JP2006348905A - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
JP2006348905A
JP2006348905A JP2005178983A JP2005178983A JP2006348905A JP 2006348905 A JP2006348905 A JP 2006348905A JP 2005178983 A JP2005178983 A JP 2005178983A JP 2005178983 A JP2005178983 A JP 2005178983A JP 2006348905 A JP2006348905 A JP 2006348905A
Authority
JP
Japan
Prior art keywords
catalyst
amount
internal combustion
combustion engine
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005178983A
Other languages
English (en)
Inventor
Takahiro Oba
孝宏 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005178983A priority Critical patent/JP2006348905A/ja
Publication of JP2006348905A publication Critical patent/JP2006348905A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】 内燃機関の排気浄化システムにおいて、再生制御の実行中における排気エミッションの悪化を抑制することを課題とする。
【解決手段】 排気浄化装置の排気浄化能力を再生させる再生制御において、酸化機能を有する触媒より上流側から還元剤を供給することで該触媒より下流側に設けられた排気浄化装置に還元剤を供給する場合、触媒の温度および内燃機関の吸入空気量の増加率に基づいて還元剤供給量の上限値を補正する(S109)。
【選択図】 図2

Description

本発明は、内燃機関の排気通路に設けられた排気浄化装置と、該排気浄化装置より上流側の排気通路に設けられた酸化機能を有する触媒と、を備えた内燃機関の排気浄化システムに関する。
内燃機関の排気浄化システムにおいては、内燃機関の排気通路に設けられた排気浄化装置と、該排気浄化装置より上流側の排気通路に設けられた酸化機能を有する触媒と、を備えたものが知られている。ここで、排気浄化装置としては、酸化機能を有する触媒を担持したパティキュレートフィルタ(以下、単にフィルタと称する)や吸蔵還元型NOx触媒(以下、単にNOx触媒と称する)が例示できる。フィルタは排気中の粒子状物質(以下、PMと称する)を捕集する。また、NOx触媒は、その周囲雰囲気が酸化雰囲気のときにNOxを吸蔵し還元雰囲気のときに吸蔵していたNOxを還元する。
また、特許文献1には、上記のような内燃機関の排気浄化システムであって、排気浄化装置としてフィルタを備え、酸化機能を有する触媒としてNOx触媒を備えたものが開示されている。この特許文献1では、内燃機関の吸入空気量の変化量に基づいてフィルタにおけるPMの捕集状態を検出し、さらに、検出されたPMの捕集状態に基づいてNOx触媒への還元剤供給量を制御する。
特開2001−193440号公報 特開2003−83029号公報
内燃機関の排気通路に設けられた排気浄化装置と、該排気浄化装置より上流側の排気通路に設けられた酸化機能を有する触媒と、を備えた内燃機関の排気浄化システムにおいては、排気浄化装置の排気浄化能力を再生させるべく再生制御が行われる。この再生制御では、触媒を活性温度にまで昇温させると共に、触媒より上流側から該触媒および排気浄化装置に還元剤を供給する場合がある。
活性温度にまで昇温された触媒に還元剤が供給されると、触媒において還元剤が酸化され酸化熱が発生する。その酸化熱によって、排気浄化装置に流入する排気が昇温される。これにより、排気浄化装置の温度を上昇させることが出来る。
