grains, and the average grain size measured by the maximum dimension of each crystal grain is 1000 mm or less Can be used. For example, Hitachi Metals' nanocrystalline soft magnetic material Finemet (registered trademark) can be used.

本発明で用いる磁性粉末としては、例えば純鉄の粉、Siを6〜7%含むFe−6.5%Siで代表されるFe−Si合金粉、Fe−Al合金粉、Fe−Si−Al合金粉、Fe−Ni合金粉、Fe−Co合金粉、非晶質金属磁性粉、微結晶質金属磁性粉などが挙げられ。これらは各々単独でまたは適宜、組合せた粉末でも良い。特にSiを6〜7%含むFe−Si合金粉は、磁歪、磁心損失、飽和磁束密度Bsの各特性に優れており、本発明に好適な磁性粉末である。   Examples of the magnetic powder used in the present invention include pure iron powder, Fe-Si alloy powder represented by Fe-6.5% Si containing 6 to 7% Si, Fe-Al alloy powder, Fe-Si-Al alloy powder. Fe-Ni alloy powder, Fe-Co alloy powder, amorphous metal magnetic powder, microcrystalline metal magnetic powder, and the like. These may be used alone or in combination as appropriate. In particular, Fe—Si alloy powder containing 6 to 7% of Si is excellent in the respective characteristics of magnetostriction, magnetic core loss, and saturation magnetic flux density Bs, and is a magnetic powder suitable for the present invention.

本発明で用いる樹脂としては、前記磁性粉の表面を被覆して粉末相互間を絶縁状態にして磁心全体の交流磁化に対する渦電流損が大きくならないように充分な電気抵抗を付与せしめると同時に、これら粉末を結着するバインダーとしても機能するものである。このような樹脂としては、例えばエポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂など各種の樹脂が挙られ、これらは単独にまたは適宜組合せて使用しても良い。   As the resin used in the present invention, the surface of the magnetic powder is coated so that the powders are insulatively provided with sufficient electric resistance so that the eddy current loss for the AC magnetization of the entire magnetic core does not increase. It also functions as a binder for binding powder. Examples of such a resin include various resins such as an epoxy resin, a polyamide resin, a polyimide resin, and a polyester resin, and these may be used alone or in appropriate combination.

本発明で用いる圧粉磁心部の成型方法としては、前記磁性粉末と前記樹脂の混合物をいったん液状化した後に注型して硬化させる注型法、金型中に射出成型することにより成型する射出成型法、金型中に磁性粉末と有機物又は無機物からなる結合材の混合物を充填し加圧して圧粉磁心を成型するプレス成型法などがある。   The method for molding the powder magnetic core used in the present invention includes a casting method in which the mixture of the magnetic powder and the resin is once liquefied and then cast and cured, and injection is performed by injection molding into a mold. There are a molding method, a press molding method in which a mixture of a magnetic powder and an organic or inorganic binder is filled in a mold and pressed to mold a dust core.

