JP2007001864A - Method for producing compound having peptide bond - Google Patents

Method for producing compound having peptide bond Download PDF

Info

Publication number
JP2007001864A
JP2007001864A JP14927399A JP14927399A JP2007001864A JP 2007001864 A JP2007001864 A JP 2007001864A JP 14927399 A JP14927399 A JP 14927399A JP 14927399 A JP14927399 A JP 14927399A JP 2007001864 A JP2007001864 A JP 2007001864A
Authority
JP
Japan
Prior art keywords
formula
carboxylic acid
compound
chlorocarbonate
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14927399A
Other languages
Japanese (ja)
Other versions
JP2007001864A6 (en
Inventor
Takehiko Yamane
毅彦 山根
Takushi Hashizume
卓士 橋爪
Kentaro Tsukudaya
健太郎 佃屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP14927399A priority Critical patent/JP2007001864A/en
Publication of JP2007001864A publication Critical patent/JP2007001864A/en
Publication of JP2007001864A6 publication Critical patent/JP2007001864A6/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a compound of formula (2) [wherein, R<SB>1</SB>is an amino-protecting group] from a compound of formula (1) [wherein, R<SB>1</SB>is the same as in the formula (2)] in a high yield and at a low cost. <P>SOLUTION: This method for producing the compound (2) is provided by reacting the compound (1) with a base and a carboxylic acid-activating agent for preparing a compound activated with its carboxylic acid and then reacting it with an amine component to obtain the compound expressed by formula (2). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

【0001】
【発明の属する技術分野】
本発明はペプチド結合を有するN保護アゼチジンカルボン酸誘導体の製造方法に関するものである。より詳細には下記式(1)
【0002】
【化3】