また、触媒において酸化されなかった還元剤は排気浄化装置に供給される。これにより、例えば、排気浄化装置が酸化機能を有する触媒を担持したフィルタである場合、該フィルタに担持された触媒において還元剤が酸化することになる。そのため、フィルタをさらに昇温することが出来、その結果、該フィルタに捕集されたPMを酸化・除去することが出来る。また、排気浄化装置がNOx触媒である場合、該NOx触媒を昇温させることが出来ると共に、その周囲雰囲気を還元雰囲気とすることが出来る。その結果、NOx触媒に吸蔵されたSOxを還元することが出来る。
しかしながら、再生制御において、触媒で酸化されずに排気浄化装置に供給される還元剤が過剰な量となると、その還元剤の一部が酸化したり還元反応に使用されたりすることなしに排気浄化装置を通過し外部に放出される虞がある。その結果、排気エミッションの悪化を招く場合がある。
本発明は、上記問題に鑑みてなされたものであって、内燃機関の排気浄化システムにおいて、再生制御の実行中における排気エミッションの悪化を抑制することが可能な技術を提供することを課題とする。
本発明は、排気浄化装置の排気浄化能力を再生させる再生制御において、酸化機能を有する触媒より上流側から還元剤を供給することで該触媒より下流側に設けられた排気浄化装置に還元剤を供給する場合、触媒の温度および内燃機関の吸入空気量の増加率に基づいて還元剤供給量の上限値を補正するものである。
より詳しくは、本発明に係る内燃機関の排気浄化システムは、
内燃機関の排気通路に設けられた排気浄化装置と、
該排気浄化装置より上流側の前記排気通路に設けられた酸化機能を有する触媒と、
該触媒の温度を検出する触媒温度検出手段と、
前記内燃機関の吸入空気量の単位時間当たりの増加量である吸入空気量増加率を算出する増加率算出手段と、
前記触媒を活性温度にまで昇温させると共に、前記触媒より上流側から前記触媒および前記排気浄化装置に還元剤を供給することで、前記排気浄化装置の排気浄化能力を再生させる再生制御を実行する再生制御実行手段と、
前記再生制御において前記触媒および前記排気浄化装置へ還元剤を供給するときの還元剤供給量を補正する補正手段と、を備え、
前記補正手段は、還元剤供給量の上限値である上限供給量を前記触媒の温度が低いほど少なくし、また、該上限供給量を前記吸入空気量増加率が高いほど少なくすることを特徴とする。
本発明では、再生制御において触媒および排気浄化装置へ還元剤を供給する場合、補正手段によって上限供給量が補正される。
ここで、触媒より上流側から該触媒および排気浄化装置へ還元剤が供給される場合、触媒の温度が低いほど該触媒において還元剤が酸化され難くなる。そのため、排気浄化装置に還元剤が供給され易くなる。一方、吸入空気量増加率が高いほど触媒およびフィルタを通る排気流量の単位時間当たりの増加量(以下、排気流量増加率と称する)も高くなる。そして、排気流量増加率が高いほど還元剤が触媒を通過し易くなる。そのため、排気浄化装置に還元剤が供給され易くなる。また、排気流量増加率が高いほど還元剤がフィルタをも通過し易くなる。
そこで、補正手段は、触媒の温度が低いほど上限供給量をより少ない量に補正する。また、吸入空気量増加率が高いほど上限供給量をより少ない量に補正する。
これによれば、排気浄化装置への還元剤供給量が過剰な量となることを抑制することが出来る。つまり、フィルタを通過し外部に放出される還元剤の量を抑制することが出来る。従って、再生制御の実行中における排気エミッションの悪化を抑制することが出来る。
本発明においては、補正手段が前記上限供給量を設定する上限供給量設定手段を有していても良い。この場合、上限供給量設定手段は、触媒の温度が低いほど上限供給量をより少ない量に設定する。また、吸入空気量増加率が高いほど上限供給量をより少ない量に設定する。
これにより、触媒の温度が低いほど上限供給量をより少ない量に補正することが出来、また、吸入空気量増加率が高いほど上限供給量をより少ない量に補正することが出来る。
本発明に係る内燃機関の排気浄化システムによれば、再生制御の実行中における排気エミッションの悪化を抑制することが出来る。
以下、本発明に係る内燃機関の排気浄化システムの具体的な実施の形態について図面に基づいて説明する。
<内燃機関とその吸排気系の概略構成>
ここでは、本発明を車両駆動用のディーゼル機関に適用した場合を例に挙げて説明する。図1は、本実施例に係る内燃機関とその吸排気系の概略構成を示す図である。
