JP2007005715A - Heat sink device and heat dissipating method - Google Patents

Heat sink device and heat dissipating method Download PDF

Info

Publication number
JP2007005715A
JP2007005715A JP2005186877A JP2005186877A JP2007005715A JP 2007005715 A JP2007005715 A JP 2007005715A JP 2005186877 A JP2005186877 A JP 2005186877A JP 2005186877 A JP2005186877 A JP 2005186877A JP 2007005715 A JP2007005715 A JP 2007005715A
Authority
JP
Japan
Prior art keywords
heat
heating element
thermoelectric conversion
fixing member
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005186877A
Other languages
Japanese (ja)
Other versions
JP4813829B2 (en
Inventor
Shigeru Umeki
茂 梅木
Mitsuhiro Kudo
光洋 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2005186877A priority Critical patent/JP4813829B2/en
Publication of JP2007005715A publication Critical patent/JP2007005715A/en
Application granted granted Critical
Publication of JP4813829B2 publication Critical patent/JP4813829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology of solving problems of being apt to upsize a heat sink device, a thermoelectric conversion member, and a heating element fixing member to ensure a wiring space and cause a deteriorated heat dissipating efficiency; and achieving low power consumption/and space saving. <P>SOLUTION: A heating element 9 is clamped between an LD holder 8 and an LD retainer 10 made of a material with excellent heat conductivity, and the folded part of the LD holder 8 is closely adhered to a thermoconductive plate 12 from the outside of a wiring board 11. The thermoconductive plate 12 is closely in contact with a thermoelectric conversion member 13, and the heat generating face of the thermoelectric conversion member 13 is closely adhered to a heat sink 14. The heat from the heating element 9 flows through a path directly reaching the thermoconductive plate 12 from the LD holder 8, and a path reaching the thermoconductive plate 12 via the LD holder 8 from the LD retainer 10. The heat from the thermoconductive plate 12 flows to the thermoelectric conversion member 13 and the heat sink 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体レーザ等の発熱体を冷却する技術に関するものである。   The present invention relates to a technique for cooling a heating element such as a semiconductor laser.

図7は発熱源が1個の場合の冷却方法を示す図である。
同図において符号1はLDホルダ、2はLD、3は熱電変換部材、4はLDソケット、5は放熱器をそれぞれ示す。
図8は発熱源が複数の場合の問題点を説明するための図である。
同図において符号6は熱電変換部材、7は放熱器をそれぞれ示す。
従来、電子冷却で缶タイプのパッケージに封止されたデバイスたる発熱源、例えば半導体レーザ(以下LDと表記する)や、CCD等を放熱する場合の構成は、発熱源+熱電変換部材(例えばペルチエ素子)+放熱器が知られている(例えば、特許文献1参照。)。LD素子の場合で言えば、LDが配線基板に直接形成されている構成の場合は放熱経路に関して特に問題はないが(例えば、非特許文献1 参照。)、缶タイプのLDの場合、図7に示すように、熱電変換部材と放熱器に穴を開けて、そこにソケットをつけて電気的な接続を確保していた。ところが、発熱源が多数個になった場合、その方式では、図8に示すように、熱電変換部材と放熱器にあける穴の数が多く、効率が悪くなる。したがって、冷却能力を確保するために、熱電変換器と放熱器の大きさが必然的に大きくなってしまう。この場合、熱電変換部材に穴が開くと、ペルチエ素子の配置に制限を受け、穴の開いた部分の全周はデッドスペースとなり、穴が開いた部分の面積以上の面積を確保しなければならない。
発熱体の端子をそのままにして、放熱器の後ろから配線する構造にすると、配線領域に風が当たらなくなり、放熱器も配線領域分大きくする必要がある。発熱体が複数ある場合は、この影響が大きくなり、ファンの大型化、放熱器の大型化により、装置が大型化する。
FIG. 7 is a diagram showing a cooling method when there is one heat source.
In the figure, reference numeral 1 denotes an LD holder, 2 denotes an LD, 3 denotes a thermoelectric conversion member, 4 denotes an LD socket, and 5 denotes a radiator.
FIG. 8 is a diagram for explaining a problem when there are a plurality of heat sources.
In the figure, reference numeral 6 denotes a thermoelectric conversion member, and 7 denotes a radiator.
Conventionally, a heat source as a device sealed in a can-type package by electronic cooling, such as a semiconductor laser (hereinafter referred to as LD), a CCD, or the like has a configuration of a heat source + thermoelectric conversion member (for example, Peltier). (Element) + radiator is known (for example, refer to Patent Document 1). In the case of the LD element, there is no particular problem with respect to the heat dissipation path when the LD is directly formed on the wiring board (see, for example, Non-Patent Document 1), but in the case of a can-type LD, FIG. As shown in FIG. 2, holes were made in the thermoelectric conversion member and the radiator, and a socket was attached thereto to ensure electrical connection. However, when there are a large number of heat sources, as shown in FIG. 8, the number of holes in the thermoelectric conversion member and the radiator is large and the efficiency deteriorates. Therefore, the size of the thermoelectric converter and the radiator is inevitably increased in order to ensure the cooling capacity. In this case, if a hole is opened in the thermoelectric conversion member, the arrangement of the Peltier element is limited, and the entire circumference of the holed portion becomes a dead space, and an area larger than the area of the holed hole must be secured. .
If the structure is such that the terminal of the heating element is left as it is and the wiring is made from behind the heatsink, the wind does not hit the wiring area, and the heatsink needs to be enlarged by the wiring area. In the case where there are a plurality of heating elements, this effect is increased, and the size of the apparatus is increased by increasing the size of the fan and the size of the radiator.

特開平11−330327号公報JP 11-330327 A SONYレーザーダイオードガイド、第3章使用方法、3−3−3「外付けTEクーラを用いて放熱する方法」。Sony Laser Diode Guide, Chapter 3 Usage, 3-3-3 “Method of Dissipating Heat Using an External TE Cooler”.

配線用スペースを確保するために、放熱器や、熱電変換部材、発熱体固定部材が大きくなりがちで、放熱効率が悪くなるという問題点を克服し、かつ、低消費電力・省スペース化を実現する。   To secure space for wiring, the heat sink, thermoelectric conversion member and heating element fixing member tend to be large, overcoming the problem of poor heat dissipation efficiency, and realizing low power consumption and space saving To do.

請求項1に記載の発明は、電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱装置であって、該発熱体を固定する第1の固定部材と、前記発熱体と、前記発熱体を固定する第2の固定部材と、前記端子に接続される配線板と、熱伝導板と、熱電変換部材と、放熱器とがこの順に配置されてなることを特徴とする。
請求項2に記載の発明は、請求項1に記載の放熱装置において、前記発熱体からの伝熱経路が、発熱体側面・第1の固定部材・熱伝導板・熱電変換部材・放熱器の経路と、発熱体底面・第2の固定部材・第1の固定部材・熱伝導板・熱電変換部材・放熱器の経路の2つの経路を有することを特徴とする。
請求項3に記載の発明は、電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱装置であって、該発熱体を固定する固定部材と、前記端子を所定の方向に直角もしくは鋭角に折り曲げた前記発熱体と、前記端子が接触しないように溝を形成して前記発熱体を固定する固定部材を兼ねる熱伝導板と、熱電変換部材と、放熱器とがこの順に配置され、前記端子に接続される配線板を有するることを特徴とする。
The invention according to claim 1 is a heat dissipating device for cooling a heat generating element having a terminal for electrical connection coming out of the package toward the normal direction of the bottom surface of the package, A first fixing member to be fixed; the heating element; a second fixing member to fix the heating element; a wiring board connected to the terminal; a heat conduction plate; a thermoelectric conversion member; Are arranged in this order.
According to a second aspect of the present invention, in the heat dissipation device according to the first aspect, the heat transfer path from the heat generating element includes a side surface of the heat generating element, a first fixing member, a heat conduction plate, a thermoelectric conversion member, and a radiator. There are two paths: a path, and a heating element bottom surface, a second fixing member, a first fixing member, a heat conduction plate, a thermoelectric conversion member, and a radiator path.
The invention according to claim 3 is a heat dissipating device for cooling the heat generating element that is exposed to the outside of the package with the terminals for electrical connection directed in the normal direction of the bottom surface of the package. A fixing member that fixes the terminal, the heating element that is bent at a right angle or an acute angle in a predetermined direction, and a heat conduction plate that also serves as a fixing member that fixes the heating element by forming a groove so that the terminal does not contact The thermoelectric conversion member and the radiator are arranged in this order and have a wiring board connected to the terminal.