Figure 2007001864
【0003】
(式(1)中、R1 は、アミノ保護基を表す)で示される化合物とカルボン酸活性化剤、及び塩基を反応させカルボン酸を活性した化合物を作成した後、アミン化合物としてp−シアノベンジルアミン若しくはその水若しくは炭酸ガス付加物又はその塩を反応させる下記式(2)
【化4】
Figure 2007001864
(式(2)中、R1 は、前記と同様)で示される化合物の製造方法に関する。
【0004】
【従来の技術】
上記式(2)の化合物はトロンビン阻害活性を有する化合物の合成中間体として有用な化合物である。式(2)で表されるペプチド結合を有する化合物は新規であり、該化合物の製造法に関する従来技術は知られていない。
【0005】
【発明が解決しようとする課題】
本発明は式(1)で示される化合物を原料とし、工業的スケールにて高収率、且つ安価に式(2)で示される化合物を合成可能な製造方法を提供するものである。類似骨格を有する化合物の製造方法としては、WO9625426公報中に(D)−2−シクロヘキシル−2−テトラヒドロピラニロキシアセチルアゼチジン−2−カルボン酸とp−シアノベンジルアミンヒドロクロリドを無水プロパンホスホン酸を試剤として使用し反応した例が記載されている。また、WO9702284公報中に(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸と4−アミノメチル−1−(N−ベンジルオキシカルボニルアミジノ)ベンゼンを1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(以下EDCと略す)を縮合剤として使用した合成例が記載されている。
【0006】
無水プロパンホスホン酸を用いる方法の場合は、反応後の液を水で洗浄した際にリンを含む廃水が多量に発生し、工業化時の廃水処理に多大な費用を必要とする。又、EDCを用いる方法に関しては、EDCが高価な試薬であるので工業化の際はより安価な試薬の使用が望まれる。即ち、類似骨格を有する化合物の製造方法を適応する場合でも商業的規模での生産においては種々改善すべき課題があり、これらの課題を克服した式(2)で示される化合物の製造方法はこれまで知られていないのが実情であった。
【0007】
【課題を解決するための手段】
本発明者らは前記の課題を解決するために鋭意検討し、式(1)で示されるN保護アゼチジン2−カルボン酸と塩基とカルボン酸活性化剤を反応させカルボン酸を活性化した化合物を作成した後、このものにアミン成分を反応させ、ペプチド化合物を得る方法が本化合物に関して適応可能であり、工業的スケールで高収率且つ安価に式(2)で示される化合物を与えることを発見し、本発明を完成させるに至った。
【0008】
本発明は、上記式(1)で示される化合物とカルボン酸活性化剤、及び塩基を反応させ、次いでp−シアノベンジルアミン若しくはその水若しくは炭酸ガス付加物又はその塩を反応させる、上記式(2)で示されるペプチド結合を有する化合物の製造方法である。
【0009】
【発明の実施の形態】
本発明は、上記式(1)で示されるN保護アゼチジン2−カルボン酸とカルボン酸活性化剤、及び塩基を反応させ、次いでp−シアノベンジルアミン若しくはその水若しくは炭酸ガス付加物又はその塩を反応させて上記式(2)で示されるペプチド結合を有する化合物を製造するものである。上記カルボン酸活性化剤としては特に限定されないが、安価で且つ常温で長期保存可能なものが望ましく、例えば、クロロ炭酸メチル、クロロ炭酸エチル、クロロ炭酸プロピル、クロロ炭酸イソプロピル、クロロ炭酸ブチル、クロロ炭酸イソブチル、クロロ炭酸第2ブチル、クロロ炭酸2−エチルヘキシル、クロロ炭酸第2オクチル、クロロ炭酸セチル等のクロロ炭酸アルキル類;クロロ炭酸アリル等のクロロ炭酸アルケン類;クロロ炭酸フェニル、クロロ炭酸3−メチルフェニル、クロロ炭酸3,4−ジメチルフェニル、クロロ炭酸3,5−ジメチルフェニル等のクロロ炭酸アリール類;クロロ炭酸ベンジル等が用いられ、特にクロロ炭酸メチル、クロロ炭酸エチル、クロロ炭酸イソブチル、クロロ炭酸フェニル、クロロ炭酸ベンジル等が好ましい。
【0010】
上記塩基としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N、N−ジイソプロピル−N−エチルアミン等のトリアルキルアミン類;N−メチルモルホリン、N−エチルモルホリン、N−メチルピロリジン、N−メチルピペリジン等の環状アミン類;ピリジン、ピコリン、ルチジン、N,N−ジメチルピリジン、キノリン等のピリジン類縁体等が用いられ、特にトリエチルアミン、N−メチルモルホリン等が好ましい。
【0011】
式(1)及び式(2)中のR1 で示されるアミノ保護基としては、ペプチド化学の分野においてアミノ基の保護基としてそれ自体既知の任意の保護基であることができる。例えば、メトキシカルボニル、エトキシカルボニル、第3ブチルオキシカルボニル、第3アミルオキシカルボニル、アリルオキシカルボニル、イソボルニルオキシカルボニル、フェニルオキシカルボニル、トリクロロエチルオキシカルボニル、ベンジルオキシカルボニル、p−ニトロベンジルオキシカルボニル、p−メトキシベンジルオキシカルボニル等のウレタン型保護基;フタロイル、ベンゾイル、クロロベンゾイル、p−ニトロベンゾイル、p−第3ブチルベンゾイル、トルオイル、ナフトイル、フェニルアセチル、フェノキシアセチル、ベンゼンスルホニル、p−第3ブチルベンゼンスルホニル、トルエンスルホニル、2−ニトロベンゼンスルホニル、4−ニトロベンゼンスルホニル、2,4−ジニトロベンゼンスルホニル等のアリールアシル型保護基;ホルミル、アセチル、プロパノイル、ピバロイル、デカノイル、トリフルオロアセチル、クロロアセチル、ジクロロアセチル、トリクロロアセチル、メタンスルホニル、カンファスルホニル等の脂肪族アシル型保護基;メチルカルバミル、エチルカルバミル、フェニルカルバミル、ナフチルカルバミル等のカルバミル型保護基もしくはこれらに対応するチオカルバミル型保護基;ベンジル、1−フェニルエチル、2−フェニルエチル、ジフェニルメチル、トリフェニルメチル等のアリールアルキル型保護基;トリメチルシリル基等が挙げられる。これらのうち、特にアルキルオキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、第3ブチルオキシカルボニル、第3アミルオキシカルボニル等)、アリールアルキル基(例えば、ベンジル、1−フェニルエチル、2−フェニルエチル、ジフェニルメチル、トリフェニルメチル等)、アリールアシル基(例えば、フタロイル、ベンゾイル、クロロベンゾイル、p−ニトロベンゾイル、p−第3ブチルベンゾイル、トルオイル、ナフトイル、フェニルアセチル、フェノキシアセチル、ベンゼンスルホニル、p−第3ブチルベンゼンスルホニル、トルエンスルホニル、2−ニトロベンゼンスルホニル、4−ニトロベンゼンスルホニル、2,4−ジニトロベンゼンスルホニル等)が好ましい。
【0012】
上記p−シアノベンジルアミン若しくはその水若しくは炭酸ガス付加物又はその塩としては、例えば、p−シアノベンジルアミン純品、水付加物、炭酸ガス付加物、無機酸塩、有機カルボン酸塩、有機スルホン酸塩等が挙げられる。p−シアノベンジルアミンと塩を形成する無機酸としては、例えば、塩酸、硫酸、炭酸、リン酸等が挙げられ、有機カルボン酸としては、例えば、ギ酸、酢酸、トリフルオロ酢酸、安息香酸、クエン酸、シュウ酸等が挙げられ、有機スルホン酸としては、例えば、ベンゼンスルホン酸、p−トルエンスルホン酸、2−ニトロベンゼンスルホン酸、4−ニトロベンゼンスルホン酸等が挙げられる。なかでも特に、p−シアノベンジルアミン純品、炭酸ガス付加物が好ましい。
【0013】
本発明において、反応時の試剤仕込み手順としては、例えば、以下のいずれかの方法で実施することによって行うことができる。
手順1:溶媒中にカルボン酸活性化剤又は塩基を添加した後、塩基又はカルボン酸活性化剤をそれぞれ対応して加え、カルボン酸活性化剤と塩基の複合体を生成させ、その後、前記式(1)で示される化合物を添加し、カルボン酸を活性化した化合物を作成し、次いでp−シアノベンジルアミン又はその塩を反応させ、前記式(2)で示される化合物を得る反応手順
手順2:溶媒中に式(1)で示される化合物又はカルボン酸活性化剤を添加した後、カルボン酸活性化剤又は前記式(1)で示される化合物をそれぞれ対応して添加し、次いで塩基を加え、カルボン酸を活性化した化合物を作成し、次いでp−シアノベンジルアミン若しくはその水若しくは炭酸ガス付加物又はその塩を反応させ、式(2)で示される化合物を得る反応手順
手順3:溶媒中に式(1)で示される化合物を添加し、塩基を添加し、次いでカルボン酸活性化剤を加え、カルボン酸を活性化した化合物を作成し、次いでp−シアノベンジルアミン若しくはその水若しくは炭酸ガス付加物又はその塩を反応させ式(2)で示される化合物を得る反応手順
本発明においては、式(1)で示される化合物とカルボン酸活性化剤、及び塩基を反応させる手順が、カルボン酸活性化剤と塩基存在下に式(1)で示される化合物を添加する手順、又は、式(1)で示される化合物とカルボン酸活性化剤存在下に塩基を添加する手順であることが好ましい。
【0014】
本発明の工程で用いられる溶媒としては特に限定されず、例えば、ジエチルエーテル、メチル第3ブチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;トルエン、キシレン等の炭化水素系溶媒;ジクロロメタン、クロロホルム等のハロゲン化炭化水素系溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒;アセトニトリル等が挙げられるが、特にテトラヒドロフラン、酢酸エチルが好適に使用される。
【0015】
反応時の温度は用いられるカルボン酸活性化剤等の種類により異なるが、上記手順のいずれの場合も、一般に、0℃以下の比較的低温が望ましく、特に−10〜−40℃付近の温度が望ましい。
【0016】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの記載により何ら限定されるものではない。実施例中で使用される各原料はすべて公知の化合物であり、(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸はUSP5629325、WO9746577等に記載の方法により得られる。p−シアノベンジルアミンはJP09040630、FR1582452等に記載の方法により得られる。
【0017】
実施例1