本発明の複合磁心は、高透磁率磁心部と隣り合う圧粉磁心部の磁路断面積を変えたことで、各磁心部に必要以上の磁路が形成されず、原価コストを低下させることができる。また、高透磁率磁心部と隣り合う圧粉磁心部の磁路断面積が高透磁率磁心側端面から連続的に減少してもう一方の磁心端面に至る構造をとり、最小となった前記端面はギャップを介して隣の圧粉磁心部と略同一の断面積で対向するので、磁路方向での断面積変化は滑らかであり、磁心中の磁束分布も均一になる。よって、部分的で過剰な磁束集中による異常発熱は発生せず、急激な磁心透磁率変化も無い。また、断面積の小さい圧粉磁心部に巻線を施すことにより、巻線長は短くなり、銅損が低減される。よって、本複合磁心を用いることにより、良好なインダクタンス特性を有し、さらに小型、低損失の特性をもつリアクトルを実現できる。
また本発明の複合磁心は、高透磁率磁心部と圧粉磁心部との接合部に発生する隙間を、本発明の明細書に記載する軟磁性金属粉末を樹脂と混合してなる接着剤で埋めることで、複合磁心としたとき特性劣化の一因である透磁率低下を防止することができる。
In the composite magnetic core of the present invention, by changing the magnetic path cross-sectional area of the dust core adjacent to the high permeability magnetic core, an unnecessary magnetic path is not formed in each magnetic core, thereby reducing the cost cost. Can do. In addition, the end face which has a structure in which the magnetic path cross-sectional area of the dust core adjacent to the high permeability magnetic core part continuously decreases from the end face on the high permeability core side to reach the other end face of the magnetic core. Is opposed to the adjacent powder magnetic core part with a gap substantially the same cross-sectional area, so that the cross-sectional area change in the magnetic path direction is smooth, and the magnetic flux distribution in the magnetic core is also uniform. Therefore, abnormal heat generation due to partial and excessive magnetic flux concentration does not occur, and there is no sudden change in magnetic permeability. Moreover, by winding the dust core having a small cross-sectional area, the winding length is shortened and the copper loss is reduced. Therefore, by using this composite magnetic core, it is possible to realize a reactor having good inductance characteristics, and further having a small size and low loss characteristics.
Further, the composite magnetic core of the present invention is an adhesive formed by mixing the soft magnetic metal powder described in the specification of the present invention with a resin in the gap generated at the joint between the high permeability magnetic core and the dust core. By filling, it is possible to prevent a decrease in magnetic permeability that is a cause of characteristic deterioration when a composite magnetic core is formed.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

(実施例1)
本発明の実施例1を図1に示す。高透磁率磁心部11、12はナノ結晶質軟磁性材ファインメット(登録商標)(日立金属製FT-3材)の巻磁心を切断して作製したブロックである。この磁心ブロックの占積率を含めた飽和磁束密度は、0.98Tである。圧粉磁心部13〜18はFe−6.5%Si系合金粉にカオリン8vol%、水ガラス6vol%を添加したものを用い、成形圧力800MPa、熱処理温度1073Kで圧縮成形した。この圧粉磁心の飽和磁束密度は1.36Tである。圧粉磁心部13,15,16,18は、一端面が高透磁率磁心部11,12に接している。高透磁率磁心部に接している側の圧粉磁心部の断面積は、高透磁率磁心部と同じ断面積であり、磁路方向に連続的に変化し、そこから離れるに従い徐々に断面積が狭くなる略台形形状である。また、圧粉磁心部14,17は直方体形状の磁心であり、圧粉磁心部13,15,16,18の他端面と同じ断面積を持つ。高透磁率磁心部11、12と圧粉磁心部14,17はほぼ同じ飽和磁束密度になるよう、調整されている。さらに、ギャップ31〜34は圧粉磁心部の間に設けているものであり、図示されていないが、板状の樹脂によるギャップが形成されている。全体の磁心形状は長さ120mm、幅63mm、高さ(最大)35mmであり、圧粉磁心部14、17の形状は長さ40mm、幅19mm、高さ25mmである。
Example 1
Example 1 of the present invention is shown in FIG. The high-permeability magnetic core portions 11 and 12 are blocks produced by cutting a wound magnetic core of a nanocrystalline soft magnetic material Finemet (registered trademark) (FT-3 material made by Hitachi Metals). The saturation magnetic flux density including the space factor of the magnetic core block is 0.98T. The dust core portions 13 to 18 were compression-molded at a molding pressure of 800 MPa and a heat treatment temperature of 1073 K using a Fe-6.5% Si-based alloy powder added with 8 vol% kaolin and 6 vol% water glass. The saturation magnetic flux density of the dust core is 1.36T. The powder magnetic core portions 13, 15, 16, and 18 are in contact with the high permeability magnetic core portions 11 and 12 at one end surface. The cross-sectional area of the dust core that is in contact with the high-permeability magnetic core is the same cross-sectional area as that of the high-permeability magnetic core, changes continuously in the magnetic path direction, and gradually increases as the distance from the cross-section increases. It is a substantially trapezoidal shape that narrows. The dust cores 14 and 17 are rectangular parallelepiped magnetic cores and have the same cross-sectional area as the other end surfaces of the dust cores 13, 15, 16 and 18. The high permeability magnetic core portions 11 and 12 and the dust core portions 14 and 17 are adjusted so as to have substantially the same saturation magnetic flux density. Furthermore, the gaps 31 to 34 are provided between the powder magnetic cores, and although not shown, a gap made of a plate-like resin is formed. The overall magnetic core shape is 120 mm in length, 63 mm in width, and 35 mm in height (maximum), and the shape of the dust cores 14 and 17 is 40 mm in length, 19 mm in width, and 25 mm in height.