内燃機関1は車両駆動用のディーゼル機関である。この内燃機関1には、吸気通路3および排気通路2が接続されている。吸気通路3には、エアフロメータ7が設けられている。
一方、排気通路2には、排気中のPMを捕集するパティキュレートフィルタ4(以下、単にフィルタ4と称する)が設けられている。このフィルタ4には酸化触媒が担持されている。また、このフィルタ4より上流側の排気通路2には酸化触媒5が設けられている。尚、フィルタ4に担持されている酸化触媒および酸化触媒5は酸化機能を有する触媒であれば良く、例えば、NOx触媒であっても良い。本実施例では、フィルタ4が本発明に係る排気浄化装置を構成し、酸化触媒5が本発明に係る触媒を構成する。
また、排気通路2には、フィルタ4の前後における排気通路2内の圧力差に対応した電気信号を出力する差圧センサ11が設けられている。さらに、排気通路2における酸化触媒5より下流側且つフィルタ4より上流側には、排気の温度に対応した電気信号を出力する温度センサ13が設けられている。
以上述べたように構成された内燃機関1には、この内燃機関1を制御するための電子制御ユニット(ECU)10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
ECU10には、エアフロメータ7および差圧センサ11、温度センサ13、さらに、内燃機関1のクランクシャフトの回転角に対応した電気信号を出力するクランクポジションセンサ14、および、内燃機関1を搭載した車両のアクセル開度に対応した電気信号を出力するアクセル開度センサ15が電気的に接続されている。そして、これらの出力信号がECU10に入力される。
ECU10は、差圧センサ11の検出値に基づいてフィルタ4におけるPM捕集量を推定する。また、ECU10は、クランクポジションセンサ14の検出値に基づいて内燃機関1の回転数を算出し、アクセル開度センサ15の検出値に基づいて内燃機関1の負荷を算出する。さらに、ECU10は、温度センサ13の検出値に基づいて酸化触媒5の温度を推定する。
また、ECU10には、内燃機関1の燃料噴射弁が電気的に接続されている。ECU10によってこの燃料噴射弁が制御される。
<フィルタ再生制御>
本実施例においては、フィルタ4におけるPM捕集量が第一規定捕集量以上となった場合、PMを酸化・除去すべくフィルタ再生制御が開始される。ここで、第一規定捕集量とは、内燃機関1の運転状態への影響が過剰に大きくなる捕集量よりも少ない量であり、また、PMが酸化したときにフィルタ4が過昇温する虞がある捕集量よりも少ない量である。この第一規定捕集量は実験等によって予め定められている。尚、本実施例では、フィルタ再生制御が本発明に係る再生制御に相当する。
本実施例に係るフィルタ再生制御では、内燃機関1から排出される排気(以下、機関排出排気と称する)を昇温させる排気昇温制御される。この排気昇温制御による機関排出排気の昇温に伴って酸化触媒5およびフィルタ4の温度が上昇する。これにより、酸化触媒5が活性温度にまで昇温される。尚、排気昇温制御としては、内燃機関1での主燃料噴射時期を遅角する制御を例示することが出来る。
さらに、本実施例に係るフィルタ再生制御では、活性状態となった酸化触媒5およびフィルタ4に還元剤として燃料を供給すべく、内燃機関1において主燃料噴射より後の時期に副燃料噴射が実行される。この副燃料噴射は、該副燃料噴射によって噴射された燃料の少なくとも一部が未燃の状態で内燃機関1から排出されるようなタイミングで実行される。
副燃料噴射が実行されることによって酸化触媒5に燃料が供給されると、該燃料が酸化触媒5において酸化され、そのときの酸化熱によって、フィルタ4に流入する排気が昇温する。これに伴い、フィルタ4の温度がさらに上昇する。
また、本実施例においては、副燃料噴射が実行されることによって酸化触媒5に供給された燃料の一部が、酸化触媒5において酸化されずに該酸化触媒5を通過する。この酸化触媒5を通過した燃料がフィルタ4に供給されることになる。そして、フィルタ4に供給された燃料は、該フィルタ4に担持された酸化触媒のよって酸化される。このときの酸化熱によってフィルタ4の温度がさらに上昇する。
このようなフィルタ再生制御によって、フィルタ4の温度が規定フィルタ温度に制御される。ここで、規定フィルタ温度とは、捕集されているPMを酸化・除去することが可能な温度であって、且つ、フィルタ4の劣化を抑制することが可能な温度である。この規定フィルタ温度は実験等によって予め定められている。これにより、PMが酸化・除去される。
