JP2006351249A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006351249A
JP2006351249A JP2005172948A JP2005172948A JP2006351249A JP 2006351249 A JP2006351249 A JP 2006351249A JP 2005172948 A JP2005172948 A JP 2005172948A JP 2005172948 A JP2005172948 A JP 2005172948A JP 2006351249 A JP2006351249 A JP 2006351249A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
battery
electrode part
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005172948A
Other languages
Japanese (ja)
Other versions
JP4834330B2 (en
Inventor
Takashi Suzuki
貴志 鈴木
Toshiyuki Miwa
俊之 美和
Hiroto Sagisaka
博人 鷺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2005172948A priority Critical patent/JP4834330B2/en
Publication of JP2006351249A publication Critical patent/JP2006351249A/en
Application granted granted Critical
Publication of JP4834330B2 publication Critical patent/JP4834330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of suppressing reactivity between a positive graphite material and an electrolyte in a high temperature floating charge state, preventing electrolyte leakage and rupture of the battery, and decreasing capacity deterioration even in charge discharge cycles after the high temperature floating charge. <P>SOLUTION: Void volume (cm<SP>3</SP>) is made 0.08 (cm<SP>3</SP>/g) or more to the total weight (g) of graphite powder present in a positive electrode part 11 and a carbon material capable of storing/releasing lithium contained in a negative electrode part 13, the amount of a lithium salt per weight present in a nonaqueous electrolyte is made 1.8-3.5 (mmol/g) in terms of the lithium salt per weight of the graphite powder present in the positive electrode part, and the volume of the electrolyte is made 1.0 or more to the total amount of the void volumes of the positive electrode part, the negative electrode part and a separator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解液二次電池に関し、とくに、正極として黒鉛材料を、負極としてリチウムの吸蔵・放出が可能な材料を、電解質としてリチウム塩を含んだ非水電解液を使用したリチウム二次電池に適用して有効なものに関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and in particular, a lithium secondary battery using a graphite material as a positive electrode, a material capable of occluding and releasing lithium as a negative electrode, and a non-aqueous electrolyte containing a lithium salt as an electrolyte. It relates to a battery that is effective when applied to a secondary battery.

従来、各種の非水電解液二次電池は蓄電可能なエネルギー密度が高く様々な用途に利用されてきたが、所定の充放電サイクルに到達した時点で継続した使用が困難な状態、または使用不可能な状態に陥るという欠点を有していた。   Conventionally, various non-aqueous electrolyte secondary batteries have a high energy density that can be stored and have been used in various applications. However, when they reach a predetermined charge / discharge cycle, they are difficult to use or not used. It had the disadvantage of falling into a possible state.

本発明者等は、この種の二次電池の充放電サイクル寿命を向上させようと考え、黒鉛化処理された炭素材料から成る正極、リチウム塩を含んだ電解液、リチウム金属またはリチウムの吸蔵・放出が可能な材料から成る負極とを備えた非水電解液二次電池に着目した。   The present inventors considered to improve the charge / discharge cycle life of this type of secondary battery, a positive electrode made of a graphitized carbon material, an electrolyte containing a lithium salt, lithium metal or lithium occlusion / Attention was focused on a non-aqueous electrolyte secondary battery including a negative electrode made of a material that can be released.

黒鉛化された炭素材料からなる正極と、リチウム塩を含んだ電解液と、リチウム金属からなる負極とを備えた非水電解液二次電池は、古くから知られている。また、当該電池の負極としてリチウムの吸蔵・放出が可能な炭素材料を適用し、充放電サイクル寿命を向上させる試みもなされてきた。リチウム金属は充放電サイクルによって溶解・析出を繰り返し、デンドライト(樹枝状析出物)の生成および不動態化が生じるため、充放電サイクル寿命が短いからである。   A nonaqueous electrolyte secondary battery including a positive electrode made of a graphitized carbon material, an electrolyte containing a lithium salt, and a negative electrode made of lithium metal has been known for a long time. In addition, attempts have been made to improve the charge / discharge cycle life by applying a carbon material capable of inserting and extracting lithium as the negative electrode of the battery. This is because lithium metal repeatedly dissolves and precipitates during the charge / discharge cycle, and dendrites (dendritic precipitates) are generated and passivated, resulting in a short charge / discharge cycle life.

このような構成の非水電解液二次電池は、通常、放電状態で電池が組み立てられ、充電を行わなければ放電可能な状態にはならない。以下、負極としてリチウムの可逆的な吸蔵・放出が可能な炭素材料が使用された場合を例に取り、その充放電反応を説明する。   The non-aqueous electrolyte secondary battery having such a configuration is normally assembled in a discharged state, and cannot be discharged unless charged. Hereinafter, the case where a carbon material capable of reversible insertion and extraction of lithium is used as the negative electrode will be described as an example, and the charge / discharge reaction will be described.

先ず、第1サイクル目の充電を行うと、電解液中のアニオンは正極(黒鉛材料)に、カチオン(リチウムイオン)は負極に吸蔵(インターカレーション)され、正極ではアクセプタ型黒鉛層間化合物が、負極ではドナー型の炭素層間化合物が各々形成される。その後、放電を行うと、両極に吸蔵されたカチオンおよびアニオンが放出(デインターカレーション)され、これに伴って電池電圧が低下する。その充放電反応は下式のように表現することができる。
正極:(放電)Cx + A- = CxA+ e-(充電)
負極:(放電)Cy + Li+ + e- = LiCy(充電)
したがって、この種の二次電池は、電解液に含まれるリチウム塩の量および濃度が、充放電深度に依存して変化することになる。
First, when charging in the first cycle, the anion in the electrolyte is occluded (intercalated) in the positive electrode (graphite material) and the cation (lithium ion) in the negative electrode. In the negative electrode, donor-type carbon intercalation compounds are formed. Thereafter, when discharging is performed, cations and anions occluded in both electrodes are released (deintercalation), and the battery voltage decreases accordingly. The charge / discharge reaction can be expressed as the following equation.
Positive electrode: (discharge) Cx + A- = CxA + e- (charge)
Negative electrode: (discharge) Cy + Li + + e- = LiCy (charge)
Therefore, in this type of secondary battery, the amount and concentration of the lithium salt contained in the electrolytic solution change depending on the charge / discharge depth.

なお、この種の非水電解液二次電池に関する文献としては、たとえば特許文献1〜6がある。
特開2000−173662 特開2001−229980 特開2002−270225 特開2000−285966 特開2000−285959 特開2003−22792
In addition, there exist patent documents 1-6 as literature regarding this kind of nonaqueous electrolyte secondary battery, for example.
JP 2000-173662 A JP2001-229980 JP 2002-270225 JP 2000-285966 A JP 2000-285959 A JP2003-22792A

この種の二次電池が、無停電電源用あるいは各種のメモリー・バックアップ用の電池として利用される場合は、電池が所定の電圧で充電され続け、必要に応じて放電されるようなサイクルで充放電が進行することとなる。   When this type of secondary battery is used as a battery for uninterruptible power supplies or for various types of memory backup, it is charged in a cycle that keeps the battery charged at a predetermined voltage and discharged as needed. The discharge proceeds.

このような充電方法は浮動充電(フローティング充電)と呼ばれ、電池の充電方法としてはきわめて一般的である。浮動充電が行われている際の電池の周囲温度は、用途によって様々であるが、充電回路から発せられた熱により室温以上の温度である場合が多い。浮動充電の最中は、電池に所定の電圧が印加され続けられるため、きわめて微小ではあるが電流が流れ続け、充電回路も作動状態が維持されるからである。   Such a charging method is called floating charging (floating charging), and is a very common battery charging method. The ambient temperature of the battery when floating charging is performed varies depending on the application, but in many cases, the temperature is higher than room temperature due to the heat generated from the charging circuit. This is because a predetermined voltage is continuously applied to the battery during the floating charge, so that a current continues to flow even though it is extremely small, and the charging circuit is maintained in the operating state.

したがって、このような用途に使用される二次電池は、通常60℃程度で充電され続けても電池特性の劣化が少なく、かつ液漏れ、破裂等の外観変化が無いこと等の高い信頼性が要求される。しかし、本発明者等が検討した前記のリチウム二次電池は、周囲温度が60℃以上の高温状態で浮動充電を行うと(以下、この状態での充電方法を高温浮動充電と略記)、次のような問題が生じる。   Therefore, a secondary battery used for such an application has a high reliability such that there is little deterioration in battery characteristics even if it is continuously charged at about 60 ° C., and there is no change in appearance such as liquid leakage or rupture. Required. However, when the lithium secondary battery studied by the present inventors performs floating charging in a high temperature state where the ambient temperature is 60 ° C. or higher (hereinafter, the charging method in this state is abbreviated as high temperature floating charging), The following problems arise.

すなわち、
(1)電池内部の圧力(電池内圧)が上昇し、液漏れが生じる、という問題が生じる。
(2)同条件の浮動充電を所定時間行った後の充放電サイクルでは充放電可能容量が減少する、という問題が生じる。
That is,
(1) The pressure inside the battery (battery internal pressure) rises, causing a problem that liquid leakage occurs.
(2) There arises a problem that the chargeable / dischargeable capacity is reduced in the charge / discharge cycle after performing the floating charge under the same conditions for a predetermined time.

電池内圧が上昇する原因は、正極黒鉛粒子の表面に存在する不対電子の一部が、とくに60℃以上の高温での充電状態において、電解液の酸化分解反応を加速させ、分解生成物としてのガスが発生することによる。   The cause of the increase in the internal pressure of the battery is that some of the unpaired electrons present on the surface of the positive electrode graphite particles accelerate the oxidative decomposition reaction of the electrolytic solution, particularly in a charged state at a high temperature of 60 ° C. Due to the generation of gas.

また、当該ガス発生に伴って、正極表面には別の分解反応生成物が蓄積され、この蓄積物が充放電反応を阻害し、その後に続く充放電サイクルにおいて、高温浮動充電を行う前より容量が減少する問題も発生していた。   As the gas is generated, another decomposition reaction product accumulates on the surface of the positive electrode, and this accumulation hinders the charge / discharge reaction. In the subsequent charge / discharge cycle, the capacity is increased from before the high-temperature floating charge is performed. There has also been a problem of decrease.

このような問題に対し、本発明者等は、上記不対電子の濃度がきわめて低い黒鉛粉末を正極として使用することにより、高温・浮動充電時における液漏れや容量維持率低下の改善が可能であることを先に提案した(特願2004-196790)。この正極の適用により、ガス発生は確かに抑制されたが、60℃浮動充電後の容量維持率は高くても80%程度であって、さらなる向上が求められていた。   In response to such problems, the present inventors can improve the leakage of liquid and the decrease in capacity maintenance rate during high-temperature / floating charging by using the graphite powder having a very low concentration of unpaired electrons as the positive electrode. Something was proposed earlier (Japanese Patent Application No. 2004-196790). Although the generation of gas was certainly suppressed by the application of this positive electrode, the capacity retention rate after 60 ° C. floating charge was at most about 80%, and further improvement was required.

本発明は、高温浮動充電に対する電池の信頼性を改良するものであって、その目的は、高温浮動充電状態における正極黒鉛材料と電解液との反応性(反応速度)を抑制し、これにより、電池の液漏れ、破裂を未然に防止するとともに、高温浮動充電後の充放電サイクルにおいても容量劣化が小さな非水電解液二次電池を提供することにある。   The present invention is to improve the reliability of the battery against high temperature floating charge, and its purpose is to suppress the reactivity (reaction rate) between the positive electrode graphite material and the electrolyte in the high temperature floating charge state, An object of the present invention is to provide a non-aqueous electrolyte secondary battery which prevents battery leakage and rupture in advance and has small capacity deterioration even in a charge / discharge cycle after high-temperature floating charging.

本発明の上記以外の目的および構成については、本明細書の記述および添付図面からあきらかになるであろう。   Other objects and configurations of the present invention will become apparent from the description of the present specification and the accompanying drawings.