(比較例1)
比較用に作製した従来例1を図2に示す。高透磁率磁心1、2は実施例で用いた高透磁率磁心と同じであり、日立金属製FT-3材の巻磁心を切断して作製したブロックである。圧粉磁心部3〜8は、磁路の断面積を、高透磁率磁心部に隣接する側の圧粉磁心部の断面積を、磁路方向に連続的に変化させた形状にした。材料、成形方法は実施例1と同じ方法で作製した。このブロックの間にギャップ51〜54を設けた。全体の磁心形状は長さ120mm、幅63mm、高さ35mmである。
(Comparative Example 1)
Conventional Example 1 produced for comparison is shown in FIG. The high magnetic permeability cores 1 and 2 are the same as the high magnetic permeability cores used in the examples, and are blocks made by cutting a wound core of Hitachi Metal's FT-3 material. In the dust core portions 3 to 8, the cross-sectional area of the magnetic path was changed to a shape in which the cross-sectional area of the dust core portion adjacent to the high permeability magnetic core portion was continuously changed in the magnetic path direction. The material and the molding method were produced in the same manner as in Example 1. Gaps 51 to 54 were provided between the blocks. The overall magnetic core shape is 120 mm long, 63 mm wide, and 35 mm high.

(実施例2)
高透磁率磁心61、62は、実施例1と同じ日立金属製FT-3材の巻磁心を切断して作製したブロックである。圧粉磁心部63〜68は、断面積が高透磁率磁心61、62よりも小さく、かつ直方体形状である。寸法条件以外は実施例1と同じ方法で作製している。このブロックの間に樹脂製のギャップ71〜74を設けている。全体の磁心形状は長さ120mm、幅63mm、高さ(最大)35mmであり、圧粉磁心部64,67は実施例1の圧粉磁心部14、17と同材質、同形状である。
(Example 2)
The high magnetic permeability cores 61 and 62 are blocks manufactured by cutting a wound magnetic core made of the same Hitachi Metals FT-3 material as in the first embodiment. The dust core parts 63 to 68 have a cross-sectional area smaller than that of the high permeability cores 61 and 62 and have a rectangular parallelepiped shape. The same method as in Example 1 is used except for the dimensional conditions. Resin gaps 71 to 74 are provided between the blocks. The entire magnetic core has a length of 120 mm, a width of 63 mm, and a height (maximum) of 35 mm. The dust core portions 64 and 67 are the same material and shape as the dust core portions 14 and 17 of the first embodiment.

前述の実施例1と従来例1の磁心に巻線を施した。巻線は磁心のストレート部に、同じ50回巻で同一線材による巻線を施し、ギャップを調整して、電流60Aでインダクタンス約350マイクロHのリアクトルをそれぞれ作製した。このリアクトルを図4に示す駆動周波数10kHzのブースト型DC−DCコンバータのL1として搭載し、入力電圧100Vでコンバータを動作させた。そして、コンバータ出力として12kW(電圧200V、電流60A)を得た時の特性の比較を表1に示す。   Windings were applied to the magnetic cores of Example 1 and Conventional Example 1 described above. As for the winding, the same wire was wound with the same 50 turns on the straight part of the magnetic core, the gap was adjusted, and a reactor having an inductance of about 350 μH was produced at a current of 60 A. This reactor was mounted as L1 of a boost type DC-DC converter having a driving frequency of 10 kHz shown in FIG. 4, and the converter was operated at an input voltage of 100V. Table 1 shows a comparison of characteristics when a converter output of 12 kW (voltage 200 V, current 60 A) is obtained.

