JP2006507932A - Method for preparing epoxidation catalyst - Google Patents

Method for preparing epoxidation catalyst Download PDF

Info

Publication number
JP2006507932A
JP2006507932A JP2004556324A JP2004556324A JP2006507932A JP 2006507932 A JP2006507932 A JP 2006507932A JP 2004556324 A JP2004556324 A JP 2004556324A JP 2004556324 A JP2004556324 A JP 2004556324A JP 2006507932 A JP2006507932 A JP 2006507932A
Authority
JP
Japan
Prior art keywords
support
silicon
catalyst
hydroperoxide
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004556324A
Other languages
Japanese (ja)
Inventor
フアン・デル・リンデン,ヨハネス・ペトルス
スクーテン,エドウアルドス・ペトルス・シモン
Original Assignee
シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー filed Critical シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー
Publication of JP2006507932A publication Critical patent/JP2006507932A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • B01J35/51
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid

Abstract

ケイ素含有担体にハロゲン化チタンからなるガス流を含浸させる工程を含むエポキシ化触媒の調製方法、およびこのような触媒を使用する酸化アルキレンの調製方法。A method for preparing an epoxidation catalyst comprising impregnating a silicon-containing support with a gas stream comprising titanium halide, and a method for preparing alkylene oxide using such a catalyst.

Description

本発明はエポキシ化触媒の調製およびこのような触媒を用いて酸化アルキレンを調製する方法に関する。   The present invention relates to the preparation of epoxidation catalysts and methods for preparing alkylene oxides using such catalysts.

エポキシ化触媒は、エポキシ基含有化合物を製造する際に触媒の働きをする触媒であると理解されている。よく知られた方法は、ヒドロペルオキシドおよびアルケンを不均一エポキシ化触媒に接触させる工程と酸化アルキレンおよびアルコールを含む生成物流を抜き取る工程を含んでいる。   An epoxidation catalyst is understood to be a catalyst that acts as a catalyst in the production of an epoxy group-containing compound. Well known methods include contacting the hydroperoxide and alkene with a heterogeneous epoxidation catalyst and extracting a product stream comprising alkylene oxide and alcohol.

エポキシ基含有化合物の製造用触媒はよく知られている。欧州特許出願公開第345856号は、固体シリカおよび/または無機珪酸塩と化学的に結合したチタンを含むこのような触媒の調製について記述している。この調製は、(a)珪素化合物に、好ましくは不活性ガスを含むガス状の四塩化チタンの流れを含浸させる工程と、(b)工程(a)で得られた反応生成物を焼成する工程と、(c)工程(b)の生成物を加水分解する工程とを含む。上記不活性ガスの流れはガス状の四塩化チタンの担体としての機能も有している。このような使用のためには、このガスは比較的多量に存在しなければならない。   Catalysts for the production of epoxy group-containing compounds are well known. EP-A-345856 describes the preparation of such a catalyst comprising titanium chemically combined with solid silica and / or inorganic silicate. This preparation includes the steps of (a) impregnating a silicon compound with a flow of gaseous titanium tetrachloride, preferably containing an inert gas, and (b) firing the reaction product obtained in step (a). And (c) hydrolyzing the product of step (b). The flow of the inert gas also functions as a carrier for gaseous titanium tetrachloride. For such use, this gas must be present in relatively large amounts.

エポキシ化方法一般に、さらに具体的に述べると、酸化アルキレン調製用方法に、選択性の向上への関心が継続的にある。これを達成する簡単で魅力的な方法を発見した。   Epoxidation Methods In general, and more specifically, there is a continuing interest in improving selectivity in alkylene oxide preparation methods. I found an easy and attractive way to achieve this.

本発明は、ケイ素含有担体にハロゲン化チタンからなるガス流を含浸させる工程を含むエポキシ化触媒の調製方法に関する。   The present invention relates to a method for preparing an epoxidation catalyst comprising the step of impregnating a silicon-containing support with a gas stream comprising titanium halide.

担体が同じ量のハロゲン化チタンと接触していた場合でも選択性が改善された触媒が得られた。   A catalyst with improved selectivity was obtained even when the support was in contact with the same amount of titanium halide.

本発明の触媒は、ケイ素含有担体を含浸させることによって得られる。基本的に、ケイ素含有担体はどのようなものでも本発明による調製方法で使用するのに適している。ケイ素含有担体の例としてゼオライトが挙げられる。このケイ素含有担体はシリカ担体であることが好ましい。   The catalyst of the present invention is obtained by impregnating a silicon-containing support. In principle, any silicon-containing support is suitable for use in the preparation process according to the invention. An example of a silicon-containing support is zeolite. This silicon-containing support is preferably a silica support.

