JP2007002031A - Rubber composition and pneumatic tire - Google Patents

Rubber composition and pneumatic tire Download PDF

Info

Publication number
JP2007002031A
JP2007002031A JP2005181313A JP2005181313A JP2007002031A JP 2007002031 A JP2007002031 A JP 2007002031A JP 2005181313 A JP2005181313 A JP 2005181313A JP 2005181313 A JP2005181313 A JP 2005181313A JP 2007002031 A JP2007002031 A JP 2007002031A
Authority
JP
Japan
Prior art keywords
sbr
rubber
silica
weight
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005181313A
Other languages
Japanese (ja)
Inventor
Norio Minouchi
則夫 箕内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2005181313A priority Critical patent/JP2007002031A/en
Publication of JP2007002031A publication Critical patent/JP2007002031A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

<P>PROBLEM TO BE SOLVED: To easily obtain a rubber composition capable of improving rolling resistance and wet performance in a well-balanced manner, without deteriorating abrasion resistance, by uniformly dispersing silica in a blend rubber. <P>SOLUTION: This rubber composition is given by mixing 20-100 pts.wt. of the silica into 100 pts.wt. of a rubber component, wherein the rubber component comprises a styrene butadiene rubber-A (SBR-A) having a glass transition temperature of ≥ -40°C, a styrene butadiene rubber-B (SBR-B) composing a phase structure by being dispersed in a continuous phase of the SBR-A, and 5-25 pts.wt. of an isoprene polymer, and an average diameter of the phase structure composed of the SBR-B is 100-1000 nm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ゴム組成物に関し、さらに詳しくは、ウェット性能と耐摩耗性をバランスよく両立させながら転がり抵抗を改善することができるタイヤトレッドに適したゴム組成物、及びこのゴム組成物をトレッド部に適用した空気入りタイヤに関する。   The present invention relates to a rubber composition. More specifically, the present invention relates to a rubber composition suitable for a tire tread capable of improving rolling resistance while achieving a good balance between wet performance and wear resistance, and the rubber composition as a tread portion. It relates to a pneumatic tire applied to.

タイヤトレッドに用いられるゴム組成物は、低燃費性の市場ニーズから転がり抵抗低減の要求が強く、また安全性の面からの湿潤路面での制動性能や操縦安定性(以下、ウエット性能という)の向上が求められ、さらに耐久性、経済性の点で優れた耐摩耗性が求められており、背反傾向を示すこれのゴム特性を高次元でバランスよく向上させることが要求されている。   Rubber compositions used in tire treads are strongly demanded to reduce rolling resistance due to market needs for low fuel consumption, and also have braking performance and handling stability (hereinafter referred to as wet performance) on wet roads in terms of safety. Improvement is demanded, and further, wear resistance excellent in terms of durability and economy is demanded, and it is demanded to improve the rubber properties showing a contradiction tendency at a high level in a well-balanced manner.

これらの要求に対して、従来からゴムの補強用充填材として使用されているカーボンブラックに代えて、上記転がり抵抗とウェット性能とのバランスを得やすいシリカ配合のゴム組成物が使用されるようになっている。   In response to these requirements, instead of carbon black, which has been used as a reinforcing filler for rubber, a rubber composition containing silica, which is easy to obtain a balance between the rolling resistance and wet performance, is used. It has become.

ところが、シリカは、親水性を有し、表面がシラノール基に覆われているため強い自己凝集性を持ち、バンバリーミキサーなどのゴム混練装置を用いてゴム中へ配合する際にゴム中への良好な分散が困難となり、そのためゴム混練時間を長く必要とし、またこの分散不良に基づき所望のゴム特性が得難いという短所を有している。   However, silica has hydrophilicity and has a strong self-aggregation property because the surface is covered with silanol groups, and it is excellent in rubber when compounded into rubber using a rubber kneading device such as a Banbury mixer. This makes it difficult to disperse the rubber, and thus requires a long rubber kneading time, and it is difficult to obtain desired rubber characteristics based on this poor dispersion.

従来より、シランカップリング剤を併用することでシリカとゴムとの親和性を向上し、ゴム特性を改善することが数多く開示され(例えば、特許文献1)、また、混練作業の改善と転がり抵抗などの特性を向上する表面処理シリカの提案(例えば、特許文献2)、さらにシリカ配合に特定のチウラム系化合物を加硫促進剤として使用すること(特許文献3)など、シリカ配合の上記欠点を改良する技術により効果が認められるものの、さらに高い要求を満足することが求められている。
特開平11−269305号公報 特開平11−124474号公報 特開2001−172432号公報
Conventionally, there have been many disclosures of improving the rubber properties by improving the affinity between silica and rubber by using a silane coupling agent in combination (for example, Patent Document 1), and improving kneading work and rolling resistance. The above-mentioned drawbacks of silica compounding, such as the proposal of surface-treated silica that improves properties such as (Patent Document 2), and the use of a specific thiuram compound as a vulcanization accelerator in silica compounding (Patent Document 3) Although the effect is recognized by the improved technology, it is required to satisfy higher requirements.
JP-A-11-269305 Japanese Patent Laid-Open No. 11-124474 JP 2001-172432 A

一般にブレンドゴムが用いられるタイヤトレッドゴムでは、シリカを配合することでゴム組成物のtanδの温度依存性を改良し転がり抵抗とウェット性能とを改善し、補強性の低下を抑えて耐摩耗性を維持することがなされている。しかし、このシリカの特長を最大限に発揮させるにはシリカをブレンドゴム中に均一に分散させることが肝要であるが、上記のようにシリカは表面のシラノール基同士で結合して凝集塊を作りやすくし、分散性が低下するとともに一方のポリマーに偏って存在しやすく、ブレンドゴムの長所が十分発揮されないのが実状である。   In tire tread rubber, which is generally used with blended rubber, by adding silica, the temperature dependency of tan δ of the rubber composition is improved, rolling resistance and wet performance are improved, and wear resistance is reduced by suppressing a decrease in reinforcement. It has been made to maintain. However, in order to maximize the features of this silica, it is important to disperse the silica uniformly in the blend rubber. However, as described above, the silica binds with the silanol groups on the surface to form agglomerates. In reality, the dispersibility is lowered and the polymer tends to be biased to be present in one polymer, and the advantages of the blended rubber are not fully exhibited.