Figure 2007013042
Figure 2007013042

表1から判るように、本発明の実施例1の磁心を用いたリアクトルは、従来例1の磁心を使ったリアクトルと比べると、コンバータ損失を21W低減している。この差異は、実施例1では巻線される磁心部の断面積が小さくなっているため、従来例に比べて全巻線長が15%程度短くなっていることの寄与(巻線損失の低減)が大きいと推定される。実施例2は、実施例1とほぼ同じ全巻線長となっているので、従来例1より巻線損失は低減されているが、高透磁率磁心部と圧粉磁心部の隣接面で、磁束分布に不均一が生じて磁心損失が増大しているため、トータルの損失低減は僅かである。ただし、材料コストは従来例1よりも少なく、価格競争力に優れる。   As can be seen from Table 1, the reactor using the magnetic core of Example 1 of the present invention reduces the converter loss by 21 W compared to the reactor using the magnetic core of Conventional Example 1. This difference is due to the fact that in Example 1, the cross-sectional area of the magnetic core portion to be wound is small, so that the total winding length is reduced by about 15% compared to the conventional example (reduction of winding loss). Is estimated to be large. In Example 2, the total winding length is almost the same as in Example 1, so that the winding loss is reduced as compared with Conventional Example 1. However, the magnetic flux on the adjacent surfaces of the high permeability magnetic core and the dust core is different. Since the distribution is non-uniform and the magnetic core loss is increased, the total loss reduction is slight. However, the material cost is lower than that of Conventional Example 1, and the price competitiveness is excellent.

本発明の別の実施例を図5に示す。高透磁率磁心部21、22はナノ結晶質軟磁性材ファインメット(登録商標)(日立金属製FT-3材)を積層したブロックである。圧粉磁心部23〜28は実施例1と同様にFe−6.5%Si系合金粉を使って作製したものである。ギャップ41〜44も実施例1と同様に圧粉磁心部の間に設けている。高透磁率磁心部21、22は、磁性材を高さ方向に積層した磁心ブロックである。高透磁率磁心部21、22は、幅方向に積層した磁心ブロックでも良いが、図示の形状では、高さ方向に積層した方が積層枚数を少なく出来るため、製造コストが小さくなる利点がある。   Another embodiment of the present invention is shown in FIG. The high-permeability magnetic core portions 21 and 22 are blocks in which nanocrystalline soft magnetic material Finemet (registered trademark) (FT-3 material made by Hitachi Metals) is laminated. The dust core parts 23 to 28 were produced using Fe-6.5% Si alloy powder in the same manner as in Example 1. The gaps 41 to 44 are also provided between the dust cores as in the first embodiment. The high permeability magnetic core portions 21 and 22 are magnetic core blocks in which magnetic materials are stacked in the height direction. The high permeability magnetic core portions 21 and 22 may be magnetic core blocks stacked in the width direction, but the shape shown in the figure has an advantage that the number of stacked layers can be reduced and the manufacturing cost is reduced.

高透磁率磁心部と圧粉磁心部 の間に隙間が生じた場合、この隙間からの漏れ磁束により、高透磁率磁心部に渦電流損失が発生する。また、高透磁率磁心部自体あるいは圧粉磁心部自体を複数の磁心ブロックの組合せで構成する場合もある。これらの磁心ブロック間に隙間が生じて、渦電流損失の発生や実効透磁率μeが低下する問題がある。これらを解決するには、透磁率の高い接着剤を用いて磁心部間や磁心ブロック間を接合してこの隙間を埋めればよい。この接着剤は、例えば軟磁性金属粉末をエポキシ樹脂等に混合することにより容易に作製することができる。   When a gap is generated between the high permeability core and the dust core, eddy current loss occurs in the high permeability core due to leakage magnetic flux from the gap. In some cases, the high magnetic permeability core part itself or the dust core part itself is constituted by a combination of a plurality of magnetic core blocks. There is a problem that gaps are generated between these magnetic core blocks, and eddy current loss occurs and the effective magnetic permeability μe decreases. In order to solve these problems, an adhesive having a high magnetic permeability may be used to bond the gaps between the magnetic core portions and the magnetic core blocks. This adhesive can be easily produced, for example, by mixing soft magnetic metal powder into an epoxy resin or the like.

前述した実施例は、口字型形状の複合磁心であるが、EI、EE等の日字型形状においても、本発明の複合磁心構造とすることにより本発明の実施例と同様の効果が得られる。   Although the embodiment described above is a composite magnetic core having a square shape, the same effects as those of the embodiment of the present invention can be obtained even in a Japanese character shape such as EI and EE by using the composite magnetic core structure of the present invention. It is done.