シリカ担体は実質的に酸化ケイ素からなっている。しかしながら、限られた量の、汚染物質などの別の成分も同様に存在する可能性がある。   The silica support consists essentially of silicon oxide. However, limited amounts of other components such as contaminants may be present as well.

汚染物質が最終触媒の性能に影響を及ぼす可能性があることが知られている。本発明で使用するシリカ担体が含むナトリウムは、好ましくは1200ppm以下であり、より詳細には1000ppm以下である。さらに、このシリカ担体は、500ppm以下のアルミニウム、500ppm以下のカルシウム、200ppm以下のカリウム、100ppm以下のマグネシウムおよび100ppm以下の鉄を含むことが好ましい。これらの量は担体の量に基づくものである。   It is known that contaminants can affect the performance of the final catalyst. The sodium contained in the silica carrier used in the present invention is preferably 1200 ppm or less, and more specifically 1000 ppm or less. Further, the silica support preferably contains 500 ppm or less of aluminum, 500 ppm or less of calcium, 200 ppm or less of potassium, 100 ppm or less of magnesium, and 100 ppm or less of iron. These amounts are based on the amount of carrier.

このシリカ担体はシリカゲルであることが好ましい。本発明で使用するシリカゲル担体は、ゲルを含むケイ素から得られたどのような担体でも基本的に可能である。一般に、シリカゲルは、その微孔性とドロキシル化された表面によってその他の含水酸化ケイ素と区別される固体で非晶質形態の含水酸化ケイ素である。シリカゲルは通常、コロイダルサイズのシリカ粒子が集合した三次元網状組織を含んでいる。これらは一般に、ケイ酸ナトリウム水溶液を無機質の強酸と合せて11未満のpHに酸性化することにより作製される。この酸性化は一ケイ酸(Si(OH))を形成させ、この一ケイ酸が重合して内部にシロキサン架橋を外部にシラノール基を持つ粒子になる。あるpHにおいてこの重合体粒子が集合し、これによって鎖状組織を形成し、最終的にゲルの網状組織を形成する。ケイ酸塩の濃度、温度、pHおよび凝集剤の添加がゲル化時間、および密度、強度、硬度、表面積および細孔容積等の最終的なゲル特性に影響を及ぼす。得られたヒドロゲルは一般に洗浄されて電解質が無くなり、乾燥され活性化される。Grace Davison社から市販されているシリカ担体V432およびDAVICAT P−732等が好適なシリカゲル担体であろう。 This silica support is preferably silica gel. The silica gel carrier used in the present invention can basically be any carrier obtained from silicon containing gel. In general, silica gel is a solid, amorphous form of hydrous silicon that is distinguished from other hydrous silicon oxides by its microporous and droxylated surfaces. Silica gel usually contains a three-dimensional network of colloidal silica particles. These are generally made by acidifying an aqueous sodium silicate solution with a strong inorganic acid to a pH of less than 11. This acidification forms monosilicic acid (Si (OH) 4 ), and the monosilicic acid is polymerized into particles having siloxane crosslinks inside and silanol groups outside. At a certain pH, the polymer particles aggregate, thereby forming a chain structure, and finally a gel network. The addition of silicate concentration, temperature, pH and flocculant affects gel time and final gel properties such as density, strength, hardness, surface area and pore volume. The resulting hydrogel is generally washed away from electrolytes, dried and activated. Silica supports V432 and DAVICAT P-732, etc., commercially available from Grace Davison, would be suitable silica gel supports.

本発明で使用するシリカゲル担体は、2ミリメートル以下の重量平均粒径を有することが好ましい。特に好適であることがわかった粒径は、0.2から1.8ミリメートル、よりとりわけ0.4から1.6ミリメートル、特にとりわけ0.6から1.4ミリメートルの重量平均粒径であった。   The silica gel carrier used in the present invention preferably has a weight average particle diameter of 2 millimeters or less. The particle size found to be particularly suitable was a weight average particle size of 0.2 to 1.8 millimeters, more particularly 0.4 to 1.6 millimeters, especially especially 0.6 to 1.4 millimeters. .