そして、フィルタ再生制御の実行開始後、フィルタ4におけるPM捕集量が第二規定捕集量以下にまで減少すると、該フィルタ再生制御の実行が停止される。ここで、第二規定捕集量とは、PM捕集量が再度第一規定捕集量Q1となるまでにはある程度時間がかかると判断出来る閾値となる量、即ち、PM捕集量が十分に減少したと判断出来る閾値となる量である。この第二規定捕集量も実験等によって予め定められた量である。
<フィルタ再生制御における上限噴射量の設定>
フィルタ再生制御において副燃料噴射を実行する場合、内燃機関1の吸入空気量および酸化触媒5の温度に基づいて副燃料噴射量の基準値である基準噴射量を算出する。この基準噴射量は、内燃機関1の運転状態が定常運転状態であればフィルタ4の温度を規定フィルタ温度に制御することが可能な量である。
ここで、内燃機関1の運転状態が、加速要求などにより吸入空気量が増加する過渡運転状態となった場合、酸化触媒5やフィルタ4を流れる排気流量も増加する。そして、内燃機関1の運転状態がこのような過渡運転状態にあるときに副燃料噴射が実行された場合、
内燃機関1の運転状態が定常運転状態にある場合よりも酸化触媒5において燃料が酸化され難くなる。また、フィルタ4に担持された酸化触媒においても燃料が酸化され難くなる。つまり、酸化触媒5およびフィルタ4を燃料が通過し易くなる。
そのため、内燃機関1の運転状態が上記のような過渡運転状態にあるときに基準噴射量を副燃料噴射量として副燃料噴射が実行された場合、フィルタ4に供給される燃料が過剰な量となる虞がある。つまり、フィルタ4を通過して外部に放出される燃料の量が過剰な量となる虞がある。そこで、本実施例では、副燃料噴射を実行するときの酸化触媒5の温度および吸入空気量増加率に基づいて、副燃料噴射量の上限値である上限噴射量を設定する。
副燃料噴射が実行された場合、酸化触媒5の温度が低いほど該酸化触媒5において燃料が酸化され難くなる。そのため、フィルタ4に燃料が供給され易くなる。一方、吸入空気量増加率が高いほど排気流量増加率も高くなり、排気流量増加率が高いほど燃料が酸化触媒5を通過し易くなる。そのため、フィルタ4に燃料が供給され易くなる。また、排気流量増加率が高いほど燃料がフィルタ4をも通過し易くなる。
そこで、本実施例では、酸化触媒5の温度が低いほど上限噴射量をより少ない量に設定する。また、吸入空気量増加率が高いほど上限噴射量をより少ない量に設定する。
<フィルタ再生制御の制御ルーチン>
次に、本実施例に係るフィルタ再生制御の制御ルーチンについて図2に示すフローチャートに基づいて説明する。本ルーチンは、ECU10に予め記憶されており、内燃機関1の運転中、規定間隔毎に実行されるルーチンである。
本ルーチンでは、ECU10は、先ずS101において、フィルタ4におけるPM捕集量Qpmが第一規定捕集量Q1以上であるか否かを判別する。このS101において、肯定判定された場合、ECU10はS102に進み、否定判定された場合、ECU10は本ルーチンの実行を一旦終了する。
S102において、ECU10は、上述した排気昇温制御を実行する。
次に、ECU10は、酸化触媒5の温度Tcが活性温度の下限値Tc0以上であるか否かを判別する。このS103において、肯定判定された場合、ECU10はS104に進み、否定判定された場合、ECU10はS103を繰り返す。
S104に進んだECU10は、現時点での内燃機関1の吸入空気量および酸化触媒5の温度Tcに基づいて基準噴射量Qfsbaseを算出する。
次に、ECU10は、S105に進み、アクセル開度が増加したか否かを判別する。即ち、内燃機関1の運転状態が、吸入空気量が増加する過渡運転状態に移行するか否かを判別する。このS105において、肯定判定された場合、ECU10はS106に進み、否定判定された場合、ECU10はS114に進む。
S106に進んだECU10は、アクセル開度から要求主燃料噴射量Qfmを算出する。
次に、ECU10は、S107に進み、要求主燃料噴射量Qfmを主燃料噴射量とした場合における吸入空気量の最大値Gamaxを算出する。ここでは、先ず、要求主燃料噴射量Qfmを主燃料噴射量とした場合における内燃機関1の最高回転数Nmaxが算出さ