本発明に係る複合磁心の実施例1を示す図である。It is a figure which shows Example 1 of the composite magnetic core which concerns on this invention. 従来のリアクトル用磁心を示す図である。It is a figure which shows the conventional magnetic core for reactors. 本発明に係る複合磁心の別の実施例を示す図である。It is a figure which shows another Example of the composite magnetic core which concerns on this invention. 本発明に係るリアクトルを用いたブースト型DC−DCコンバータの回路図である。It is a circuit diagram of the boost type DC-DC converter using the reactor which concerns on this invention. 本発明に係る複合磁心の別の実施例を示す図である。It is a figure which shows another Example of the composite magnetic core which concerns on this invention.

符号の説明Explanation of symbols

1,2,11,12,21,22,61,62:高透磁率磁心部、
3〜8,13〜18,23〜28,63〜68:圧粉磁心部、
31〜34,41〜44,51〜54,71〜74:ギャップ、
L1 リアクトル、Q1 トランジスタ、D1 ダイオード、C1,C2 キャパシタ
1, 2, 11, 12, 21, 22, 61, 62: high permeability magnetic core,
3-8, 13-18, 23-28, 63-68: dust core part,
31-34, 41-44, 51-54, 71-74: gap,
L1 reactor, Q1 transistor, D1 diode, C1, C2 capacitor

Claims (9)

環状の複合磁心であって、最大比透磁率500以上の磁性体よりなる高透磁率磁心部と、磁性粉末と絶縁材を含む複数の圧粉磁心部と、前記圧粉磁心部間に設けられたギャップとより構成される複合磁心において、前記高透磁率磁心部と圧粉磁心部は隣接しており、かつ両磁心部の磁路方向の断面積が異なることを特徴とする複合磁心。 An annular composite magnetic core, which is provided between a high permeability magnetic core portion made of a magnetic material having a maximum relative magnetic permeability of 500 or more, a plurality of dust core portions including magnetic powder and an insulating material, and the dust core portion. In the composite magnetic core constituted by the gap, the high magnetic permeability magnetic core portion and the dust core portion are adjacent to each other, and the cross-sectional areas in the magnetic path direction of both magnetic core portions are different. 前記圧粉磁心部は、前記高透磁率磁心部に隣接する側の断面積が磁路方向に連続的に変化していることを特徴とする請求項1に記載の複合磁心。 2. The composite magnetic core according to claim 1, wherein a cross-sectional area of the dust core portion adjacent to the high permeability core portion is continuously changed in a magnetic path direction. 前記圧粉磁心部の最大比透磁率が200以下の範囲にあることを特徴とする請求項1又は2に記載の複合磁心。 The composite magnetic core according to claim 1 or 2, wherein a maximum relative permeability of the dust core portion is in a range of 200 or less. 前記複合磁心は略長円形状であり、前記高透磁率磁心部からなる曲率を有するコーナー部と、前記圧粉磁心部と前記ギャップから形成される直線状のストレート部からなることを特徴とする請求項1乃至3に記載の複合磁心。 The composite magnetic core has a substantially oval shape, and includes a corner portion having a curvature made up of the high permeability magnetic core portion, and a straight straight portion formed from the dust core portion and the gap. The composite magnetic core according to claim 1. 前記高透磁率磁心部と圧粉磁心部は接触していることを特徴とする請求項1乃至4に記載の複合磁心。 5. The composite magnetic core according to claim 1, wherein the high permeability magnetic core portion and the dust core portion are in contact with each other. 前記磁性体が非晶質軟磁性帯板、または微結晶質軟磁性帯板であることを特徴とする請求項1乃至5に記載の複合磁心。 6. The composite magnetic core according to claim 1, wherein the magnetic body is an amorphous soft magnetic strip or a microcrystalline soft magnetic strip. 前記磁性粉末が鉄−珪素系合金粉末、または鉄−珪素−アルミニウム系合金粉末、または非晶質軟磁性粉末、または微結晶質軟磁粉末であることを特徴とする請求項1乃至6に記載の複合磁心。 7. The magnetic powder according to claim 1, wherein the magnetic powder is an iron-silicon alloy powder, an iron-silicon-aluminum alloy powder, an amorphous soft magnetic powder, or a microcrystalline soft magnetic powder. Composite magnetic core. 請求項1乃至7に記載の複合磁心を用いたことを特徴とするリアクトル。 A reactor using the composite magnetic core according to claim 1. 請求項1乃至7に記載の複合磁心を用い、断面積の小さい磁心部に巻線を設けたことを特徴とするリアクトル。 A reactor using the composite magnetic core according to claim 1, wherein a winding is provided in a magnetic core portion having a small cross-sectional area.
JP2005195058A 2005-07-04 2005-07-04 Composite magnetic core and reactor employing the same Pending JP2007013042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195058A JP2007013042A (en) 2005-07-04 2005-07-04 Composite magnetic core and reactor employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195058A JP2007013042A (en) 2005-07-04 2005-07-04 Composite magnetic core and reactor employing the same