上記の課題を解決するために、本発明は次のような手段を提供する。
すなわち、本発明は、黒鉛粉末を主成分とする正極合剤がシート状に成形された正極部と、リチウムの吸蔵・放出可能な炭素材料を主成分とした負極合剤がシート状に成形された負極部とが、セパレータを介して積層配置された電極体を構成し、リチウム塩を含んだ非水電解液と共に密閉容器内に配置され、さらに、負極部の対正極投影面が全周縁にわたって正極部の対負極側面の周縁部から内側に入り込んで囲まれるように、正極部と負極部とがセパレータを介して積層された非水電解液二次電池において、下記(1)〜(3)の条件を満足するように構成されたことを特徴とする非水電解液二次電池である。
(1)密閉容器空間内には、負極部と対向した正極部に存在する黒鉛粉末と、負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量(単位g)に対し、0.08(cm3/g)以上の空隙体積(単位cm3)が設けられること。
(2)リチウム塩を含んだ非水電解液に存在するリチウム塩の量は、負極部に対向した正極部に存在する黒鉛粉末の単位重量当りのリチウム塩として1.8〜3.5 (mmol/g)であること。
(3)正極部、負極部、およびセパレータの空隙体積の合計量に対して、電解液の体積が1.0以上であること。
In order to solve the above problems, the present invention provides the following means.
That is, according to the present invention, a positive electrode portion in which a positive electrode mixture mainly composed of graphite powder is formed into a sheet shape and a negative electrode mixture mainly composed of a carbon material capable of occluding and releasing lithium are formed into a sheet shape. The negative electrode portion constitutes an electrode body that is laminated and disposed via a separator, and is disposed in a sealed container together with a non-aqueous electrolyte containing a lithium salt, and the negative electrode projection surface of the negative electrode portion extends over the entire periphery. In the non-aqueous electrolyte secondary battery in which the positive electrode part and the negative electrode part are laminated via a separator so as to enter and be surrounded from the peripheral edge of the side surface of the counter electrode of the positive electrode part, the following (1) to (3) A non-aqueous electrolyte secondary battery characterized by satisfying the above conditions.
(1) In the closed container space, the total weight (unit: g) of the graphite powder present in the positive electrode part facing the negative electrode part and the carbon material capable of occluding and releasing lithium contained in the negative electrode part is 0. A void volume (unit: cm 3 ) of 08 (cm 3 / g) or more is provided.
(2) The amount of lithium salt present in the non-aqueous electrolyte containing lithium salt is 1.8 to 3.5 (mmol) as lithium salt per unit weight of the graphite powder present in the positive electrode portion facing the negative electrode portion. / G).
(3) The volume of the electrolytic solution is 1.0 or more with respect to the total amount of the void volume of the positive electrode part, the negative electrode part, and the separator.

高温浮動充電状態における正極黒鉛材料と電解液との反応性(反応速度)を抑制し、これにより、電池の液漏れ、破裂を未然に防止するとともに、高温浮動充電後の充放電サイクルにおいても容量劣化が小さな非水電解液二次電池を提供することができる。
上記以外の作用/効果については、本明細書の記述および添付図面からあきらかになるであろう。
Suppresses the reactivity (reaction rate) between the positive electrode graphite material and the electrolyte in a high-temperature floating charge state, thereby preventing battery leakage and rupture, as well as capacity in charge / discharge cycles after high-temperature floating charge. A non-aqueous electrolyte secondary battery with little deterioration can be provided.
Operations / effects other than those described above will be apparent from the description of the present specification and the accompanying drawings.

先ず、本発明の適用対象となるリチウム二次電池は、前述の通り、正極合剤がシート状に成形された正極部と、リチウムの吸蔵・放出可能な炭素材料を主成分とした負極合剤がシート状に成形された負極部とが、セパレータを介して積層配置された電極体を構成し、リチウム塩を含んだ非水電解液と共に密閉容器内に配置された非水電解液二次電池であって、負極部の対正極投影面が全周縁にわたって正極部の対負極側面の周縁部から内側に入り込んで囲まれるように、正極部と負極部とがセパレータを介して配置された構成を有するものである。以下、本構成を詳細に説明する。   First, as described above, a lithium secondary battery to which the present invention is applied includes a positive electrode portion in which a positive electrode mixture is formed into a sheet shape, and a negative electrode mixture mainly composed of a carbon material capable of occluding and releasing lithium. A non-aqueous electrolyte secondary battery in which a negative electrode portion formed into a sheet shape constitutes an electrode body that is stacked and disposed via a separator, and is disposed in a sealed container together with a non-aqueous electrolyte containing a lithium salt The positive electrode portion and the negative electrode portion are arranged via a separator so that the opposite-positive electrode projection surface of the negative electrode portion is surrounded and surrounded from the peripheral edge portion of the opposite-negative electrode side surface of the positive electrode portion over the entire periphery. I have it. Hereinafter, this configuration will be described in detail.

図1は、シート状の正極部11および負極部13がセパレータ12を介して積層配置された電極体の概念図を示している。
同図(a)は、正極部11の対負極側面に投影される負極部13の対正極側面の周縁部が、正極部11の対負極側面の周縁部と一致した状態を示し、はみ出し部分は存在していない。つまり、正極部11と負極部13とが過不足無く重なり合って対向している。
同図(b)は、正極部11の対負極側面に投影される負極部13の対正極側面の周縁部が、正極部11の対負極側面の周縁部で外側を囲まれた状態を示す。つまり、負極部13の対正極側面が正極部11の対負極側面を内側に囲み込んだ状態で対向している。
FIG. 1 shows a conceptual diagram of an electrode body in which a sheet-like positive electrode portion 11 and a negative electrode portion 13 are stacked with a separator 12 interposed therebetween.
FIG. 5A shows a state in which the peripheral edge of the negative electrode portion 13 projected on the opposite negative electrode side surface of the positive electrode portion 11 is coincident with the peripheral edge portion of the positive electrode portion 11 on the opposite negative electrode side surface. Does not exist. That is, the positive electrode part 11 and the negative electrode part 13 are overlapped and opposed to each other without excess or deficiency.
FIG. 5B shows a state in which the peripheral edge of the negative electrode portion 13 projected on the opposite negative electrode side surface of the positive electrode portion 11 is surrounded by the peripheral edge portion of the positive electrode portion 11 on the opposite negative electrode side surface. That is, the opposite side surface of the negative electrode part 13 is opposed in a state of surrounding the opposite side surface of the positive part 11 inside.

同図(a)または(b)の状態に対し、本発明の電池では、同図の(c)に示すように、負極部13の対正極側面に投影される正極部11の対負極側面の周縁部が、負極部13の対正極側面の周縁部で外側を囲まれている。つまり、正極部11の対負極側面が負極部13の対正極側面を内側に囲み込んだ状態で対向している。ここで重要なことは、正極部11が負極部13に対して、はみ出し部分を有することであり、そのはみ出し部分の面積の大小は問題とならない。   In contrast to the state of (a) or (b) of the figure, in the battery of the present invention, as shown in (c) of FIG. The peripheral edge portion is surrounded on the outer side by the peripheral edge portion of the negative electrode portion 13 on the side opposite to the positive electrode. That is, the opposite side surface of the positive electrode part 11 is opposed in a state of surrounding the opposite side surface of the negative electrode part 13 inside. What is important here is that the positive electrode portion 11 has a protruding portion with respect to the negative electrode portion 13, and the size of the area of the protruding portion is not a problem.

上述した正負極の配置構成は、それぞれシート状に成形された正極部11と負極部13とが、セパレータ12を介して積層された場合であるが、積層された電極体を渦巻状に捲回して密閉容器内に配置する場合も同様である。   The arrangement configuration of the positive and negative electrodes described above is a case where the positive electrode portion 11 and the negative electrode portion 13 each formed into a sheet shape are stacked via the separator 12, but the stacked electrode body is wound in a spiral shape. The same applies to the case of being placed in a closed container.

図2は、捲回電極体の断面を模式的に描いた状態図である。同図において、正極部11、セパレータ12、負極部13はそれぞれ帯状で、積層状態で捲回されて電極体を形成している。   FIG. 2 is a state diagram schematically depicting a cross section of the wound electrode body. In the same figure, the positive electrode part 11, the separator 12, and the negative electrode part 13 are each strip | belt-shaped, and are wound by the lamination | stacking state, and form the electrode body.

この電極体では、帯状負極部13の最内周領域の内側に帯状正極部11の最内周領域が周回している。また、その帯状負極部13の最外周領域の外側にも帯状正極部11の最外周領域が周回している。   In this electrode body, the innermost peripheral region of the strip-like positive electrode portion 11 circulates inside the innermost peripheral region of the strip-like negative electrode portion 13. In addition, the outermost peripheral region of the strip-like positive electrode part 11 also circulates outside the outermost peripheral region of the strip-like negative electrode part 13.

つまり、正極部11は負極部13よりも長く捲回されていて、正極部11の内周側末端部11aは、負極部13の内周側末端部13aよりも内周方向にLa(内周側余裕分)だけ長くはみ出している。同様に、正極部11の外周側末端部11bは、負極部13の外周側末端部13bよりも外周方向にLb(外周側余裕分)だけ長くはみ出している。   That is, the positive electrode part 11 is wound longer than the negative electrode part 13, and the inner peripheral side end part 11 a of the positive electrode part 11 is La (inner periphery) in the inner peripheral direction than the inner peripheral side end part 13 a of the negative electrode part 13. It protrudes for a long time. Similarly, the outer peripheral side end portion 11b of the positive electrode portion 11 protrudes longer than the outer peripheral side end portion 13b of the negative electrode portion 13 by Lb (the outer peripheral side margin) in the outer peripheral direction.

図3は、図2の捲回電極体を作製する前に積層配置された正極部11とセパレータ12と負極部13の位置関係を示す斜視図であり、セパレータに遮られて見えない正極部11は破線で描かれている。   FIG. 3 is a perspective view showing a positional relationship among the positive electrode part 11, the separator 12, and the negative electrode part 13 which are stacked and arranged before producing the wound electrode body of FIG. 2, and is obstructed by the separator and is not visible. Is drawn with a broken line.

また、図4は、正極部11、正極部11の対負極側面に投影された負極部13、およびその配置関係を示す。この場合、セパレータ12は破線で示す。図4において、正極部11は、その両幅端部11c,11dが、負極部の長手方向の全領域にわたって、負極部13の両幅端部13cおよび13dよりさらに両側へ広がっている。つまり、正極部11の両幅端部11c,11dには負極部13の両幅端部よりもLc,Ldだけはみ出す余裕部が設けられている。   4 shows the positive electrode part 11, the negative electrode part 13 projected on the opposite negative electrode side surface of the positive electrode part 11, and the arrangement relationship thereof. In this case, the separator 12 is indicated by a broken line. In FIG. 4, the positive electrode portion 11 has both width end portions 11 c and 11 d extending further to both sides than both width end portions 13 c and 13 d of the negative electrode portion 13 over the entire region in the longitudinal direction of the negative electrode portion. That is, both width end portions 11 c and 11 d of the positive electrode portion 11 are provided with a margin portion that protrudes by Lc and Ld from both width end portions of the negative electrode portion 13.

以上のような構成を採用することにより、捲回電極体に配置された負極部は、全領域に渡って正極部11に覆われた状態となる。   By employ | adopting the above structures, the negative electrode part arrange | positioned at the winding electrode body will be in the state covered with the positive electrode part 11 over the whole area | region.

本発明が適用されるリチウム二次電池は、正・負極部が、以上のような構成のリチウム二次電池に限定される。この理由については、本発明者らが行った国際特許出願Wo02/093666に記載された通りであり、負極部の第一サイクルで発生する不荷逆容量を可能な限り低減させることにより電池容量を向上させるためである。   The lithium secondary battery to which the present invention is applied is limited to the lithium secondary battery having the positive and negative electrode portions configured as described above. The reason for this is as described in the international patent application Wo02 / 093666 filed by the present inventors, and the battery capacity is reduced by reducing the unloaded reverse capacity generated in the first cycle of the negative electrode part as much as possible. It is for improving.

本発明に係るリチウム二次電池は、正・負極部の配置が以上のように構成された場合であって、さらに以下の構成要件(1)〜(3)を満足したときに有用な効果が得られる。   The lithium secondary battery according to the present invention has a useful effect when the arrangement of the positive and negative electrode portions is configured as described above and further satisfies the following structural requirements (1) to (3). can get.

(1)密閉容器空間内には、負極部と対向した正極部に存在する黒鉛粉末と、負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量(単位g)に対し、0.08(cm3/g)以上の空隙体積(単位cm3)が設けられること。
(2)リチウム塩を含んだ非水電解液に存在するリチウム塩の量は、負極部に対向した正極部に存在する黒鉛粉末の単位重量当りのリチウム塩として1.8〜3.5 (mmol/g)であること。
(3)正極部、負極部、およびセパレータの空隙体積の合計量に対して、電解液の体積が1.0以上であること。
(1) In the closed container space, the total weight (unit: g) of the graphite powder present in the positive electrode part facing the negative electrode part and the carbon material capable of occluding and releasing lithium contained in the negative electrode part is 0. A void volume (unit: cm 3 ) of 08 (cm 3 / g) or more is provided.
(2) The amount of lithium salt present in the non-aqueous electrolyte containing lithium salt is 1.8 to 3.5 (mmol) as lithium salt per unit weight of the graphite powder present in the positive electrode portion facing the negative electrode portion. / G).
(3) The volume of the electrolytic solution is 1.0 or more with respect to the total amount of the void volume of the positive electrode part, the negative electrode part, and the separator.

先ず第1の要件(1)は、密閉容器空間内に、負極部と対向した正極部に存在する黒鉛粉末の重量と負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量に対し、所定量以上の空隙体積が設けられた点にある。   First, the first requirement (1) is that the weight of the graphite powder present in the positive electrode part facing the negative electrode part and the total weight of the carbon material capable of occluding and releasing lithium contained in the negative electrode part in the sealed container space. , The void volume of a predetermined amount or more is provided.