このケイ素含有担体は、ハロゲン化チタンと接触させるときに水分含有量が低いことが好ましい。この低水分含有量は当業者に知られた任意の方法で達成することができる。好ましい方法は、このケイ素含有担体にハロゲン化チタンからなるガス状の流れを含浸させる前にケイ素含有担体を乾燥させる工程を含む。好適な乾燥方法は、ケイ素含有担体を200から700℃の温度にさらすことを含んでいる。驚くべきことに、特定環境下での乾燥が触媒のさらなる向上を与えることがわかった。好ましい乾燥条件は、200℃超から300℃の温度で担体を乾燥することを含んでいる。この乾燥は、好ましくは1から8時間の間、好ましくは窒素等の不活性ガスの存在下で行われる。この好ましい方法については、欧州特許出願第02258294.4号の優先権を主張する同時係属の特許出願でより詳細に説明している。   The silicon-containing support preferably has a low water content when brought into contact with the titanium halide. This low moisture content can be achieved by any method known to those skilled in the art. A preferred method involves drying the silicon-containing support before impregnating the silicon-containing support with a gaseous stream of titanium halide. A suitable drying method involves exposing the silicon-containing support to a temperature of 200 to 700 ° C. Surprisingly, it has been found that drying under certain circumstances gives a further improvement of the catalyst. Preferred drying conditions include drying the support at a temperature above 200 ° C to 300 ° C. This drying is preferably carried out for 1 to 8 hours, preferably in the presence of an inert gas such as nitrogen. This preferred method is described in more detail in the co-pending patent application claiming priority of European Patent Application No. 0258294.4.

このケイ素含有担体を、ケイ素含有担体を焼成する工程とその後得られた担体を加水分解する工程とを含む予備処理にかけると、さらに改善されることが認められた。加水分解は水または水蒸気で担体を処理する工程を含んでいる。この加水分解は水蒸気で行うことが好ましい。あるいは、この加水分解処理は、無機質酸の水溶液、アンモニウム塩の水溶液またはそれらの組み合わせを使用する洗浄処理を含んでいてもよい。加水分解の後に依然として存在する水はどれも担体をさらに処理する前に除去することが好ましい。水は、乾燥によって除去することが好ましい。焼成は比較的高温で行うことが好ましい。好ましい焼成処理は、(a)シリカゲル担体を少なくとも400℃の温度で焼成する工程と、(b)上記焼成されたシリカゲル担体を加水分解する工程と、(c)工程(b)で得られた上記加水分解された担体にチタン含有含浸剤を含浸させる工程と、(d)上記含浸された担体を焼成する工程とをさらに含む。工程(a)の焼成は450から800℃の温度で行うことが好ましく、500から700℃の温度がより好ましい。   It has been found that further improvement is obtained when the silicon-containing support is subjected to a pretreatment comprising a step of firing the silicon-containing support and a step of hydrolyzing the resulting support. Hydrolysis involves treating the support with water or steam. This hydrolysis is preferably carried out with steam. Alternatively, the hydrolysis treatment may include a washing treatment using an aqueous solution of an inorganic acid, an aqueous solution of an ammonium salt, or a combination thereof. Any water still present after hydrolysis is preferably removed before further processing of the support. The water is preferably removed by drying. The firing is preferably performed at a relatively high temperature. Preferred firing treatments include (a) a step of firing the silica gel carrier at a temperature of at least 400 ° C., (b) a step of hydrolyzing the fired silica gel carrier, and (c) the above obtained in step (b). A step of impregnating the hydrolyzed carrier with a titanium-containing impregnant; and (d) a step of firing the impregnated carrier. The firing in the step (a) is preferably performed at a temperature of 450 to 800 ° C, more preferably a temperature of 500 to 700 ° C.

本発明で使用するシリカゲル担体は、好ましくは表面積が1000m/g以下であり、より好ましくは800m/g以下、最も好ましくは500m/g以下である。 The silica gel carrier used in the present invention preferably has a surface area of 1000 m 2 / g or less, more preferably 800 m 2 / g or less, and most preferably 500 m 2 / g or less.

本発明の方法で使用できるハロゲン化チタンは、1個から4個のハロゲン化物の置換基を有し、残りの置換基は、もしあれば、アルコキシド基かアミノ基である3置換および4置換のチタン錯体を含む。このハロゲン化チタンは、ハロゲン化チタン化合物単体でも複数のハロゲン化チタン化合物の混合物でもよい。このハロゲン化チタンは、四塩化チタンを少なくとも50重量%含むことが好ましく、四塩化チタンを少なくとも70重量%含むことがより好ましい。このガス流が四塩化チタンからなることが最も好ましい。   Titanium halides that can be used in the method of the present invention have 1 to 4 halide substituents, and the remaining substituents, if any, are tri- and tetra-substituted alkoxide groups or amino groups. Contains titanium complex. The titanium halide may be a titanium halide compound alone or a mixture of a plurality of titanium halide compounds. The titanium halide preferably contains at least 50% by weight of titanium tetrachloride, and more preferably contains at least 70% by weight of titanium tetrachloride. Most preferably, the gas stream consists of titanium tetrachloride.