請求項4に記載の発明は、請求項3に記載の放熱装置において、前記発熱体からの伝熱経路が、発熱体側面・固定部材・熱伝導板・熱電変換部材・放熱器の経路と、発熱体底面・熱伝導板・熱電変換部材・放熱器の経路の2つの経路を有することを特徴とする。
請求項5に記載の発明は、電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱装置であって、該発熱体を固定する固定部材と、前記端子を所定の方向に直角もしくは鋭角に折り曲げた前記発熱体と、前記端子が接触しないように溝を形成して前記発熱体を固定する固定部材を兼ねる熱電変換部材と、放熱器とがこの順に配置され、前記端子に接続される配線板を有することを特徴とする。
請求項6に記載の発明は、請求項5に記載の放熱装置において、前記発熱体からの伝熱経路が、発熱体側面・固定部材・熱電変換部材・放熱器の経路と、発熱体底面・熱電変換部材・放熱器の経路の2つの経路を有することを特徴とする。
請求項7に記載の発明は、電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱装置であって、該発熱体を固定する第1の固定部材と、前記発熱体と、面の熱伝導率が厚み方向の熱伝導率の数十倍以上の熱伝導異方性部材と、前記発熱体を固定する第2の固定部材と、前記端子を接続する配線板と、前記熱伝導異方性部材の折り返し部を固定するための熱伝導異方性部材固定部材と、前記熱伝導異方性部材の折り返し部と、熱電変換部材と、放熱器とがこの順に配置されることを特徴とする。
The invention according to claim 4 is the heat radiating device according to claim 3, wherein the heat transfer path from the heating element is a side of the heating element, a fixing member, a heat conduction plate, a thermoelectric conversion member, a radiator, It has two paths of a heating element bottom surface, a heat conduction plate, a thermoelectric conversion member, and a heat radiator.
The invention according to claim 5 is a heat dissipating device for cooling the heat generating element that the terminal for electrical connection comes out of the package toward the normal direction of the bottom surface of the package, A fixing member for fixing, the heating element in which the terminal is bent at a right angle or an acute angle in a predetermined direction, and a thermoelectric conversion member that also serves as a fixing member for fixing the heating element by forming a groove so as not to contact the terminal And a radiator are arranged in this order and have a wiring board connected to the terminal.
According to a sixth aspect of the present invention, in the heat dissipation device according to the fifth aspect, the heat transfer path from the heating element includes a heating element side surface, a fixing member, a thermoelectric conversion member, a radiator path, a heating element bottom surface, It has two paths of the path | route of a thermoelectric conversion member and a heat radiator.
The invention according to claim 7 is a heat dissipating device for cooling the heat generating element that the terminal for electrical connection comes out of the package toward the normal direction of the bottom surface of the package. A first fixing member to be fixed; the heat generating element; a heat conductive anisotropic member having a thermal conductivity of a surface several tens of times greater than that in the thickness direction; and a second fixing for fixing the heat generating element. A member, a wiring board connecting the terminals, a heat conduction anisotropic member fixing member for fixing a turn portion of the heat conduction anisotropic member, a turn portion of the heat conduction anisotropic member, and a thermoelectric The conversion member and the radiator are arranged in this order.

請求項8に記載の発明は、請求項7に記載の放熱装置において、前記熱伝導異方性部材はグラファイトシートであることを特徴とする。
請求項9に記載の発明は、請求項7または8に記載の放熱装置において、前記第2の固定部材は熱の不良導体であることを特徴とする。
請求項10に記載の発明は、請求項7ないし9のいずれか1つに記載の放熱装置において、前記熱伝導異方性部材固定部材は熱の不良導体であることを特徴とする。
請求項11に記載の発明は、請求項1ないし10のいずれか1つに記載の放熱装置において、前記熱電変換部材の吸熱面はダイヤモンド焼結体であることを特徴とする。
請求項12に記載の発明は、請求項1ないし11のいずれか1つに記載の放熱装置を有する光学装置を特徴とする。
The invention according to claim 8 is the heat radiating device according to claim 7, wherein the thermally conductive anisotropic member is a graphite sheet.
The invention according to claim 9 is the heat dissipation device according to claim 7 or 8, wherein the second fixing member is a defective conductor of heat.
According to a tenth aspect of the present invention, in the heat dissipating device according to any one of the seventh to ninth aspects, the thermally conductive anisotropic member fixing member is a defective conductor of heat.
An eleventh aspect of the present invention is the heat dissipation device according to any one of the first to tenth aspects, characterized in that the endothermic surface of the thermoelectric conversion member is a diamond sintered body.
A twelfth aspect of the invention is an optical device having the heat dissipation device according to any one of the first to eleventh aspects.

請求項13に記載の発明は、電気的接続用の端子がパッケージの外部に出ている発熱体を冷却するための放熱方法であって、該発熱体を2つの固定部材で固定し、前記発熱体からの熱を一方の固定部材から熱伝導板を経て熱電変換部材の吸熱側に伝え、該熱電変換部材の放熱側の熱を放熱器に伝え、該放熱器から放熱する経路と、前記発熱体の他方の固定部材から前記熱伝導板を経て、前記熱電変換部材の吸熱側に伝え、該熱電変換部材の放熱側の熱を前記放熱器に伝え、該放熱器から放熱する経路の2つの経路を有する放熱方法を特徴とする。
請求項14に記載の発明は、電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱方法であって、前記端子を所定の方向に直角もしくは鋭角に折り曲げた前記発熱体からの熱を、該発熱体を一方側から固定する固定部材と、前記端子が接触しないように溝を形成されて他方側から前記発熱体を固定する固定部材を兼ねる熱伝導板とに伝達し、さらに熱電変換部材を経て、放熱器で放熱することを特徴とする。
The invention according to claim 13 is a heat dissipation method for cooling a heating element having terminals for electrical connection coming out of a package, wherein the heating element is fixed by two fixing members, and the heating The heat from the body is transferred from one fixing member to the heat absorption side of the thermoelectric conversion member through the heat conduction plate, the heat on the heat dissipation side of the thermoelectric conversion member is transferred to the heat radiator, and the heat dissipation path from the heat radiator, the heat generation The heat is transferred from the other fixing member of the body to the heat absorption side of the thermoelectric conversion member through the heat conduction plate, the heat on the heat dissipation side of the thermoelectric conversion member is transmitted to the heat radiator, and two paths for heat dissipation from the heat radiator are transmitted. It features a heat dissipation method having a path.
The invention according to claim 14 is a heat dissipation method for cooling a heating element in which a terminal for electrical connection comes out of the package toward the normal direction of the bottom surface of the package, wherein the terminal A fixing member for fixing the heating element from one side to the heat that is bent at a right angle or an acute angle to the direction and a groove so that the terminal does not contact and fixing the heating element from the other side It transmits to the heat conductive plate which also serves as the fixing member, and further, the heat is dissipated by the radiator through the thermoelectric conversion member.