109mlの酢酸エチル中に9.92gのクロロ炭酸メチルを約1分間で加え、約−20℃に冷却する。この溶液に10.62gのN−メチルモルホリンを−20℃を維持しつつ約12分間で加え、5mlの酢酸エチルで容器を洗浄し、反応液中に加える。約10分程度攪拌した後、20.12gの(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸を−20℃にて約1分間で添加し、10mlの酢酸エチルで容器を洗浄し、反応液中に加え、−20℃で約30分間攪拌する。次いで別途作成した14.54gのp−シアノベンジルアミンと29.08gのトルエンを混合した溶液を窒素気流下で−20℃を維持しつつ約30分間で加え、5mlの酢酸エチルで容器を洗浄し反応液中に加える。室温まで2時間で昇温した後、反応液を75mlの純水で洗浄する。得られた有機層と水層をODSカラムを用いたHPLC(溶離液はリン酸緩衝液(pH2.5)とアセトニトリル混合溶媒)にて定量分析し、目的とする(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸のp−シアノベンジルアミド30.37g(反応収率96.31%)の生成を確認した。
【0018】
有機相を減圧下に留去し、生じた固体を減圧ろ過で取得し、50%酢酸エチル/ヘキサンで洗浄後、室温で一晩真空乾燥し、20.25gの目的物の結晶を得た。本化合物の各種スペクトルデータを示す。
マススペクトル、FD−MS:315(親ピーク)
元素分析値:計算値(組成式、C172133 )C:64.75%、H:6.71%、N:13.32%、O:15.22%
実測値C:64.56%、H:6.70%、N:13.31%、O:15.02%
プロトンNMR(400MHz、CDCl3 )δ:1.40(s、9H)、2.45(br、2H)、3.8−4.0(m、2H)、4.50(br、2H)、4.70(t、1H)、7.5(dd、4H)、7.8(br、1H)
IRスペクトル:cm-1に対するT%を表すスペクトルを図1に示した。
【0019】
実施例2
109mlの酢酸エチル中に10.61gのN−メチルモルホリンを約2分間で加え、約−20℃に冷却する。この溶液に9.91gのクロロ炭酸メチルを−20℃を維持しつつ約13分間で加え、5mlの酢酸エチルで容器を洗浄し、反応液中に加える。約10分程度攪拌した後、20.12gの(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸を−20℃にて約1分間で添加し、10mlの酢酸エチルで容器を洗浄し、反応液中に加え、−20℃で約30分間攪拌する。次いで別途作成した14.54gのp−シアノベンジルアミンと29.05gのトルエンを混合した溶液を窒素気流下で−20℃を維持しつつ約30分間で加え、5mlの酢酸エチルで容器を洗浄し反応液中に加える。以下実施例1と同様に処理し、目的とする(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸のp−シアノベンジルアミド29.50g(反応収率93.54%)の生成を確認した。
【0020】
実施例3
109mlの酢酸エチル中に9.93gのクロロ炭酸メチルを加え、約−20℃に冷却する。この溶液にを−20℃を維持しつつ10.63gのトリエチルアミンを約24分間で加え、5mlの酢酸エチルで容器を洗浄し、反応液中に加える。約10分程度攪拌した後、20.12gの(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸を−20℃にて約1分間で添加し、10mlの酢酸エチルで容器を洗浄し、反応液中に加え、−20℃で約30分間攪拌する。次いで別途作成した14.55gのp−シアノベンジルアミンと29.14gのトルエンを混合した溶液を窒素気流下で−20℃を維持しつつ約30分間で加え、5mlの酢酸エチルで容器を洗浄し反応液中に加える。以下実施例1と同様に処理し、目的とする(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸のp−シアノベンジルアミド29.84g(反応収率94.62%)の生成を確認した。
【0021】
実施例4
実施例1と同様に−30℃で反応を実施し、目的とする(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸のp−シアノベンジルアミド29.79g(反応収率94.45%)の生成を確認した。
【0022】
実施例5
実施例1と同様に−40℃で反応を実施し、目的とする(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸のp−シアノベンジルアミド29.79g(反応収率92.05%)の生成を確認した。
【0023】
実施例6
109mlの酢酸エチル中に20.12gの(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸を加え、約−20℃に冷却する。この溶液に9.93gのクロロ炭酸メチルを約7分間で添加し、10mlの酢酸エチルで容器を洗浄し、反応液中に加える。次いで、10.61gのN−メチルモルホリンを−20℃を維持しつつ約17分間で加え、5mlの酢酸エチルで容器を洗浄し、反応系中に加え、−20℃で約30分間攪拌する。次いで別途作成した14.55gのp−シアノベンジルアミンと29.15gのトルエンを混合した溶液を窒素気流下で−20℃を維持しつつ約30分間で加え、5mlの酢酸エチルで容器を洗浄し反応系中に加える。以下実施例1と同様に処理し、目的とする(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸のp−シアノベンジルアミド30.07g(反応収率95.36%)の生成を確認した
【0024】
【発明の効果】
本発明によれば前記式(1)で示される化合物を原料とし、工業的スケールにて高収率、且つ安価に式(2)で示される化合物を製造することが可能となる。
【図面の簡単な説明】
【図1】(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸p−シアノベンジルアミドの赤外吸収スペクトル(KBr錠剤法)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an N-protected azetidinecarboxylic acid derivative having a peptide bond. More specifically, the following formula (1)
[0002]
[Chemical 3]
Figure 2007001864
[0003]
(In formula (1), R 1 represents an amino protecting group), a carboxylic acid activator, and a base are reacted to create a compound that activates carboxylic acid, and then p-cyano as an amine compound. The following formula (2) for reacting benzylamine or its water or carbon dioxide adduct or its salt
[Formula 4]
Figure 2007001864
(In formula (2), R < 1 > is related with the manufacturing method of the compound shown by the above).
[0004]
[Prior art]
The compound of the above formula (2) is a useful compound as an intermediate for the synthesis of a compound having thrombin inhibitory activity. A compound having a peptide bond represented by formula (2) is novel, and no prior art relating to a method for producing the compound is known.
[0005]
[Problems to be solved by the invention]
This invention provides the manufacturing method which can synthesize | combine the compound shown by Formula (2) with high yield on an industrial scale and cheaply using the compound shown by Formula (1) as a raw material. As a method for producing a compound having a similar skeleton, WO9625426 discloses (D) -2-cyclohexyl-2-tetrahydropyranyloxyacetylazetidine-2-carboxylic acid and p-cyanobenzylamine hydrochloride as propanephosphonic anhydride. An example of reaction when used as a reagent is described. In addition, WO9702284 discloses (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid and 4-aminomethyl-1- (N-benzyloxycarbonylamidino) benzene as 1- (3-dimethylaminopropyl). ) A synthesis example using 3-ethylcarbodiimide hydrochloride (hereinafter abbreviated as EDC) as a condensing agent is described.
[0006]