従来のゴム配合技術では、シリカをポリマーブレンドに均等に分散させるために、ポリマーの改良やシリカ表面の改質、添加剤の検討などが多くなされてきたが未だ満足な効果は得られていない。また、マスターバッチの利用やミキサーの回転トルク等の混合条件の調整などのブレンド配合の改善では、ある程度の効果は得られるものの、混合ステップ数増や混合条件の複雑化などの工程性低下の割にはその効果は満足できるものではなかった。   In the conventional rubber compounding technology, in order to disperse silica evenly in the polymer blend, many improvements of the polymer, modification of the silica surface, and examination of additives have been made, but a satisfactory effect has not yet been obtained. In addition, improvements in blend formulation such as the use of master batches and adjustment of mixing conditions such as the rotational torque of the mixer can achieve a certain level of effect, but there is a reduction in processability such as an increase in the number of mixing steps and complication of the mixing conditions. The effect was not satisfactory.

本発明は、上記の点に鑑みてなされたものであり、タイヤトレッド用として一般に使用されるSBRのブレンド系ゴム組成物において、シリカをブレンドゴム中に均一分散させることにより、耐摩耗性を損なうことなく、転がり抵抗とウェット性能とをバランスよく向上させることのできるゴム組成物を容易に得ること、及びそれを適用した空気入りタイヤを提供することを目的とするものである。   The present invention has been made in view of the above points, and in a blended rubber composition of SBR generally used for tire treads, wear resistance is impaired by uniformly dispersing silica in the blend rubber. It is an object of the present invention to easily obtain a rubber composition that can improve rolling resistance and wet performance in a balanced manner and to provide a pneumatic tire to which the rubber composition is applied.

本発明のゴム組成物は、ゴム成分100重量部に対してシリカを20〜100重量部配合したゴム組成物であって、前記ゴム成分が、ガラス転移温度が−40℃以上のスチレンブタジエンゴム−A(SBR−A)と、前記SBR−Aの連続相中に分散する相構造をなすスチレンブタジエンゴム−B(SBR−B)と、イソプレンポリマー5〜25重量部とからなり、前記SBR−Bからなる相構造の平均径が100〜1000nmであることを特徴とする。   The rubber composition of the present invention is a rubber composition in which 20 to 100 parts by weight of silica is blended with 100 parts by weight of a rubber component, and the rubber component has a glass transition temperature of −40 ° C. or higher. A (SBR-A), styrene butadiene rubber-B (SBR-B) having a phase structure dispersed in the continuous phase of the SBR-A, and 5 to 25 parts by weight of an isoprene polymer, and the SBR-B The average diameter of the phase structure made of is 100 to 1000 nm.

本発明のゴム組成物においては、前記SBR−Aが、前記ゴム成分の40重量部以上を構成することが好ましい。   In the rubber composition of the present invention, the SBR-A preferably constitutes 40 parts by weight or more of the rubber component.

また、本発明に用いられる前記シリカは、窒素吸着比表面積(BET)が100〜300m/g、DBP吸油量(DBP)が150〜300ml/100gであるものが好ましく、また、前記シリカとカーボンブラックとを併用することができ、その合計量は前記ゴム成分100重量部に対して1〜140重量部である。 The silica used in the present invention preferably has a nitrogen adsorption specific surface area (BET) of 100 to 300 m 2 / g and a DBP oil absorption (DBP) of 150 to 300 ml / 100 g, and the silica and carbon. Black can be used in combination, and the total amount is 1-140 parts by weight with respect to 100 parts by weight of the rubber component.

そして、本発明の空気入りタイヤは、上記ゴム組成物をトレッド部に適用することにある。   And the pneumatic tire of this invention exists in applying the said rubber composition to a tread part.

本発明のゴム組成物によれば、メインポリマーであるSBR−Aからなる連続相に相構造をなすSBR−Bが分散し、ゴム成分にイソプレンポリマーを少量含むことでSBR−Aに偏在する傾向にあるシリカがSBR−B中にも均一に分配されるようになり、SBR−A,Bの両ゴム成分の特長がバランス良く発現されるシリカ分散の均一なゴム組成物を容易に得ることができる。これは、分子量の大きいイソプレンポリマーにSBR−Aからシリカが引き寄せられ、平均径が100〜1000nmにあるSBR−B相にシリカを分配するものと考えられ、平均径が100nmに満たないとシリカ分配量が不足し、1000nmを超えると逆にB相への分配量が多くなりすぎ均一性に欠けるようになると推定される。   According to the rubber composition of the present invention, SBR-B having a phase structure is dispersed in the continuous phase composed of SBR-A as the main polymer, and the rubber component tends to be unevenly distributed in SBR-A by containing a small amount of isoprene polymer. Can be uniformly distributed in SBR-B, and it is easy to obtain a rubber composition with uniform silica dispersion in which the features of both rubber components of SBR-A and B are expressed in a balanced manner. it can. It is considered that silica is attracted from SBR-A to isoprene polymer having a large molecular weight, and silica is distributed to the SBR-B phase having an average diameter of 100 to 1000 nm. If the amount is insufficient and exceeds 1000 nm, it is presumed that the amount of distribution to the B phase becomes too large and the uniformity is insufficient.