ここで「密閉容器空間」とは、電池ケースが封口された際に形成されるケース内部の全空間である。当該空間には電極体、電解液、その他必要部品が収納される。すなわち、ケース外部と遮断された全空間を指す。また「負極部と対向した正極部」とは、正極部の負極部と対向する面に投影される負極部の正極部と対向する面の周縁部の全領域で、正極部の面がはみ出し部分を有する構成の正極部であって、とくに、当該周縁部によって囲まれた面の部分を指す。   Here, the “closed container space” is the entire space inside the case that is formed when the battery case is sealed. In this space, an electrode body, an electrolytic solution, and other necessary parts are stored. That is, it refers to the entire space that is blocked from the outside of the case. In addition, the “positive electrode portion facing the negative electrode portion” is the entire area of the peripheral portion of the surface of the negative electrode portion facing the positive electrode portion projected onto the surface of the positive electrode portion facing the negative electrode portion, and the surface of the positive electrode portion protrudes. In particular, the positive electrode portion has a surface portion surrounded by the peripheral edge portion.

したがって「負極部と対向した正極部に存在する黒鉛粉末」とは、当該周縁部で囲まれた面に存在する黒鉛粉末の重量を指している。この黒鉛粉末が、充放電を行う黒鉛粉末、即ち電解質アニオンの吸蔵・放出を行う黒鉛粉末である。   Therefore, the “graphite powder existing in the positive electrode portion facing the negative electrode portion” refers to the weight of the graphite powder existing on the surface surrounded by the peripheral edge portion. This graphite powder is a graphite powder that charges and discharges, that is, a graphite powder that occludes and releases electrolyte anions.

本発明に係るリチウム二次電池(非水電解液二次電池)の充放電反応機構は前述の通りであるが、充電状態では、電解液に含まれたリチウム塩のアニオンが正極に、カチオンが負極に吸蔵される。このとき正・負極は、イオンが吸蔵されることにより体積膨張するが、電解液の体積は、吸蔵されたイオンに相当する分だけ減少する。   The charge / discharge reaction mechanism of the lithium secondary battery (nonaqueous electrolyte secondary battery) according to the present invention is as described above. In the charged state, the anion of the lithium salt contained in the electrolyte is the positive electrode, and the cation is Occluded by the negative electrode. At this time, the positive and negative electrodes expand in volume when ions are occluded, but the volume of the electrolyte decreases by an amount corresponding to the occluded ions.

正・負極の合計の体積増加分と、電解液の体積減少分を直接定量することは困難であるが、本発明者らは、常温での充放電時の電池内部の圧力を測定し、その定量的把握を試みた。その結果、充電すると電池内部の圧力が減少し、放電すると元の圧力に回復することを確認した。この結果は、充電時における正・負極の膨張体積よりも電解液の減少する体積の方が大きいことを示唆している。なお実験方法の詳細および結果は実施例で述べる。   Although it is difficult to directly quantify the total volume increase of the positive and negative electrodes and the volume decrease of the electrolyte, the present inventors measured the pressure inside the battery during charging and discharging at room temperature, A quantitative grasp was attempted. As a result, it was confirmed that the internal pressure of the battery decreased when charged and recovered to the original pressure when discharged. This result suggests that the volume in which the electrolytic solution decreases is larger than the expansion volume of the positive and negative electrodes during charging. Details and results of the experimental method will be described in Examples.

このような状態で充放電が行われるリチウム二次電池の密閉容器の外表面は、密閉容器空間内に空隙部が設けられていなければ、充電時に密閉容器の外表面には凹部が形成され、放電時には凸部が形成されることとなり、密閉容器が、充放電サイクルの進行に伴って変形が繰り返される不都合を生じる。この結果、容器が破断され、容器内部の電解液が外部に漏出するため好ましくない。   The outer surface of the sealed container of the lithium secondary battery that is charged and discharged in such a state has a recess formed on the outer surface of the sealed container when charged unless a void is provided in the sealed container space. A convex part will be formed at the time of discharge, and the inconvenience that a deformation | transformation of a sealed container repeats with progress of a charging / discharging cycle will arise. As a result, the container is broken and the electrolytic solution inside the container leaks to the outside, which is not preferable.

したがって、上記密閉容器空間内には空隙部を設け、密閉容器にかかる圧力を軽減する必要がある。当該空隙部には、リチウム二次電池が製造されたとき雰囲気ガスが導入されることとなる。具体的には除湿された空気、窒素ガス、アルゴンガス等である。   Therefore, it is necessary to provide a gap in the sealed container space to reduce the pressure applied to the sealed container. When the lithium secondary battery is manufactured, an atmospheric gas is introduced into the gap. Specifically, dehumidified air, nitrogen gas, argon gas or the like.

充放電の進行に伴う圧力変化が密閉容器の変形量に与える影響は、当該空隙体積に依存し、空隙体積が大きいほど軽減される。一方、充電時における圧力減少量は、充電時に電解液のアニオンおよびカチオンを吸蔵する正極の黒鉛材料および負極の炭素材料の合計重量に依存し、当該合計重量が大きいほど圧力減少量が大きい。   The influence of the pressure change accompanying the progress of charging / discharging on the deformation amount of the sealed container depends on the void volume, and is reduced as the void volume is larger. On the other hand, the amount of pressure decrease during charging depends on the total weight of the graphite material of the positive electrode and the carbon material of the negative electrode that occludes anions and cations of the electrolyte during charging, and the pressure decrease amount increases as the total weight increases.

なお、前述のように本発明が適用されるリチウム二次電池は、正極部の外周縁部が全周にわたって負極部の外周縁の外側にはみ出すように、正極部と負極部とがセパレータを介して配置された構成を有するものであり、実際に電解質アニオンの吸蔵・放出を行うのは、負極部に対向した特定範囲内の正極部であるから、当該合計重量は、「負極部と対向した正極部に存在する黒鉛粉末の重量と負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量」と規定することができる。   Note that, as described above, the lithium secondary battery to which the present invention is applied has a positive electrode portion and a negative electrode portion interposed via a separator so that the outer peripheral edge portion of the positive electrode portion protrudes outside the outer peripheral edge of the negative electrode portion over the entire circumference. The electrolyte anion is actually occluded / released by the positive electrode portion within a specific range facing the negative electrode portion. The weight of the graphite powder present in the positive electrode portion and the total weight of the carbon material capable of occluding and releasing lithium contained in the negative electrode portion ”can be defined.

密閉容器の変形量は、空隙体積が当該合計重量の単位重量当たり0.08(g/cm3)以上確保されていれば見掛け上問題とはならないし、充放電を繰り返しても密閉容器が破断するような問題は起こらない。 The amount of deformation of the sealed container is not an apparent problem if the void volume is secured 0.08 (g / cm 3 ) or more per unit weight of the total weight, and the sealed container breaks even after repeated charge and discharge. There is no problem to do.

次に、第2の構成要件について、これは、リチウム塩を含んだ非水電解液に存在するリチウム塩の量が、負極部に対向した正極部に存在する黒鉛粉末の単位重量当りのリチウム塩として1.8〜3.5(mmol/g)に設定する点にある。   Next, regarding the second constituent requirement, the amount of lithium salt present in the non-aqueous electrolyte containing lithium salt is such that the lithium salt per unit weight of the graphite powder present in the positive electrode portion facing the negative electrode portion. As 1.8 to 3.5 (mmol / g).

前述のように、本発明に係るリチウム二次電池は、充電すると正極の黒鉛材料には電解液のアニオンが、負極の炭素材料には電解液のカチオンが各々吸蔵され、電解液に含まれるリチウム塩の濃度は低下する。充電後の電解液におけるリチウム塩濃度は、充電前の溶質のモル数から充電容量に相当するモル数で差し引いた値を、充電前と同じ溶媒体積で除すことにより算出できる。   As described above, when the lithium secondary battery according to the present invention is charged, the positive electrode graphite material occludes the anion of the electrolytic solution, and the negative electrode carbon material stores the cation of the electrolytic solution. The salt concentration decreases. The lithium salt concentration in the electrolytic solution after charging can be calculated by dividing the value obtained by subtracting the number of moles of the solute before charging by the number of moles corresponding to the charging capacity by the same solvent volume as before charging.

前述のように、この種のリチウム二次電池は特に60℃以上の高温で浮動充電された場合、ガス発生に起因する漏液が発生したり、浮動充電後の容量が初期容量と比較して著しく低下する問題が生じていた。この原因は、正極の黒鉛材料に吸蔵されたアニオンの存在状態に依存し、電解液の溶媒分子が電荷移動を伴う反応を起こすからである。当該存在状態は、充電状態における電解液の溶質濃度(リチウム塩の濃度)よりも、電解液に存在するリチウム塩の絶対量に強く影響される。   As described above, when this type of lithium secondary battery is float-charged particularly at a high temperature of 60 ° C. or higher, leakage due to gas generation occurs, or the capacity after floating charge is compared with the initial capacity. There was a problem of significant decrease. This is because the solvent molecules of the electrolytic solution cause a reaction involving charge transfer depending on the state of the anions occluded in the graphite material of the positive electrode. The presence state is more strongly influenced by the absolute amount of lithium salt present in the electrolytic solution than the solute concentration (lithium salt concentration) of the electrolytic solution in the charged state.

浮動充電を開始してから十分な時間が経過した後の正極では、アニオンが黒鉛に吸蔵された状態が定常状態として保たれているが、正極重量(反応の場に相当)と比較したリチウム塩の量が相対的に少ない場合には、吸蔵されたアニオンが、吸蔵された状態のまま電解液に溶出する速度が高くなる。   In the positive electrode after sufficient time has elapsed since the start of floating charging, the state in which the anion is occluded in the graphite is maintained as a steady state, but the lithium salt compared to the weight of the positive electrode (corresponding to the reaction field) When the amount of is relatively small, the rate at which the occluded anion elutes into the electrolyte solution in the occluded state increases.

電解液に存在するアニオンの存在状態と、黒鉛に吸蔵されたアニオンの存在状態とは異なり、とくにその酸化力は、黒鉛に吸蔵されたアニオンの方が高い。この酸化力によって溶媒分子が酸化分解され、ガスが発生するとともに、分解生成物で正極の黒鉛表面が被覆される結果、浮動充電後に円滑な充放電反応が阻害され、容量低下を招くこととなる。   Unlike the state of anions present in the electrolyte and the state of anions occluded in graphite, the anion occluded in graphite is particularly higher in oxidizing power. Solvent molecules are oxidatively decomposed by this oxidizing power, gas is generated, and the graphite surface of the positive electrode is coated with decomposition products. As a result, smooth charge / discharge reaction is hindered after floating charge, resulting in a decrease in capacity. .

正極に吸蔵されたアニオンの溶出速度は、充電状態における電解液中のリチウム塩の濃度よりも、その中に含まれるリチウム塩の数(絶対量)に強く依存するが、この理由は、微小単位時間当たりに正極黒鉛粉末の表面と接触するアニオンの数が、電解液に含まれるアニオンの数、即ちリチウム塩の絶対量に依存するからである。   The elution rate of the anion occluded in the positive electrode strongly depends on the number (absolute amount) of the lithium salt contained therein rather than the concentration of the lithium salt in the electrolyte in the charged state. This is because the number of anions that come into contact with the surface of the positive electrode graphite powder per hour depends on the number of anions contained in the electrolytic solution, that is, the absolute amount of the lithium salt.

一方、正極重量(反応の場に相当)と比較したリチウム塩の量が相対的に多い場合には、高温での浮動充電の継続と共にアニオンが黒鉛に吸蔵される反応が起こり続け、常温での浮動充電における正極の状態からは予測できないほど多量のアニオンが吸蔵される。   On the other hand, when the amount of lithium salt relative to the weight of the positive electrode (corresponding to the reaction field) is relatively large, the reaction in which the anion is occluded in the graphite continues to occur as the floating charge continues at a high temperature. A large amount of anions is occluded so as not to be predicted from the state of the positive electrode in the floating charge.

黒鉛に吸蔵されたアニオンの溶出速度は、黒鉛に吸蔵されたアニオンの存在密度に依存し、高密度であるほど当該速度は上昇する。従って高温での浮動充電の継続により、黒鉛に吸蔵された状態のアニオンが溶出される結果、前述と同様な溶媒分子の分解反応が促進され、ガス発生および容量維持率の低下を招くこととなる。   The elution rate of anions occluded in graphite depends on the density of the anions occluded in graphite, and the rate increases as the density increases. Therefore, as a result of continuation of the floating charge at high temperature, the anion in the state occluded in the graphite is eluted. As a result, the decomposition reaction of the solvent molecules similar to the above is promoted, leading to gas generation and a decrease in capacity maintenance rate. .

以上のように、高温での浮動充電でガス発生および容量維持率の低下を抑止するためには、反応の場としての正極黒鉛の重量と、電解液に含まれるリチウム塩の絶対量との相対的な比率が重要であるが、反応の場としての正極黒鉛は、前述の通り負極部と対向した正極部に含まれる黒鉛粉末である。   As described above, in order to suppress gas generation and decrease in capacity retention rate by floating charging at high temperature, the relative weight of the weight of positive electrode graphite as a reaction field and the absolute amount of lithium salt contained in the electrolyte The positive ratio graphite as a reaction field is a graphite powder contained in the positive electrode portion facing the negative electrode portion as described above.

また、充電状態における電解液中のリチウム塩の絶対量は、組み立て直後の電池に存在する電解液中のそれに依存するから、第2の発明構成要件として、負極部に対向した正極部に存在する黒鉛粉末の単位重量当りのリチウム塩が規定されている。   Further, since the absolute amount of the lithium salt in the electrolytic solution in the charged state depends on that in the electrolytic solution present in the battery immediately after assembly, it is present in the positive electrode part facing the negative electrode part as a second invention constituent requirement. The lithium salt per unit weight of the graphite powder is specified.