In the case of the method using propanephosphonic anhydride, a large amount of waste water containing phosphorus is generated when the liquid after the reaction is washed with water, and a large amount of cost is required for waste water treatment during industrialization. In addition, regarding the method using EDC, since EDC is an expensive reagent, it is desired to use a cheaper reagent in industrialization. That is, even when the method for producing a compound having a similar skeleton is applied, there are various problems to be improved in production on a commercial scale, and the method for producing a compound represented by the formula (2) that overcomes these problems is It was a fact that was not known until then.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have intensively studied, and reacting an N-protected azetidine 2-carboxylic acid represented by the formula (1), a base, and a carboxylic acid activator to activate a carboxylic acid. After the preparation, a method of reacting an amine component with this compound to obtain a peptide compound was found to be applicable with respect to the present compound, and gives the compound represented by the formula (2) at a high yield and low cost on an industrial scale. As a result, the present invention has been completed.
[0008]
In the present invention, the compound represented by the above formula (1) is reacted with a carboxylic acid activator and a base, and then reacted with p-cyanobenzylamine or water or a carbon dioxide adduct thereof or a salt thereof. This is a method for producing a compound having a peptide bond represented by 2).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an N-protected azetidine 2-carboxylic acid represented by the above formula (1) is reacted with a carboxylic acid activator and a base, and then p-cyanobenzylamine or water or a carbon dioxide adduct thereof or a salt thereof is reacted. It is made to react and the compound which has a peptide bond shown by the said Formula (2) is manufactured. The carboxylic acid activator is not particularly limited, but is preferably one that is inexpensive and can be stored for a long time at room temperature. For example, methyl chlorocarbonate, ethyl chlorocarbonate, propyl chlorocarbonate, isopropyl chlorocarbonate, butyl chlorocarbonate, chlorocarbonic acid Chlorocarbon alkyls such as isobutyl, butyl chlorocarbonate, 2-ethylhexyl chlorocarbonate, octyl chlorocarbonate and cetyl chlorocarbonate; alkenes of chlorocarbonate such as allyl chlorocarbonate; phenyl chlorocarbonate, 3-methylphenyl chlorocarbonate Chlorocarbonic acid aryls such as chlorocarbonic acid 3,4-dimethylphenyl and chlorocarbonic acid 3,5-dimethylphenyl; benzyl chlorocarbonate and the like are used, in particular methyl chlorocarbonate, ethyl chlorocarbonate, isobutyl chlorocarbonate, phenyl chlorocarbonate, Such as benzyl chlorocarbonate Masui.
[0010]
Examples of the base include trialkylamines such as trimethylamine, triethylamine, tripropylamine, tributylamine, N, N-diisopropyl-N-ethylamine; N-methylmorpholine, N-ethylmorpholine, N-methylpyrrolidine, N -Cyclic amines such as methylpiperidine; pyridine analogs such as pyridine, picoline, lutidine, N, N-dimethylpyridine and quinoline are used, and triethylamine, N-methylmorpholine and the like are particularly preferable.
[0011]
The amino protecting group represented by R 1 in formula (1) and formula (2) can be any protecting group known per se as a protecting group for an amino group in the field of peptide chemistry. For example, methoxycarbonyl, ethoxycarbonyl, tertiary butyloxycarbonyl, tertiary amyloxycarbonyl, allyloxycarbonyl, isobornyloxycarbonyl, phenyloxycarbonyl, trichloroethyloxycarbonyl, benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, Urethane-type protecting groups such as p-methoxybenzyloxycarbonyl; phthaloyl, benzoyl, chlorobenzoyl, p-nitrobenzoyl, p-tert-butylbenzoyl, toluoyl, naphthoyl, phenylacetyl, phenoxyacetyl, benzenesulfonyl, p-tert-butyl Ali such as benzenesulfonyl, toluenesulfonyl, 2-nitrobenzenesulfonyl, 4-nitrobenzenesulfonyl, 2,4-dinitrobenzenesulfonyl Ruacyl-type protecting groups; aliphatic acyl-type protecting groups such as formyl, acetyl, propanoyl, pivaloyl, decanoyl, trifluoroacetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, methanesulfonyl, camphorsulfonyl; methylcarbamyl, ethylcarbamyl, Carbamyl-type protecting groups such as phenylcarbamyl and naphthylcarbamyl or thiocarbamyl-type protecting groups corresponding thereto; arylalkyl-type protecting groups such as benzyl, 1-phenylethyl, 2-phenylethyl, diphenylmethyl and triphenylmethyl; trimethylsilyl Groups and the like. Of these, alkyloxycarbonyl groups (for example, methoxycarbonyl, ethoxycarbonyl, tertiary butyloxycarbonyl, tertiary amyloxycarbonyl, etc.), arylalkyl groups (for example, benzyl, 1-phenylethyl, 2-phenylethyl, Diphenylmethyl, triphenylmethyl, etc.), arylacyl groups (eg phthaloyl, benzoyl, chlorobenzoyl, p-nitrobenzoyl, p-tert-butylbenzoyl, toluoyl, naphthoyl, phenylacetyl, phenoxyacetyl, benzenesulfonyl, p- 3-butylbenzenesulfonyl, toluenesulfonyl, 2-nitrobenzenesulfonyl, 4-nitrobenzenesulfonyl, 2,4-dinitrobenzenesulfonyl, etc.) are preferred.
[0012]