イソプレンポリマーの含有量は、ゴム成分の5重量部未満では上記作用が奏されず、25重量部を超えるとSBR成分が不足し転がり抵抗とウエット性能がバランスが得られなくなり、またSBR−Aが40重量部未満ではゴム強度、弾性率、耐疲労性等の基本性能が確保できず、耐摩耗性や耐久性を維持することができなくなる。   If the content of the isoprene polymer is less than 5 parts by weight of the rubber component, the above effect is not achieved. If it exceeds 25 parts by weight, the SBR component is insufficient, and the rolling resistance and wet performance cannot be balanced. If it is less than 40 parts by weight, basic properties such as rubber strength, elastic modulus, fatigue resistance and the like cannot be ensured, and wear resistance and durability cannot be maintained.

本発明によれば、シリカがポリマーブレンドの両相に均一に分散されたSBR系ゴム組成物を容易に製造し生産性を高めることができ、このゴム組成物をトレッド部に適用することにより、シリカ配合の特長を活かした低転がり抵抗とウェット性能を両立して向上し、かつ耐摩耗性を良好にして従来の相反していた各性能をバランスさせ向上させる空気入りタイヤを提供するものとなる。   According to the present invention, it is possible to easily produce an SBR rubber composition in which silica is uniformly dispersed in both phases of a polymer blend and increase productivity. By applying this rubber composition to a tread portion, It will provide a pneumatic tire that improves both the low rolling resistance and wet performance that make the best use of the characteristics of silica, and improves the wear resistance and balances and improves each of the conflicting conventional performances. .

本発明のゴム組成物は、ゴム成分100重量部に対してシリカを20〜100重量部配合したゴム組成物であり、前記ゴム成分としては、少なくとも2種類のスチレンブタジエンゴム(SBR)とイソプレンポリマーとで構成される。   The rubber composition of the present invention is a rubber composition in which 20 to 100 parts by weight of silica is blended with 100 parts by weight of a rubber component. The rubber component includes at least two types of styrene butadiene rubber (SBR) and isoprene polymer. It consists of.

本発明のゴム組成物においては、前記2種類の一方のSBR−Aがポリマーブレンドの連続相をなし、他方のSBR−Bが前記連続相中に均一に分散する相構造をなす、いわゆる海島構造を形成するものである。   In the rubber composition of the present invention, one of the two types of SBR-A forms a continuous phase of the polymer blend, and the other SBR-B forms a so-called sea-island structure in which the SBR-B is uniformly dispersed in the continuous phase. Is formed.

SBR−Aとしては、ガラス転移温度(Tg)が−40℃以上にあるものであれば、乳化重合SBRでも溶液重合SBRでもよく、スチレン含有率などのポリマーミクロ構造、分子量、或いは末端変性の有無などにより制限されることはなく使用することができる。   SBR-A may be emulsion-polymerized SBR or solution-polymerized SBR as long as it has a glass transition temperature (Tg) of −40 ° C. or higher. Polymer microstructure such as styrene content, molecular weight, or presence / absence of terminal modification It can be used without being limited by the above.

その中でも、好ましくはスチレン含有率が10〜45重量%、より好ましくは15〜40重量%にあり、ブタジエン部のビニル結合量は30〜60重量%程度であるSBRが転がり抵抗とウエット性能に有利に働くことからタイヤトレッド用としては好適である。   Among them, SBR having a styrene content of preferably 10 to 45% by weight, more preferably 15 to 40% by weight, and a vinyl bond amount of the butadiene part of about 30 to 60% by weight is advantageous for rolling resistance and wet performance. Therefore, it is suitable for tire treads.

スチレン含有率が45重量%を超えるとTgが高くなりすぎてウエット性能は維持されるが、低温性能の低下や転がり抵抗が大きくなり耐摩耗性も低下傾向を示すようになりトレッドゴムとしての基本性能を維持できなくなるおそれがある。また、ビニル結合量を上記範囲とすることでSBR−AのTgを適正な範囲とすることができ、この点でTgの上限は−10℃程度、好ましくは−20℃である。   When the styrene content exceeds 45% by weight, the Tg becomes too high and the wet performance is maintained, but the low temperature performance decreases, the rolling resistance increases, and the wear resistance tends to decrease. Performance may not be maintained. Moreover, Tg of SBR-A can be made into an appropriate range by setting the vinyl bond amount within the above range. In this respect, the upper limit of Tg is about −10 ° C., preferably −20 ° C.

上記SBR−Aのゴム成分中の含有量は40重量部以上であることが好ましく、40重量部未満であるとSBR−A固有のゴム特性を発現し難くなり、また連続相を形成しずらくする。   The content of the SBR-A in the rubber component is preferably 40 parts by weight or more, and if it is less than 40 parts by weight, it becomes difficult to express the rubber characteristics unique to SBR-A and it is difficult to form a continuous phase. To do.

前記SBR−Aの連続相中に分散する相構造をなすSBR−Bとしては、連続相中に平均径が100〜1000nmの相構造を形成するSBRであれば、ポリマーの重合方法やそのミクロ構造、分子量、分子量分布等、またシリカとの親和性を向上するために末端変性されたSBR等、特に制限を受けることはなく、前記SBR−Aとのポリマーブレンドの利点を引き出しやすいSBRから選択すればよい。ここで、上記転がり抵抗とウエット性能のバランスが得られるとともに、低温での高度を維持し氷上性能を確保する観点から、SBR−BはTgがSBR−AのTgよりも低いものを選択することが好ましい。   The SBR-B having a phase structure dispersed in the continuous phase of the SBR-A may be a polymer polymerization method or its microstructure as long as the SBR forms a phase structure having an average diameter of 100 to 1000 nm in the continuous phase. There is no particular limitation such as molecular weight, molecular weight distribution, etc., and terminally modified SBR to improve affinity with silica, and it is selected from SBR that can easily bring out the advantages of the polymer blend with SBR-A. That's fine. Here, from the viewpoint of obtaining a balance between the rolling resistance and the wet performance, and maintaining the altitude at a low temperature and ensuring the performance on ice, SBR-B should be selected such that Tg is lower than Tg of SBR-A. Is preferred.