本発明はこの担体にハロゲン化チタンからなるガスを含浸させる工程を含む。驚くべきことに、ケイ素含有担体にハロゲン化チタンからなるガスを含浸させると、所望の酸化アルキレンに対する選択性がより高い触媒を得ることができることを発見した。本発明による調製はキャリアガス無しに行われる。なんらかの理論と結びつけるつもりはないが、このキャリアガスが含浸の妨げになると考えられる。しかしながら、ケイ素含有担体とガス状ハロゲン化チタンの接触時に限られた量の別のガス状化合物が存在しても構わない。含浸時に担体と接触しているガスは、好ましくは少なくとも70重量%がハロゲン化チタンからなり、よりとりわけ少なくとも80重量%が、よりとりわけ少なくとも90重量%が、最もとりわけ少なくとも95重量%がハロゲン化チタンからなる。   The present invention includes a step of impregnating the carrier with a gas comprising titanium halide. Surprisingly, it has been discovered that impregnation of a silicon-containing support with a gas comprising titanium halide can provide a catalyst with higher selectivity for the desired alkylene oxide. The preparation according to the invention takes place without a carrier gas. Although not intended to be linked to any theory, this carrier gas is thought to impede impregnation. However, a limited amount of another gaseous compound may be present when the silicon-containing support and the gaseous titanium halide are in contact. The gas in contact with the support during impregnation preferably comprises at least 70% by weight titanium halide, more particularly at least 80% by weight, more especially at least 90% by weight and most especially at least 95% by weight titanium halide. Consists of.

ガス状ハロゲン化チタンは当業者に知られたどんな方法でも作製することができる。簡単かつ容易なやり方として、ハロゲン化チタンを含む容器をガス状ハロゲン化チタンが得られるような温度に加熱することが挙げられる。   The gaseous titanium halide can be made by any method known to those skilled in the art. A simple and easy way is to heat the vessel containing the titanium halide to a temperature such that gaseous titanium halide is obtained.

一般に、含浸後の担体は焼成され、その後、触媒として使用される前に加水分解される。焼成によって、ハロゲン化水素、より具体的に述べるとハロゲン化チタンとケイ素含有担体の表面上に存在するケイ素化合物とが反応して形成される塩化水素が除去されると考えられる。   In general, the impregnated support is calcined and then hydrolyzed before being used as a catalyst. Firing is considered to remove hydrogen halide, more specifically, hydrogen chloride formed by reaction between titanium halide and a silicon compound present on the surface of the silicon-containing support.

場合によって行う含浸された担体の焼成は、一般には含浸担体を少なくとも500℃、より詳細には少なくとも600℃の温度にさらすことを含んでいる。本発明の焼成は少なくとも650℃の温度で行うことが好ましい。実用的な観点から、適用される焼成温度は1000℃以下であることが好ましい。   The optional calcination of the impregnated support generally comprises subjecting the impregnated support to a temperature of at least 500 ° C, more particularly at least 600 ° C. The firing of the present invention is preferably performed at a temperature of at least 650 ° C. From a practical viewpoint, the applied firing temperature is preferably 1000 ° C. or lower.

含浸、焼成された担体を加水分解することによってチタン−ハロゲン化物結合を取り除くことができる。含浸担体の加水分解は一般に、含浸前に場合によって行う担体の加水分解よりも多少条件が厳しくなる。したがって、この含浸担体の加水分解は、150から400℃の範囲の温度において水蒸気で行うのが適している。   The titanium-halide bond can be removed by hydrolyzing the impregnated and calcined support. The hydrolysis of the impregnated support is generally somewhat more severe than the support hydrolysis that is optionally performed prior to impregnation. Therefore, the hydrolysis of the impregnated support is suitably performed with water vapor at a temperature in the range of 150 to 400 ° C.

加水分解された含浸担体はその後、たとえば、好ましくは100から425℃の温度で、加水分解された含浸担体をシリル化剤に接触させることによってシリル化することが好ましい。好適なシリル化剤としては、C1〜C3ヒドロカルビル置換基を持つ4置換シラン等のオルガノシランがある。非常に好適なシリル化剤はヘキサメチルジシラザンである。特定の好適なシリル化方法およびシリル化剤の例は、たとえば、米国特許出願第6011162号および欧州特許出願734764号において参照している米国特許出願第3829392号および米国特許第3923843号に記述されている。   The hydrolyzed impregnated support is then preferably silylated, for example, by contacting the hydrolyzed impregnated support with a silylating agent, preferably at a temperature of 100 to 425 ° C. Suitable silylating agents include organosilanes such as tetrasubstituted silanes having C1-C3 hydrocarbyl substituents. A very suitable silylating agent is hexamethyldisilazane. Examples of certain suitable silylation methods and silylating agents are described, for example, in US Pat. No. 3,829,392 and US Pat. No. 3,923,843, referenced in US Pat. No. 6,011,162 and European Patent Application 734,764. Yes.