第3の発明構成要件について、これは、正極部、負極部、およびセパレータの空隙体積の合計量に対して、電解液の体積が1.0以上とした点にある。ここで、正極部および負極部の空隙体積は、正・負極合剤の各々の空隙体積を指し、下式(1)のように算出することができる。
空隙体積(cm3)=ρm×Vm(cm3) ……(式1)
ここでρmは合剤の空隙率、Vmは合剤の見掛けの占有体積(cm3)である。
The third aspect of the invention is that the volume of the electrolytic solution is 1.0 or more with respect to the total amount of the void volume of the positive electrode portion, the negative electrode portion, and the separator. Here, the void volume of the positive electrode portion and the negative electrode portion refers to the void volume of each positive / negative electrode mixture, and can be calculated as in the following formula (1).
Void volume (cm 3 ) = ρm × Vm (cm 3 ) (Formula 1)
Here, ρm is the porosity of the mixture, and Vm is the apparent occupied volume (cm 3 ) of the mixture.

合剤の空隙率ρmの算出方法は、合剤がn個の要素から構成されている場合、i番目の構成要素の配合比率(重量%)をcm(i)、およびその真密度をdm(i)(g/cm3)、合剤の見掛け密度をdm(g/cm3)とすれば、次式(2)のように求められる。

Figure 2006351249
When the mixture is composed of n elements, the mixing ratio (wt%) of the i-th component is cm (i), and the true density is dm ( If i) (g / cm 3 ) and the apparent density of the mixture is dm (g / cm 3 ), then the following equation (2) is obtained.
Figure 2006351249

なお、合剤の見掛け密度dm(g/cm3)とは、合剤の見かけの密度であり、1cm2当たりの合剤の重量w(g/cm2)およびその見掛けの厚みt(cm)から下式(3)のように算出される。
dm=w/t(g/cm3) ……(式3)
また、合剤の見掛けの体積Vm(cm3)は、見掛けの合剤の占有体積であり、例えば金属箔上に合剤層が形成されたシート状電極の場合は、合剤層が金属箔に塗布された面積(cm2)に、合剤厚みt(cm)を乗じて算出することが可能である。
Note that the apparent density dm of mixture (g / cm 3), the density of apparent mixture, 1 cm 2 per weight of the mixture w (g / cm 2) and its apparent thickness t (cm) Is calculated from the following equation (3).
dm = w / t (g / cm 3 ) (Formula 3)
The apparent volume Vm (cm 3 ) of the mixture is an apparent volume occupied by the mixture. For example, in the case of a sheet-like electrode in which a mixture layer is formed on a metal foil, the mixture layer is a metal foil. It is possible to calculate by multiplying the area (cm 2 ) applied to the surface by the mixture thickness t (cm).

一方セパレータの空隙体積ρsも下式(4)の如く、合剤の空隙体積と同様にして算出することが可能である。
空隙体積(cm3)=ρs×Vs(cm3) ……(式4)
ここで、ρsはセパレータの空隙率、Vsはセパレータの見掛けの占有体積(cm3)である。ρsの算出方法は、例えばセパレータの構成成分がn個の場合、i番目の成分の含有比率をc(i)(重量%)、およびその真密度をd(i)(g/cm3)、セパレータの見掛け密度をds(g/cm3)とすれば、次式(5)のように求められる。
On the other hand, the void volume ρs of the separator can be calculated in the same manner as the void volume of the mixture as shown in the following equation (4).
Void volume (cm 3 ) = ρs × Vs (cm 3 ) (Formula 4)
Here, ρs is the porosity of the separator, and Vs is the apparent occupied volume (cm 3 ) of the separator. For example, when the number of constituent components of the separator is n, the content ratio of the i-th component is c (i) (wt%), and the true density is d (i) (g / cm 3 ), If the apparent density of the separator is ds (g / cm 3 ), the following equation (5) is obtained.

Figure 2006351249
Figure 2006351249

なお、セパレータの見掛け密度ds(g/cm3)は、1cm2当たりのセパレータの重量w(g/cm2)およびその見掛けの厚みt(cm)から、下式(6)のように算出される値である。
(セパレータの見かけの密度)=w/t(g/cm3) ……(式6)
また、セパレータの見掛け体積Vs(cm3)は、見掛けのセパレータの占有体積であり、セパレータの面積(cm2)に、見掛け厚みt(cm)を乗じて算出することが可能である。
Incidentally, apparent density ds (g / cm 3) of the separator is from 1 cm 2 per separators weight w (g / cm 2) and its apparent thickness t (cm), is calculated by the following equation (6) Value.
(Apparent density of separator) = w / t (g / cm 3 ) (Formula 6)
The apparent volume Vs (cm 3 ) of the separator is the apparent volume occupied by the separator, and can be calculated by multiplying the area (cm 2 ) of the separator by the apparent thickness t (cm).

第3の構成要件に係る正極部、負極部、およびセパレータの空隙体積は、以上の操作により算出される値と定義する。この第3の発明構成要件は、第1および第2の発明構成要件を補完する(完成させる)役割を果たしている。   The void volume of the positive electrode part, the negative electrode part, and the separator according to the third component is defined as a value calculated by the above operation. This third invention constituent element plays a role of complementing (completed) the first and second invention constituent elements.

第1の構成要件の要旨は、密閉容器空間内に、負極部と対向した正極部に存在する黒鉛粉末の重量と負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量(単位g)に対し、0.08(cm3/g)以上の空隙体積(単位cm3)が設けられた点にあり、この空隙によって充放電に伴う密閉容器の変形を防止した。しかし、当該空隙体積を大きく設定する手段として、密閉容器内に注入する電解液の体積を減少させた場合は、電解液が正極部、負極部、およびセパレータの空隙の全領域に渡って浸透させることが出来なくなり、電解液との接触が無い領域の正極部および負極部は充放電反応が起こり得ない状態となる。この結果、電池容量が無用に低下するため好ましくない。 The gist of the first constituent requirement is that the weight of the graphite powder existing in the positive electrode part facing the negative electrode part and the total weight of the carbon material capable of occluding and releasing lithium contained in the negative electrode part (unit g) ), A void volume (unit: cm 3 ) of 0.08 (cm 3 / g) or more was provided, and this void prevented deformation of the hermetic container accompanying charge / discharge. However, when the volume of the electrolyte solution injected into the sealed container is reduced as a means for setting the void volume to be large, the electrolyte solution permeates the entire area of the positive electrode portion, the negative electrode portion, and the separator void. Thus, the positive electrode portion and the negative electrode portion in a region where there is no contact with the electrolytic solution are in a state where no charge / discharge reaction can occur. As a result, the battery capacity is undesirably reduced.

一方、第2の構成要件では、電解液に存在するリチウム塩の絶対量と、負極部に対向した正極部の黒鉛重量との関係を規定した。しかし、密閉容器内に注入する電解液のリチウム塩濃度を必要以上に高く設定し、僅かな注入量で電解液に存在するリチウム塩の絶対量を確保することで、負極部に対向した正極部の黒鉛重量との関係を満たす場合は、電解液が正極部、負極部、およびセパレータの空隙の全領域に渡って浸透せず、前述のように電池としての容量が無用に低下するため好ましくない。   On the other hand, in the second constituent requirement, the relationship between the absolute amount of the lithium salt present in the electrolytic solution and the graphite weight of the positive electrode portion facing the negative electrode portion is defined. However, by setting the lithium salt concentration of the electrolytic solution to be injected into the sealed container higher than necessary and securing the absolute amount of lithium salt present in the electrolytic solution with a small amount of injection, the positive electrode portion facing the negative electrode portion When the relationship with the graphite weight of the electrolyte is satisfied, the electrolyte does not permeate over the entire area of the positive electrode portion, the negative electrode portion, and the gap of the separator, and as described above, the battery capacity is undesirably reduced. .

このように、第3の構成要件は、第1および第2の発明構成要件が満足される領域を制限する役割を果たし、電池容量を無用に低下させること無く本発明の効果を享受できるように規定されている。電解液を、正極部、負極部、およびセパレータの空隙の全領域に渡って浸透させるためには、正極部、負極部、およびセパレータの空隙体積の合計量に対して、電解液の体積が1.0以上は必要である。   As described above, the third constituent element plays a role of limiting a region where the first and second invention constituent elements are satisfied, so that the effect of the present invention can be enjoyed without unnecessarily reducing the battery capacity. It is prescribed. In order for the electrolytic solution to permeate through the positive electrode part, the negative electrode part, and the entire gap of the separator, the volume of the electrolytic solution is 1 with respect to the total amount of the positive electrode part, the negative electrode part, and the separator void volume. 0.0 or higher is required.

以上の構成要件を満足した本発明のリチウム二次電池は、60℃程度の高温で浮動充電を行っても、ガスの発生に起因した漏液、容量の劣化を抑制することができる。   The lithium secondary battery of the present invention that satisfies the above-described structural requirements can suppress leakage and capacity deterioration due to gas generation even when floating charging is performed at a high temperature of about 60 ° C.

本発明に係るリチウム二次電池の正極材料としては、適度な粉砕処理が施された各種の天然黒鉛、合成黒鉛、膨張黒鉛等の黒鉛材料、炭素化処理されたメソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、気相成長炭素繊維、熱分解炭素、石油コークス、ピッチコークスおよびニードルコークス等の炭素材料に黒鉛化処理を施した合成黒鉛材料、またはこれらの混合物等である。   As the positive electrode material of the lithium secondary battery according to the present invention, various natural graphites that have been appropriately pulverized, graphite materials such as synthetic graphite, expanded graphite, mesocarbon microbeads that have been carbonized, mesophase pitch systems A synthetic graphite material obtained by subjecting a carbon material such as carbon fiber, vapor-grown carbon fiber, pyrolytic carbon, petroleum coke, pitch coke, and needle coke to graphitization, or a mixture thereof.

このようにして得られた正極は、導電剤および結着剤と共に混練・成形し、正極合剤として電池内に組み込まれる。なお正極の黒鉛材料は元々導電性が高く、導電剤等は不要と考えられるが、電池の用途を考慮し、必要に応じて使用しても構わない。   The positive electrode thus obtained is kneaded and molded together with a conductive agent and a binder, and is incorporated into the battery as a positive electrode mixture. The graphite material of the positive electrode is originally highly conductive, and it is considered that a conductive agent or the like is unnecessary. However, it may be used as necessary in consideration of the use of the battery.

導電剤としては、通常各種黒鉛材料およびカーボンブラックが汎用されてきた。本発明に係る非水電解液二次電池の場合は、黒鉛材料が正極として機能するため、導電剤として別の黒鉛材料を混入するのは好ましくない。したがって、導電材を使用するのであれば、導電性カーボンブラック類を使用する方が好ましい。   As a conductive agent, various graphite materials and carbon black have been generally used. In the case of the non-aqueous electrolyte secondary battery according to the present invention, since the graphite material functions as a positive electrode, it is not preferable to mix another graphite material as a conductive agent. Therefore, if a conductive material is used, it is preferable to use conductive carbon blacks.

ここで用いられるカーボンブラックは、チャンネルブラック、オイルファーネスブラック、ランプブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック等の何れも使用可能である。
ただし、アセチレンブラック以外のカーボンブラックは、石油ピッチまたはコールタールピッチの一部を原料として用いているため、硫黄化合物または窒素化合物等の不純物が多く混入する場合があるので、特にこれらの不純物を除去してから使用する方が好ましい。
As the carbon black used here, any of channel black, oil furnace black, lamp black, thermal black, acetylene black, ketjen black and the like can be used.
However, carbon blacks other than acetylene black use a part of petroleum pitch or coal tar pitch as raw materials, so many impurities such as sulfur compounds or nitrogen compounds may be mixed, so these impurities are especially removed. It is preferable to use it after that.

一方、アセチレンブラックはアセチレンのみが原料として用いられ、連続熱分解法によって生成されるので不純物が混入し難く、かつ、粒子の鎖状構造が発達していることにより、液体の保持力に優れ、電気抵抗が低い。このため、この種の導電剤として特に好ましい。   On the other hand, only acetylene black is used as a raw material, and acetylene black is produced by a continuous pyrolysis method, so it is difficult for impurities to be mixed in, and the chain structure of particles is developed, so it has excellent liquid holding power, Low electrical resistance. For this reason, it is particularly preferable as this type of conductive agent.

これら導電剤と本発明に係る黒鉛材料の混合比率は、電池の用途に応じて適宜設定して構わない。完成電池への要求事項として、特に急速充電特性や重負荷放電特性の向上が挙げられた場合には、本発明に係る黒鉛材料と共に、導電性を付与する作用が十分に得られる範囲内で導電剤を混合し、正極合剤を構成する方が好ましい。ただし、導電剤を必要以上に多く含んだ場合には、その分だけ正極材料の充填量が減少し、容量(体積エネルギー密度)が低下するため好ましくない。   The mixing ratio of the conductive agent and the graphite material according to the present invention may be appropriately set according to the use of the battery. As requirements for the finished battery, especially when improvement of quick charge characteristics and heavy load discharge characteristics is mentioned, together with the graphite material according to the present invention, it is possible to conduct electricity within a range where an effect of imparting conductivity can be sufficiently obtained. It is preferable to mix the agent to constitute the positive electrode mixture. However, when the conductive agent is included more than necessary, the filling amount of the positive electrode material is decreased by that amount, and the capacity (volume energy density) is decreased.