Examples of the p-cyanobenzylamine or its water or carbon dioxide adduct or a salt thereof include p-cyanobenzylamine pure product, water adduct, carbon dioxide adduct, inorganic acid salt, organic carboxylate, and organic sulfone. Examples include acid salts. Examples of inorganic acids that form salts with p-cyanobenzylamine include hydrochloric acid, sulfuric acid, carbonic acid, and phosphoric acid. Examples of organic carboxylic acids include formic acid, acetic acid, trifluoroacetic acid, benzoic acid, citric acid, and the like. Examples of the organic sulfonic acid include benzenesulfonic acid, p-toluenesulfonic acid, 2-nitrobenzenesulfonic acid, 4-nitrobenzenesulfonic acid, and the like. Of these, pure p-cyanobenzylamine and carbon dioxide adduct are particularly preferred.
[0013]
In the present invention, the reagent charging procedure during the reaction can be carried out, for example, by carrying out by any of the following methods.
Procedure 1: After adding a carboxylic acid activator or a base into the solvent, a base or a carboxylic acid activator is added correspondingly to form a complex of the carboxylic acid activator and the base, and then the above formula Reaction procedure 2 in which a compound represented by (1) is added to prepare a compound in which a carboxylic acid is activated, and then p-cyanobenzylamine or a salt thereof is reacted to obtain a compound represented by the above formula (2) : After adding the compound represented by the formula (1) or the carboxylic acid activator in the solvent, the carboxylic acid activator or the compound represented by the formula (1) is added correspondingly, and then the base is added. Reaction procedure for preparing a compound activated by carboxylic acid and then reacting p-cyanobenzylamine or water or carbon dioxide adduct thereof or a salt thereof to obtain a compound represented by formula (2) A compound represented by the formula (1) is added to a solvent, a base is added, a carboxylic acid activator is added to prepare a compound in which a carboxylic acid is activated, and then p-cyanobenzylamine or its water is added. Alternatively, a reaction procedure for reacting a carbon dioxide adduct or a salt thereof to obtain a compound represented by the formula (2) In the present invention, a procedure for reacting a compound represented by the formula (1) with a carboxylic acid activator and a base , A procedure for adding a compound represented by the formula (1) in the presence of a carboxylic acid activator and a base, or a procedure for adding a base in the presence of a compound represented by the formula (1) and a carboxylic acid activator. It is preferable.
[0014]
The solvent used in the process of the present invention is not particularly limited, and examples thereof include ether solvents such as diethyl ether, methyl tertiary butyl ether, tetrahydrofuran and dioxane; hydrocarbon solvents such as toluene and xylene; halogens such as dichloromethane and chloroform. Hydrocarbon solvents; ester solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; acetonitrile and the like are exemplified, and tetrahydrofuran and ethyl acetate are particularly preferably used.
[0015]
The temperature during the reaction varies depending on the type of the carboxylic acid activator used, but in any of the above procedures, a relatively low temperature of 0 ° C. or lower is generally desirable, and in particular, a temperature around −10 to −40 ° C. desirable.
[0016]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited at all by these description. Each raw material used in the examples is a known compound, and (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid can be obtained by the method described in USP 5629325, WO9746577, and the like. p-Cyanobenzylamine is obtained by the method described in JP09040630, FR1582452 and the like.
[0017]
Example 1
9.92 g of methyl chlorocarbonate is added in 109 ml of ethyl acetate in about 1 minute and cooled to about −20 ° C. 10.62 g of N-methylmorpholine is added to this solution in about 12 minutes while maintaining -20 ° C, and the container is washed with 5 ml of ethyl acetate and added to the reaction solution. After stirring for about 10 minutes, 20.12 g of (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid was added at −20 ° C. for about 1 minute, and the container was filled with 10 ml of ethyl acetate. Wash, add to reaction, stir at -20 ° C for about 30 minutes. Next, a solution prepared by mixing 14.54 g of p-cyanobenzylamine and 29.08 g of toluene prepared separately was added in about 30 minutes while maintaining −20 ° C. under a nitrogen stream, and the container was washed with 5 ml of ethyl acetate. Add into reaction. After raising the temperature to room temperature in 2 hours, the reaction solution is washed with 75 ml of pure water. The obtained organic layer and aqueous layer were quantitatively analyzed by HPLC using an ODS column (eluent is a phosphate buffer solution (pH 2.5) and acetonitrile mixed solvent), and the intended (S) -N-third Formation of 30.37 g (reaction yield 96.31%) of p-cyanobenzylamide of butyloxycarbonyl-2-azetidinecarboxylic acid was confirmed.