Publications (1)

Publication Number Publication Date
JP2007013042A true JP2007013042A (en) 2007-01-18

Family

ID=37751110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195058A Pending JP2007013042A (en) 2005-07-04 2005-07-04 Composite magnetic core and reactor employing the same

Country Status (1)

Country Link
JP (1) JP2007013042A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041877A (en) * 2006-08-04 2008-02-21 Sumitomo Electric Ind Ltd Reactor
JP2008159832A (en) * 2006-12-25 2008-07-10 Sumitomo Electric Ind Ltd Reactor
JP2008263062A (en) * 2007-04-12 2008-10-30 Toyota Motor Corp Reactor core and reactor
JP2009033057A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Core for reactor
US7953535B2 (en) * 2007-07-31 2011-05-31 Caterpillar Inc. Drive line torque perturbation for PTO mode shifting
JP2012109296A (en) * 2010-11-15 2012-06-07 Sht Corp Ltd Coil device
JP2013080949A (en) * 2012-12-14 2013-05-02 Hitachi Metals Ltd Reactor, and power conditioner apparatus
JP2013089776A (en) * 2011-10-18 2013-05-13 Toyota Industries Corp Magnetic core, and induction apparatus
JP2013089775A (en) * 2011-10-18 2013-05-13 Toyota Industries Corp Magnetic core, and induction apparatus
JP2013211335A (en) * 2012-03-30 2013-10-10 Hitachi Metals Ltd Composite magnetic core, reactor and power supply unit
JP2015041625A (en) * 2013-08-20 2015-03-02 株式会社アイキューフォー Reactor, composite core for reactor, and composite core formation member for reactor
JP2015141976A (en) * 2014-01-28 2015-08-03 Tdk株式会社 reactor
JP2015141975A (en) * 2014-01-28 2015-08-03 Tdk株式会社 reactor
JP2016167620A (en) * 2010-12-08 2016-09-15 エプコス アクチエンゲゼルシャフトEpcos Ag Inductive structural element with improved core characteristic
CN107346702A (en) * 2017-07-05 2017-11-14 太仓飞顺温控设备有限公司 A kind of magnetic core for transformer structure
WO2018163870A1 (en) * 2017-03-09 2018-09-13 株式会社オートネットワーク技術研究所 Reactor
WO2019102840A1 (en) * 2017-11-21 2019-05-31 株式会社オートネットワーク技術研究所 Reactor
CN111357067A (en) * 2017-11-10 2020-06-30 Abb电网瑞士股份公司 Transformer for use in rail vehicles
CN112735784A (en) * 2021-01-27 2021-04-30 西安交通大学 Parallel reactor
DE102011055880B4 (en) 2010-12-08 2022-05-05 Tdk Electronics Ag Inductive component with improved core properties