また、結着剤としては、電解液に対して溶解しないこと、耐溶剤性に優れることから、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素系樹脂、カルポキシメチルセルロースのアルカリ金属塩またはアンモニウム塩、ポリイミド樹脂、ポリアミド樹脂、ポリアクリル酸およびポリアクリル酸ソーダ等の有機高分子化合物が好適である。   Moreover, as a binder, since it does not melt | dissolve with respect to electrolyte solution, and is excellent in solvent resistance, fluorine-types, such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), etc. Organic polymer compounds such as resins, alkali metal salts or ammonium salts of carboxymethyl cellulose, polyimide resins, polyamide resins, polyacrylic acid and sodium polyacrylate are preferred.

一方、負極はリチウムイオンを電気化学的に吸蔵・放出が可能な炭素材料であれば何れも使用可能である。当該炭素材料の例としては、適度な粉砕処理が施された各種の天然黒鉛、合成黒鉛、膨張黒鉛等の黒鉛材料、炭素化処理されたメソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、気相成長炭素繊維、熱分解炭素、石油コークス、ピッチコークスおよびニードルコークス等の炭素材料、およびこれら炭素材料に黒鉛化処理を施した合成黒鉛材料、またはこれらの混合物等である。   On the other hand, any carbon material capable of electrochemically occluding and releasing lithium ions can be used for the negative electrode. Examples of the carbon material include various natural graphites that have been appropriately pulverized, graphite materials such as synthetic graphite, and expanded graphite, mesocarbon microbeads that have been carbonized, mesophase pitch-based carbon fibers, and vapor phase growth. Carbon materials such as carbon fiber, pyrolytic carbon, petroleum coke, pitch coke and needle coke, and synthetic graphite materials obtained by subjecting these carbon materials to graphitization, or mixtures thereof.

負極も、以上に例示列挙したような材料と、結着剤および必要に応じて前記導電剤等とを混合・成形して負極合剤を構成し、電池内に組み込まれる。この場合、結着剤および導電剤は正極合剤を作製する際に、例示したような材料をそのまま使用できる。   The negative electrode is also incorporated into the battery by mixing and forming the materials exemplified above, a binder, and, if necessary, the conductive agent and the like to form a negative electrode mixture. In this case, as the binder and the conductive agent, the materials as exemplified can be used as they are when producing the positive electrode mixture.

非水電解液はリチウム塩を有機溶媒に溶解して調整されるが、これら有機溶媒とリチウム塩もこの種の電池に用いられるものであれば何れも使用可能である。例示するならば、有機溶媒としてはプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(GBL)、ビニレンカーボネート(VC)、アセトニトリル(AN)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)およびこれらの誘導体、もしくはそれらの混合溶媒等である。   The non-aqueous electrolyte is prepared by dissolving a lithium salt in an organic solvent, and any of these organic solvents and lithium salts can be used as long as they are used in this type of battery. For example, as the organic solvent, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), γ-butyrolactone (GBL), vinylene carbonate (VC), acetonitrile (AN), dimethyl carbonate (DMC) , Diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and derivatives thereof, or a mixed solvent thereof.

なお、リチウム塩も、この種の電池に使用されるものであれば何れも適用可能であるが、例示するのであれば、LiPF6,LiBF4,LiClO4,LiGaCl4,LiBCl4,LiAsF6,LiSbF6,LiInCl4,LiSCN,LiBrF4,LiTaF6,LiB(CH34,LiNbF6,LiIO3,LiAlCl4,LiNO3,LiI,LiBr等である。 Any lithium salt can be used as long as it is used in this type of battery. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiGaCl 4 , LiBCl 4 , LiAsF 6 , LiSbF 6 , LiInCl 4 , LiSCN, LiBrF 4 , LiTaF 6 , LiB (CH 3 ) 4 , LiNbF 6 , LiIO 3 , LiAlCl 4 , LiNO 3 , LiI, LiBr, etc.

以上のように構成された正極部および負極部が、セパレータを介して積層配置された電極体を構成し、非水電解液とともに密閉容器内に配置することで、本発明が適用された非水電解液二次電池が完成する。   The positive electrode portion and the negative electrode portion configured as described above constitute an electrode body that is stacked and disposed via a separator, and the non-aqueous electrolyte to which the present invention is applied is disposed in a sealed container together with a non-aqueous electrolyte. An electrolyte secondary battery is completed.

[実施例1](第1の構成要件の証明)
本発明の第1の構成要件を証明するために、圧力センサー付のリチウム二次電池を試作し、25℃での充放電時の圧力変化を測定した。また実際の密閉容器に収納・封口された同電池を試作し、60℃浮動充電試験を行った。
[Example 1] (Proof of first configuration requirement)
In order to prove the first constituent requirement of the present invention, a lithium secondary battery with a pressure sensor was prototyped, and the pressure change during charging / discharging at 25 ° C. was measured. In addition, the same battery housed and sealed in an actual sealed container was prototyped and subjected to a 60 ° C. floating charge test.

(1)圧力センサーセルの作製および測定結果:
図5に測定セルの断面図を示す。このセルは、正極部11および負極部13がセパレータ12を介して渦巻き状に捲回された捲回電極体を、ステンレス製容器41に収納した構造になっている。容器41は、円柱状のステンレス製ブロックに直径φ18mm、深さ65mmの円柱状の穴を切削したもので、この穴に電極捲回体が収納されている。容器41の開口部にはステンレス製の蓋42がネジ46で固定されている。容器41と蓋42の間には、2枚のEPDM製ゴムパッキング43,43が被圧状態で介在している。この2枚のゴムパッキング43,43の間から、アルミニウム製の正極リード板44とニッケル製の負極リード板45がセルの外部に取り出されている。
(1) Production and measurement results of pressure sensor cell:
FIG. 5 shows a cross-sectional view of the measurement cell. This cell has a structure in which a wound electrode body in which a positive electrode portion 11 and a negative electrode portion 13 are wound in a spiral shape via a separator 12 is housed in a stainless steel container 41. The container 41 is formed by cutting a cylindrical hole having a diameter of 18 mm and a depth of 65 mm in a cylindrical stainless block, and an electrode winding body is accommodated in the hole. A stainless steel lid 42 is fixed to the opening of the container 41 with screws 46. Two EPDM rubber packings 43, 43 are interposed between the container 41 and the lid 42 in a pressurized state. Between the two rubber packings 43, 43, an aluminum positive electrode lead plate 44 and a nickel negative electrode lead plate 45 are taken out of the cell.

48は圧力センサー(日本特殊測器(株)製のPCH−50R)で、円形蓋42の中心部に設置されたアタッチメント47に固定され、このアタッチメント47の内部に設けられた筒状空洞を通して電池内部の圧力が計測可能になっている。このセンサー48から読み取った圧力は、圧力変換表示器(日本特殊測器(株)製のNTS−430)に表示されるとともに、電圧値に変換され、所定の時間毎に外部記憶装置に記録される。   Reference numeral 48 denotes a pressure sensor (PCH-50R manufactured by Nippon Special Instrument Co., Ltd.), which is fixed to an attachment 47 installed at the center of the circular lid 42, and the battery passes through a cylindrical cavity provided inside the attachment 47. The internal pressure can be measured. The pressure read from the sensor 48 is displayed on a pressure conversion display (NTS-430 manufactured by Nippon Special Instrument Co., Ltd.), converted into a voltage value, and recorded in an external storage device every predetermined time. The

上記捲回電極体は、シート状の正極部11、負極部13、およびポリオレフン系のセパレータ12から構成されている。正極部11は、正極材料である黒鉛粉末と結着剤のカルボキシメチルセルロース(第一工業薬品(株)セロゲン4H)を重量比で97:3に混合し、イオン交換水を加えてペースト状にした後、厚さ20μmのアルミニウム箔の両面に塗布し、乾燥および圧延操作を行い、幅54mmに切断した帯状のシート電極である。このシートの一部はシートの長手方向に対して垂直に合剤が掻き取られ、アルミニウム製の正極リード板44が集電体上に超音波溶接で取り付けられている。   The wound electrode body includes a sheet-like positive electrode portion 11, a negative electrode portion 13, and a polyolefin-based separator 12. The positive electrode part 11 was made into a paste form by mixing graphite powder as a positive electrode material and carboxymethyl cellulose as a binder (Serogen 4H, Daiichi Kogyo Kagaku Co., Ltd.) at a weight ratio of 97: 3, and adding ion-exchanged water. Thereafter, the sheet-like sheet electrode was applied to both sides of an aluminum foil having a thickness of 20 μm, dried and rolled, and cut into a width of 54 mm. A part of the sheet is scraped with the mixture perpendicular to the longitudinal direction of the sheet, and an aluminum positive electrode lead plate 44 is attached to the current collector by ultrasonic welding.

黒鉛粉末は、次のように作製した。
先ず、ピレンをオートクレーブに入れ、50kg/cm2の窒素ガスを封入し、800℃まで加熱して炭化した。この際、昇温速度は室温から250℃までを100℃/時間、250℃〜550℃までを50℃/時間、550℃〜800℃までを100℃/時間とした。このようにして得た塊状コークスをスタンプミルで一旦粗粉砕し、更にジェットミルで微粉砕して炭素前駆体粉末を得た。この粉末をグラファイト坩堝に入れ、アルゴンガス雰囲気中、昇温速度300℃/時間で3000℃まで昇温、1時間保持してからそのまま室温まで放冷した。得られた粉体の平均粒子径は24μmであった。
The graphite powder was produced as follows.
First, pyrene was put in an autoclave, 50 kg / cm 2 of nitrogen gas was sealed, and heated to 800 ° C. for carbonization. At this time, the temperature rising rate was 100 ° C./hour from room temperature to 250 ° C., 50 ° C./hour from 250 ° C. to 550 ° C., and 100 ° C./hour from 550 ° C. to 800 ° C. The coke obtained in this manner was once coarsely pulverized with a stamp mill and further finely pulverized with a jet mill to obtain a carbon precursor powder. This powder was put into a graphite crucible, heated to 3000 ° C. at a heating rate of 300 ° C./hour in an argon gas atmosphere, held for 1 hour, and then allowed to cool to room temperature. The average particle size of the obtained powder was 24 μm.

負極部13は、負極材料である難黒鉛化性炭素材料(呉羽化学(株)社製のPIC)とポリフッ化ビニリデン樹脂(呉羽化学(株)社製のKF#1100)を重量比で95:5に混合し、溶剤としてのN−メチル−2−ピロリジノンを加えてペースト状に混練した後、厚さ14μmの銅箔の両面に塗布し、乾燥および圧延操作を行い、幅56mmに切断した帯状のシート電極である。このシートの一部はシートの長手方向に対して垂直に合剤が掻き取られ、ニッケル製の負極リード板45が集電体上に超音波溶接で取り付けられている。   The negative electrode part 13 is a non-graphitizable carbon material (PIC manufactured by Kureha Chemical Co., Ltd.), which is a negative electrode material, and polyvinylidene fluoride resin (KF # 1100 manufactured by Kureha Chemical Co., Ltd.) in a weight ratio of 95: 5 and mixed with N-methyl-2-pyrrolidinone as a solvent, kneaded into a paste, coated on both sides of a copper foil having a thickness of 14 μm, dried and rolled, and cut into a width of 56 mm. Sheet electrode. Part of this sheet is scraped of the mixture perpendicularly to the longitudinal direction of the sheet, and a negative electrode lead plate 45 made of nickel is attached on the current collector by ultrasonic welding.

セルの作製方法は、これら正極部11と負極部13を、ポリエチレン製の多孔質フィルムかになるセパレータ12を介して渦巻き状に捲回し、ステンレス製容器41内に挿入する。この捲回状電極体は、前述の図2に示された捲回電極体と同様に構成されている。   The cell is produced by winding the positive electrode portion 11 and the negative electrode portion 13 in a spiral shape through a separator 12 made of a polyethylene porous film, and inserting it into a stainless steel container 41. This wound electrode body is configured in the same manner as the wound electrode body shown in FIG.

電極体の挿入後は電解液を注入する。電解液はプロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)が体積比1:2に混合された溶媒に、2.0(mol/L)濃度のLiPF6 を溶解させたものであり、注入した液量は9.42gである。電解液注入後に正極リード板44および負極リード板45を2枚のゴムパッキング43,43の間から取り出し、その2枚のゴムパッキング43,43を介して、蓋42をネジ46で固定する。その後、円形の蓋42に取り付けられたアタッチメント47に圧力センサー48を取り付け、測定セルを完成させる。   After the electrode body is inserted, an electrolytic solution is injected. The electrolyte was prepared by dissolving LiPF6 having a concentration of 2.0 (mol / L) in a solvent in which propylene carbonate (PC) and ethylmethyl carbonate (EMC) were mixed at a volume ratio of 1: 2, and the injected solution The amount is 9.42 g. After the electrolytic solution is injected, the positive electrode lead plate 44 and the negative electrode lead plate 45 are taken out between the two rubber packings 43, 43, and the lid 42 is fixed with screws 46 through the two rubber packings 43, 43. Thereafter, the pressure sensor 48 is attached to the attachment 47 attached to the circular lid 42, and the measurement cell is completed.