このSBR−Bからなる相構造の平均径が100nm未満であるとSBR−B側の相構造へのシリカ分配量が少なくなり、1000nmを超えると逆にSBR−Bの相構造への分配量が多く偏り、ポリマーブレンドのシリカ分散均一性が得られなくなる。   If the average diameter of the phase structure composed of SBR-B is less than 100 nm, the amount of silica distributed to the phase structure on the SBR-B side decreases, and if it exceeds 1000 nm, the amount of distribution of SBR-B to the phase structure is reversed. Many deviations occur and the silica dispersion uniformity of the polymer blend cannot be obtained.

また、イソプレンポリマーとしては、天然ゴム(NR)、合成ポリイソプレンゴム(IR)が使用される。そのゴム成分中の含有量は5〜25重量部であり、5重量部未満ではSBR−A側に分配されがちなシリカを引き寄せてSBR−B側に分配させる作用が奏されず、25重量部を超えるとSBRゴム成分が不足し、耐摩耗性は維持されるが転がり抵抗とウエット性能のバランスが崩れてくる。   As the isoprene polymer, natural rubber (NR) or synthetic polyisoprene rubber (IR) is used. The content in the rubber component is 5 to 25 parts by weight, and if it is less than 5 parts by weight, the silica that tends to be distributed to the SBR-A side is not attracted and distributed to the SBR-B side. If it exceeds 1, the SBR rubber component becomes insufficient and the wear resistance is maintained, but the balance between rolling resistance and wet performance is lost.

本発明のタイヤトレッド用ゴム組成物に配合使用されるシリカとしては、通常のゴム補強用に用いられる湿式シリカ、乾式シリカなどが使用でき、特に湿式シリカが好ましい。   As silica used in the rubber composition for a tire tread of the present invention, wet silica, dry silica and the like used for usual rubber reinforcement can be used, and wet silica is particularly preferable.

シリカはBETが100〜300m/g、DBP吸油量が150〜300ml/100gにあるものが好ましい。BETが100m/g未満であるとシリカの補強効果が得られにくくなり、300m/gを越えるとシリカの分散性が低下し、加工性(混合、押出性)が著しく低下する傾向にある。また、DBP吸油量を150〜300ml/100gとすることで分散性を良好に維持することができる。なお、シリカのBETはASTM D3037に、DBP吸油量はJIS K6221に記載の方法に準拠し測定される。 Silica preferably has a BET of 100 to 300 m 2 / g and a DBP oil absorption of 150 to 300 ml / 100 g. When the BET is less than 100 m 2 / g, it is difficult to obtain the silica reinforcing effect, and when it exceeds 300 m 2 / g, the dispersibility of the silica is lowered, and the workability (mixing and extrudability) tends to be remarkably lowered. . Moreover, a dispersibility can be favorably maintained by making DBP oil absorption amount 150-300 ml / 100g. The silica BET is measured according to ASTM D3037, and the DBP oil absorption is measured according to the method described in JIS K6221.

シリカの配合量はゴム成分100重量部に対して10〜120重量部である。シリカの配合量が10重量部未満ではシリカを配合する効果が得られず、120重量部を越えると加工性が低下する。   The compounding quantity of a silica is 10-120 weight part with respect to 100 weight part of rubber components. If the blending amount of silica is less than 10 parts by weight, the effect of blending silica cannot be obtained, and if it exceeds 120 parts by weight, the workability decreases.

本発明のゴム組成物には、従来からシリカと併用される任意のシランカップリング剤を用いることが好ましい。シランカップリング剤としては、ビス−(3−(トリエトキシシリル)プロピル)テトラスルフィドなどのスルフィド系、3−メルカプトプロピルトリメトキシシランなどのメルカプト系、3−アミノプロピルトリメトキシシランなどのアミノ系、ビニルトリエトキシシランなどのビニル系等の通常使用されるシランカップリング剤が挙げられ、その単独又は2種以上を併用することができ、例えば、デグサ社のSi69,Si75などのスルフィド系シランカップリング剤が好適である。   In the rubber composition of the present invention, it is preferable to use any silane coupling agent that has been conventionally used in combination with silica. Examples of the silane coupling agent include sulfide systems such as bis- (3- (triethoxysilyl) propyl) tetrasulfide, mercapto systems such as 3-mercaptopropyltrimethoxysilane, amino systems such as 3-aminopropyltrimethoxysilane, Examples include vinyl-based silane coupling agents such as vinyltriethoxysilane, which are usually used, and can be used alone or in combination of two or more. For example, sulfide-based silane couplings such as Si69 and Si75 of Degussa Agents are preferred.

このシランカップリング剤の配合量は、シリカ配合量の1〜20重量%であり、シランカップリング剤が1重量%未満ではそのカップリング効果が十分得られずシリカ配合の転がり抵抗やウエット性能の長所が得難くなり、20重量%を超えるとコストの上昇の割にそれ以上のカップリング効果が得られず、逆に補強性、耐摩耗性が低下し加工性も悪くなる傾向にある。   The compounding amount of the silane coupling agent is 1 to 20% by weight of the silica compounding amount. If the silane coupling agent is less than 1% by weight, the coupling effect is not sufficiently obtained, and the rolling resistance and wet performance of the silica compounding are not obtained. Advantages are difficult to obtain, and if it exceeds 20% by weight, no further coupling effect can be obtained for the increase in cost, and conversely, the reinforcement and wear resistance tend to deteriorate and the workability tends to deteriorate.