請求項15に記載の発明は、電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱方法であって、前記端子を所定の方向に直角もしくは鋭角に折り曲げた前記発熱体からの熱を、該発熱体を一方側から固定する固定部材と、前記端子が接触しないように溝を形成されて他方側から前記発熱体を固定する固定部材を兼ねる熱電変換部材とに伝達し、さらに放熱器で放熱することを特徴とする。
請求項16に記載の発明は、電気的接続用の端子がパッケージの外部に出ている発熱体を冷却するための放熱方法であって、該発熱体の底面に、面方向に高い伝熱性を有する熱伝導異方性部材を密着させて前側固定部材と後側固定部材で固定し、前記熱伝導異方性部材の延長部を前記後側固定部材の後方に折り返して熱電変換部材の吸熱面に密着させることにより、前記発熱体からの熱を、前記熱伝導異方性部材を介して熱電変換部材に吸熱させることを特徴とする。
The invention according to claim 15 is a heat dissipation method for cooling a heating element in which a terminal for electrical connection comes out of the package in a direction normal to the bottom surface of the package. A fixing member for fixing the heating element from one side to the heat that is bent at a right angle or an acute angle to the direction and a groove so that the terminal does not contact and fixing the heating element from the other side It transmits to the thermoelectric conversion member which also serves as the fixing member to perform, and also radiates heat with a radiator.
The invention according to claim 16 is a heat dissipation method for cooling a heating element in which terminals for electrical connection are exposed to the outside of the package, and has high heat conductivity in the surface direction on the bottom surface of the heating element. The heat conductive anisotropic member having the heat conductive anisotropic member is closely attached and fixed by the front side fixing member and the rear side fixing member, and the extension part of the heat conductive anisotropic member is folded back to the rear side fixing member to absorb the heat absorption surface of the thermoelectric conversion member. By adhering to the thermoelectric conversion member, the heat from the heating element is absorbed by the thermoelectric conversion member via the heat conduction anisotropic member.

本発明によれば、冷却面でのデッドスペースが減るために、熱電変換部材、放熱器、ファンのサイズを小さくすることが出来、放熱効率がアップし、低消費電力・省スペースが実現できる。   According to the present invention, since the dead space on the cooling surface is reduced, the size of the thermoelectric conversion member, the radiator and the fan can be reduced, the heat radiation efficiency is improved, and low power consumption and space saving can be realized.

以下、本発明を実施例を以って説明する。   Hereinafter, the present invention will be described by way of examples.

図1は本発明の第1の実施例を説明するための図である。同図(a)は分解斜視図、同図(b)は合体図である。
図2は第1の実施例の断面図である。
両図において符号8は第1の固定部材としてのLDホルダ、9はLD、10は第2の固定部材としてのLD押さえ、11は配線板、12は熱伝導板、13は熱電変換部材、14は放熱器をそれぞれ示す。
本発明では、熱電変換部材や放熱器に穴を開けないで済む放熱構造と、放熱経路を出来るだけ短縮して、放熱の効率化と、小型化を狙う。
本実施例の構成を説明する。
複数(図示例では8個)のLD9は、LDホルダ8に開けられた円形の穴8aに光束出射面のある小径部を挿入し、大径部であるつば部をLDホルダ8の裏面側の座繰り部に当接させる。LD押さえ10はLD9の配列に合わせて穴が開けられており、その穴の大きさは、LD9の端子には接触せず、つば部周辺は押さえ込める大きさにしてある。このLD押さえ10をLD9の後からはめ込み、LDホルダ8に対しLD9を挟んで密着させている。LDホルダ8とLD押さえ10の横方向(図1の左右方向)両側にはそれぞれ折り曲げ部があり、LD押さえ10の折り曲げ部はLDホルダ8の折り曲げ部に丁度はまりこむ大きさに形成されている。LDホルダ8とLD押さえ10は共に熱の良導体で形成しておく。それによって、発熱体であるLD9からの熱は、LDホルダ8とLD押さえ10によって後述の放熱構造に逃がすことができる。
FIG. 1 is a diagram for explaining a first embodiment of the present invention. FIG. 3A is an exploded perspective view, and FIG.
FIG. 2 is a cross-sectional view of the first embodiment.
In both figures, 8 is an LD holder as a first fixing member, 9 is an LD, 10 is an LD retainer as a second fixing member, 11 is a wiring board, 12 is a heat conduction plate, 13 is a thermoelectric conversion member, 14 Indicates a radiator.
In the present invention, a heat dissipation structure that does not require a hole in a thermoelectric conversion member and a radiator, and a heat dissipation path are shortened as much as possible, aiming at efficiency of heat dissipation and miniaturization.
The configuration of this embodiment will be described.
A plurality of (eight in the illustrated example) LDs 9 are inserted into a circular hole 8 a formed in the LD holder 8 with a small-diameter portion having a light-emitting surface, and a collar portion, which is a large-diameter portion, is disposed on the back side of the LD holder 8. It abuts against the counterbore. The LD retainer 10 has holes formed in accordance with the arrangement of the LDs 9, and the size of the holes is such that it does not contact the terminals of the LD 9 and the periphery of the collar portion can be retained. The LD retainer 10 is fitted from the rear of the LD 9 and is in close contact with the LD holder 8 with the LD 9 interposed therebetween. The LD holder 8 and the LD retainer 10 have bent portions on both sides in the lateral direction (left and right direction in FIG. 1). . Both the LD holder 8 and the LD retainer 10 are formed of a good heat conductor. Thereby, the heat from the LD 9 as the heating element can be released to the heat radiating structure described later by the LD holder 8 and the LD retainer 10.

配線板11はプリント基板として形成されており、LD9の各端子がはまりこむように、端子の太さに合わせた穴が開けられている。配線板11にはLD9用の駆動回路等が搭載されており、外部との信号授受や電源への接続用に小型のコネクタが配置されている。
配線板11はその穴にLD9の各端子を通してLD押さえ10の折り曲げ部頂部に面の両端を当接密着させる。配線板11はLDホルダ8の折り曲げ部の内側に収まる大きさに形成されている。この状態でLD9を配線板11に半田付け等を行う。なお、配線板11と、LD押さえ10、LD9は予め半田付けしたアセンブリとしておいても良い。
熱伝導板12はLDホルダ8やLD押さえ10と同様熱の良導体から構成され、LDおさえ10の折り曲げ部頂部に密着して熱を吸収する役目を担う。
熱電変換部材13は通電することにより、片面が吸熱性、他面が発熱性となる部材で、これの吸熱面を熱伝導板12に密着させる。そして発熱面に放熱器14を密着させる。熱伝導板12から熱電変換部材13を経て放熱器14までが放熱構造を形成する。熱の流れは発熱体から熱電変換部材の吸熱面で途切れ、発熱面と放熱器が別の熱の流れを形成するのであるが、吸熱面の吸熱と、発熱面の発熱は一体的に生じ分離不可能なので、ここでは熱の流れを発熱体から放熱器までとして取り扱う。
The wiring board 11 is formed as a printed circuit board, and a hole is formed in accordance with the thickness of the terminal so that each terminal of the LD 9 is fitted. On the wiring board 11, a drive circuit for the LD 9 is mounted, and a small connector is arranged for signal exchange with the outside and connection to a power source.
The wiring board 11 is brought into contact with both ends of the surface of the wiring board 11 through the terminals of the LD 9 and the bent portion top of the LD holder 10. The wiring board 11 is formed in a size that fits inside the bent portion of the LD holder 8. In this state, the LD 9 is soldered to the wiring board 11. The wiring board 11 and the LD holder 10 and LD9 may be an assembly soldered in advance.
Similar to the LD holder 8 and the LD retainer 10, the heat conductive plate 12 is made of a good heat conductor and plays a role of adhering heat by adhering to the top of the bent portion of the LD retainer 10.
When the thermoelectric conversion member 13 is energized, the one surface is endothermic and the other surface is exothermic, and the endothermic surface is brought into close contact with the heat conducting plate 12. Then, the radiator 14 is brought into close contact with the heat generating surface. From the heat conductive plate 12 to the heat radiator 14 through the thermoelectric conversion member 13 forms a heat radiation structure. The heat flow is interrupted from the heat generating element at the heat absorption surface of the thermoelectric conversion member, and the heat generation surface and the heat sink form separate heat flows, but the heat absorption on the heat absorption surface and the heat generation on the heat generation surface are integrally generated and separated. Since this is impossible, the heat flow is handled here from the heating element to the radiator.