得られたセルを25℃に設定された恒温槽に入れ、充放電を開始した。
第1サイクル目の充電は、セルに充填された全正極重量を基準とし、50(mA/g)の電流密度に相当する電流値で、15(mAh/g)に相当する電気容量を充電した。充電時間は18分であった。その後、同じ電流値でセル電圧が3.0Vになるまで放電した。以後、第10サイクル目までは、第1サイクル目と同じ充放電電流で、充電終止電圧4.2V、放電終止電圧3.0Vとした定電流の充放電サイクルを行った。
The obtained cell was put into a thermostat set to 25 ° C., and charging / discharging was started.
The charge in the first cycle was based on the weight of all the positive electrodes filled in the cell, and was charged with an electric capacity corresponding to 15 (mAh / g) with a current value corresponding to a current density of 50 (mA / g). . The charging time was 18 minutes. Then, it discharged until the cell voltage became 3.0V with the same electric current value. Thereafter, until the 10th cycle, a constant current charge / discharge cycle was performed with the same charge / discharge current as in the 1st cycle, with a charge end voltage of 4.2 V and a discharge end voltage of 3.0 V.

第11〜20サイクル目までは、セルに充填された全正極重量を基準とし、300(mA/g)の電流密度に相当する電流値で、電圧4.4V、時間10分とした定電流/定電圧充電を行い、正極部の全面積を基準とし、1(mA/cm2)の電流密度に相当する電流値で3.0Vまで放電する充放電サイクルを繰り返した。 From the 11th cycle to the 20th cycle, the current value corresponding to the current density of 300 (mA / g) based on the total weight of the positive electrode filled in the cell, the voltage was 4.4 V, and the current was 10 minutes. A constant voltage charge was performed, and a charge / discharge cycle in which discharge was performed to 3.0 V at a current value corresponding to a current density of 1 (mA / cm 2 ) was repeated based on the total area of the positive electrode part.

図6および図7は、19〜20サイクル目の電圧、電流および内圧の経時変化を示す。これらの図において、電流値は充電側で負、放電側で正とした。なお、測定された圧力値は、圧力センサー付セルの空隙体積に加え、センサー内部の空隙体積も含んだ状態での値であるため、密閉容器に収納した状態の実際のセルとは条件が多少異なっている。すなわち、測定圧力値は、同様な構成で実際のセルを作製した場合の圧力値と比較して小さな値となっている。   6 and 7 show changes over time in voltage, current, and internal pressure in the 19th to 20th cycles. In these figures, the current value is negative on the charge side and positive on the discharge side. The measured pressure value is a value that includes the void volume of the cell with the pressure sensor and also the void volume inside the sensor, so the conditions are slightly different from those of the actual cell in the sealed container. Is different. That is, the measured pressure value is smaller than the pressure value when an actual cell is manufactured with the same configuration.

図6から明らかなように、本発明が適用されたリチウム二次電池は、充電すると内圧が低下し、放電すると元の圧力に回復する。また、充電側においては、電流変化の大きさと圧力変化の大きさがほとんど一致している。
したがって、前述したように、このような状態で充放電が行われるリチウム二次電池の密閉容器の外表面は、密閉容器空間内に空隙部が設けられていなければ、充電時に密閉容器の外表面には凹部が形成され、放電時には凸部が形成されることとなって、充放電サイクルの進行に伴って密閉容器の変形が繰り返されるという不都合を生じる。この結果、容器が破断され、容器内部の電解液が外部に漏出するという不都合が生じる。これら不都合は、実際のセルを作製した次項で確認する。
As is clear from FIG. 6, the lithium secondary battery to which the present invention is applied is reduced in internal pressure when charged and restored to the original pressure when discharged. On the charging side, the magnitude of the current change and the magnitude of the pressure change are almost the same.
Therefore, as described above, the outer surface of the sealed container of the lithium secondary battery that is charged and discharged in such a state is the outer surface of the sealed container at the time of charging unless a void is provided in the sealed container space. In this case, a concave portion is formed, and a convex portion is formed at the time of discharging. This causes a disadvantage that the deformation of the sealed container is repeated as the charging / discharging cycle proceeds. As a result, the container is broken, and there arises a disadvantage that the electrolytic solution inside the container leaks to the outside. These inconveniences will be confirmed in the next section after the actual cell is manufactured.

(2)実際のリチウム二次電池の作製および測定結果:
図8は、作製した18650型リチウム二次電池の構造を示す。
図8において、正極部11および負極部13は前記(1)と同様に作製した。同図に示すように、正極部11と負極部13を、ポリオレフィン系セパレータ12を介して渦巻き状に捲回し、負極ケースを兼ねるステンレス製の電池ケース51内に挿入する。
(2) Production and measurement results of actual lithium secondary battery:
FIG. 8 shows the structure of the manufactured 18650 type lithium secondary battery.
In FIG. 8, the positive electrode part 11 and the negative electrode part 13 were produced similarly to said (1). As shown in the figure, the positive electrode portion 11 and the negative electrode portion 13 are spirally wound through a polyolefin separator 12 and inserted into a stainless steel battery case 51 that also serves as a negative electrode case.

セパレータは日本高度紙(株)社製のMPF15-60(厚さ57.4μm、空隙率71.5%)を使用した。負極リード板45は、負極端子を兼ねた負極ケース51の円形底面の中心位置に抵抗溶接した。53はポリプロピレン製絶縁底板で、捲回時に生じる空間と同面積になるように穴が開いている。   As the separator, MPF15-60 (thickness 57.4 μm, porosity 71.5%) manufactured by Nippon Advanced Paper Co., Ltd. was used. The negative electrode lead plate 45 was resistance-welded to the center position of the circular bottom surface of the negative electrode case 51 that also served as the negative electrode terminal. Reference numeral 53 denotes a polypropylene insulating bottom plate having a hole so as to have the same area as the space generated during winding.

以上の工程の後、電解液を注入する。用いた電解液は、前記(1)と同じである。この後、正極リード板44をアルミニウム製基部54にレーザー溶接する。さらに、電流遮断機構を備えた防爆型蓋要素をガスケット55と共に嵌合し、ケース51の封口を行う。防爆型蓋要素は、金属製の正極端子板56と、中間感圧板57と、上方に突出する突部58および基部54からなる導電部材(58,54)と、絶縁性のガスケット55とを有する。   After the above steps, an electrolytic solution is injected. The electrolytic solution used is the same as (1) above. Thereafter, the positive electrode lead plate 44 is laser welded to the aluminum base 54. Further, an explosion-proof lid element having a current interruption mechanism is fitted together with the gasket 55 to seal the case 51. The explosion-proof lid element has a positive electrode terminal plate 56 made of metal, an intermediate pressure-sensitive plate 57, conductive members (58, 54) composed of a protrusion 58 and a base 54 protruding upward, and an insulating gasket 55. .

中間感圧板57と基部54の間には固定版59が設置されている。正極端子板56および固定板59にはガス抜き穴(図示省略)が形成されている。導電部材(58,54)は、固定板59の上面部に突部58の上面部が露出するとともに、固定板59の下面側に基部54下面が露出する。   A fixed plate 59 is installed between the intermediate pressure sensitive plate 57 and the base 54. Gas discharge holes (not shown) are formed in the positive terminal plate 56 and the fixing plate 59. In the conductive member (58, 54), the upper surface portion of the protrusion 58 is exposed on the upper surface portion of the fixing plate 59, and the lower surface of the base portion 54 is exposed on the lower surface side of the fixing plate 59.

電池ケース51の開口部分の内周にはガスケット55が嵌入されている。ガスケット55の内周には固定板59がはめ込まれている。固定板59の上には中間感圧板57と正極端子板8とが積層されている。   A gasket 55 is fitted on the inner periphery of the opening of the battery case 51. A fixed plate 59 is fitted on the inner periphery of the gasket 55. An intermediate pressure sensitive plate 57 and a positive electrode terminal plate 8 are laminated on the fixed plate 59.

導電部材(58,54)と中間感圧板57とは、導電部材(58,54)の突部58で両者が接続し、その接続部60を含む接触部分でのみ両者が導通している。正極リード板44は、その先端が導電部材(58,54)の基部54に接続されている。ガスケット55は、電池ケース(負極ケース)51の開口部分が内側にかしめられることで圧縮される。これにより、電池ケース51が上記蓋要素で密閉されている。   The conductive member (58, 54) and the intermediate pressure sensitive plate 57 are connected to each other at the protrusion 58 of the conductive member (58, 54), and both are electrically connected only at the contact portion including the connecting portion 60. The tip of the positive lead plate 44 is connected to the base 54 of the conductive member (58, 54). The gasket 55 is compressed by caulking the opening portion of the battery case (negative electrode case) 51 inward. Thereby, the battery case 51 is sealed by the lid element.

電池ケース51の内部が所定の内圧に達すると、外側に膨出した中間感圧板57が、導電部材(58,54)の突部58との接続部60の周囲で破断させられる。これにより、正極リード板44と正極端子板56との導電経路が遮断されるようになっている。   When the inside of the battery case 51 reaches a predetermined internal pressure, the intermediate pressure-sensitive plate 57 bulging outward is broken around the connection portion 60 with the protrusion 58 of the conductive member (58, 54). As a result, the conductive path between the positive lead plate 44 and the positive terminal plate 56 is cut off.

ポリプロピレン製絶縁底板53には、捲回時に生じる空間と同面積になるように穴が開いている。この絶縁版53は、捲回状電極群と正極リード板が短絡しないように挿入されている。   The polypropylene insulating base plate 53 has a hole so as to have the same area as the space generated during winding. The insulating plate 53 is inserted so that the wound electrode group and the positive electrode lead plate are not short-circuited.

電解液の注入工程では、注液量を制御することで、電池ケース51内の空隙体積を変化させた。このようにして得られた電池仕様(1)〜(3)と充放電の到達サイクルを表1に示す。   In the electrolytic solution injection step, the void volume in the battery case 51 was changed by controlling the amount of injection. Table 1 shows the battery specifications (1) to (3) and the charge / discharge arrival cycles thus obtained.

[表1]

Figure 2006351249
[Table 1]
Figure 2006351249

表1において、電池仕様(1)〜(3)は、同表に記載のとおり、次のように定義される。
電池仕様(1):ケース内部に形成された空隙体積(単位cm3)を、負極部と対向した正極部に存在する黒鉛粉末の重量と負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量(単位g)で除した値。
電池仕様(2):リチウム塩を含んだ非水電解液に存在するリチウム塩量を、負極部に対向した正極部に存在する黒鉛粉末の重量で除した値。
電池仕様(3):ケースに注入した電解液の体積を、正極部、負極部、およびセパレータの空隙体積の合計量で除した値。
In Table 1, battery specifications (1) to (3) are defined as follows, as described in the table.
Battery specifications (1): The void volume (unit: cm 3 ) formed inside the case, the weight of the graphite powder present in the positive electrode part facing the negative electrode part, and the carbon material capable of occluding and releasing lithium contained in the negative electrode part The value divided by the total weight (unit: g).
Battery specification (2): A value obtained by dividing the amount of lithium salt present in the non-aqueous electrolyte containing lithium salt by the weight of the graphite powder present in the positive electrode portion facing the negative electrode portion.
Battery specification (3): Value obtained by dividing the volume of the electrolyte injected into the case by the total amount of the void volume of the positive electrode portion, the negative electrode portion, and the separator.

電池仕様(2)および(3)は、本発明の第2および第3の構成要素であるが、いずれの電池も本発明範囲内である。
得られたセルを25℃に設定された恒温槽に入れ、充放電を開始した。第1サイクル目の充電は、セルに充填された全正極重量を基準とし、50(mA/g)の電流密度に相当する電流値で、15(mAh/g)に相当する電気容量を充電した。充電時間は18分であった。
Battery specifications (2) and (3) are the second and third components of the present invention, but both batteries are within the scope of the present invention.
The obtained cell was put into a thermostat set to 25 ° C., and charging / discharging was started. The charge in the first cycle was based on the weight of all the positive electrodes filled in the cell, and was charged with an electric capacity corresponding to 15 (mAh / g) with a current value corresponding to a current density of 50 (mA / g). . The charging time was 18 minutes.

その後、同じ電流値でセル電圧が3.0Vになるまで放電した。以後、第10サイクル目までは、第1サイクル目と同じ充放電電流で、充電終止電圧4.2V、放電終止電圧3.0Vとした定電流の充放電サイクルを行った。第11サイクル目を、サイクル数として数える第1サイクルとし、電流値1A、電圧4.2V、時間10分とした定電流/定電圧充電を行い、1Aの定電流で放電を行う充放電サイクルを1000回繰り返した。   Then, it discharged until the cell voltage became 3.0V with the same electric current value. Thereafter, until the 10th cycle, a constant current charge / discharge cycle was performed with the same charge / discharge current as in the 1st cycle, with a charge end voltage of 4.2 V and a discharge end voltage of 3.0 V. The eleventh cycle is a first cycle that is counted as the number of cycles. Repeated 1000 times.