チタン(金属チタンとしての)の量は、触媒の総重量に基づき通常0.1から10重量%、好適には1から5重量%の範囲になる。チタンまたは塩もしくは酸化物等のチタン化合物は、好ましくは、存在する唯一の金属および/または金属化合物である。   The amount of titanium (as metallic titanium) usually ranges from 0.1 to 10% by weight, preferably from 1 to 5% by weight, based on the total weight of the catalyst. Titanium or titanium compounds such as salts or oxides are preferably the only metals and / or metal compounds present.

上で説明したように、過酸化水素等のヒドロペルオキシドまたは有機ヒドロペルオキシドを酸素源として使用して対応するオレフィンをエポキシ化して酸化プロピレン等の酸化アルキレンを製造することはこの分野でよく知られている。このヒドロペルオキシドは、過酸化水素でもあるいはtert−ブチルヒドロペルオキシド、クメンヒドロペルオキシドおよびエチルベンゼンヒドロペルオキシド等の任意の有機ヒドロペルオキシドでもよい。このアルケンは一般に、酸化アルキレンとして酸化プロピレンを与えるプロペンである。本発明によって作製された触媒は、このようなプロセスで特に良好な結果を与えることがわかった。したがって、本発明はさらに、ヒドロペルオキシドおよびアルケンを不均一エポキシ化触媒に接触させる工程と酸化アルキレンおよびアルコールおよび/または水を含む生成物流を抜き取る工程を含み、この触媒は本発明に従って調製されたものである、酸化アルキレンの調製方法に関する。   As explained above, it is well known in the art to produce an alkylene oxide such as propylene oxide by epoxidizing the corresponding olefin using a hydroperoxide such as hydrogen peroxide or an organic hydroperoxide as the oxygen source. Yes. The hydroperoxide may be hydrogen peroxide or any organic hydroperoxide such as tert-butyl hydroperoxide, cumene hydroperoxide and ethylbenzene hydroperoxide. The alkenes are generally propenes that give propylene oxide as alkylene oxide. Catalysts made according to the present invention have been found to give particularly good results in such processes. Accordingly, the present invention further comprises contacting the hydroperoxide and alkene with a heterogeneous epoxidation catalyst and extracting a product stream comprising alkylene oxide and alcohol and / or water, the catalyst prepared according to the present invention. And relates to a process for preparing alkylene oxide.

有機ヒドロペルオキシドの具体的なものはエチルベンゼンヒドロペルオキシドであり、この場合、得られるアルコールは1−フェニルエタノールである。この1−フェニルエタノールは通常脱水によってさらに転化されてスチレンを得る。   A specific example of an organic hydroperoxide is ethylbenzene hydroperoxide, in which case the resulting alcohol is 1-phenylethanol. This 1-phenylethanol is usually further converted by dehydration to obtain styrene.

酸化プロピレンを製造する別の方法は、イソブタンおよびプロペンから出発する酸化プロピレンとメチルtert−ブチルエーテル(MTBE)の同時生成である。この方法はこの分野でよく知られており、前の項で説明したスチレン/酸化プロピレンの製造方法と類似の反応段階を含んでいる。エポキシ化工程において、tert−ブチルヒドロペルオキシドはプロペンと反応して酸化プロピレンとtert−ブタノールを生成する。tert−ブタノールはその後エーテル化されてMTBEになる。   Another method for producing propylene oxide is the simultaneous production of propylene oxide and methyl tert-butyl ether (MTBE) starting from isobutane and propene. This process is well known in the art and includes reaction steps similar to the styrene / propylene oxide production process described in the previous section. In the epoxidation process, tert-butyl hydroperoxide reacts with propene to produce propylene oxide and tert-butanol. Tert-butanol is then etherified to MTBE.