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041877A (en) * 2006-08-04 2008-02-21 Sumitomo Electric Ind Ltd Reactor
JP2008159832A (en) * 2006-12-25 2008-07-10 Sumitomo Electric Ind Ltd Reactor
JP2008263062A (en) * 2007-04-12 2008-10-30 Toyota Motor Corp Reactor core and reactor
JP2009033057A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Core for reactor
US7953535B2 (en) * 2007-07-31 2011-05-31 Caterpillar Inc. Drive line torque perturbation for PTO mode shifting
JP2012109296A (en) * 2010-11-15 2012-06-07 Sht Corp Ltd Coil device
DE102011055880B4 (en) 2010-12-08 2022-05-05 Tdk Electronics Ag Inductive component with improved core properties
JP2016167620A (en) * 2010-12-08 2016-09-15 エプコス アクチエンゲゼルシャフトEpcos Ag Inductive structural element with improved core characteristic
JP2013089776A (en) * 2011-10-18 2013-05-13 Toyota Industries Corp Magnetic core, and induction apparatus
JP2013089775A (en) * 2011-10-18 2013-05-13 Toyota Industries Corp Magnetic core, and induction apparatus
US8907759B2 (en) 2011-10-18 2014-12-09 Kabushiki Kaisha Toyota Jidoshokki Magnetic core and induction device
JP2013211335A (en) * 2012-03-30 2013-10-10 Hitachi Metals Ltd Composite magnetic core, reactor and power supply unit
JP2013080949A (en) * 2012-12-14 2013-05-02 Hitachi Metals Ltd Reactor, and power conditioner apparatus
JP2015041625A (en) * 2013-08-20 2015-03-02 株式会社アイキューフォー Reactor, composite core for reactor, and composite core formation member for reactor
JP2015141976A (en) * 2014-01-28 2015-08-03 Tdk株式会社 reactor
JP2015141975A (en) * 2014-01-28 2015-08-03 Tdk株式会社 reactor
WO2018163870A1 (en) * 2017-03-09 2018-09-13 株式会社オートネットワーク技術研究所 Reactor
JP2018148153A (en) * 2017-03-09 2018-09-20 株式会社オートネットワーク技術研究所 Reactor
CN107346702A (en) * 2017-07-05 2017-11-14 太仓飞顺温控设备有限公司 A kind of magnetic core for transformer structure
CN111357067A (en) * 2017-11-10 2020-06-30 Abb电网瑞士股份公司 Transformer for use in rail vehicles
CN111357067B (en) * 2017-11-10 2023-02-21 日立能源瑞士股份公司 Transformer for use in rail vehicles
US11984248B2 (en) 2017-11-10 2024-05-14 Hitachi Energy Ltd Transformer for use in a rail vehicle
WO2019102840A1 (en) * 2017-11-21 2019-05-31 株式会社オートネットワーク技術研究所 Reactor
JP2019096698A (en) * 2017-11-21 2019-06-20 株式会社オートネットワーク技術研究所 Reactor
US11443880B2 (en) 2017-11-21 2022-09-13 Autonetworks Technologies, Ltd. Reactor
CN112735784A (en) * 2021-01-27 2021-04-30 西安交通大学 Parallel reactor
CN112735784B (en) * 2021-01-27 2023-03-21 西安交通大学 Parallel reactor

Similar Documents

Publication Publication Date Title
JP2007013042A (en) Composite magnetic core and reactor employing the same
JP4895171B2 (en) Composite core and reactor
JP2007012647A (en) Complex magnetic core and reactor employing the same
US7965163B2 (en) Reactor core and reactor
JP2007128951A (en) Reactor
US9455080B2 (en) Reactor
JP6048789B2 (en) Reactor and power supply
AU2005236929A1 (en) Magnetic core for stationary electromagnetic devices
JP2009071248A (en) Reactor, and power conditioner apparatus
JP2007134381A (en) Composite magnetic material, dust core using the same, and magnetic element
JP2008192897A (en) Dust core and reactor
US9859044B2 (en) Powder magnetic core and reactor using the same
JP2007214425A (en) Powder magnetic core and inductor using it
US10224141B2 (en) Coupled inductor
US9406430B2 (en) Reactor
JP4900804B2 (en) Dust core
JP5288227B2 (en) Reactor core and reactor
US20030160677A1 (en) Powder core and reactor using the same
JP5140065B2 (en) Reactor
JP6075678B2 (en) Composite magnetic core, reactor and power supply
JP5288229B2 (en) Reactor core and reactor
JP5288228B2 (en) Reactor core and reactor
JP2009117442A (en) Compound reactor
JP5900741B2 (en) Composite magnetic core, reactor and power supply
JP6668113B2 (en) Inductor