1000回の充放電サイクルの途中で、封口部に設けられた電流遮断機構が作動し、充放電不能となったサイクル数を表1中に示す。なお、電流遮断機構が作動する理由は、ケース内部に形成された空隙体積が小さすぎて、充放電を行うことに起因したケース内部の圧力の変化が大きいからである。何れのセルも初期容量は55.21mAhであり、電流遮断機構が作動した電池は充放電が不能となったサイクル数まで、電流遮断機構が作動しなかった電池は1000サイクルまで、それぞれ顕著なサイクル劣化は認められなかった。   Table 1 shows the number of cycles in which charging / discharging became impossible due to the operation of the current interruption mechanism provided in the sealing portion in the middle of 1000 charging / discharging cycles. The reason why the current interrupting mechanism operates is that the gap volume formed inside the case is too small, and the change in the pressure inside the case due to charging / discharging is large. Each cell has an initial capacity of 55.21 mAh. A battery with a current interruption mechanism activated has a significant number of cycles up to the number of cycles in which charge / discharge cannot be performed, and a battery with no current interruption mechanism activated has a significant cycle up to 1000 cycles. No deterioration was observed.

表1に示されたとおり、負極部と対向した正極部に存在する黒鉛粉末と、負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量(単位g)に対し、0.08(g/cm3)以上の空隙体積(単位cm3)が設けられた電池は、1000サイクルまで電流遮断機構の作動が認められなかった。このように算出された体積以上の空隙体積を設けることにより、電池の信頼性は向上することが分かった。 As shown in Table 1, with respect to the total weight (unit: g) of the graphite powder present in the positive electrode part facing the negative electrode part and the carbon material capable of occluding and releasing lithium contained in the negative electrode part, 0.08 ( g / cm 3) or more void volume (unit cm 3) is provided battery, the operation of the current interrupt device is not recognized until 1000 cycles. It was found that the reliability of the battery is improved by providing a void volume equal to or larger than the calculated volume.

[実施例2](第2の構成要件の証明)
セパレータの物性値(空隙率および厚み)、および電解液の溶質濃度を変化させ、負極部に対向した正極部に存在する黒鉛粉末の、単位重量当りのリチウム塩の量(mmol/g)を変化させたリチウム二次電池を作製した。
この場合、各々の電池は、注液後に形成されるケース内の空隙体積が全て一定(1.3cm3)となるように注液量を制御した。その理由は、60℃浮動充電状態において発生するガスの体積が同じなら、ケースの内圧も同じとなるように設定したからである。
電解液の溶質(LiPF6)、溶媒(プロピレンカーボネートとエチレンカーボネートが体積比1:2に混合された溶媒)、および電池の作製方法は実施例1と同じである。
[Example 2] (Proof of second configuration requirement)
Varying the physical properties of the separator (porosity and thickness) and the solute concentration of the electrolyte, changing the amount of lithium salt (mmol / g) per unit weight of the graphite powder present in the positive electrode facing the negative electrode A lithium secondary battery was produced.
In this case, in each battery, the amount of liquid injection was controlled so that the void volume in the case formed after the liquid injection was all constant (1.3 cm 3 ). The reason is that if the volume of gas generated in the 60 ° C. floating charge state is the same, the internal pressure of the case is set to be the same.
The electrolytic solution solute (LiPF 6), the solvent (a solvent in which propylene carbonate and ethylene carbonate were mixed at a volume ratio of 1: 2), and the method for producing the battery were the same as in Example 1.

使用したセパレータの銘柄、その物性値、電解液の溶質濃度、注液量、および電池仕様(1)〜(3)を、セパレータごとに表2に示す。   Table 2 shows the brand of the separator used, its physical property values, the solute concentration of the electrolytic solution, the injection amount, and the battery specifications (1) to (3) for each separator.

[表2]

Figure 2006351249
[Table 2]
Figure 2006351249

表2において、電池仕様(1)〜(3)は表1の場合と同様次のように定義される。
電池仕様(1):ケース内部に掲載された空隙体積(単位cm3)を、負極部と対向した正極部に存在する黒鉛粉末の重量と負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量(単位g)で除した値。
電池仕様(2):リチウム塩を含んだ非水電解液に存在するリチウム塩量を、負極部に対向した正極部に存在する黒鉛粉末の重量で除した値([溶質絶対量]/[負極対向の正極重量](mmol/g)。
電池仕様(3):ケースに注入した電解液の体積を、正極部、負極部、およびセパレータの空隙体積の合計量で除した値。すなわち、[電解質体積]/[正・負・セパレータの全空隙体積]である。
In Table 2, battery specifications (1) to (3) are defined as follows in the same manner as in Table 1.
Battery specifications (1): The void volume (unit: cm 3 ) posted inside the case, the weight of the graphite powder present in the positive electrode part facing the negative electrode part, and the carbon material capable of occluding and releasing lithium contained in the negative electrode part The value divided by the total weight (unit: g).
Battery specification (2): The value obtained by dividing the amount of lithium salt present in the non-aqueous electrolyte containing lithium salt by the weight of the graphite powder present in the positive electrode facing the negative electrode ((absolute amount of solute) / [negative electrode Opposite positive electrode weight] (mmol / g).
Battery specification (3): Value obtained by dividing the volume of the electrolyte injected into the case by the total amount of the void volume of the positive electrode portion, the negative electrode portion, and the separator. That is, [electrolyte volume] / [positive / negative / total void volume of separator].

作製した電池は、25℃の恒温槽内に設置し、第10サイクルまでは実施例1と同様な条件で充放電を行った。第11〜20サイクルは、電流値1A、電圧4.2V、時間10分とした定電流/定電圧充電を行い、1Aの電流値で放電を行う充放電サイクルを行った。   The produced battery was placed in a constant temperature bath at 25 ° C., and charged and discharged under the same conditions as in Example 1 until the 10th cycle. In the 11th to 20th cycles, a charge / discharge cycle was performed in which constant current / constant voltage charging was performed with a current value of 1 A, a voltage of 4.2 V, and a time of 10 minutes, and discharging was performed at a current value of 1 A.

その後、第21サイクル目に浮動充電試験を行った。電池を60℃の恒温槽内に設置してから5時間放置し、5時間後に浮動充電を開始した。充電条件は、第11〜20サイクル目に行った充電方法と同じであるが、充電時間だけを100時間とした。その後セルを1分間だけ休止させ、60℃を保持したまま、第11〜20サイクル目に行った放電方法と同じ条件で放電させた。
浮動充電試験の放電過程が終了した時点で、電池を25℃の恒温槽に移し、5時間放置した後、第11〜20サイクル目に行った充放電方法と同じ条件で、更に10サイクルの充放電を行った。
Thereafter, a floating charge test was performed on the 21st cycle. The battery was placed in a constant temperature bath at 60 ° C. and left for 5 hours, and floating charging was started after 5 hours. The charging conditions were the same as the charging method performed in the 11th to 20th cycles, but only the charging time was 100 hours. Thereafter, the cell was paused for 1 minute, and was discharged under the same conditions as the discharge method performed in the 11th to 20th cycles while maintaining 60 ° C.
When the discharge process of the floating charge test is completed, the battery is transferred to a constant temperature bath at 25 ° C., left for 5 hours, and then charged for 10 cycles under the same conditions as the charge / discharge method performed in the 11th to 20th cycles. Discharge was performed.

以上で電池に対して行われた充放電サイクル回数の合計は31回である。ここで、第20サイクル目の放電容量を60℃浮動充電試験前の放電容量と見なし、浮動充電試験、およびその後の充放電試験より得られる放電容量と比較する基準とした。   The total number of charge / discharge cycles performed on the battery is 31. Here, the discharge capacity at the 20th cycle was regarded as the discharge capacity before the 60 ° C. floating charge test, and used as a reference for comparison with the discharge capacity obtained from the floating charge test and the subsequent charge / discharge test.

また、第31サイクル目に得られた放電容量は60℃浮動充電を行った後に得られた放電容量と見なし、60℃浮動充電が及ぼした影響を定量的に把握するための基準とした。この第31サイクル目の容量を、第20サイクル目すなわち60℃の浮動充電試験前に得られた放電容量に対する百分率で示し、浮動充電後の容量維持率と定義した。浮動充電前野放電容量、および浮動充電後の容量維持率は表2に示したとおりである。   Further, the discharge capacity obtained in the 31st cycle was regarded as the discharge capacity obtained after 60 ° C. floating charge, and was used as a reference for quantitatively grasping the influence of 60 ° C. floating charge. The capacity at the 31st cycle was shown as a percentage of the discharge capacity obtained before the 20th cycle, that is, the 60 ° C. floating charge test, and was defined as the capacity retention rate after the floating charge. The discharge capacity before floating charge and the capacity maintenance rate after floating charge are as shown in Table 2.

図9は、溶質濃度と[溶質絶対量]/[負極対向の正極重量]の関係を示す。実施例2で作製した電池のセパレータはそれぞれに厚みおよび空隙率が異なる。このため前記電池仕様(2)の値は、セパレータが異なれば電解液の溶質濃度を同じにしても同一の値とはならない。図10に、電池仕様(2)と浮動充電後の容量維持率との関係を示す。   FIG. 9 shows the relationship between the solute concentration and [solute absolute amount] / [positive electrode weight opposite to the negative electrode]. The battery separators produced in Example 2 have different thicknesses and porosity. For this reason, the value of the battery specification (2) does not become the same value even if the solute concentration of the electrolytic solution is the same if the separator is different. FIG. 10 shows the relationship between the battery specification (2) and the capacity retention rate after floating charging.

図8および図9から、浮動充電による容量維持率劣化要因は、充電状態における溶質濃度ではなく、電解液に存在する溶質の絶対量に強く依存することが分かる。電池仕様(2)が本発明の範囲内(1.8〜3.5)であれば、容量維持率は少なくとも91%以上が確保可能であった。しかし範囲外であれば、容量維持率が87%以下であり、本発明で特定した範囲内の電池の容量維持率が際立って高くなった。   8 and 9, it can be seen that the capacity maintenance rate deterioration factor due to floating charging strongly depends on the absolute amount of the solute present in the electrolytic solution, not on the solute concentration in the charged state. When the battery specification (2) was within the range of the present invention (1.8 to 3.5), the capacity retention rate could be secured at least 91%. However, if it was out of the range, the capacity retention rate was 87% or less, and the capacity retention rate of the battery within the range specified in the present invention was remarkably high.

この結果は、容量維持率低下の要因となる副反応・競争反応の反応速度が、ケース内に存在する溶質の絶対量の制御によって可能になることを示唆しており、とくにその量が本発明範囲内である場合は、前述の副反応・競争反応をきわめて効果的に抑制可能であることが分かった。   This result suggests that the reaction rate of the side reaction / competitive reaction that causes a decrease in the capacity retention rate can be achieved by controlling the absolute amount of the solute present in the case. When it was within the range, it was found that the side reactions and competitive reactions described above can be suppressed extremely effectively.

[実施例3](第3の構成要件の証明)
セパレータを旭化成社製のH4050U3(厚み50μm、空隙率67%)とした18650型のリチウム二次電池を実施例1と同様に作製した。使用した電解液は、プロピレンカーボネートとエチルメチルカーボネートが体積比1:2に混合された溶媒に、溶質であるLiPF6が2.4M/Lの濃度で溶解されたものである。
ただし、電解液の注入工程において電解液量を変化させ、電池仕様(3)の値を変化させた。電池仕様(3)とは、実施例1の(2)に記載した(3)の通りであり、ケースに注入した電解液の体積を、正極部、負極部、およびセパレータの空隙体積の合計量で除した値である。
[Example 3] (Proof of third configuration requirement)
An 18650 type lithium secondary battery having a separator of H4050U3 (thickness 50 μm, porosity 67%) manufactured by Asahi Kasei was produced in the same manner as in Example 1. The electrolyte used was one in which LiPF6 as a solute was dissolved at a concentration of 2.4 M / L in a solvent in which propylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2.
However, the amount of the electrolytic solution was changed in the step of injecting the electrolytic solution, and the value of the battery specification (3) was changed. The battery specification (3) is as described in (3) described in (2) of Example 1, and the volume of the electrolyte injected into the case is the total amount of the void volume of the positive electrode part, the negative electrode part, and the separator. The value divided by.

作製した電池の電解液量、電池仕様(1)〜(3)の値を表3に示す。表3に記載のとおり、本実施例で作製した電池は、電池仕様(1)および(2)が全て本発明範囲内である。   Table 3 shows the amount of the electrolyte solution and the battery specifications (1) to (3). As shown in Table 3, the batteries produced in this example all have battery specifications (1) and (2) within the scope of the present invention.