以上の構成による作用を説明すると、LD9からの発熱の内、缶タイプのLDパッケージのつば部(ステムとも言う)前面と缶側面からは第1の固定部材であるLDホルダ8に直接伝わり、つば部後面からは第2の固定部材であるLD押さえ10を経てLDホルダ8に伝わるという2つの伝熱経路がある。。LDホルダ8からは熱伝導板12に伝わり、熱伝導板12の全面に拡がった熱は熱電変換部材13によって吸熱される。一方、熱電変換部材13の発熱面に発生した熱は放熱板14によって環境中へ放熱される。この放熱は自然対流による自然放熱の場合と、空冷ファン等による強制放熱の場合があり、発熱の程度と、機器の構成の状態等によって選択される。   The operation of the above configuration will be described. Of the heat generated from the LD 9, the collar part (also referred to as a stem) of the can type LD package is directly transmitted from the front surface and the can side surface to the LD holder 8 as the first fixing member. From the rear surface of the part, there are two heat transfer paths that are transmitted to the LD holder 8 through the LD presser 10 that is the second fixing member. . The heat transferred from the LD holder 8 to the heat conducting plate 12 and spread over the entire surface of the heat conducting plate 12 is absorbed by the thermoelectric conversion member 13. On the other hand, the heat generated on the heat generating surface of the thermoelectric conversion member 13 is radiated into the environment by the heat radiating plate 14. This heat radiation may be either natural heat radiation by natural convection or forced heat radiation by an air cooling fan or the like, and is selected according to the degree of heat generation, the state of the device configuration, and the like.

図3は本発明の第2の実施例を説明するための分解斜視図である。
同図において符号15はLDホルダ、16はLD、17はLD押さえを兼ねる熱伝導板、18は配線板、19は熱電変換部材、20は放熱器をそれぞれ示す。
本実施例の構成を説明する。
本実施例では複数のLD9の端子を途中から互いに接触しない方向に曲げている。同図の例では、左右方向に4個ずつ上下2列に並べたLD16は、それぞれの端子を、上の列は上方向に、下の列は下方向にそれぞれ折り曲げている。勿論各端子は互いに接触しないよう、折り曲げた後も相互の間隔がほぼ等間隔になるよう離してある。このような構造のため、当然のことながら、配線板18はそれぞれの列対応で上下に分かれて配置される。
FIG. 3 is an exploded perspective view for explaining a second embodiment of the present invention.
In the figure, reference numeral 15 denotes an LD holder, 16 denotes an LD, 17 denotes a heat conductive plate also serving as an LD presser, 18 denotes a wiring board, 19 denotes a thermoelectric conversion member, and 20 denotes a radiator.
The configuration of this embodiment will be described.
In the present embodiment, the terminals of the plurality of LDs 9 are bent in the direction in which they are not in contact with each other. In the example shown in the figure, the LDs 16 arranged in the upper and lower rows by four in the left-right direction are bent at respective terminals, the upper row is bent upward, and the lower row is bent downward. Of course, the terminals are separated from each other so that the distance between the terminals is almost equal even after the terminals are bent so that they do not contact each other. Due to such a structure, as a matter of course, the wiring boards 18 are arranged separately in the vertical direction corresponding to each column.

熱伝導板17はそれ自身がLD押さえの機能を兼ねる。熱伝導板17はLD16の折り曲げた端子に接触しないようそれぞれのLDに対応する位置に端子を逃げるための溝が形成してある。熱伝導板としての機能を損なわないよう、溝の幅や深さは極力小さくしてある。また、万一、端子が接触しても障害を起こさないように、熱伝導板17の材質は電気的に絶縁性のものを用いるのがよい。あるいは、熱伝導性のことを考慮して金属材料を用い、表面(少なくとも溝の部分)に絶縁性の処理を施したものでも良い。熱伝導板17の溝の縁はLD16のつば部を後から押さえることができる幅に選んである。したがって、LDホルダ15と熱伝導板17はLD16を間に挟んで密着している。
熱電変換部材19の吸熱面は熱伝導板17の裏面の平面部に密着させてある。以下は実施例1と同様に、放熱器20が熱電変換部材19の発熱面に密着させてある。
The heat conduction plate 17 itself also functions as an LD holding member. The heat conduction plate 17 is formed with a groove for escaping the terminal at a position corresponding to each LD so as not to contact the bent terminal of the LD 16. The width and depth of the grooves are made as small as possible so as not to impair the function as the heat conduction plate. In addition, it is preferable to use an electrically insulating material for the heat conduction plate 17 so that no trouble occurs even if the terminals come into contact. Alternatively, a metal material may be used in consideration of thermal conductivity, and the surface (at least the groove portion) may be subjected to an insulating treatment. The edge of the groove of the heat conducting plate 17 is selected to have a width that can hold the collar portion of the LD 16 later. Therefore, the LD holder 15 and the heat conducting plate 17 are in close contact with the LD 16 interposed therebetween.
The endothermic surface of the thermoelectric conversion member 19 is in close contact with the flat portion on the back surface of the heat conducting plate 17. In the following, similarly to the first embodiment, the radiator 20 is in close contact with the heat generating surface of the thermoelectric conversion member 19.

本実施例の作用を説明する。
LD16からの熱の伝熱経路も2つある。パッケージ側面とつば部前面からの熱は固定部材としてのLDホルダ15に伝わり、次いで熱伝導板17に伝わる。パッケージのつば部裏面からの熱は熱伝導板17に直接伝わる。熱伝導板17の背面の平面部に拡がった熱は熱電変換部材19の吸熱面に伝わる。熱電変換部材19の発熱面からの熱は、放熱器20に伝わり、そこから環境中に放熱される。
本実施例の構成にすることにより、LD16から熱電変換部材19迄の放熱経路を短縮することができ、放熱効率を上げることができる。
The operation of this embodiment will be described.
There are also two heat transfer paths for heat from the LD 16. Heat from the package side surface and the front surface of the collar portion is transmitted to the LD holder 15 as a fixing member, and then transferred to the heat conduction plate 17. Heat from the back surface of the collar portion of the package is directly transmitted to the heat conduction plate 17. The heat spread to the flat portion on the back surface of the heat conduction plate 17 is transmitted to the heat absorption surface of the thermoelectric conversion member 19. Heat from the heat generating surface of the thermoelectric conversion member 19 is transmitted to the radiator 20 and is radiated into the environment from there.
By adopting the configuration of this embodiment, the heat radiation path from the LD 16 to the thermoelectric conversion member 19 can be shortened, and the heat radiation efficiency can be increased.

本実施例では、LDの端子をほぼ90°の角度に折り曲げた形で説明したが、90°よりも鋭角にし、熱伝導板17の溝部をその端子形状に合わせて上下の端に行くほど溝の深さを浅くすることによって、熱伝導板としての熱容量を大きくすることができ、伝熱抵抗を小さくすることができる。
さらに、1度折り曲げた端子を元へ戻す方向に再度折り曲げることもできる。曲げ角度を敢えて直角にする必要はないので円弧型に曲げればアルファベットのUの字型になる。端子の先端は固定部材の前面より前に飛び出す位置とし、各LDで揃えて、配線板に取り付けることができる。この場合、配線板は図3、図5に示すような2枚に分ける必要はなくなり、固定部材より前に1枚配置することができる。ただし、LDの光束出射を阻害しないように所定位置に穴を開けておく必要がある。
In this embodiment, the terminal of the LD has been described as being bent at an angle of approximately 90 °. However, the groove is formed so that the groove portion of the heat conduction plate 17 is moved to the upper and lower ends in accordance with the shape of the terminal. By reducing the depth, the heat capacity of the heat conducting plate can be increased and the heat transfer resistance can be reduced.
Furthermore, the terminal once bent can be bent again in the direction to return to the original position. Since it is not necessary to make the bending angle a right angle, if it is bent into an arc shape, it becomes a letter U shape of the alphabet. The tip of the terminal is positioned so as to protrude before the front surface of the fixing member, and can be aligned with each LD and attached to the wiring board. In this case, it is not necessary to divide the wiring board into two as shown in FIGS. 3 and 5, and one wiring board can be arranged before the fixing member. However, it is necessary to make a hole at a predetermined position so as not to disturb the light beam emission of the LD.