れる。主燃料噴射量と最高回転数Nmaxとの関係は実験等によって予め求めることが出来る。そして、要求主燃料噴射量Qfmおよび最高回転数Nmaxに基づいて吸入空気量の最大値Gamaxが算出される。本実施例では、要求主燃料噴射量Qfmおよび最高回転数Nmaxと吸入空気量の最大値Gamaxとの関係がマップとしてECU10に予め記憶されている。このマップから吸入空気量の最大値Gamaxが算出される。
次に、ECU10は、S108に進み、吸入空気量増加率RGaを算出する。ここでは、吸入空気量の最大値Gamaxから現時点での吸入空気量、即ち、主燃料噴射量が要求主燃料噴射量Qfmに増加する前の吸入空気量を減算することで吸入空気量の増加量ΔGaを算出する。そして、この吸入空気量の増加量ΔGaを、現時点の内燃機関1の回転数が最高回転数Nmaxにまで上昇するのにかかる時間Δtで除算することで吸入空気量増加率RGaを算出する。
次に、ECU10は、S109に進み、酸化触媒5の温度Tcおよび吸入空気量増加率RGaに基づいて上限噴射量Qfsmaxを算出し、この上限噴射量Qfsmaxを副燃料噴射量の上限値として設定する。本実施例では、図3に示すような、酸化触媒5の温度Tcおよび吸入空気量増加率RGaと上限燃料噴射量Qfamaxとの関係を示すマップがECU10に予め記憶されている。このマップから上限噴射量Qfsmaxが算出される。このマップにおいては、酸化触媒5の温度Tcが低いほど上限噴射量Qfsmaxがより少ない量となっている。また、吸入空気量増加率RGaが高いほど上限噴射量Qfsmaxがより少ない量となっている。
次に、ECU10は、S110に進み、基準噴射量Qfsbaseが上限噴射量Qfsmaxより多いか否かを判別する。このS110において、肯定判定された場合、ECU10はS111に進み、否定判定された場合、ECU10はS114に進む。
S111に進んだECU10は、上限噴射量Qfsmaxを副燃料噴射量として副燃料噴射を実行する。その後、ECU10はS112に進む。
一方、S114に進んだECU10は、基準噴射量Qfsbaseを副燃料噴射量として副燃料噴射を実行する。その後、ECU10はS112に進む。
S112において、ECU10は、フィルタ4におけるPM捕集量が第二規定捕集量Q2以下にまで減少したか否かを判別する。このS112において肯定判定された場合、ECU10はS113に進み、否定判定された場合、ECU10はS104に進む。
S113において、ECU10は、排気昇温制御および副燃料噴射を停止する。即ち、フィルタ再生制御の実行を停止する。その後、ECU10は本ルーチンの実行を一旦停止する。
以上説明した制御ルーチンによれば、フィルタ再生制御において副燃料噴射が実行される場合であって、内燃機関1の運転状態が吸入空気量が増加する過渡運転状態となる場合、上限噴射量Qfsmaxが設定される。
そして、この上限噴射量Qfsmaxは、酸化触媒5の温度Tcが低いほど、また、吸入空気量増加率RGaが高いほど、より少ない量に設定される。
これによれば、フィルタ4への燃料供給量が過剰な量となることを抑制することが出来る。つまり、フィルタ4を通過して外部に放出される燃料の量を抑制することが出来る。従って、フィルタ再生制御の実行中における排気エミッションの悪化を抑制することが出
来る。
<変形例>
次に、本実施例の変形例として、フィルタ4の代わりにNOx触媒を設けた場合について説明する。このような場合、NOx触媒に吸蔵されたSOxを還元すべくSOx被毒再生制御が行われる。尚、この場合、NOx触媒が本発明に係る排気浄化装置を構成する。また、SOx再生制御が本発明に係る再生制御に相当する。
SOx被毒再生制御においても、フィルタ再生制御と同様、排気昇温制御および副燃料噴射が実行される。これらの制御によってNOx触媒が昇温されると共に、副燃料噴射によってNOx触媒に還元剤として燃料が供給される。これによって、NOx触媒の周囲が還元雰囲気となり、SOxが還元される。
このSOx被毒再生制御においても、内燃機関1の運転状態が吸入空気量が増加する過渡運転状態のときに副燃料噴射が実行されると、燃料が酸化触媒5およびNOx触媒を通過して外部に放出され易くなる。