[0018]
The organic phase was distilled off under reduced pressure, and the resulting solid was obtained by filtration under reduced pressure, washed with 50% ethyl acetate / hexane, and then vacuum-dried overnight at room temperature to obtain 20.25 g of the desired crystal. The various spectrum data of this compound are shown.
Mass spectrum, FD-MS: 315 (parent peak)
Elemental analysis value: calculated value (composition formula, C 17 H 21 N 3 O 3 ) C: 64.75%, H: 6.71%, N: 13.32%, O: 15.22%
Found C: 64.56%, H: 6.70%, N: 13.31%, O: 15.02%
Proton NMR (400 MHz, CDCl 3 ) δ: 1.40 (s, 9H), 2.45 (br, 2H), 3.8-4.0 (m, 2H), 4.50 (br, 2H), 4.70 (t, 1H), 7.5 (dd, 4H), 7.8 (br, 1H)
IR spectrum: A spectrum showing T% with respect to cm −1 is shown in FIG.
[0019]
Example 2
10.61 g of N-methylmorpholine is added in 109 ml of ethyl acetate in about 2 minutes and cooled to about −20 ° C. To this solution, 9.91 g of methyl chlorocarbonate is added in about 13 minutes while maintaining -20 ° C, and the container is washed with 5 ml of ethyl acetate and added to the reaction solution. After stirring for about 10 minutes, 20.12 g of (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid was added at −20 ° C. for about 1 minute, and the container was filled with 10 ml of ethyl acetate. Wash, add to reaction, stir at -20 ° C for about 30 minutes. Next, a solution prepared by mixing 14.54 g of p-cyanobenzylamine and 29.05 g of toluene prepared separately was added in about 30 minutes while maintaining −20 ° C. under a nitrogen stream, and the container was washed with 5 ml of ethyl acetate. Add into reaction. Thereafter, the same treatment as in Example 1 was carried out, and 29.50 g (reaction yield: 93.54%) of the desired (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid p-cyanobenzylamide was obtained. Confirmed generation.
[0020]
Example 3
Add 9.93 g of methyl chlorocarbonate in 109 ml of ethyl acetate and cool to about -20 ° C. To this solution is added 10.63 g of triethylamine in about 24 minutes while maintaining −20 ° C., and the vessel is washed with 5 ml of ethyl acetate and added to the reaction. After stirring for about 10 minutes, 20.12 g of (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid was added at −20 ° C. for about 1 minute, and the container was filled with 10 ml of ethyl acetate. Wash, add to reaction, stir at -20 ° C for about 30 minutes. Next, a solution prepared by mixing 14.55 g of p-cyanobenzylamine and 29.14 g of toluene prepared separately was added in about 30 minutes while maintaining −20 ° C. under a nitrogen stream, and the container was washed with 5 ml of ethyl acetate. Add into reaction. Thereafter, the same treatment as in Example 1 was carried out to obtain 29.84 g (reaction yield: 94.62%) of the target (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid p-cyanobenzylamide. Confirmed generation.
[0021]
Example 4
The reaction was carried out at −30 ° C. in the same manner as in Example 1, and 29.79 g of the target (S) —N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid p-cyanobenzylamide (reaction yield 94). .45%) was confirmed.
[0022]
Example 5
The reaction was carried out at −40 ° C. in the same manner as in Example 1, and 29.79 g of the desired (S) —N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid p-cyanobenzylamide (reaction yield: 92). .05%) was confirmed.
[0023]
Example 6
Add 20.12 g of (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid in 109 ml of ethyl acetate and cool to about -20 ° C. To this solution is added 9.93 g of methyl chlorocarbonate in about 7 minutes, the vessel is washed with 10 ml of ethyl acetate and added to the reaction. Next, 10.61 g of N-methylmorpholine is added in about 17 minutes while maintaining -20 ° C, the vessel is washed with 5 ml of ethyl acetate, added to the reaction system, and stirred at -20 ° C for about 30 minutes. Next, a solution prepared by mixing 14.55 g of p-cyanobenzylamine and 29.15 g of toluene prepared separately was added in about 30 minutes while maintaining −20 ° C. under a nitrogen stream, and the container was washed with 5 ml of ethyl acetate. Add to reaction system. Thereafter, the same treatment as in Example 1 was carried out, and 30.07 g (reaction yield 95.36%) of the target (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid p-cyanobenzylamide was obtained. Confirmed generation [0024]
【The invention's effect】
According to the present invention, it is possible to produce the compound represented by the formula (2) at a high yield and low cost on an industrial scale using the compound represented by the formula (1) as a raw material.
[Brief description of the drawings]
FIG. 1 (S) -N-tertiary butyloxycarbonyl-2-azetidinecarboxylic acid p-cyanobenzylamide infrared absorption spectrum (KBr tablet method)