また、本発明のゴム組成物は、前記シリカとカーボンブラックとを併用してもよい。この場合のカーボンブラックの配合量は、前記シリカの配合量との合計量でゴム成分100重量部に対して1〜140重量部であり、体積固有抵抗値を下げる観点からはカーボンブラックの併用が好ましい。   In the rubber composition of the present invention, the silica and carbon black may be used in combination. The compounding amount of carbon black in this case is 1 to 140 parts by weight with respect to 100 parts by weight of the rubber component in the total amount with the compounding amount of silica. From the viewpoint of lowering the volume resistivity value, the combination of carbon black is used. preferable.

カーボンブラックとしては特に制限されることはないが、NSAが80〜140m/gのものが補強性、耐摩耗性、転がり抵抗等を維持する上で好ましく、NSAが80m/g未満では転がり抵抗、ウエット性能が低下し、140m/gを超えると分散性が悪化し耐摩耗性が悪くなる。このようなカーボンブラックとしては、例えば、HAF、ISAF、SAF級のカーボンブラックが実用に適し、これらの2種以上を併用してもよい。 Has no particular limitations on the carbon black, reinforcing those N 2 SA is 80~140m 2 / g, preferably in maintaining abrasion resistance, rolling resistance, etc., N 2 SA is 80 m 2 / If it is less than g, rolling resistance and wet performance will fall, and if it exceeds 140 m < 2 > / g, dispersibility will deteriorate and abrasion resistance will worsen. As such carbon black, for example, HAF, ISAF, and SAF grade carbon black are suitable for practical use, and two or more of these may be used in combination.

本発明のゴム組成物には、上記成分の他に、ゴム工業において通常に用いられる硫黄などの加硫剤、加硫促進剤、プロセスオイル、老化防止剤、亜鉛華、ステアリン酸、加硫助剤などの各種配合剤を、本発明の目的を逸脱しない範囲で適宜配合し用いることができる。   In addition to the above components, the rubber composition of the present invention includes vulcanizing agents such as sulfur, vulcanization accelerators, process oils, anti-aging agents, zinc white, stearic acid, and vulcanization aids that are commonly used in the rubber industry. Various compounding agents such as an agent can be appropriately blended and used without departing from the object of the present invention.

本発明では、原料ゴムとシリカに各種配合剤を配合しバンバリーミキサー、ロール、ニーダーなどの各種混練機を使用して常法に従いゴム組成物を作製することができ、タイヤのトレッド部を始めとしてサイドウォール部、ビード部などのタイヤ各部位に使用することができるが、特に乗用車、小形トラック、トラック・バス等の空気入りタイヤのトレッド用ゴムとして好適である。   In the present invention, a rubber composition can be prepared according to a conventional method using various kneaders such as a Banbury mixer, a roll, and a kneader by blending various compounding agents with raw rubber and silica, and starting with a tread portion of a tire. Although it can be used for each part of the tire such as a sidewall portion and a bead portion, it is particularly suitable as a rubber for a tread of a pneumatic tire such as a passenger car, a small truck, a truck and a bus.

本発明のゴム組成物におけるシリカ分散性は、(1)バンバリーミキサー等で混練し作製されたゴム組成物を金型中でプレス加硫しゴムシートを作製する。(2)ゴムシートを−80℃程度の冷却下でウルトラミクロトームを使用し精密断面試料を作製する。(3)走査型プローブ顕微鏡(SPM)又は透過型電子顕微鏡(TEM)により前記精密断面試料を約13,000倍で画像観察し、SBR−Bからなる相構造の径とシリカの分散状態を観察する、ことにより相構造の大きさとシリカ分散性を評価することができる。   Silica dispersibility in the rubber composition of the present invention is as follows: (1) A rubber composition prepared by kneading with a Banbury mixer or the like is press-vulcanized in a mold to prepare a rubber sheet. (2) A precision cross-section sample is prepared using an ultramicrotome while cooling the rubber sheet at about −80 ° C. (3) An image of the precision cross-section sample is observed at about 13,000 times with a scanning probe microscope (SPM) or a transmission electron microscope (TEM), and the diameter of the phase structure composed of SBR-B and the dispersion state of silica are observed. Thus, the size of the phase structure and the silica dispersibility can be evaluated.

例えば、SBR−Bからなる相構造の大きさは、上記画像内で無作為に選んだN数=20〜50個のSBR−B相の径を測定し、その平均径から求められる。また、シリカの分散状態は、SBR−Aからなる連続相とSBR−Bからなる相構造とに存在するシリカ粒子数を観察することで判断することができる。   For example, the size of the phase structure composed of SBR-B is obtained from the average diameter obtained by measuring the diameters of N = 20-50 SBR-B phases randomly selected in the image. Further, the dispersion state of silica can be determined by observing the number of silica particles present in the continuous phase composed of SBR-A and the phase structure composed of SBR-B.

以下に実施例を用いて本発明を説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

ポリマーブレンド内に連続相を構成するSBR−Aと相構造を構成するSBR−Bとしての4種類のSBR−1〜4、及びNR(RSS#1)をゴム成分とし、シリカ及び下記の共通成分を配合した表1〜4に記載の各ゴム組成物を容量20リットルのバンバリーミキサーにより混練し作製した。なお、SBR−Aは旭化成のTufdene3350(スチレン含有率35重量%、Tg=−35℃)、SBR−1〜4はSBR−Aの連続相内に相構造を構成し、その大きさを調整するためスチレン含有率とブタジエン部のビニル結合量を変更した試作ポリマーである。シリカは日本シリカ工業のニップシールAQ(BET:210m/g)を用いた。 In the polymer blend, SBR-A constituting the continuous phase, four types of SBR-1 to 4 as SBR-B constituting the phase structure, and NR (RSS # 1) are used as rubber components, and silica and the following common components Each rubber composition listed in Tables 1 to 4 was blended and prepared by a Banbury mixer with a capacity of 20 liters. SBR-A is Asahi Kasei's Tufdene 3350 (styrene content 35% by weight, Tg = −35 ° C.), and SBR-1 to 4 constitute a phase structure in the continuous phase of SBR-A and adjust its size. Therefore, it is a prototype polymer in which the styrene content and the vinyl bond amount of the butadiene part are changed. The silica used was Nippon Silica Industry's nip seal AQ (BET: 210 m 2 / g).