そこで、SOx被毒再生制御においても、上記フィルタ再生制御の場合と同様の方法で副燃料噴射量の上限値を設定する。これにより、NOx触媒への燃料供給量が過剰な量となることを抑制することが出来る。つまり、NOx触媒を通過して外部に放出される燃料の量を抑制することが出来る。従って、SOx被毒再生制御の実行中における排気エミッションの悪化を抑制することが出来る。
尚、本実施例では、内燃機関1において副燃料噴射を実行することで酸化触媒5およびフィルタ4(または、NOx触媒)に燃料を供給する場合について説明したが、酸化触媒5より上流側の排気通路2に燃料添加弁を設け、副燃料噴射の代わりに該燃料添加弁から燃料を添加しても良い。この場合、燃料添加弁による燃料添加量の上限値を前記上限噴射量と同様の方法で設定する。
実施例に係る内燃機関とその吸排気系の概略構成を示す図。 フィルタ再生制御の制御ルーチンを示すフローチャート。 酸化触媒の温度および吸入空気量増加率と上限燃料噴射量との関係を示すマップ。
符号の説明
1・・・内燃機関
2・・・排気通路
4・・・パティキュレートフィルタ
5・・・酸化触媒
7・・・エアフロメータ
10・・ECU
11・・差圧センサ
13・・温度センサ
14・・クランクポジションセンサ
15・・アクセル開度センサ

Claims (2)

  1. 内燃機関の排気通路に設けられた排気浄化装置と、
    該排気浄化装置より上流側の前記排気通路に設けられた酸化機能を有する触媒と、
    該触媒の温度を検出する触媒温度検出手段と、
    前記内燃機関の吸入空気量の単位時間当たりの増加量である吸入空気量増加率を算出する増加率算出手段と、
    前記触媒を活性温度にまで昇温させると共に、前記触媒より上流側から前記触媒および前記排気浄化装置に還元剤を供給することで、前記排気浄化装置の排気浄化能力を再生させる再生制御を実行する再生制御実行手段と、
    前記再生制御において前記触媒および前記排気浄化装置へ還元剤を供給するときの還元剤供給量を補正する補正手段と、を備え、
    前記補正手段は、還元剤供給量の上限値である上限供給量を前記触媒の温度が低いほど少なくし、また、該上限供給量を前記吸入空気量増加率が高いほど少なくすることを特徴とする内燃機関の排気浄化システム。
  2. 前記補正手段が、前記上限供給量を設定する上限供給量設定手段を有し、
    該上限供給量設定手段は、前記触媒の温度が低いほど前記上限供給量をより少ない量に設定し、また、前記吸入空気量増加率が高いほど前記上限供給量をより少ない量に設定することを特徴とする請求項1記載の内燃機関の排気浄化システム。
JP2005178983A 2005-06-20 2005-06-20 内燃機関の排気浄化システム Withdrawn JP2006348905A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178983A JP2006348905A (ja) 2005-06-20 2005-06-20 内燃機関の排気浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178983A JP2006348905A (ja) 2005-06-20 2005-06-20 内燃機関の排気浄化システム

Publications (1)

Publication Number Publication Date
JP2006348905A true JP2006348905A (ja) 2006-12-28

Family

ID=37645003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178983A Withdrawn JP2006348905A (ja) 2005-06-20 2005-06-20 内燃機関の排気浄化システム

Country Status (1)

Country Link
JP (1) JP2006348905A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186379A1 (en) * 2007-08-01 2010-07-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