Claims (8)

下記式(1)
Figure 2007001864
(式(1)中、R1 は、アミノ保護基を表す)で示される化合物とカルボン酸活性化剤、及び塩基を反応させ、次いでp−シアノベンジルアミン若しくはその水若しくは炭酸ガス付加物又はその塩を反応させることを特徴とする下記式(2)
Figure 2007001864
(式(2)中、R1 は、前記と同じ)で示されるペプチド結合を有する化合物の製造方法。
Following formula (1)
Figure 2007001864
(In the formula (1), R 1 represents an amino protecting group), a carboxylic acid activator, and a base are reacted, and then p-cyanobenzylamine or its water or carbon dioxide adduct or its The following formula (2) characterized by reacting a salt
Figure 2007001864
(In formula (2), R < 1 > is the same as the above) The manufacturing method of the compound which has a peptide bond shown.
式(1)のアミノ保護基が、アルキルオキシカルボニル基、アリールアルキル基又はアリールアシル基である請求項1記載の製造方法。  The production method according to claim 1, wherein the amino protecting group of the formula (1) is an alkyloxycarbonyl group, an arylalkyl group or an arylacyl group. 式(1)で示される化合物が、(S)−N−第3ブチルオキシカルボニル−2−アゼチジンカルボン酸である請求項1又は2記載の製造方法。  The production method according to claim 1 or 2, wherein the compound represented by the formula (1) is (S) -N-tert-butyloxycarbonyl-2-azetidinecarboxylic acid. カルボン酸活性化剤が、クロロ炭酸メチル、クロロ炭酸エチル、クロロ炭酸イソブチル、クロロ炭酸フェニル及びクロロ炭酸ベンジルからなる群から選択されるものである請求項1、2又は3記載の製造方法。  The process according to claim 1, 2 or 3, wherein the carboxylic acid activator is selected from the group consisting of methyl chlorocarbonate, ethyl chlorocarbonate, isobutyl chlorocarbonate, phenyl chlorocarbonate and benzyl chlorocarbonate. 塩基が、トリエチルアミン又はN−メチルモルホリンである請求項1、2、3又は4記載の製造方法。  The production method according to claim 1, 2, 3 or 4, wherein the base is triethylamine or N-methylmorpholine. p−シアノベンジルアミンの塩が、無機酸、有機カルボン酸又は有機スルホン酸の塩である請求項1、2、3、4又は5記載の製造方法。  6. The process according to claim 1, wherein the salt of p-cyanobenzylamine is an inorganic acid, organic carboxylic acid or organic sulfonic acid salt. 式(1)で示される化合物とカルボン酸活性化剤、及び塩基を反応させる手順が、カルボン酸活性化剤と塩基存在下に式(1)で示される化合物を添加する手順である請求項1、2、3、4、5又は6記載の製造方法。  The procedure for reacting the compound represented by the formula (1) with the carboxylic acid activator and the base is a procedure for adding the compound represented by the formula (1) in the presence of the carboxylic acid activator and the base. The manufacturing method according to 2, 3, 4, 5 or 6. 式(1)で示される化合物とカルボン酸活性化剤、及び塩基を反応させる手順が、式(1)で示される化合物とカルボン酸活性化剤存在下に塩基を添加する手順である請求項1、2、3、4、5又は6記載の製造方法。  The procedure for reacting the compound represented by the formula (1) with the carboxylic acid activator and the base is a procedure for adding a base in the presence of the compound represented by the formula (1) and the carboxylic acid activator. The manufacturing method according to 2, 3, 4, 5 or 6.
JP14927399A 1999-05-28 1999-05-28 Method for producing compound having peptide bond Pending JP2007001864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14927399A JP2007001864A (en) 1999-05-28 1999-05-28 Method for producing compound having peptide bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14927399A JP2007001864A (en) 1999-05-28 1999-05-28 Method for producing compound having peptide bond