図4は本発明の第3の実施例を説明するための図である。
同図において符号21はLD、22はLDホルダ、23はグラファイトシート、24はLD押さえ、25は配線板、26はグラファイトシート押さえ、27は熱電変換部材、28は放熱器をそれぞれ示す。
本実施例では、面方向の熱伝導率が、厚み方向の熱伝導率の数十倍以上の熱伝導異方性部材を用いて実効的な放熱経路を短縮する。このような部材として、例えばグラファイトシートを挙げることができる。
グラファイトシート23は断面が長方形の角形の筒状に形成し、一方の幅広の面に、LD21の端子が貫通できる大きさの穴を所定の位置に開け、LD21を挿入した熱伝導性のLDホルダ22の裏面からはめ込み、LD押さえ24と配線板25で固定する。グラファイトシート23の他方の幅広面は、折り曲げた両端を突き当てた状態で、グラファイトシート押さえ(熱伝導異方性部材固定部材)26を筒の内側から当てて熱電変換部材27に固定する。
グラファイトシート23は予め筒状に形成しておく必要はない。LDと共に、2つの固定部材(LDホルダ22とLD押さえ24)でに挟んでから、両側に延ばしておいた延長部を必要な大きさに折り曲げて、グラファイトシート押さえ26で熱電変換部材27に固定すればよい。
以下、放熱器までの構成は他の実施例と同様である。
FIG. 4 is a diagram for explaining a third embodiment of the present invention.
In the figure, reference numeral 21 denotes an LD, 22 denotes an LD holder, 23 denotes a graphite sheet, 24 denotes an LD holder, 25 denotes a wiring board, 26 denotes a graphite sheet holder, 27 denotes a thermoelectric conversion member, and 28 denotes a radiator.
In the present embodiment, an effective heat dissipation path is shortened by using a thermally conductive anisotropic member whose thermal conductivity in the plane direction is several tens of times greater than the thermal conductivity in the thickness direction. An example of such a member is a graphite sheet.
The graphite sheet 23 is formed in a rectangular cylinder having a rectangular cross section, and a hole having a size through which a terminal of the LD 21 can penetrate is formed in a predetermined position on one wide surface, and the LD 21 is inserted into the thermally conductive LD holder. It fits in from the back surface of 22 and is fixed by the LD presser 24 and the wiring board 25. The other wide surface of the graphite sheet 23 is fixed to the thermoelectric conversion member 27 by applying a graphite sheet presser (heat conduction anisotropic member fixing member) 26 from the inside of the cylinder in a state in which both bent ends are abutted.
The graphite sheet 23 does not need to be formed in a cylindrical shape in advance. Along with the LD, it is sandwiched between two fixing members (LD holder 22 and LD retainer 24), and then the extension extending to both sides is bent to a required size and fixed to the thermoelectric conversion member 27 with the graphite sheet retainer 26. do it.
Hereinafter, the configuration up to the radiator is the same as in the other embodiments.

本実施例の作用を説明する。
LD21のパッケージからの熱は、LDホルダ22を経由するか、または直接に、グラファイトシート23に表面を介して伝わる。グラファイトシート23の面内における熱伝導率は厚さ方向に比べて格段に大きいので、素早く熱電変換部材27側に伝わる。熱電変換部材27に対するグラファイトシート23の接触面積は、グラファイトシート23の熱伝導断面積より1桁以上大きいので、熱電変換部材27による十分な吸熱が行われる。
なお、LD押さえ24とグラファイトシート押さえ26は熱の不良導体を用いる方が、グラファイトシート23の筒の中に不要な熱が拡散して配線板25が温度上昇してしまうのを防ぐことができる。
本実施例において、LDホルダ22は単に熱の良導体として示したが、これをグラファイトシート23と同様の熱伝導異方性部材で構成し、その熱良導方向をLDホルダ22の厚み方向にもたせて放熱の効率を上げることもできる。
The operation of this embodiment will be described.
The heat from the package of the LD 21 is transmitted through the LD holder 22 or directly to the graphite sheet 23 through the surface. Since the thermal conductivity in the plane of the graphite sheet 23 is much larger than that in the thickness direction, it is quickly transmitted to the thermoelectric conversion member 27 side. Since the contact area of the graphite sheet 23 with the thermoelectric conversion member 27 is one digit or more larger than the heat conduction cross-sectional area of the graphite sheet 23, sufficient heat absorption by the thermoelectric conversion member 27 is performed.
The LD press 24 and the graphite sheet press 26 can prevent the heat of the wiring board 25 from rising due to the diffusion of unnecessary heat into the tube of the graphite sheet 23 by using a poor heat conductor. .
In the present embodiment, the LD holder 22 is simply shown as a good heat conductor, but it is made of a heat conduction anisotropic member similar to the graphite sheet 23, and the heat good conduction direction is also given to the thickness direction of the LD holder 22. The heat dissipation efficiency can also be increased.

図5は本発明の第4の実施例を説明するための分解斜視図である。
同図において符号29はLD、30はLDホルダ、31は配線板、32は熱電変換部材、33は放熱器をそれぞれ示す。
本実施例では熱電変換部材が熱伝導板とLD押さえの機能を兼ねる
本実施例の構成を説明する。
LDホルダ30とLD29、配線板31の関係は実施例2と同様なので説明を省略する。
熱電変換部材32の吸熱面に熱伝導性の良い材質で、実施例2に示したのと類似のLD押さえを形成する。こうすることにより、実施例2における熱伝導板を省略した形にすることができ、伝熱経路をそれだけ短くすることができる。ただし、伝熱経路が2つ存在することは変わらない。なお、この実施例ではLD29の端子の折り曲げ位置を、実施例2の場合よりもLD本体に近い方に寄せてある。そのためLD端子の逃げの溝も浅くて済むようになり、熱電変換部材32の熱伝導板としての熱抵抗を小さく保つことができる。
本実施例の構成にすることにより、LD29から熱電変換部材32迄の放熱経路をさらに短縮することができ、放熱効率をさらに上げることができる。
FIG. 5 is an exploded perspective view for explaining a fourth embodiment of the present invention.
In the figure, reference numeral 29 denotes an LD, 30 denotes an LD holder, 31 denotes a wiring board, 32 denotes a thermoelectric conversion member, and 33 denotes a radiator.
In the present embodiment, the configuration of this embodiment will be described in which the thermoelectric conversion member functions as a heat conduction plate and an LD retainer.
Since the relationship between the LD holder 30, the LD 29, and the wiring board 31 is the same as that in the second embodiment, the description thereof is omitted.
An LD presser similar to that shown in the second embodiment is formed on the heat absorption surface of the thermoelectric conversion member 32 with a material having good thermal conductivity. By carrying out like this, it can be set as the form which abbreviate | omitted the heat conductive board in Example 2, and can shorten a heat-transfer path | route so much. However, it does not change that there are two heat transfer paths. In this embodiment, the bending position of the terminal of the LD 29 is closer to the LD body than in the second embodiment. Therefore, the escape groove of the LD terminal can be shallow, and the thermal resistance of the thermoelectric conversion member 32 as the heat conduction plate can be kept small.
By adopting the configuration of the present embodiment, the heat radiation path from the LD 29 to the thermoelectric conversion member 32 can be further shortened, and the heat radiation efficiency can be further increased.