なお、SBR−1〜4のスチレン含有率とブタジエン部のビニル結合量は下記の通りである。
・SBR−1:スチレン含有率21重量%、ビニル結合量52%
・SBR−2:スチレン含有率24重量%、ビニル結合量18%
・SBR−3:スチレン含有率17重量%、ビニル結合量61%
・SBR−4:スチレン含有率8重量%、ビニル結合量72%
In addition, the styrene content rate of SBR-1 to 4 and the vinyl bond amount of the butadiene part are as follows.
SBR-1: Styrene content 21% by weight, vinyl bond content 52%
SBR-2: Styrene content 24% by weight, vinyl bond content 18%
SBR-3: Styrene content 17% by weight, vinyl bond 61%
SBR-4: Styrene content 8% by weight, vinyl bond content 72%

各ゴム組成物を10cm×10cm×1mmの金型中で160℃×20分でプレス加硫しゴムシートを得、ゴムシートを−80℃の冷却下ウルトラミクロトーム(REICHERT ULTRACUT E)を使用し超薄切片試料及び精密断面試料を作製した。超薄切片試料をTEM(JEOL製、JEM−1210)で、精密断面試料をSPM(島津製作所製、SPM−9500J3)でそれぞれ13,000倍として画像観察し、SBR−1〜4からなる相構造(N数=50)の平均径を求め、シリカの分散状態を観察した。シリカの分散状態は下記の基準で評価した。結果を表1〜4に示す。   Each rubber composition is press vulcanized in a mold of 10 cm × 10 cm × 1 mm at 160 ° C. for 20 minutes to obtain a rubber sheet, and the rubber sheet is super-cooled using an ultramicrotome (REICHERT ULTRACUT E) with cooling at −80 ° C. Thin slice samples and precision cross-section samples were prepared. The ultrathin section sample was observed with a TEM (manufactured by JEOL, JEM-1210), and the precision cross-section sample was observed with an SPM (manufactured by Shimadzu Corporation, SPM-9500J3) at 13,000 times, and a phase structure consisting of SBR-1 to 4 The average diameter of (N number = 50) was determined, and the dispersion state of silica was observed. The dispersion state of silica was evaluated according to the following criteria. The results are shown in Tables 1-4.

[シリカ分散状態]
◎:ブレンドゴムの両相にシリカが均一に分散。
○:ブレンドゴムの両相にシリカがほぼ均一に分散。
△:ブレンドゴムのどちらか一方の側にシリカが偏在。
×:ブレンドゴムのどちらか一方の側にほとんどのシリカが偏在。
[Silica dispersion state]
A: Silica is uniformly dispersed in both phases of the blend rubber.
○: Silica is almost uniformly dispersed in both phases of the blend rubber.
Δ: Silica is unevenly distributed on either side of the blend rubber.
X: Most silica is unevenly distributed on either side of the blend rubber.

[共通配合成分]
・アロマオイル:30重量部(ジャパンエナジー、プロセスX−140)
・亜鉛華:3重量部(三井金属鉱業、亜鉛華1号)
・ワックス:1重量部(大内新興化学工業、サンノック)
・老化防止剤6C:2重量部(大内新興化学工業、ノクラック6C)
・シランカップリング剤:6重量部(デグサ社、Si69)
・硫黄:1.8重量部(細井化学工業、ゴム用粉末硫黄150メッシュ)
・加硫促進剤CZ:1重量部(大内新興化学工業、ノクセラーCZ)
[Common ingredients]
・ Aroma oil: 30 parts by weight (Japan Energy, Process X-140)
・ Zinc flower: 3 parts by weight (Mitsui Mining Co., Ltd., Zinc flower No. 1)
・ Wax: 1 part by weight (Ouchi Emerging Chemical Industries, Sannock)
-Anti-aging agent 6C: 2 parts by weight (Ouchi Shinsei Chemical Industry, Nocrack 6C)
Silane coupling agent: 6 parts by weight (Degussa, Si69)
・ Sulfur: 1.8 parts by weight (Hosoi Chemical Co., Ltd., sulfur powder for rubber 150 mesh)
・ Vulcanization accelerator CZ: 1 part by weight (Ouchi Shinsei Chemical Industry, Noxeller CZ)

次ぎに、得られた各ゴム組成物をトレッド部に適用したサイズ215/60R16のラジアルタイヤを製造し、各タイヤの転がり抵抗、ウェット性能、耐摩耗性を下記の方法に従い評価し、その結果を比較例1,3,6,7のタイヤをそれぞれ100とする指数で表1〜4に示した。   Next, a radial tire of size 215 / 60R16 in which each rubber composition obtained was applied to the tread portion was manufactured, and the rolling resistance, wet performance, and wear resistance of each tire were evaluated according to the following methods, and the results were evaluated. The tires of Comparative Examples 1, 3, 6, and 7 are shown in Tables 1 to 4 as indices with 100 as the index.