さらに別の方法としてクメンを用いる酸化プロピレンの製造がある。この方法では、クメンは酸素または空気と反応してクメンヒドロペルオキシドを生成する。このようにして得られたクメンヒドロペルオキシドは、エポキシ化触媒の存在下でプロペンと反応して酸化プロピレンと2−フェニルプロパノールを生じる。後者のものは不均一触媒および水素を使用してクメンに転化することができる。好適な方法は、たとえば国際特許第02/48126に記述されている。   Yet another method is the production of propylene oxide using cumene. In this method, cumene reacts with oxygen or air to produce cumene hydroperoxide. The cumene hydroperoxide thus obtained reacts with propene in the presence of an epoxidation catalyst to yield propylene oxide and 2-phenylpropanol. The latter can be converted to cumene using a heterogeneous catalyst and hydrogen. A suitable method is described for example in WO 02/48126.

本発明によるエポキシ化反応の条件は従来適用されるものである。エチルベンゼンヒドロペルオキシドを使用したプロペンのエポキシ化反応については、代表的な反応条件として、反応媒体が液相であって50から140℃、好適には75から125℃の温度および最高80バールの圧力が挙げられる。   The conditions for the epoxidation reaction according to the present invention are those conventionally applied. For epoxidation reactions of propene using ethylbenzene hydroperoxide, typical reaction conditions include a reaction medium in the liquid phase and a temperature of 50 to 140 ° C., preferably 75 to 125 ° C. and a pressure of up to 80 bar. Can be mentioned.

本発明を以下の実施例によってさらに説明する。   The invention is further illustrated by the following examples.

実施例で使用したシリカゲル担体は、表面積が300m/gで重量平均粒径が約1mmである。ほぼすべての粒子は粒径が0.6から1.4mmの間にある。 The silica gel carrier used in the examples has a surface area of 300 m 2 / g and a weight average particle diameter of about 1 mm. Almost all particles have a particle size between 0.6 and 1.4 mm.

シリカゲル担体75gを250℃で2時間乾燥した。   75 g of silica gel carrier was dried at 250 ° C. for 2 hours.

乾燥シリカゲル担体を四塩化チタンを含むガス流に接触させた。このガス流は、電気加熱装置を使用して四塩化チタンを200℃に加熱することによって得た。異なった量の窒素を添加することによって異なったガス流が得られた。各実験の終わりにおいて、それぞれのシリカは同じ量の四塩化チタンと接触していた。   The dried silica gel support was contacted with a gas stream containing titanium tetrachloride. This gas stream was obtained by heating titanium tetrachloride to 200 ° C. using an electric heating device. Different gas streams were obtained by adding different amounts of nitrogen. At the end of each experiment, each silica was in contact with the same amount of titanium tetrachloride.

このようにして得た含浸触媒を600℃で7時間焼成した。その後、焼成された触媒を325℃で6時間蒸気に接触させた。この蒸気の流量は1時間当たり水3グラムと1時間当たり窒素1標準リットルからなっている。最後に触媒を、1時間当たり窒素流1.4標準リットル中の1時間当たり18グラムのヘキサメチルジシラザンに接触させることにより185℃で2時間シリル化した。   The impregnated catalyst thus obtained was calcined at 600 ° C. for 7 hours. The calcined catalyst was then contacted with steam at 325 ° C. for 6 hours. The steam flow consists of 3 grams of water per hour and 1 standard liter of nitrogen per hour. Finally, the catalyst was silylated at 185 ° C. for 2 hours by contacting 18 grams of hexamethyldisilazane per hour in 1.4 standard liters of nitrogen per hour.

得られた触媒の担体上に堆積されたチタンについて分析した。   The titanium deposited on the resulting catalyst support was analyzed.

触媒の選択性は、エチルベンゼンヒドロペルオキシとプロペン、および各供給原料をそれぞれ含んだ自動重量天秤上のいくつかの容器、2つの高圧ポンプ、固定床反応器、この反応器上に循環流を注入する第3のポンプ、この反応器を60から120℃の温度に絶えず維持する手段、プロペンのような低沸点成分除去するストリッパ、冷却器および製品を受け入れる容器を備えた連続エポキシ化ベンチスケール装置で試験を行った。   The selectivity of the catalyst consists of several vessels on an automatic weight balance each containing ethylbenzene hydroperoxy and propene, and each feedstock, two high pressure pumps, a fixed bed reactor, and a recycle stream is injected over this reactor. Tested on a continuous epoxidation bench scale apparatus with a third pump, means for constantly maintaining the reactor at a temperature of 60 to 120 ° C., a stripper for removing low boiling components such as propene, a cooler and a container for receiving the product Went.