Publications (2)

Publication Number Publication Date
JP2007001864A true JP2007001864A (en) 2007-01-11
JP2007001864A6 JP2007001864A6 (en) 2007-05-10

Family

ID=37687792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14927399A Pending JP2007001864A (en) 1999-05-28 1999-05-28 Method for producing compound having peptide bond

Country Status (1)

Country Link
JP (1) JP2007001864A (en)

Similar Documents

Publication Publication Date Title
BRPI0709568A2 (en) processes and intermediates for preparing steric compounds
JP2019210273A (en) Method of producing edoxaban
Abraham et al. Design, synthesis, and testing of antisickling agents. 2. Proline derivatives designed for the donor site
MXPA06012588A (en) Process for producing pentacyclic taxane.
JP2007001864A (en) Method for producing compound having peptide bond
JP2007536202A (en) Novel synthesis method of perindopril and pharmaceutically acceptable salts thereof
EP0704439B1 (en) Novel intermediate for synthetic use and process for producing aminopiperazine derivative
JPH0692358B2 (en) Amino acid derivative and enkephalinase inhibitor containing the derivative as an active ingredient
EP1628956B1 (en) A process for the preparation of compounds having an ace inhibitory action
US6355800B1 (en) Process for producing aminopiperazine derivatives
JP2011519341A (en) Process for the preparation of 2- (primary / secondary amino) hydrocarbyl) -carbamoyl-7-oxo-2,6-diaza-bicyclo [3.2.0] heptane-6-sulfonic acid derivatives
JP3219833B2 (en) Method for producing 4-substituted propylazetidin-2-one derivative
JPH06340622A (en) Production of benzylsuccinic acid derivative and intermediate for its synthesis
JP2700943B2 (en) Optically active 2-morpholino-2- (1-naphthylmethyl) -4-oxobutyric acid 2&#39;-hydroxy-1,1&#39;-binaphthalen-2-yl and process for producing the same
JPH0356461A (en) Pyroglutamic acid derivative
KR101715682B1 (en) Novel intermediates for preparing saxagliptin, preparing methods thereof and preparing methods of saxagliptin using the same
JPH03505577A (en) Synthesis of dipeptide hydroxyethylene isostere
JPS6152826B2 (en)
JP4283913B2 (en) Process for producing 4-substituted azetidinylpentanoic acid derivatives
JP4447324B2 (en) Novel pyridazine derivatives, their use as medicaments, their pharmaceutical compositions and methods of preparation
US6388083B2 (en) Process for the synthesis of (2S)-phenyl-3-piperidone
Pan et al. Diastereospecific synthesis of trans-2, 3-diaryl-1-aminocyclopropanecarboxylic acids
JPH03258783A (en) Production of 3-formylcephem derivative
EP1184374B1 (en) Carboxamide derivatives of pyrrolidine, piperidine and hexahydroazepine for the treatment of thrombosis disorders
CN115872932A (en) Daluolumide intermediate compound