[転がり抵抗]
1軸ドラム試験機を用い、内圧200kPa、負荷荷重400Kg、速度80Km/hでドラム上を走行する時の転がり抵抗を測定し、次式により各試験タイヤの転がり抵抗指数を計算した。値が小さいほど燃費性が良く良好である。 転がり抵抗(指数)=(各試験タイヤの転がり抵抗)×100/(比較例1,3,6,7のタイヤの転がり抵抗)
[Rolling resistance]
Using a uniaxial drum tester, the rolling resistance when running on the drum at an internal pressure of 200 kPa, a load load of 400 kg, and a speed of 80 km / h was measured, and the rolling resistance index of each test tire was calculated by the following formula. The smaller the value, the better the fuel efficiency and the better. Rolling resistance (index) = (rolling resistance of each test tire) × 100 / (rolling resistance of tires of Comparative Examples 1, 3, 6, and 7)

[ウェット性能]
排気量2000ccの国産乗用車に同種の試験タイヤ4本を内圧200kPaに調整し取り付け、水深2〜3mmに水没したアスファルト路面を時速60Km/hで通過中に急ブレーキをかけてから停止するまでの距離を測定し、次式により各試験タイヤのウエット制動性指数を計算し、ウエット性を評価した。値が大きいほど制動性が良く良好である。 ウエット性(指数)=(比較例1,3,6,7のタイヤの停止距離)×100/(各試験タイヤの停止距離)
[Wet performance]
The distance from applying a sudden brake while stopping on an asphalt road surface submerged to a depth of 2 to 3 mm at a speed of 60 Km / h until stopping after the same type of test tire is adjusted to 200 kPa on a domestic passenger car with a displacement of 2000 cc. Was measured, the wet braking index of each test tire was calculated by the following formula, and the wettability was evaluated. The larger the value, the better and better the braking performance. Wetness (index) = (stop distance of tires of Comparative Examples 1, 3, 6, and 7) × 100 / (stop distance of each test tire)

[耐摩耗性]
排気量2000ccの国産乗用車に2種類の試験タイヤを、内圧200kPaに調整し前輪と後輪にそれぞれ取り付け、走行5,000Km毎にローティションを行いながら一般路を20,000Km走行後、各タイヤのトレッドの残溝深さを測定し摩耗量を求め、次式により各試験タイヤの耐摩耗性指数を計算し、耐摩耗性を評価した。値が大きいほど耐摩耗性が良好である。 耐摩耗性(指数)=(比較例1,3,6,7の試験タイヤの摩耗量)×100/(各試験タイヤの摩耗量)
[Abrasion resistance]
Two types of test tires were installed on a domestic passenger car with a displacement of 2000 cc, adjusted to an internal pressure of 200 kPa and attached to the front and rear wheels, respectively. After running 20,000 km on a general road while rotating every 5,000 km, The residual groove depth of the tread was measured to determine the amount of wear, and the wear resistance index of each test tire was calculated by the following formula to evaluate the wear resistance. The higher the value, the better the wear resistance. Abrasion resistance (index) = (Abrasion amount of test tires of Comparative Examples 1, 3, 6, and 7) × 100 / (Abrasion amount of each test tire)

Figure 2007002031
Figure 2007002031

Figure 2007002031
Figure 2007002031

Figure 2007002031
Figure 2007002031

Figure 2007002031
Figure 2007002031

表1,3の結果より、相構造の平均径が100〜1000nmの範囲内の大きさが適度であるSBR−A/SBR−1の配合系において、NRをゴム成分に含有しない比較例1(コントロール)はシリカがSBR−A側に多く偏在する。これに対してNRを含有する実施例1,2では、NRとシリカとの親和性によりシリカの分配作用が発生しSBR−1からなる層構造にもシリカが均等に存在するようになり、シリカの分散性が改善されることが分かる。その結果、耐摩耗性、及び転がり抵抗とウエット性能を両立させることができる。しかし、NRが25重量部を超える比較例2は、イソプレン成分が配合系内で第3ポリマー成分を構成するようになりウエット性能が著しく悪化するようになる。また、相構造の平均径が800nmであるSBR−3との配合系(比較例6がコントロール)においても、NRによりシリカ分散性が改善され、耐摩耗性と転がり抵抗、ウエット性能を両立することができる(実施例3)。   From the results of Tables 1 and 3, Comparative Example 1 in which NR is not contained in the rubber component in the SBR-A / SBR-1 compounding system in which the average size of the phase structure is in the range of 100 to 1000 nm is appropriate. In the control), silica is unevenly distributed on the SBR-A side. On the other hand, in Examples 1 and 2 containing NR, silica is distributed due to the affinity between NR and silica, and the silica is evenly present in the layer structure composed of SBR-1. It can be seen that the dispersibility of is improved. As a result, it is possible to achieve both wear resistance, rolling resistance and wet performance. However, in Comparative Example 2 in which the NR exceeds 25 parts by weight, the isoprene component constitutes the third polymer component in the blending system, and the wet performance is significantly deteriorated. In addition, silica dispersibility is improved by NR even in a blending system with SBR-3 having an average phase structure diameter of 800 nm (Comparative Example 6 is controlled), and both wear resistance, rolling resistance, and wet performance are compatible. (Example 3).

一方、表2に示すように、SBR−2を用いた相構造の大きさが小さい配合系(比較例3がコントロール)では、連続相内に相構造が小さく分散しているため、NR含有によるシリカ分散性改善の効果は得られず(比較例4)、NRを増量した比較例5ではウエット性能の低下が大きくなる。   On the other hand, as shown in Table 2, in the compounding system having a small phase structure using SBR-2 (Comparative Example 3 is a control), the phase structure is small and dispersed in the continuous phase. The effect of improving silica dispersibility cannot be obtained (Comparative Example 4), and in Comparative Example 5 in which the amount of NR is increased, the wet performance is greatly reduced.

また、表4より、SBR−4を用いた相構造の大きい配合系(比較例7がコントロール)では、相構造が大きすぎシリカの偏在が大きすぎるため、NR含有によるイソプレン成分のシリカ分散性の改善効果は発揮されない(比較例8)。   Also, from Table 4, in the compounding system having a large phase structure using SBR-4 (Comparative Example 7 is control), the phase structure is too large and the silica is too unevenly distributed. The improvement effect is not exhibited (Comparative Example 8).