US20110023467A1 (en) * 2009-07-31 2011-02-03 Ford Global Technologies, Llc Controlling regeneration of an emission control device
JP2011027010A (ja) * 2009-07-23 2011-02-10 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2011027008A (ja) * 2009-07-23 2011-02-10 Mitsubishi Motors Corp 内燃機関の排気浄化装置
WO2014038550A1 (ja) * 2012-09-07 2014-03-13 トヨタ自動車株式会社 内燃機関の制御システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186379A1 (en) * 2007-08-01 2010-07-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
JP2011027010A (ja) * 2009-07-23 2011-02-10 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2011027008A (ja) * 2009-07-23 2011-02-10 Mitsubishi Motors Corp 内燃機関の排気浄化装置
US20110023467A1 (en) * 2009-07-31 2011-02-03 Ford Global Technologies, Llc Controlling regeneration of an emission control device
US8607549B2 (en) * 2009-07-31 2013-12-17 Ford Global Technologies, Llc Controlling regeneration of an emission control device
WO2014038550A1 (ja) * 2012-09-07 2014-03-13 トヨタ自動車株式会社 内燃機関の制御システム
CN104603434A (zh) * 2012-09-07 2015-05-06 丰田自动车株式会社 内燃机的控制***

Similar Documents

Publication Publication Date Title
JP5790868B2 (ja) 内燃機関の排気浄化装置
JP4665924B2 (ja) 内燃機関の排気浄化システム
JP4591165B2 (ja) 内燃機関の排気浄化システム
JP4816606B2 (ja) 内燃機関の排気浄化システム
JP4003768B2 (ja) 内燃機関の排気浄化システム
JP4428361B2 (ja) 内燃機関の排気浄化システム
JP2006348905A (ja) 内燃機関の排気浄化システム
JP4276472B2 (ja) 内燃機関の触媒劣化判定装置
JP2007154732A (ja) 内燃機関の制御システム
JP4259361B2 (ja) 内燃機関の排気浄化装置
JP4453685B2 (ja) 内燃機関の排気浄化システム
JP2010019092A (ja) 内燃機関の排気浄化装置
JP4026576B2 (ja) 内燃機関の排気浄化システム
JP4033189B2 (ja) 内燃機関の排気浄化装置
JP4775201B2 (ja) 内燃機関の排気浄化システム
JP2005291039A (ja) 内燃機関の排気浄化システム
JP4259360B2 (ja) 内燃機関の排気浄化装置
JP2008064074A (ja) 内燃機関の排気浄化装置
JP2008157069A (ja) 内燃機関の排気浄化システム
JP4665830B2 (ja) 内燃機関の排気浄化システム
JP4650245B2 (ja) 内燃機関の排気浄化システム
JP2006097658A (ja) 内燃機関の排気浄化システム
JP2007002774A (ja) 内燃機関の排気浄化システム
JP2008014165A (ja) 内燃機関の排気浄化システム
JP2007016692A (ja) 内燃機関の排気浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090114