本発明の実施例1、実施例2、実施例4の性能を計算により比較してみる。
各実施例の違いを確認すると、実施例1と実施例2は熱伝導板を用いている。この計算例では材質として銅を用いることにした。ただし、実施例2の熱伝導板は溝付きのため実施例1のそれより厚さが大きくなる。実施例2の熱伝導板と実施例4の熱電変換素子の吸熱面は発熱体の折り曲げた端子を逃げるための溝が形成されている。比較を容易にするため溝形状は同じものとした。
実施例4については、熱電変換部材の吸熱面を形成する材質として従来通りのセラミックを用いた場合(実施例4)と、ダイヤモンド焼結体を用いた場合(実施例4’)の2通りに分けた。
また、実施例2と実施例4(実施例4’)は発熱体の端子を折り曲げていることにより、配線板が熱伝達経路の外側に位置しているのに対し、実施例1は配線板が見かけ上熱伝達経路の中に入っている。したがって、実効的な熱伝達経路を同等にするため、実施例1の場合は熱伝導板の大きさを配線板の大きさ分だけ大きくする。
The performance of Example 1, Example 2, and Example 4 of the present invention will be compared by calculation.
If the difference between each Example is confirmed, Example 1 and Example 2 use the heat conductive board. In this calculation example, copper is used as the material. However, since the heat conductive plate of Example 2 has a groove, the thickness is larger than that of Example 1. A groove for escaping the bent terminal of the heating element is formed on the heat absorbing surface of the heat conductive plate of Example 2 and the thermoelectric conversion element of Example 4. The groove shape is the same for easy comparison.
For Example 4, there are two cases: a case where a conventional ceramic is used as a material for forming the heat absorption surface of the thermoelectric conversion member (Example 4) and a case where a diamond sintered body is used (Example 4 ′). divided.
Further, in Example 2 and Example 4 (Example 4 ′), the wiring board is located outside the heat transfer path by bending the terminal of the heating element, whereas Example 1 is the wiring board. Apparently is in the heat transfer path. Therefore, in order to make the effective heat transfer paths equal, in the case of Example 1, the size of the heat conductive plate is increased by the size of the wiring board.

性能を示す数値として、ここでは発熱体パッケージの温度と、熱電変換部材の吸熱面との温度差を用いる。この温度差が低いほど、熱伝達経路の熱抵抗が低く、熱伝達率が大きいことを示している。なお、実施例4、実施例4’では熱電変換部材の吸熱面に溝を形成した分も考慮に入れて計算してある。
結果は以下の通りになった。
実施例1 1.8℃
実施例2 0.7℃
実施例4 3.3℃
実施例4’ 0.7℃
実施例4の吸熱面に溝付きセラミックを用いた熱電変換部材では、温度差が3.3℃もあって、実用に耐えないことが分かった。
なお、詳細は割愛するが、熱伝導板に穴を開けたり、溝を形成したりしても、計算上熱抵抗には余り大きな差が出ないことが分かった。
As a numerical value indicating the performance, here, the temperature difference between the temperature of the heating element package and the endothermic surface of the thermoelectric conversion member is used. The lower the temperature difference, the lower the heat resistance of the heat transfer path and the higher the heat transfer coefficient. In Example 4 and Example 4 ′, the calculation was made taking into account the amount of grooves formed on the heat absorption surface of the thermoelectric conversion member.
The result was as follows.
Example 1 1.8 ° C
Example 2 0.7 ° C
Example 4 3.3 ° C.
Example 4 '0.7 ° C
It was found that the thermoelectric conversion member using grooved ceramic on the heat absorption surface of Example 4 had a temperature difference of 3.3 ° C. and was not practical.
Although details are omitted, it has been found that even if a hole or a groove is formed in the heat conduction plate, there is not much difference in the thermal resistance in calculation.

次に本発明の実施例と従来例の比較を行う。
従来例としては、図7に示した構成で実施例と同じ大きさ、発熱体の数も実施例と同数にしたものを想定する。したがって、LDホルダ1、熱電変換部材3、および放熱器5には8個の穴が空いた状態のものを対象とする。
また熱電変換部材は、穴が開けられている部分を避けて熱電変換素子を配置するため、その分有効に機能する領域が小さくなる。したがって、実施例1の熱伝導板と同程度の放熱機能を持たせるため、熱電変換部材の大きさは、実施例1の熱伝導板の大きさに加えて、ほぼ配線板の大きさ(20mm)分を考慮する。放熱器は熱電変換部材と同じ外形とする。
Next, the example of the present invention is compared with the conventional example.
As a conventional example, it is assumed that the configuration shown in FIG. 7 has the same size as the embodiment and the same number of heating elements as the embodiment. Therefore, the LD holder 1, the thermoelectric conversion member 3, and the radiator 5 are intended to have eight holes.
Moreover, since the thermoelectric conversion member arrange | positions the thermoelectric conversion element avoiding the part in which the hole is drilled, the area | region which functions effectively becomes small by that. Therefore, in order to have the same heat radiation function as the heat conduction plate of Example 1, the size of the thermoelectric conversion member is approximately the size of the wiring board (20 mm) in addition to the size of the heat conduction plate of Example 1. ) Consider minutes. The radiator has the same outer shape as the thermoelectric conversion member.

図6は配線板と放熱器の大きさを比較して示した図である。
同図において1点鎖線は配線板の大きさを示す。フィンの存在する範囲が実質の冷却部分(ヒートシンク)になる。
実施例1では、計算上放熱器の大きさは、幅63.5mmとなったが、対応する従来例を計算すると、86.5mmとなり、本発明に比べて大幅なサイズアップになる。これを避けるため、従来例で放熱器の幅を実施例1と同程度にして強制空冷で同等の放熱機能を持たせるとしたら、冷却用の風速を実施例1の2.78m/secに対し約2倍の6.6m/secの風速が必要になる。
現状では、本発明と同じサイズのファンでこの風速を満足できる物がないため、やはり、従来例で実施する限り、サイズの拡張で所望の冷却機能を達成するしかない。
仮に、実施例1で使用しているファンのサイズで、この風速を実現できるようになったとしても、温度分布の均一性を考慮すると、フードなどでの均一化が必要で、実質的にサイズ、消費電力ともアップする。したがって、実施例1の構成が所期の目的を達成していることがわかる。
FIG. 6 is a diagram comparing the sizes of the wiring board and the radiator.
In the figure, the alternate long and short dash line indicates the size of the wiring board. The area where the fins are present becomes a substantial cooling part (heat sink).
In Example 1, the size of the heatsink is calculated to be 63.5 mm in width. However, if the corresponding conventional example is calculated, it is 86.5 mm, which is a significant increase compared to the present invention. In order to avoid this, if the width of the radiator in the conventional example is set to the same level as in Example 1 and the same heat dissipation function is provided by forced air cooling, the cooling wind speed is 2.78 m / sec in Example 1. A wind speed of 6.6 m / sec, which is about twice as much, is required.
At present, there is no fan that can satisfy this wind speed with a fan of the same size as that of the present invention. Therefore, as long as the conventional example is used, the desired cooling function can only be achieved by expanding the size.
Even if this wind speed can be realized with the size of the fan used in Example 1, it is necessary to make it uniform with a hood, etc., considering the uniformity of the temperature distribution. And power consumption is also improved. Therefore, it can be seen that the configuration of Example 1 achieves the intended purpose.

次に熱応答性について従来例と実施例1、実施例2の違いを考察する。
熱容量の違いによる1秒あたりの温度上昇は、従来例で0.9℃、実施例1で0.5℃、実施例2で0.3℃程度で、実施例2<実施例1<従来例の順に早くなり、で実施例1に比べ、従来例が2倍ほど早い。
実施例1の実測値では、温度制御時の温度勾配が0.1度/分程度で、上昇、下降
を繰り返していて、実用上問題がない。
実施例2は実施例1よりもスピードが約2/3程度であるが、これでも十分実用に
耐えられる。
以上、本発明を実施例を元に放熱装置として説明してきたが、本発明の主旨に基づく発熱体の放熱方法も本発明に含まれる。
Next, the difference between the conventional example and Example 1 and Example 2 will be considered regarding the thermal response.
The temperature rise per second due to the difference in heat capacity is 0.9 ° C. in the conventional example, 0.5 ° C. in Example 1, and 0.3 ° C. in Example 2. Example 2 <Example 1 <Conventional Example Compared with the first embodiment, the conventional example is twice as fast as the first embodiment.
In the actual measurement values of Example 1, the temperature gradient at the time of temperature control is about 0.1 degree / minute, and the rise and fall are repeated, and there is no practical problem.
The speed of the second embodiment is about 2/3 that of the first embodiment, but this is sufficiently practical.
As mentioned above, although this invention has been demonstrated as a thermal radiation apparatus based on the Example, the thermal radiation method of the heat generating body based on the main point of this invention is also contained in this invention.