[表3]

Figure 2006351249
[Table 3]
Figure 2006351249

これらの電池に対し、実施例2に記載した要領で60℃の浮動充電試験を行った。その結果を表3中に示した。電池仕様(3)が1.0以下の場合は、浮動充電試験後の放電容量がゼロであるが、この原因はガス発生により電流遮断機構が作動したためである。この原因は、ケースに注入した電解液の体積に対し、正極部、負極部、およびセパレータの空隙体積の合計が大きく、電解液の含浸の程度が不均一となった結果、含浸が不十分であった領域において電解液の溶質濃度が著しく減少し、ガス発生が特に激しくなったと考えられる。
一方、電池仕様(3)が本発明範囲内の1.0以上である場合には、電流遮断機構の作動が認められず、かつ浮動充電後の容量維持率が90%以上であった。
These batteries were subjected to a floating charge test at 60 ° C. in the manner described in Example 2. The results are shown in Table 3. When the battery specification (3) is 1.0 or less, the discharge capacity after the floating charge test is zero. This is because the current interrupting mechanism is activated by gas generation. This is because the total volume of the positive electrode, negative electrode, and separator voids is larger than the volume of electrolyte injected into the case, resulting in non-uniform impregnation of the electrolyte, resulting in insufficient impregnation. It is considered that the solute concentration of the electrolyte solution was remarkably reduced in a certain region, and gas generation was particularly intense.
On the other hand, when the battery specification (3) was 1.0 or more within the range of the present invention, the operation of the current interrupting mechanism was not recognized, and the capacity retention rate after floating charge was 90% or more.

このように電池仕様(1)および(2)が本発明範囲内であっても、すなわち、ケース内部に形成された空隙体積が、負極部と対向した正極部に存在する黒鉛粉末の重量と負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量に対して十分に確保され、かつ負極部に対向した正極部に存在する黒鉛粉末の重量に対してリチウム塩を含んだ非水電解液に存在するリチウム塩量が所定量以上に確保された場合であっても、ケースに注入した電解液の体積が、正極部、負極部、およびセパレータの空隙体積の合計量に対して不十分な場合は、電池の信頼性確保が困難であることを示している。   Thus, even when the battery specifications (1) and (2) are within the scope of the present invention, that is, the void volume formed inside the case is the weight of the graphite powder present in the positive electrode portion facing the negative electrode portion and the negative electrode. Non-aqueous electrolysis that is sufficiently secured against the total weight of the carbon material capable of occluding and releasing lithium contained in the part, and that contains a lithium salt relative to the weight of the graphite powder present in the positive part facing the negative part Even when the amount of lithium salt present in the liquid is ensured to be a predetermined amount or more, the volume of the electrolyte injected into the case is insufficient with respect to the total amount of the void volume of the positive electrode part, the negative electrode part, and the separator This indicates that it is difficult to ensure the reliability of the battery.

したがって、電池仕様(1)〜(3)が所定条件を満たした場合に限り、つまり本発明の発明特定要件(1)〜(3)を満たした場合に限り、この種のリチウム二次電池の信頼性を向上させることが可能であると言える。   Therefore, only when the battery specifications (1) to (3) satisfy predetermined conditions, that is, only when the invention specific requirements (1) to (3) of the present invention are satisfied, It can be said that reliability can be improved.

以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。   As described above, the present invention has been described based on the typical embodiments. However, the present invention can have various modes other than those described above.

高温浮動充電状態における正極黒鉛材料と電解液との反応性(反応速度)を抑制し、これにより、電池の液漏れ、破裂を未然に防止するとともに、高温浮動充電後の充放電サイクルにおいても容量劣化が小さな非水電解液二次電池を提供することができる。   Suppresses the reactivity (reaction rate) between the positive electrode graphite material and the electrolyte in a high-temperature floating charge state, thereby preventing battery leakage and rupture, as well as capacity in charge / discharge cycles after high-temperature floating charge. A non-aqueous electrolyte secondary battery with little deterioration can be provided.

本発明に係る電池および従来の電池の電極体を概念的に示す側面図および平面図である。It is the side view and top view which show notionally the battery body which concerns on this invention, and the electrode body of the conventional battery. 捲回電極体の状態を模式的に描いた横断面図である。It is the cross-sectional view which drawn the state of the wound electrode body typically. 図2の捲回電極体を作製する前に積層配置された正直極部とセパレータの位置関係を概念的に示す斜視図である。It is a perspective view which shows notionally the positional relationship of the honest pole part laminated | stacked and arrange | positioned before producing the winding electrode body of FIG. 図3における正極部と負極部およびその配置関係を概念的に示す平面図である。It is a top view which shows notionally the positive electrode part in FIG. 3, a negative electrode part, and its arrangement | positioning relationship. 本発明技術が適用された測定セルの概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the measurement cell to which this invention technique was applied. 充放電19〜20サイクル目の電池電圧と電流の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the battery voltage of the charge / discharge 19-20th cycle, and an electric current. 充放電19〜20サイクル目の電池内圧と電流の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the battery internal pressure and electric current of 19-20th charge / discharge cycles. 本発明技術を適用して作製した18650型リチウム二次電池の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the 18650 type lithium secondary battery produced by applying this invention technique. 溶質濃度と[溶質絶対量]/[負極対向の正極重量]の関係を示すグラフである。6 is a graph showing the relationship between solute concentration and [solute absolute amount] / [positive electrode weight opposite to negative electrode]. 電池仕様(2)と浮動充電後の容量維持率との関係を示すグラフである。It is a graph which shows the relationship between a battery specification (2) and the capacity | capacitance maintenance factor after floating charge.

符号の説明Explanation of symbols

11 正極部 11a 内周側末端部
11b 外周側末端部 11c,11d 両幅端部
12 セパレータ 13 負極部
13a 内周側末端部 13b 外周側末端部
13c,13d 両幅端部
La,Lb 長手方向の余裕部 Lc,Ld 幅方向の余裕部
41 ステンレス製容器 42 蓋
43 ゴムパッキング 44 正極リード板
45 負極リード板 46 ネジ
47 アタッチメント 48 圧力センサー
51 負極ケース(電池ケース) 53 絶縁底板
54 アルミニウム製基部 55 ガスケット
56 正極端子板 57 中間感圧板
58 突部 59 固定板
60 接続部
DESCRIPTION OF SYMBOLS 11 Positive electrode part 11a Inner peripheral side terminal part 11b Outer peripheral side terminal part 11c, 11d Both width end parts 12 Separator 13 Negative electrode part 13a Inner peripheral side terminal part 13b Outer peripheral side terminal part 13c, 13d Both width end parts La, Lb Longitudinal direction Margins Lc, Ld Margins in the width direction 41 Stainless steel container 42 Lid 43 Rubber packing 44 Positive electrode lead plate 45 Negative electrode lead plate 46 Screw 47 Attachment 48 Pressure sensor 51 Negative electrode case (battery case) 53 Insulating bottom plate 54 Aluminum base 55 Gasket 56 Positive terminal plate 57 Intermediate pressure sensitive plate 58 Projection 59 Fixed plate 60 Connection

Claims (1)

黒鉛粉末を主成分とする正極合剤がシート状に成形された正極部と、リチウムの吸蔵・放出可能な炭素材料を主成分とした負極合剤がシート状に成形された負極部とが、セパレータを介して積層配置された電極体を構成し、リチウム塩を含んだ非水電解液と共に密閉容器内に配置され、さらに、負極部の対正極投影面が全周縁にわたって正極部の対負極側面の周縁部から内側に入り込んで囲まれるように、正極部と負極部とがセパレータを介して積層された非水電解液二次電池において、下記(1)〜(3)の条件を満足するように構成されたことを特徴とする非水電解液二次電池。
(1)密閉容器空間内には、負極部と対向した正極部に存在する黒鉛粉末と、負極部に含まれるリチウムの吸蔵・放出可能な炭素材料の合計重量(単位g)に対し、0.08(cm3/g)以上の空隙体積(単位cm3)が設けられる。
(2)リチウム塩を含んだ非水電解液に存在するリチウム塩の量は、負極部に対向した正極部に存在する黒鉛粉末の単位重量当りのリチウム塩として1.8〜3.5 (mmol/g)である。
(3)正極部、負極部、およびセパレータの空隙体積の合計量に対して、電解液の体積が1.0以上である。

A positive electrode portion in which a positive electrode mixture mainly composed of graphite powder is formed into a sheet shape, and a negative electrode portion in which a negative electrode mixture mainly composed of a carbon material capable of occluding and releasing lithium is formed into a sheet shape, The electrode body is configured to be laminated via a separator, and is disposed in a sealed container together with a non-aqueous electrolyte containing a lithium salt. In the non-aqueous electrolyte secondary battery in which the positive electrode portion and the negative electrode portion are stacked via the separator so as to be surrounded by the inside from the peripheral portion of the battery, the following conditions (1) to (3) are satisfied: A non-aqueous electrolyte secondary battery comprising:
(1) In the closed container space, the total weight (unit: g) of the graphite powder present in the positive electrode part facing the negative electrode part and the carbon material capable of occluding and releasing lithium contained in the negative electrode part is 0. A void volume (unit: cm 3 ) of 08 (cm 3 / g) or more is provided.
(2) The amount of lithium salt present in the non-aqueous electrolyte containing lithium salt is 1.8 to 3.5 (mmol) as lithium salt per unit weight of the graphite powder present in the positive electrode portion facing the negative electrode portion. / G).
(3) The volume of the electrolytic solution is 1.0 or more with respect to the total amount of the void volume of the positive electrode part, the negative electrode part, and the separator.

JP2005172948A 2005-06-13 2005-06-13 Non-aqueous electrolyte secondary battery Active JP4834330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172948A JP4834330B2 (en) 2005-06-13 2005-06-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172948A JP4834330B2 (en) 2005-06-13 2005-06-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006351249A true JP2006351249A (en) 2006-12-28
JP4834330B2 JP4834330B2 (en) 2011-12-14

Family

ID=37646895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172948A Active JP4834330B2 (en) 2005-06-13 2005-06-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4834330B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086833A1 (en) * 2008-10-02 2010-04-08 Michael Pozin Battery
JP2010113804A (en) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd Nonaqueous electrolyte secondary battery
WO2012176272A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Production method for secondary battery
JP2013157154A (en) * 2012-01-27 2013-08-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, manufacturing method therefor, and vehicle including nonaqueous electrolyte secondary battery
JP2016122505A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery, and method for evaluation of in-battery gas generation amount with such battery
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
US10536016B2 (en) 2008-10-02 2020-01-14 Duracell U.S. Operations, Inc. Battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294294A (en) * 1999-04-02 2000-10-20 Denso Corp Nonaqueous electrolyte secondary battery
JP2001196094A (en) * 2000-01-14 2001-07-19 Japan Storage Battery Co Ltd Non-aqueous electrolytic secondary battery
JP2002015774A (en) * 2000-06-29 2002-01-18 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte lithium secondary cell
WO2002093666A1 (en) * 2001-05-15 2002-11-21 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294294A (en) * 1999-04-02 2000-10-20 Denso Corp Nonaqueous electrolyte secondary battery
JP2001196094A (en) * 2000-01-14 2001-07-19 Japan Storage Battery Co Ltd Non-aqueous electrolytic secondary battery
JP2002015774A (en) * 2000-06-29 2002-01-18 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte lithium secondary cell
WO2002093666A1 (en) * 2001-05-15 2002-11-21 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086833A1 (en) * 2008-10-02 2010-04-08 Michael Pozin Battery
US8304116B2 (en) * 2008-10-02 2012-11-06 The Gillette Company Battery
US11502532B2 (en) 2008-10-02 2022-11-15 Duracell U.S. Operations, Inc. Battery
US10916956B2 (en) 2008-10-02 2021-02-09 Duracell U.S. Operations, Inc. Battery
US10536016B2 (en) 2008-10-02 2020-01-14 Duracell U.S. Operations, Inc. Battery
JP2010113804A (en) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd Nonaqueous electrolyte secondary battery
JPWO2012176272A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Manufacturing method of secondary battery
US9269988B2 (en) 2011-06-20 2016-02-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
CN103636055A (en) * 2011-06-20 2014-03-12 丰田自动车株式会社 Production method for secondary battery
WO2012176272A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Production method for secondary battery
JP2013157154A (en) * 2012-01-27 2013-08-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, manufacturing method therefor, and vehicle including nonaqueous electrolyte secondary battery
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
JP2016122505A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery, and method for evaluation of in-battery gas generation amount with such battery

Also Published As

Publication number Publication date
JP4834330B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4657403B2 (en) Nonaqueous electrolyte secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP4834330B2 (en) Non-aqueous electrolyte secondary battery
JP2009193744A (en) Positive electrode and nonaqueous electrolyte battery
CN101252205A (en) Nonaqueous electrolyte secondary battery
JP2011165343A (en) Nonaqueous electrolyte secondary battery apparatus, and method for charging anode of the same
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2014036010A (en) Nonaqueous electrolyte secondary battery
KR102232185B1 (en) Lithium-ion secondary cell
JP2005209411A (en) Nonaqueous electrolyte secondary battery
JP5851801B2 (en) Lithium secondary battery
JP2006351306A (en) Nonaqueous electrolyte secondary battery
JP2010040488A (en) Battery
JP2004030991A (en) Nonaqueous electrolyte secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP2013149451A (en) Lithium secondary battery
JP2002083630A (en) LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP2646657B2 (en) Non-aqueous electrolyte secondary battery
JP2007157538A (en) Battery
JP2008117623A (en) Lithium secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP5150080B2 (en) Lithium secondary battery
JP2002100408A (en) Flat nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Ref document number: 4834330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250