本発明のゴム組成物は、耐摩耗性を維持しつつ転がり抵抗とウェット性能をバランス良き向上するものとなり、これ用いることで燃費、安全性、耐久性に優れた空気入りタイヤを提供し、特に空気入りタイヤのトレッド部に好適に使用することができる。
The rubber composition of the present invention improves the rolling resistance and wet performance while maintaining wear resistance in a well-balanced manner, and by using this, a pneumatic tire excellent in fuel consumption, safety, and durability is provided. It can be suitably used for a tread portion of a pneumatic tire.

Claims (5)

ゴム成分100重量部に対してシリカを20〜100重量部配合したゴム組成物であって、
前記ゴム成分が、ガラス転移温度が−40℃以上のスチレンブタジエンゴム−A(SBR−A)と、前記SBR−Aの連続相中に分散する相構造をなすスチレンブタジエンゴム−B(SBR−B)と、イソプレンポリマー5〜25重量部とからなり、
前記SBR−Bからなる相構造の平均径が100〜1000nmである
ことを特徴とするゴム組成物。
A rubber composition comprising 20 to 100 parts by weight of silica based on 100 parts by weight of a rubber component,
Styrene butadiene rubber-B (SBR-B) having a phase structure in which the rubber component is dispersed in a continuous phase of SBR-A and styrene butadiene rubber-A (SBR-A) having a glass transition temperature of −40 ° C. or higher. ) And 5 to 25 parts by weight of isoprene polymer,
The rubber composition, wherein the average diameter of the phase structure composed of SBR-B is 100 to 1000 nm.
前記SBR−Aが、前記ゴム成分の40重量部以上を構成する
ことを特徴とする請求項1に記載のゴム組成物。
The rubber composition according to claim 1, wherein the SBR-A constitutes 40 parts by weight or more of the rubber component.
前記シリカが、窒素吸着比表面積(BET)が100〜300m/g、DBP吸油量(DBP)が150〜300ml/100gである
ことを特徴とする請求項1又は2に記載のゴム組成物。
The rubber composition according to claim 1, wherein the silica has a nitrogen adsorption specific surface area (BET) of 100 to 300 m 2 / g and a DBP oil absorption (DBP) of 150 to 300 ml / 100 g.
前記シリカと、さらにカーボンブラックを含有し、その合計量が前記ゴム成分100重量部に対して1〜140重量部である
ことを特徴とする請求項1〜3のいずれかに記載のゴム組成物。
The rubber composition according to any one of claims 1 to 3, wherein the silica further contains carbon black, and the total amount thereof is 1-140 parts by weight with respect to 100 parts by weight of the rubber component. .
請求項1〜4のいずれかに記載のゴム組成物をトレッド部に適用した
ことを特徴とする空気入りタイヤ。
A pneumatic tire, wherein the rubber composition according to any one of claims 1 to 4 is applied to a tread portion.
JP2005181313A 2005-06-21 2005-06-21 Rubber composition and pneumatic tire Withdrawn JP2007002031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181313A JP2007002031A (en) 2005-06-21 2005-06-21 Rubber composition and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181313A JP2007002031A (en) 2005-06-21 2005-06-21 Rubber composition and pneumatic tire

Publications (1)

Publication Number Publication Date
JP2007002031A true JP2007002031A (en) 2007-01-11

Family

ID=37687934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181313A Withdrawn JP2007002031A (en) 2005-06-21 2005-06-21 Rubber composition and pneumatic tire

Country Status (1)

Country Link
JP (1) JP2007002031A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251086A (en) * 2011-06-03 2012-12-20 Toyo Tire & Rubber Co Ltd Silica-containing rubber master batch and rubber composition
EP3450493A1 (en) 2017-08-30 2019-03-06 Sumitomo Rubber Industries, Ltd. Rubber composition, production method therefor, and method for evaluating wear resistance of rubber composition
US10654316B2 (en) 2015-10-27 2020-05-19 Sumitomo Rubber Industries, Ltd. Pneumatic tire and crosslinked rubber composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251086A (en) * 2011-06-03 2012-12-20 Toyo Tire & Rubber Co Ltd Silica-containing rubber master batch and rubber composition
US10654316B2 (en) 2015-10-27 2020-05-19 Sumitomo Rubber Industries, Ltd. Pneumatic tire and crosslinked rubber composition
EP3450493A1 (en) 2017-08-30 2019-03-06 Sumitomo Rubber Industries, Ltd. Rubber composition, production method therefor, and method for evaluating wear resistance of rubber composition

Similar Documents

Publication Publication Date Title
JP5006617B2 (en) Rubber composition and tire having tread using the same
JP2012172020A (en) Rubber composition, method for producing the same and pneumatic tire
JP4477386B2 (en) Method for producing rubber composition
JP6433415B2 (en) Pneumatic tire
JP2013177501A (en) Rubber composition for tire and pneumatic tire
JP2004002622A (en) Rubber composition
JP5044903B2 (en) Rubber composition for tire
JP4012160B2 (en) Rubber composition for base tread and pneumatic tire
JP3811548B2 (en) Rubber composition for tire tread
JP2007002031A (en) Rubber composition and pneumatic tire
JP2006089636A (en) Tire tread rubber composition and pneumatic tire
JP4438336B2 (en) Rubber composition for tread and tire using the same
JP2006291105A (en) Rubber composition for tread, and pneumatic tire
JP4028762B2 (en) Rubber composition
JP6657759B2 (en) Rubber composition for tire
JP6686362B2 (en) Rubber composition for tires
JP2001247721A (en) Rubber composition for tire tread
JP2003183442A (en) Rubber composition and tire using the same
JP6679877B2 (en) Rubber composition for tires
JP2000319447A (en) Rubber composition for tire tread
JP2007284572A (en) Rubber composition and pneumatic tire
JP2006282946A (en) Rubber composition and pneumatic tire
JP2018131560A (en) Rubber composition for tire
JP4028772B2 (en) Rubber composition
JP6672690B2 (en) Rubber composition for tire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902