各供給原料を2つの高圧ポンプ経由で反応器に供給し、反応器に入る前に一緒に混合した。この反応器は圧力40バール、温度90℃で液体を満たして運転した。反応器床の等温運転を保持し、再活性化される触媒がエポキシ化反応製品と確実に接触するように、反応器上で多量の循環流を保持した。供給原料は、反応器内に導入される前にこの循環流と混合された。   Each feed was fed to the reactor via two high pressure pumps and mixed together before entering the reactor. The reactor was operated at a pressure of 40 bar and a temperature of 90 ° C. and filled with liquid. The reactor bed was kept isothermal and a large amount of circulating flow was maintained on the reactor to ensure that the reactivated catalyst was in contact with the epoxidation reaction product. The feed was mixed with this recycle stream before being introduced into the reactor.

供給原料は、プロペン40重量%、エチルベンゼンヒドロペルオキシ20重量%およびエチルベンゼン40重量%からなっていた。   The feedstock consisted of 40% by weight propene, 20% by weight ethylbenzene hydroperoxy and 40% by weight ethylbenzene.

得られた結果を表1に示す。選択性は形成された酸化プロピレンの変換されたエチルベンゼンヒドロペルオキシドに対するモル比である。   The obtained results are shown in Table 1. Selectivity is the molar ratio of propylene oxide formed to converted ethylbenzene hydroperoxide.

(実施例2)
実施例1で説明したのと同様の方法でさらに触媒を作製した。しかしながら、含浸触媒は(7時間の代わりに)6時間焼成し、一方、その後の加水分解時の蒸気流は、(1時間当たり3グラムの水の代わりに)1時間当たり5グラムの水を含んでいた。これらの実験の結果を表2に示す。
(Example 2)
A catalyst was further prepared in the same manner as described in Example 1. However, the impregnated catalyst is calcined for 6 hours (instead of 7 hours), while the vapor stream during subsequent hydrolysis contains 5 grams of water per hour (instead of 3 grams of water per hour). It was out. The results of these experiments are shown in Table 2.

Figure 2006507932
Figure 2006507932

Figure 2006507932
Figure 2006507932

Claims (11)

ケイ素含有担体にハロゲン化チタンからなるガス流を含浸させる工程を含むエポキシ化触媒の調製方法。   A method for preparing an epoxidation catalyst comprising impregnating a silicon-containing support with a gas stream comprising titanium halide. ケイ素含有担体がシリカゲルである請求項1に記載の方法。   The process according to claim 1, wherein the silicon-containing support is silica gel. 前記ガス流が四塩化チタンからなる請求項1または2に記載の方法。   The method of claim 1 or 2, wherein the gas stream comprises titanium tetrachloride. 前記ケイ素含有担体が、担体の量に基づいて、多くとも1200ppmのナトリウムを含む請求項1から3のいずれか一項に記載の方法。   4. The method according to any one of claims 1 to 3, wherein the silicon-containing support comprises at most 1200 ppm sodium, based on the amount of support. ケイ素含有担体を含浸前に乾燥させる工程を含む請求項1から4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, comprising the step of drying the silicon-containing support before impregnation. 前記含浸された担体が焼成され、その後加水分解される請求項1から5のいずれか一項に記載の方法。   6. A method according to any one of claims 1 to 5, wherein the impregnated support is calcined and then hydrolyzed. 前記加水分解された含浸担体を次いでシリル化剤に接触させる請求項6に記載の方法。   The method of claim 6 wherein the hydrolyzed impregnated support is then contacted with a silylating agent. ヒドロペルオキシドおよびアルケンを不均一エポキシ化触媒に接触させる工程と、酸化アルキレンおよびアルコールおよび/または水を含む生成物流を抜き取る工程を含み、前記触媒は請求項1から7のいずれか一項に記載の方法で調製させたものである、酸化アルキレンの調製方法。   8. Contacting the hydroperoxide and alkene with a heterogeneous epoxidation catalyst and drawing a product stream comprising alkylene oxide and alcohol and / or water, the catalyst according to any one of claims 1-7. A method for preparing alkylene oxide, which is prepared by a method. 前記アルケンがプロペンであり、前記酸化アルキレンが酸化プロピレンである請求項8に記載の方法。   9. The method of claim 8, wherein the alkene is propene and the alkylene oxide is propylene oxide. 前記有機ヒドロペルオキシドがエチルベンゼンヒドロペルオキシドであり、前記アルコールが1−フェニルエタノールである請求項9に記載の方法。   The method according to claim 9, wherein the organic hydroperoxide is ethylbenzene hydroperoxide and the alcohol is 1-phenylethanol. 1−フェニルエタノールを脱水してスチレンを得ることをさらに含む請求項10に記載の方法。   11. The method of claim 10, further comprising dehydrating 1-phenylethanol to obtain styrene.
JP2004556324A 2002-12-02 2003-11-24 Method for preparing epoxidation catalyst Pending JP2006507932A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02258296 2002-12-02
PCT/EP2003/050875 WO2004050233A1 (en) 2002-12-02 2003-11-24 Process for the preparation of epoxidation catalysts