本発明の第1の実施例を説明するための図である。It is a figure for demonstrating the 1st Example of this invention. 第1の実施例の断面図である。It is sectional drawing of a 1st Example. 本発明の第2の実施例を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the 2nd Example of this invention. 本発明の第3の実施例を説明するための図である。It is a figure for demonstrating the 3rd Example of this invention. 本発明の第4の実施例を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the 4th Example of this invention. 配線板と放熱器の大きさを比較して示した図である。It is the figure which compared and showed the magnitude | size of a wiring board and a heat radiator. 発熱源が1個の場合の冷却方法を示す図である。It is a figure which shows the cooling method in case the number of heat sources is one. 発熱源が複数の場合の問題点を説明するための図である。It is a figure for demonstrating the problem in case there are two or more heat sources.

符号の説明Explanation of symbols

8、15、22、30 LDホルダ
9、16、21、29 LD
10、24 LD押さえ
12、17 熱伝導板
13、19、27、32 熱電変換部材
14、20、28、33 放熱器
23 グラファイトシート
24 グラファイトシート押さえ
8, 15, 22, 30 LD holder 9, 16, 21, 29 LD
10, 24 LD retainer 12, 17 Heat conduction plates 13, 19, 27, 32 Thermoelectric conversion members 14, 20, 28, 33 Radiator 23 Graphite sheet 24 Graphite sheet retainer

Claims (16)

電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱装置であって、該発熱体を固定する第1の固定部材と、前記発熱体と、前記発熱体を固定する第2の固定部材と、前記端子に接続される配線板と、熱伝導板と、熱電変換部材と、放熱器とがこの順に配置されてなることを特徴とする放熱装置。   A heat dissipating device for cooling a heat generating element that is exposed to the outside of the package with a terminal for electrical connection directed in the normal direction of the bottom surface of the package, a first fixing member for fixing the heat generating element; The heating element, a second fixing member for fixing the heating element, a wiring board connected to the terminal, a heat conduction plate, a thermoelectric conversion member, and a radiator are arranged in this order. Features a heat dissipation device. 請求項1に記載の放熱装置において、前記発熱体からの伝熱経路が、発熱体側面・第1の固定部材・熱伝導板・熱電変換部材・放熱器の経路と、発熱体底面・第2の固定部材・第1の固定部材・熱伝導板・熱電変換部材・放熱器の経路の2つの経路を有することを特徴とする放熱装置。   2. The heat dissipation device according to claim 1, wherein the heat transfer path from the heating element includes a heating element side surface, a first fixing member, a heat conduction plate, a thermoelectric conversion member, a radiator path, a heating element bottom surface, a second heating element. A heat dissipating device having two paths of a fixing member, a first fixing member, a heat conduction plate, a thermoelectric conversion member, and a radiator. 電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱装置であって、該発熱体を固定する固定部材と、前記端子を所定の方向に直角もしくは鋭角に折り曲げた前記発熱体と、前記端子が接触しないように溝を形成して前記発熱体を固定する固定部材を兼ねる熱伝導板と、熱電変換部材と、放熱器とがこの順に配置され、前記端子に接続される配線板を有することを特徴とする放熱装置。   A heat dissipating device for cooling a heat generating element that is exposed to the outside of a package with a terminal for electrical connection directed in a normal direction of the bottom surface of the package, the fixing member fixing the heat generating element, and the terminal The heating element bent at a right angle or acute angle in a predetermined direction, a heat conduction plate that also serves as a fixing member that fixes the heating element by forming a groove so that the terminal does not contact, a thermoelectric conversion member, and a radiator Are arranged in this order, and have a wiring board connected to the terminal. 請求項3に記載の放熱装置において、前記発熱体からの伝熱経路が、発熱体側面・固定部材・熱伝導板・熱電変換部材・放熱器の経路と、発熱体底面・熱伝導板・熱電変換部材・放熱器の経路の2つの経路を有することを特徴とする放熱装置。   4. The heat dissipation device according to claim 3, wherein a heat transfer path from the heating element includes a heating element side surface, a fixing member, a heat conduction plate, a thermoelectric conversion member, a radiator path, and a heating element bottom surface, a heat conduction plate, a thermoelectric device. A heat dissipation device having two paths of a conversion member and a heat radiator. 電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱装置であって、該発熱体を固定する固定部材と、前記端子を所定の方向に直角もしくは鋭角に折り曲げた前記発熱体と、前記端子が接触しないように溝を形成して前記発熱体を固定する固定部材を兼ねる熱電変換部材と、放熱器とがこの順に配置され、前記端子に接続される配線板を有することを特徴とする放熱装置。   A heat dissipating device for cooling a heat generating element that is exposed to the outside of a package with a terminal for electrical connection directed in a normal direction of the bottom surface of the package, the fixing member fixing the heat generating element, and the terminal The heating element bent at a right angle or acute angle in a predetermined direction, a thermoelectric conversion member that also serves as a fixing member for fixing the heating element by forming a groove so that the terminal does not contact, and a radiator are arranged in this order. A heat dissipating device comprising a wiring board connected to the terminal. 請求項5に記載の放熱装置において、前記発熱体からの伝熱経路が、発熱体側面・固定部材・熱電変換部材・放熱器の経路と、発熱体底面・熱電変換部材・放熱器の経路の2つの経路を有することを特徴とする放熱装置。   6. The heat dissipation device according to claim 5, wherein a heat transfer path from the heating element includes a heating element side surface, a fixing member, a thermoelectric conversion member, a radiator path, and a heating element bottom surface, a thermoelectric conversion member, and a radiator path. A heat radiating device having two paths. 電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱装置であって、該発熱体を固定する第1の固定部材と、前記発熱体と、面の熱伝導率が厚み方向の熱伝導率の数十倍以上の熱伝導異方性部材と、前記発熱体を固定する第2の固定部材と、前記端子を接続する配線板と、前記熱伝導異方性部材の折り返し部を固定するための熱伝導異方性部材固定部材と、前記熱伝導異方性部材の折り返し部と、熱電変換部材と、放熱器とがこの順に配置されることを特徴とする放熱装置。   A heat dissipating device for cooling a heat generating element that is exposed to the outside of the package with a terminal for electrical connection directed in the normal direction of the bottom surface of the package, a first fixing member for fixing the heat generating element; The heating element, a thermally conductive anisotropic member whose surface thermal conductivity is several tens of times greater than the thermal conductivity in the thickness direction, a second fixing member for fixing the heating element, and a wiring connecting the terminals The plate, the thermally conductive anisotropic member fixing member for fixing the folded portion of the thermally conductive anisotropic member, the folded portion of the thermally conductive anisotropic member, the thermoelectric conversion member, and the radiator A heat dissipating device that is arranged in order. 請求項7に記載の放熱装置において、前記熱伝導異方性部材はグラファイトシートであることを特徴とする放熱装置。   The heat radiating device according to claim 7, wherein the thermally conductive anisotropic member is a graphite sheet. 請求項7または8に記載の放熱装置において、前記第2の固定部材は熱の不良導体であることを特徴とする放熱装置。   9. The heat dissipation device according to claim 7, wherein the second fixing member is a defective conductor of heat. 請求項7ないし9のいずれか1つに記載の放熱装置において、前記熱伝導異方性部材固定部材は熱の不良導体であることを特徴とする放熱装置。   The heat dissipation device according to any one of claims 7 to 9, wherein the heat conduction anisotropic member fixing member is a defective conductor of heat. 請求項1ないし10のいずれか1つに記載の放熱装置において、前記熱電変換部材の吸熱面はダイヤモンド焼結体であることを特徴とする放熱装置。   11. The heat dissipation device according to claim 1, wherein an endothermic surface of the thermoelectric conversion member is a diamond sintered body. 請求項1ないし11のいずれか1つに記載の放熱装置を有することを特徴とする光学装置。   An optical device comprising the heat dissipation device according to claim 1. 電気的接続用の端子がパッケージの外部に出ている発熱体を冷却するための放熱方法であって、該発熱体を2つの固定部材で固定し、前記発熱体からの熱を一方の固定部材から熱伝導板を経て熱電変換部材の吸熱側に伝え、該熱電変換部材の放熱側の熱を放熱器に伝え、該放熱器から放熱する経路と、前記発熱体の他方の固定部材から前記熱伝導板を経て、前記熱電変換部材の吸熱側に伝え、該熱電変換部材の放熱側の熱を前記放熱器に伝え、該放熱器から放熱する経路の2つの経路を有することを特徴とする放熱方法。   A heat dissipating method for cooling a heating element having a terminal for electrical connection outside the package, wherein the heating element is fixed by two fixing members, and heat from the heating element is fixed to one fixing member. From the heat conduction plate to the heat absorption side of the thermoelectric conversion member, the heat on the heat dissipation side of the thermoelectric conversion member is transmitted to the heat radiator, and the heat is dissipated from the heat radiator and the other fixing member of the heat generator It has two paths of passing through a conductive plate to the heat absorption side of the thermoelectric conversion member, transferring heat from the heat dissipation side of the thermoelectric conversion member to the heat radiator, and radiating heat from the heat radiator. Method. 電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱方法であって、前記端子を所定の方向に直角もしくは鋭角に折り曲げた前記発熱体からの熱を、該発熱体を一方側から固定する固定部材と、前記端子が接触しないように溝を形成されて他方側から前記発熱体を固定する固定部材を兼ねる熱伝導板とに伝達し、さらに熱電変換部材を経て、放熱器で放熱することを特徴とする放熱方法。   A heat dissipating method for cooling a heating element that is exposed to the outside of a package with a terminal for electrical connection directed in a normal direction of the bottom surface of the package, wherein the terminal is bent at a right angle or an acute angle in a predetermined direction. A fixing member that fixes the heat from the heating element from one side; and a heat conduction plate that also serves as a fixing member that is formed with a groove so as not to contact the terminal and fixes the heating element from the other side. The heat dissipation method is characterized in that the heat dissipation is performed by a heat radiator through a thermoelectric conversion member. 電気的接続用の端子がパッケージの底面の法線方向に向けてパッケージの外部に出ている発熱体を冷却するための放熱方法であって、前記端子を所定の方向に直角もしくは鋭角に折り曲げた前記発熱体からの熱を、該発熱体を一方側から固定する固定部材と、前記端子が接触しないように溝を形成されて他方側から前記発熱体を固定する固定部材を兼ねる熱電変換部材とに伝達し、さらに放熱器で放熱することを特徴とする放熱方法。   A heat dissipating method for cooling a heating element that is exposed to the outside of a package with a terminal for electrical connection directed in a normal direction of the bottom surface of the package, wherein the terminal is bent at a right angle or an acute angle in a predetermined direction. A fixing member that fixes the heat from the heating element from one side; and a thermoelectric conversion member that also serves as a fixing member that is formed with a groove so as not to contact the terminal and fixes the heating element from the other side. The heat dissipation method is characterized in that it is transmitted to the heat sink and further dissipated with a radiator. 電気的接続用の端子がパッケージの外部に出ている発熱体を冷却するための放熱方法であって、該発熱体の底面に、面方向に高い伝熱性を有する熱伝導異方性部材を密着させて前側固定部材と後側固定部材で固定し、前記熱伝導異方性部材の延長部を前記後側固定部材の後方に折り返して熱電変換部材の吸熱面に密着させることにより、前記発熱体からの熱を、前記熱伝導異方性部材を介して熱電変換部材に吸熱させることを特徴とする放熱方法。   A heat dissipating method for cooling a heating element whose terminals for electrical connection are exposed to the outside of the package, wherein a heat conduction anisotropic member having high heat conductivity in the surface direction is adhered to the bottom surface of the heating element The heating element is fixed by a front side fixing member and a rear side fixing member, and an extension portion of the heat conduction anisotropic member is folded back to the rear side fixing member so as to be in close contact with the heat absorption surface of the thermoelectric conversion member. A heat dissipation method, wherein heat from the thermoelectric conversion member is absorbed through the heat conduction anisotropic member.
JP2005186877A 2005-06-27 2005-06-27 Heat dissipation device and heat dissipation method Expired - Fee Related JP4813829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186877A JP4813829B2 (en) 2005-06-27 2005-06-27 Heat dissipation device and heat dissipation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186877A JP4813829B2 (en) 2005-06-27 2005-06-27 Heat dissipation device and heat dissipation method