Publications (1)

Publication Number Publication Date
JP2006507932A true JP2006507932A (en) 2006-03-09

Family

ID=32405785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004556324A Pending JP2006507932A (en) 2002-12-02 2003-11-24 Method for preparing epoxidation catalyst

Country Status (8)

Country Link
EP (1) EP1567261A1 (en)
JP (1) JP2006507932A (en)
CN (1) CN1720097A (en)
AU (1) AU2003298312A1 (en)
BR (1) BR0316825A (en)
CA (1) CA2508043A1 (en)
MX (1) MXPA05005699A (en)
WO (1) WO2004050233A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128666A1 (en) 2006-05-02 2007-11-15 Shell Internationale Research Maatschappij B.V. Titanium catalyst, its preparation and its use in epoxidation reactions
CN103068481A (en) 2010-07-19 2013-04-24 国际壳牌研究有限公司 Epoxidation process
EP2859946A1 (en) * 2013-10-11 2015-04-15 Repsol, S.A. Process for regenerating heterogeneous epoxidation catalysts and their use to catalyze epoxidation reactions
CN108349918A (en) 2015-11-09 2018-07-31 国际壳牌研究有限公司 Catalyst preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242072A (en) * 1988-06-08 1990-02-13 Shell Internatl Res Maatschappij Bv Production of oxirane compound
JPH09500055A (en) * 1993-04-22 1997-01-07 エルフ アトケム ソシエテ アノニム Catalyst based on silica and titanium and its application to epoxidation of olefins
JP2002514218A (en) * 1997-05-05 2002-05-14 アルコ ケミカル テクノロジー,エル.ピー. Epoxidation method using improved heterogeneous catalyst composition
JP2003510315A (en) * 1999-09-28 2003-03-18 アルコ ケミカル テクノロジィ, エル.ピー. Heterogeneous epoxidation catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI87892C (en) * 1991-07-16 1993-03-10 Neste Oy METHOD OF FREQUENCY CONTAINER WITH METAL HALF
FI96611C (en) * 1993-09-10 1996-07-25 Neste Oy Heterogeneous polymerization catalyst and process for its preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242072A (en) * 1988-06-08 1990-02-13 Shell Internatl Res Maatschappij Bv Production of oxirane compound
JPH09500055A (en) * 1993-04-22 1997-01-07 エルフ アトケム ソシエテ アノニム Catalyst based on silica and titanium and its application to epoxidation of olefins
JP2002514218A (en) * 1997-05-05 2002-05-14 アルコ ケミカル テクノロジー,エル.ピー. Epoxidation method using improved heterogeneous catalyst composition
JP2003510315A (en) * 1999-09-28 2003-03-18 アルコ ケミカル テクノロジィ, エル.ピー. Heterogeneous epoxidation catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009065759, TATSUMI,T. et al., "Shape selectivity as a function of pore size in epoxidation of alkenes with supported titanium catal", Catal. Lett., 1991, Vol.10, No.3/4, p.259−261 *

Also Published As

Publication number Publication date
WO2004050233A8 (en) 2004-08-05
EP1567261A1 (en) 2005-08-31
AU2003298312A1 (en) 2004-06-23
MXPA05005699A (en) 2005-07-26
WO2004050233A1 (en) 2004-06-17
CN1720097A (en) 2006-01-11
CA2508043A1 (en) 2004-06-17
BR0316825A (en) 2005-10-18

Similar Documents

Publication Publication Date Title
JP6830550B2 (en) Method for producing catalyst for epoxidizing olefin and its application
US7763564B2 (en) Titanium catalyst, its preparation and its use in epoxidation reactions
WO2017080962A1 (en) Catalyst preparation
US8664412B2 (en) Epoxidation process
KR20060025580A (en) Catalyst preparation
US20150182959A1 (en) Relating to epoxidation catalysts
JP2006507933A (en) Method for preparing epoxidation catalyst and method for preparing epoxide
JP2006507932A (en) Method for preparing epoxidation catalyst
US9433925B2 (en) Method of preparing epoxidation catalysts
US7294727B2 (en) Catalyst preparation
JP2003520124A (en) Catalyst support material and its use
RU2588128C2 (en) Epoxidation method with titanium catalyst on porous silicate support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026