Publications (2)

Publication Number Publication Date
JP2007005715A true JP2007005715A (en) 2007-01-11
JP4813829B2 JP4813829B2 (en) 2011-11-09

Family

ID=37690992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186877A Expired - Fee Related JP4813829B2 (en) 2005-06-27 2005-06-27 Heat dissipation device and heat dissipation method

Country Status (1)

Country Link
JP (1) JP4813829B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218892A (en) * 2007-03-07 2008-09-18 Yamaha Corp Thermoelectric module
JP2009076389A (en) * 2007-09-21 2009-04-09 Panasonic Electric Works Co Ltd Surface light-emitting device
CN113573626A (en) * 2019-03-18 2021-10-29 奥林巴斯株式会社 Light source subsystem for endoscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327031A (en) * 1992-05-22 1993-12-10 Fujitsu Ltd Optical semiconductor module
JP2001284701A (en) * 2000-03-30 2001-10-12 Furukawa Electric Co Ltd:The Semiconductor laser module
JP2003101085A (en) * 2001-09-25 2003-04-04 Yamaha Corp Thermoelectric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327031A (en) * 1992-05-22 1993-12-10 Fujitsu Ltd Optical semiconductor module
JP2001284701A (en) * 2000-03-30 2001-10-12 Furukawa Electric Co Ltd:The Semiconductor laser module
JP2003101085A (en) * 2001-09-25 2003-04-04 Yamaha Corp Thermoelectric device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218892A (en) * 2007-03-07 2008-09-18 Yamaha Corp Thermoelectric module
JP2009076389A (en) * 2007-09-21 2009-04-09 Panasonic Electric Works Co Ltd Surface light-emitting device
CN113573626A (en) * 2019-03-18 2021-10-29 奥林巴斯株式会社 Light source subsystem for endoscope

Also Published As

Publication number Publication date
JP4813829B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
US7572033B2 (en) Light source module with high heat-dissipation efficiency
JP5371106B2 (en) Heat dissipation structure for image sensor package
WO2011096218A1 (en) Heat radiation device and electronic equipment using the same
KR20170113127A (en) Heat radiating apparatus and light illuminating apparatus with the same
JP2006245356A (en) Cooling apparatus of electronic device
JP2008041638A (en) Heat dissipation device for backlight light source for flat panel display
JP2017033779A (en) Light source device, display device and electronic apparatus
JP2008034640A (en) Semiconductor device, and heat radiation method therein
JP4813829B2 (en) Heat dissipation device and heat dissipation method
CN110060966B (en) Optical module
JP2005183676A (en) Electronic cooling unit
JP4728522B2 (en) heatsink
JP2000332171A (en) Heat dissipation structure of heat generating element and module having that structure
JP2017069109A (en) Light source device
JP4430451B2 (en) Semiconductor device heat dissipation device
JP5177794B2 (en) Radiator
KR100756535B1 (en) Heat radiator structure using pcb manufacturing method and thermoelectric semiconductor structure united by heat radiator thereof
JP2018174184A (en) Cooler and lighting device including cooler
JP2005203385A (en) Heat sink
JP2008147592A (en) Semiconductor laser device
KR20090111999A (en) Heat sink
KR101281043B1 (en) Heat sink
JP2009044026A (en) Semiconductor laser device
JP2008147319A (en) Cooling device
CN217306113U (en) Storage device with active heat dissipation function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4813829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees