JP2006344999A - Susceptor and its manufacturing method - Google Patents

Susceptor and its manufacturing method Download PDF

Info

Publication number
JP2006344999A
JP2006344999A JP2006239511A JP2006239511A JP2006344999A JP 2006344999 A JP2006344999 A JP 2006344999A JP 2006239511 A JP2006239511 A JP 2006239511A JP 2006239511 A JP2006239511 A JP 2006239511A JP 2006344999 A JP2006344999 A JP 2006344999A
Authority
JP
Japan
Prior art keywords
support plate
plate
mounting plate
material layer
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006239511A
Other languages
Japanese (ja)
Inventor
Hiroshi Inazumachi
浩 稲妻地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2006239511A priority Critical patent/JP2006344999A/en
Publication of JP2006344999A publication Critical patent/JP2006344999A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a susceptor which is superior in corrosion-resistance and plasma-resistance. <P>SOLUTION: A mounting plate 21 and a support plate 23 are manufactured, a fixing hole 26 is formed in this support plate 21, a power supplying terminal 24 is inserted into this fixing hole 26 so as to pierce the support plate 23, and next a conductive material layer is formed on this support plate 23 so as to come into contact with the power supplying terminal 24. In a region excluding a region forming the conductive material layer on the support plate, an insulation material layer 27 composed of the same composition as a material constituting the mounting plate 21 and the support plate 23, or the same material powder as that in the major component, is formed. The support plate 23 and the mounting plate 21 are superimposed via the conductive material layer and the insulation material layer 27, and are subjected to a heat processing under pressurization, thereby integrating them. Also, an internal electrode 22 composed of the conductive material layer is formed or arranged to manufacture an electrode built-in susceptor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、サセプタ及びその製造方法に関し、特に、耐腐食性、耐プラズマ性に優れた電極内蔵型のサセプタ、及び該サセプタを歩留まりよく廉価に製造することが可能なサセプタ及びその製造方法に関する。   The present invention relates to a susceptor and a method for manufacturing the susceptor, and more particularly, to a susceptor with a built-in electrode excellent in corrosion resistance and plasma resistance, a susceptor capable of manufacturing the susceptor with a high yield and a low cost.

近年、IC、LSI、VLSI等の半導体の製造工程において使用されるドライエッチング装置や、CVD装置等においては、エッチングやCVDによる成膜をウエハ毎に均一に行うため、半導体ウエハ、液晶基板ガラス、プリント基板等の板状試料を、1枚ずつ処理する枚葉化がすすんでいる。この枚葉化プロセスにおいては、板状試料を1枚ずつ処理室内に保持するために、この板状試料をサセプタと称される試料台(台座)に載置し、所定の処理を施している。
このサセプタは、プラズマ中での使用に耐え、かつ高温での使用に耐え得る必要があることから、耐プラズマ性に優れ、熱伝導率が大きいことが要求される。
このようなサセプタとしては、耐プラズマ性、熱伝導性に優れたセラミックス焼桔体からなるサセプタが使用されている。
In recent years, in dry etching apparatuses used in semiconductor manufacturing processes such as IC, LSI, VLSI, and CVD apparatuses, film formation by etching and CVD is performed uniformly for each wafer. There is a progress in sheet processing of plate-like samples such as printed circuit boards one by one. In this single wafer process, in order to hold the plate samples one by one in the processing chamber, the plate samples are placed on a sample table (pedestal) called a susceptor and subjected to a predetermined process. .
Since this susceptor must be able to withstand use in plasma and withstand use at high temperatures, it is required to have excellent plasma resistance and high thermal conductivity.
As such a susceptor, a susceptor made of a ceramic cautery body excellent in plasma resistance and thermal conductivity is used.

このようなサセプタには、その内部に電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極、通電発熱させて板状試料を加熱するためのヒータ電極、高周波電力を通電してプラズマを発生させてプラズマ処理するためのプラズマ発生用電極等の内部電極を配設した電極内蔵型サセプタがある。   Such a susceptor includes an electrostatic chuck electrode for generating a charge in the interior and fixing the plate sample with electrostatic adsorption force, a heater electrode for heating the plate sample by energizing heat generation, and a high frequency There is an electrode built-in type susceptor in which an internal electrode such as a plasma generating electrode for generating plasma by energizing electric power is provided.

従来、このような電極内蔵型サセプタとしては、例えば、図3に示されるような構造のものが知られている。
図3に示すサセプタ5は、板状試料を載置するための載置板1と、この載置板1を支える支持板3と、前記載置板1と前記支持板3とを接合一体化すると共に、内部電極とされる導電性接合剤層2と、この導電性接合剤層2に接するように、前記支持板3に埋設され、電流を導電性接合剤層2内に供給する給電用端子4、4とからなる。前記載置板1は、絶縁性セラミックス焼結体製の誘電体からなり、前記支持板3は、絶縁性セラミックス焼結体製の盤状基体からなり、前記導電性接合剤層2は、有機物または金属から構成されている。
Conventionally, as such a built-in electrode type susceptor, for example, a structure as shown in FIG. 3 is known.
A susceptor 5 shown in FIG. 3 is formed by joining and integrating a mounting plate 1 for mounting a plate-like sample, a supporting plate 3 that supports the mounting plate 1, and the mounting plate 1 and the supporting plate 3. At the same time, a conductive adhesive layer 2 serving as an internal electrode, and a power supply that is embedded in the support plate 3 so as to be in contact with the conductive adhesive layer 2 and supplies a current into the conductive adhesive layer 2 It consists of terminals 4 and 4. The mounting plate 1 is made of a dielectric made of an insulating ceramic sintered body, the support plate 3 is made of a disk-shaped substrate made of an insulating ceramic sintered body, and the conductive bonding agent layer 2 is made of an organic material. Or it consists of metal.

しかしながら、この種の電極内蔵型サセプタ5においては、上述のように、前記載置板1および支持板3とが、異なる材料からなる導電性接合剤層2により接合されるものであるので、載置板1と支持板3との接合が不十分となり、これらの境界面から腐食性のガスやプラズマが侵入し、内部電極2がガスやプラズマにさらされたり、載置板1と支持板3との接合界面が破壊されるなどの虞があり、サセプタ5の耐腐食性、耐プラズマ性が充分でないという問題があった。
このような問題を解決するために、従来のサセプタ5の製造方法においては、載置板1と支持板3との接合を確実とし、接合部にガスやプラズマ等が侵入しないようにする必要があった。
However, in this type of electrode built-in susceptor 5, as described above, the mounting plate 1 and the support plate 3 are bonded by the conductive bonding agent layer 2 made of different materials. The bonding between the mounting plate 1 and the support plate 3 becomes insufficient, and corrosive gas or plasma enters from these boundary surfaces, and the internal electrode 2 is exposed to the gas or plasma, or the mounting plate 1 and the support plate 3. There is a concern that the joint interface with the susceptor 5 may be destroyed, and the susceptor 5 has insufficient corrosion resistance and plasma resistance.
In order to solve such a problem, in the conventional method of manufacturing the susceptor 5, it is necessary to ensure that the mounting plate 1 and the support plate 3 are bonded to each other so that gas, plasma, or the like does not enter the bonded portion. there were.

例えば、図4および図5に示されるように、前記載置板11を、その側周縁部にリング状のフランジ11aを設け、これにより円盤状の凹部11bを設ける構造とし、この載置板11の凹部11b内に、導電性接合層12、および給電用端子14、14が埋設された支持板13を組み込む方法が考えられた。しかしながら、このような方法においては、載置板11を上記の構造の形状にするとともに、導電性接合層12および支持板13を、載置板11の凹部11bに隙間なく、嵌合するような形状に設計しなくてはならず、そのために、サセプタ15の製造工程が煩雑になるという問題があった。   For example, as shown in FIG. 4 and FIG. 5, the mounting plate 11 has a structure in which a ring-shaped flange 11 a is provided at the peripheral edge of the mounting plate 11, thereby providing a disk-shaped recess 11 b. A method of incorporating the conductive bonding layer 12 and the support plate 13 in which the power feeding terminals 14 and 14 are embedded in the concave portion 11b of this was considered. However, in such a method, the mounting plate 11 is shaped as described above, and the conductive bonding layer 12 and the support plate 13 are fitted into the recess 11b of the mounting plate 11 without a gap. Therefore, there is a problem that the manufacturing process of the susceptor 15 becomes complicated.

本発明は前記事情に鑑みてなされたものであり、その目的は、載置板と支持板との接合面から、サセプタ内部に、腐食性のガスやプラズマ等の侵入がなく、耐腐食性および耐プラズマ性に優れたサセプタを得るとともに、このようなサセプタを容易に得ることができるサセプタ及びその製造方法を得ることにある。   The present invention has been made in view of the above circumstances, and its purpose is that there is no invasion of corrosive gas or plasma into the susceptor from the joint surface between the mounting plate and the support plate, and the corrosion resistance and The object is to obtain a susceptor excellent in plasma resistance and a susceptor capable of easily obtaining such a susceptor and a method for manufacturing the susceptor.

本発明者らは、上記課題解決のため鋭意検討した結果、特定組成の材料により載置板及び支持板を形成し、これらを加圧下で熱処理して一体化するとともに、このときに、載置板と支持板との境界部に絶縁層を介在させることによって、上記課題を効率よく解決し得ることを知見し、本発明を完成するに至った。
即ち、第1の発明においては、板状試料を載置する絶縁性セラミックス焼結体からなる載置板と、この載置板を支持する絶縁性セラミックス焼結体からなる支持板と、これら載置板と支持板との間に外部と接しないように設けられ導電性セラミックスからなる内部電極と、この内部電極に接するように前記支持板に貫通して設けられ導電性セラミックスからなる給電用端子とからなり、前記載置板と前記支持板とが、これらを構成する材料と同一組成または主成分が同一の絶縁性材料からなる絶縁材層により接合一体化されてなることを特徴とするサセプタを提供する。
As a result of diligent investigations for solving the above problems, the inventors of the present invention formed a mounting plate and a support plate from a material having a specific composition, and integrated them by heat treatment under pressure. It has been found that the above problem can be solved efficiently by interposing an insulating layer at the boundary between the plate and the support plate, and the present invention has been completed.
That is, in the first invention, a mounting plate made of an insulating ceramic sintered body for mounting a plate-like sample, a support plate made of an insulating ceramic sintered body for supporting the mounting plate, and these mounting plates An internal electrode made of conductive ceramics provided so as not to contact the outside between the mounting plate and the support plate, and a power supply terminal made of conductive ceramics provided through the support plate so as to contact the internal electrode The susceptor is characterized in that the mounting plate and the support plate are joined and integrated by an insulating material layer made of an insulating material having the same composition or a main component as the material constituting them. I will provide a.

第2の発明においては、絶縁性セラミックス焼結体から板状の載置板及び支持板を作製し、次いでこの支持板に固定孔を形成し、次いで、この固定孔に導電性セラミックスからなる給電用端子を、支持板を貫通するようにしてはめ込み、次いで、この給電用端子を保持する支持板上に、給電用端子に接するように、内部電極となる導電性セラミックスからなる導電材層を形成し、次いで、支持板上の、前記導電材層の形成部分以外の領域に、前記載置板と支持板を構成する材料と同一組成または主成分が同一の粉末絶縁材料からなる絶縁材層を形成し、次いで、前記導電材層と絶縁材層を介して支持板と載置板とを重ね合わせ、加圧下にて熱処理することによりこれらを一体化すると共に、これらの支持板と載置板との間に、前記導電材層からなる内部電極を形成または配設することを特徴とするサセプタの製造方法を提供する。   In the second invention, a plate-like mounting plate and a support plate are produced from an insulating ceramic sintered body, a fixing hole is then formed in the supporting plate, and then a power supply made of conductive ceramics is formed in the fixing hole. A conductive material layer made of conductive ceramics serving as an internal electrode is formed on the support plate holding the power supply terminal so as to be in contact with the power supply terminal. Then, an insulating material layer made of a powder insulating material having the same composition or the same main component as the material constituting the mounting plate and the supporting plate is formed in a region other than the conductive material layer forming portion on the supporting plate. Then, the support plate and the mounting plate are overlapped with each other via the conductive material layer and the insulating material layer, and these are integrated by heat treatment under pressure, and the support plate and the mounting plate Between the conductive material layer and Forming or arranging the internal electrodes made to provide a method of manufacturing a susceptor according to claim.

以上説明したように、本発明のサセプタによれば、載置板と支持板との接合面から、腐食性のガスやプラズマの侵入がないので、これらの接合界面が破壊されることがなく、また内部電極が前記ガスやプラズマにさらされることがないので、耐腐食性、耐プラズマ性に優れる。
また、本発明のサセプタの製造方法によれば、載置板と支持板との境界面に、絶縁材層を設けてこれらを接合一体化するものであるので、耐腐食性、耐プラズマ性に優れたサセプタを容易に得ることができる。
また、載置板及び支持板を複雑な形状にする必要がなく、単なる板状体とすることができるので、サセプタを歩留まりよく、廉価に製造することができる。
As described above, according to the susceptor of the present invention, since there is no invasion of corrosive gas or plasma from the joint surface between the mounting plate and the support plate, these joint interfaces are not destroyed, Further, since the internal electrode is not exposed to the gas or plasma, it is excellent in corrosion resistance and plasma resistance.
Further, according to the susceptor manufacturing method of the present invention, an insulating material layer is provided on the boundary surface between the mounting plate and the support plate, and these are joined and integrated, so that corrosion resistance and plasma resistance are improved. An excellent susceptor can be easily obtained.
In addition, the mounting plate and the support plate do not need to have complicated shapes, and can be a simple plate-like body. Therefore, the susceptor can be manufactured with high yield and low cost.

以下、発明の実施の形態を掲げ、本発明を詳述する。なお、この発明の実施の形態は、特に限定のない限り発明の内容を制限するものではない。
図1は、本発明のサセプタの一例を示したものである。
サセプタ25は、板状試料を載置する載置板21と、この載置板21と一体化される支持板23と、この載置板21と支持板23との間に形成された内部電極22と、この内部電極22に通じ、前記支持板23内部に貫通するようにして設けられた給電用端子24、24とからなる。
そして、上記載置板21と上記支持板23とは、これらを構成する材料と同一組成または主成分が同一の絶縁材料によりなる絶縁材層(27)によって接合一体化されてなるものである。
Hereinafter, the present invention will be described in detail with reference to embodiments of the invention. The embodiment of the present invention does not limit the content of the invention unless otherwise limited.
FIG. 1 shows an example of the susceptor of the present invention.
The susceptor 25 includes a placement plate 21 on which a plate-like sample is placed, a support plate 23 integrated with the placement plate 21, and an internal electrode formed between the placement plate 21 and the support plate 23. 22 and power supply terminals 24, 24 provided so as to penetrate through the internal electrode 22 and penetrate the support plate 23.
And the said mounting plate 21 and the said support plate 23 are joined and integrated by the insulating material layer (27) which consists of an insulating material with the same composition or a main component as the material which comprises these.

上記載置板21及び支持板23は、その重ね合わせ面の形状を同じくし、ともに、アルミナ基焼結体や窒化アルミニウム基焼結体などの絶縁性セラミックス焼結体からなるものである。
前記のアルミナ基焼結体や窒化アルミニウム基焼結体としては、特に限定されるものではなく、一般に市販されているものでよい。
また、前記アルミナ基焼桔体や窒化アルミニウム基焼結体は、焼結性や耐プラズマ性を向上させるために、イットリア(Y)、カルシア(CaO)、マグネシア(MgO)、炭化珪素(SiC)、チタニア(TiO)から選択された1種または2種以上を合計で0.1〜10.0重量%含有するようにしてもよい。
The mounting plate 21 and the support plate 23 have the same overlapping surface shape, and both are made of an insulating ceramic sintered body such as an alumina-based sintered body or an aluminum nitride-based sintered body.
The alumina-based sintered body and the aluminum nitride-based sintered body are not particularly limited, and may be commercially available.
The alumina-based cauterized body and the aluminum nitride-based sintered body are made of yttria (Y 2 O 3 ), calcia (CaO), magnesia (MgO), silicon carbide in order to improve sinterability and plasma resistance. (SiC), titania may be contained 0.1 to 10.0% by weight of one selected from (TiO 2) or two or more in total.

前記絶縁材層(27)は、上記載置板21と支持板22との境界部、すなわち内部電極22形成部以外の外周部領域を接合するために設けられたものであり、上記載置板21及び支持板23と同一あるいは主成分が同一の粉末絶縁材料からなるものである。
ここに、「主成分が同一の材料」とは、上記載置板21と上記支持板23を構成する材料以外の材料の含有量が50重量%以下である材料をいい、例えば、上記載置板21と上記支持板23とが窒化アルミニウムで構成される場合、窒化アルミニウム以外の成分が50重量%以下である材料をいう。
The insulating material layer (27) is provided to join a boundary portion between the mounting plate 21 and the support plate 22, that is, an outer peripheral region other than the internal electrode 22 forming portion. 21 and the support plate 23 are made of a powder insulating material which is the same or whose main component is the same.
Here, the “material having the same main component” refers to a material having a content of materials other than those constituting the mounting plate 21 and the support plate 23 of 50% by weight or less. In the case where the plate 21 and the support plate 23 are made of aluminum nitride, it means a material in which components other than aluminum nitride are 50% by weight or less.

上記内部電極22は、電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極、通電発熱させて板状試料を加熱するためのヒータ電極、高周波電力を通電してプラズマを発生させてプラズマ処理するためのプラズマ発生用電極等として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。
この内部電極22は、アルミナ−タンタルカーバイト複合導電性材料、アルミナ−タングステン複合導電性材料、アルミナ−炭化珪素複合導電性材料、窒化アルミニウム−タングステン複合導電性材料、窒化アルミニウム−タンタル複合導電性材料等の導電性セラミックスにより形成されている。
The internal electrode 22 includes an electrostatic chuck electrode for generating a charge and fixing the plate-like sample with an electrostatic adsorption force, a heater electrode for heating the plate-like sample by energizing and heating, and a high-frequency power. Thus, it is used as a plasma generating electrode for generating plasma and performing plasma processing, and its shape and size are appropriately adjusted depending on its use.
The internal electrode 22 includes an alumina-tantalum carbide composite conductive material, an alumina-tungsten composite conductive material, an alumina-silicon carbide composite conductive material, an aluminum nitride-tungsten composite conductive material, and an aluminum nitride-tantalum composite conductive material. It is formed of conductive ceramics such as.

上記給電用端子24,24は、内部電極22に電流を供給するために設けられたもので、その数、形状、大きさ等は、内部電極22の形状と、態様(即ち静電チャック用電極、ヒータ電極、プラズマ発生電極等のいずれのタイプの内部電極22とするか)により決定される。
この給電用端子24は、上記の内部電極22を形成している導電性セラミックス粉末を加圧焼結した複合導電性焼結体により形成されている。
The power feeding terminals 24 and 24 are provided for supplying a current to the internal electrode 22, and the number, shape, size, etc. of the power supply terminals 24 and 24 are the shape and mode of the internal electrode 22 (that is, the electrostatic chuck electrode). , Which type of internal electrode 22 such as a heater electrode or a plasma generating electrode is used).
The power feeding terminal 24 is formed of a composite conductive sintered body obtained by pressure-sintering the conductive ceramic powder forming the internal electrode 22.

次に、このようなサセプタ25の製造方法を説明する。
図2は、サセプタ25の製造工程を示したものである。
まず、アルミナ基焼結体や窒化アルミニウム基焼結体などの絶縁性セラミックス焼結体から板状の載置板21及び支持板23を作製する。この場合、前記絶縁性セラミックス焼結体の粉末を所望の形状に成型、焼結することによって載置板21及び支持板23を得ることができる。
このとき、好ましくは、載置板21の片面(板状試料の載置面)を平坦度が10μm以下となるように研磨する。
Next, a method for manufacturing such a susceptor 25 will be described.
FIG. 2 shows a manufacturing process of the susceptor 25.
First, the plate-shaped mounting plate 21 and the support plate 23 are produced from an insulating ceramic sintered body such as an alumina-based sintered body or an aluminum nitride-based sintered body. In this case, the mounting plate 21 and the support plate 23 can be obtained by molding and sintering the powder of the insulating ceramic sintered body into a desired shape.
At this time, it is preferable that one surface of the mounting plate 21 (the mounting surface of the plate-like sample) is polished so that the flatness is 10 μm or less.

次いで、上記支持板23に、予め給電用端子24,24を組み込み保持するための固定孔26,26を形成する。この固定孔26,26の穿設方法は、特に制限されるものでなく、例えば、ダイヤモンドドリルによる孔あけ加工法、レーザ加工法、放電加工法、超音波加工法を用いて穿設することができる。また、その加工精度は、通常の加工精度でよく、歩留まりはぼ100%で加工できる。
なお、固定孔26,26の穿設位置及び数は、内部電極22の態様と形状より決定される。
Next, fixing holes 26 and 26 for incorporating and holding the power feeding terminals 24 and 24 are formed in the support plate 23 in advance. The method for drilling the fixing holes 26 is not particularly limited, and for example, drilling can be performed using a drilling method using a diamond drill, a laser processing method, an electric discharge processing method, or an ultrasonic processing method. it can. Further, the processing accuracy may be normal processing accuracy, and the processing can be performed with a yield of about 100%.
The positions and number of the fixing holes 26 and 26 are determined by the form and shape of the internal electrode 22.

次いで、給電用端子24を、上記支持体23の固定孔26に密着固定し得る大きさ、形状となるように作製する。
給電用端子24の作製方法としては、導電性セラミックス粉末を、所望の形状に成形して加圧焼結し、複合導電性焼結体とする方法等があげられる。このとき、給電用端子24に用いられる導電性セラミックス粉末は、サセプタ25に形成される内部電極22と同様のものからなることが好ましい。
この給電用端子24の加工精度は、後の加圧熱処理で再焼成して固定されるので、日本工業規格(JIS)の標準公差レベルでクリアランスをもっていてもよい。
Next, the power supply terminal 24 is fabricated so as to have a size and shape that can be fixed in close contact with the fixing hole 26 of the support 23.
Examples of a method for producing the power supply terminal 24 include a method in which a conductive ceramic powder is formed into a desired shape and subjected to pressure sintering to form a composite conductive sintered body. At this time, the conductive ceramic powder used for the power supply terminal 24 is preferably made of the same material as the internal electrode 22 formed on the susceptor 25.
Since the processing accuracy of the power supply terminal 24 is fixed by being refired in a subsequent pressurizing heat treatment, it may have a clearance at a standard tolerance level of Japanese Industrial Standard (JIS).

次に、作製した給電用端子24,24を、支持板23の固定孔26,26に嵌め込む。
次に、給電用端子24,24が組み込まれた支持板23の表面の所定領域に前記給電用端子24,24に接触するように、上記の導電性セラミックス粉末を、エチルアルコール等の有機溶媒に分散した内部電極形成用塗布剤を塗布し、乾燥して内部電極形成層22’を形成する。このような塗布液の塗布方法としては、均一な厚さに塗布する必要があることから、スクリーン印刷法等を用いることが望ましい。
また、他の方法として、上記の導電性セラミックスからなる薄板を配設して内部電極形成層22’とする方法等がある。この薄板を配設する場合には、この薄板と給電用端子24、24とを強固に接触させておく必要がある。
Next, the manufactured power feeding terminals 24 and 24 are fitted into the fixing holes 26 and 26 of the support plate 23.
Next, the conductive ceramic powder is placed in an organic solvent such as ethyl alcohol so that the power supply terminals 24 and 24 come into contact with a predetermined region on the surface of the support plate 23 in which the power supply terminals 24 and 24 are incorporated. The dispersed internal electrode forming coating agent is applied and dried to form the internal electrode forming layer 22 ′. As a coating method for such a coating solution, it is desirable to use a screen printing method or the like because it is necessary to apply the coating solution to a uniform thickness.
As another method, there is a method in which a thin plate made of the above-mentioned conductive ceramics is disposed to form the internal electrode forming layer 22 ′. When the thin plate is provided, it is necessary to firmly contact the thin plate and the power feeding terminals 24 and 24.

また、支持板23上の内部電極形成層22’を形成した領域以外の領域に、絶縁性、耐腐食性、耐プラズマ性を向上させるために、上記載置板22と上記支持板23とを構成する材料と同一組成または主成分が同一の粉末絶縁材料からなる絶縁材層27を形成する。
この絶縁材層27を形成するには、例えば、上記載置板21と上記支持板23とがアルミナ焼結体で形成されているときはアルミナ粉末をエチルアルコール等の有機溶媒に分散した塗布剤、上記載置板21と上記支持板23とが窒化アルミニウム焼結体で形成されているときは窒化アルミニウム粉末をエチルアルコール等の有機溶媒に分散した塗布剤を、上記所定部位にスクリーン印刷などで塗布し、乾燥する。
Further, in order to improve insulation, corrosion resistance, and plasma resistance in a region other than the region where the internal electrode forming layer 22 ′ is formed on the support plate 23, the mounting plate 22 and the support plate 23 described above are provided. An insulating material layer 27 made of a powder insulating material having the same composition or the same main component as the constituent material is formed.
In order to form the insulating material layer 27, for example, when the mounting plate 21 and the support plate 23 are formed of an alumina sintered body, a coating agent in which alumina powder is dispersed in an organic solvent such as ethyl alcohol. When the mounting plate 21 and the support plate 23 are formed of an aluminum nitride sintered body, a coating agent in which an aluminum nitride powder is dispersed in an organic solvent such as ethyl alcohol is applied to the predetermined portion by screen printing or the like. Apply and dry.

次に、内部電極形成層22’及び絶縁材層27を形成した支持板23上に、該内部電極形成層22’及び絶縁材層27を介して、載置板21を重ねた後、これらを加圧下にて熱処理して一体化する。
このような製造方法においては、前記支持板23と、前記載置板21との間に、有機物や金蔵からなる接合剤を介在させることなく、加圧下での熱処理のみで、載置板21と支持板23との接合一体化を達成することができる。
このときの熱処理の条件としては、熱処理雰囲気は真空、Ar、He、Nなどの不活性雰囲気であるのが好ましい。加圧力は5〜10MPaが望ましく、また、熱処理温度は1600〜1850℃が望ましい。
Next, after placing the mounting plate 21 on the support plate 23 on which the internal electrode forming layer 22 ′ and the insulating material layer 27 are formed via the internal electrode forming layer 22 ′ and the insulating material layer 27, Integrate by heat treatment under pressure.
In such a manufacturing method, the mounting plate 21 and the mounting plate 21 can be formed only by heat treatment under pressure without interposing a bonding agent made of an organic substance or a metal warehouse between the mounting plate 21 and the mounting plate 21. Bonding integration with the support plate 23 can be achieved.
As conditions for the heat treatment at this time, the heat treatment atmosphere is preferably an inert atmosphere such as vacuum, Ar, He, N 2 or the like. The applied pressure is desirably 5 to 10 MPa, and the heat treatment temperature is desirably 1600 to 1850 ° C.

この加圧下の熱処理により、内部電極形成層22’は焼成されて、導電性セラミックスからなる内部電極22とされる。また、上記支持板21及び載置板23は、上記絶縁材層27を介して接合一体化される。また、上記給電用端子24,24は、加圧下での熱処理で再焼成して支持板23の固定孔26,26に固定される。   By this heat treatment under pressure, the internal electrode forming layer 22 ′ is fired to form the internal electrode 22 made of conductive ceramics. Further, the support plate 21 and the mounting plate 23 are joined and integrated through the insulating material layer 27. The power supply terminals 24 and 24 are refired by heat treatment under pressure and fixed to the fixing holes 26 and 26 of the support plate 23.

このようなサセプタの製造方法によれば、載置板21と支持板23との接合面に、これらを構成する材料と同一組成または主成分が同一の絶縁性材料からなる絶縁材層27が設けられて、この絶縁材層27により、載置板21と支持板23とが接合一体化されるため、載置板21と支持板23との接合界面から、ガスやプラズマ等がサセプタ25内部に侵入することがなく、内部電極22がこれらにさらされることがない。よって、載置板21と支持板23との接合界面が破壊されることがない。また、内蔵された内部電極22が異常放電や破壊などを起こすことがないので、サセプタ25の耐腐食性、耐プラズマ性を向上させることができる。
さらに、このようなサセプタ25の製造方法によれば、上記支持板23と上記載置板21とが、絶縁材層27により良好に接合一体化されるものであるので、従来のように、これらの形状に特別な工夫を必要とせず、簡単な板状形状とすることができ、サセプタ25を歩留まりよく廉価に製造することができる。
According to such a susceptor manufacturing method, the insulating material layer 27 made of an insulating material having the same composition or the same main component as the material constituting the mounting plate 21 and the support plate 23 is provided on the joint surface. Since the mounting plate 21 and the support plate 23 are joined and integrated by the insulating material layer 27, gas, plasma, or the like is introduced into the susceptor 25 from the joint interface between the mounting plate 21 and the support plate 23. There is no penetration and the internal electrode 22 is not exposed to them. Therefore, the joint interface between the mounting plate 21 and the support plate 23 is not destroyed. Further, since the built-in internal electrode 22 does not cause abnormal discharge or destruction, the corrosion resistance and plasma resistance of the susceptor 25 can be improved.
Further, according to such a manufacturing method of the susceptor 25, the support plate 23 and the mounting plate 21 are joined and integrated well by the insulating material layer 27. Therefore, the susceptor 25 can be manufactured with good yield and low cost.

以下、本発明を実施例を示して詳しく説明する。
(実施例1)
以下、内部電極22を静電チャック用電極とした場合の実施例を掲げ、本発明を更に詳述する。
「給電用端子の作製」
アルミナ粉末(平均粒径0.2μm、大明化学工業(株)製)40重量部、タンタルカーバイト粉末(平均粒径1μm、日本新金属(株)製)60重量部、イソプロピルアルコール150重量部とを混合し、更に遊星型ボールミルを用いて均一に分散させてスラリーを得た。
このスラリーから、アルコール分を、吸引ろ過して除去し、乾燥してアルミナータンタルカーバイト複合粉末を得た。
次に、上記複合粉末を成型、焼結し、直径2.5mm、長さ5mmの棒状アルミナータンタルカーバイト複合導電性焼結体を得、これを給電用端子24とした。焼結は温度1700℃、圧力20MPaの条件でホットプレスによる加圧焼結を行った。焼結後のアルミナータンタルカーバイト複合導電性焼結体の相対密度は98%以上であった。
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
Hereinafter, the present invention will be described in more detail with reference to examples in which the internal electrode 22 is an electrostatic chuck electrode.
"Production of power supply terminals"
40 parts by weight of alumina powder (average particle size 0.2 μm, manufactured by Daimei Chemical Co., Ltd.), 60 parts by weight of tantalum carbide powder (average particle size 1 μm, manufactured by Nippon Shin Metal Co., Ltd.), 150 parts by weight of isopropyl alcohol And further uniformly dispersed using a planetary ball mill to obtain a slurry.
From this slurry, the alcohol was removed by suction filtration and dried to obtain an alumina-tantalum carbide composite powder.
Next, the composite powder was molded and sintered to obtain a rod-like alumina-tantalum carbide composite conductive sintered body having a diameter of 2.5 mm and a length of 5 mm. Sintering was performed under pressure with a hot press under conditions of a temperature of 1700 ° C. and a pressure of 20 MPa. The relative density of the sintered alumina-tantalum carbide composite conductive sintered body after sintering was 98% or more.

「支持板の作製」
アルミナ粉末(平均拉径0.2μm、大明化学工業(株)製)を成型、焼結し、直径230mm、厚さ5mmの円盤状アルミナ焼結体(支持板23)を得た。
焼結時の条件は、上記給電用端子24の作製時と同様とした。
次いで、このアルミナ焼結体に、給電用端子24,24を組み込み、固定するための固定孔26,26を、ダイヤモンドドリルによって孔あけ加工することにより穿設し、アルミナ焼結体製の支持板23を得た。
"Production of support plate"
Alumina powder (average abdominal diameter 0.2 μm, manufactured by Daimei Chemical Industry Co., Ltd.) was molded and sintered to obtain a disk-shaped alumina sintered body (support plate 23) having a diameter of 230 mm and a thickness of 5 mm.
The conditions for sintering were the same as those for producing the power supply terminal 24.
Next, fixing holes 26 and 26 for incorporating and fixing power supply terminals 24 and 24 are drilled into the alumina sintered body by drilling with a diamond drill, and a support plate made of the alumina sintered body is formed. 23 was obtained.

「載置板の作製」
上記アルミナ基焼結体製の支持板23の作製方法に準じて、直径230mm、厚さ5mmの円盤状アルミナ基焼結体を得た。次いで、この円盤状アルミナ基焼結体の一面(板状試料の載置面)を平坦度が10μm以下となるよう研摩し、アルミナ基焼結体製の載置板21を得た。
"Production of mounting plate"
A disc-shaped alumina-based sintered body having a diameter of 230 mm and a thickness of 5 mm was obtained in accordance with the method for producing the support plate 23 made of the alumina-based sintered body. Next, one surface of the disk-shaped alumina-based sintered body (the surface on which the plate-shaped sample was placed) was polished so as to have a flatness of 10 μm or less to obtain a mounting plate 21 made of an alumina-based sintered body.

「一体化」
上記支持板23に穿設された前記固定孔26,26に、前記の給電用端子24,24を押し込み、組み込み固定した。
次いで、図2−(b)に示すように、この給電用端子24,24が組み込み固定された支持板23上に、後の加圧下での熱処理工程で内部電極22となるよう、40重量%のアルミナ粉末と60重量%のタンタルカーバイト粉末を含む、アルミナータンタルカーバイト複合導電性材料からなる塗布剤を、スクリーン印刷法にて印刷塗布し、乾燥して、内部電極形成層22’を形成した。
次いで、支持板23上の上記内部電極22形成領域以外の領域に、アルミナ粉末(平均拉径0.2μm、大明化学工業(株)製)と、エチルアルコールを含む塗布剤を、スクリーン印刷法にて印刷塗布し、乾燥して、絶縁材層27を形成した。
次いで、図2−(c)に示すように、この内部電極形成層22’(印刷面)及び絶縁材層27を挟み込むように、また、前記載置板21の研摩面が上面となるように、前記支持板23と載置板21とを重ね合わせて、ホットプレスにて加圧下にて熱処理して一体化して実施例1のサセプタ25を作製した。このときの加圧、熱処理条件は、温度1750℃、圧力7.5MPaの条件にて行った。
"Integration"
The power feeding terminals 24, 24 were pushed into the fixing holes 26, 26 formed in the support plate 23, and fixed.
Next, as shown in FIG. 2- (b), 40% by weight is formed on the support plate 23 in which the power supply terminals 24, 24 are assembled and fixed so that the inner electrode 22 is formed in a heat treatment step under subsequent pressure. A coating agent made of an alumina-tantalum carbide composite conductive material containing 60 wt% of tantalum carbide powder and an alumina-tantalum carbide powder is applied by screen printing and dried to form an internal electrode forming layer 22 ′. Formed.
Next, in a region other than the region where the internal electrode 22 is formed on the support plate 23, an alumina powder (average diameter of 0.2 μm, manufactured by Daimei Chemical Industry Co., Ltd.) and a coating agent containing ethyl alcohol are applied to the screen printing method. Then, the insulating material layer 27 was formed by printing and drying.
Next, as shown in FIG. 2C, the internal electrode forming layer 22 ′ (printing surface) and the insulating material layer 27 are sandwiched, and the polishing surface of the mounting plate 21 is the upper surface. The support plate 23 and the mounting plate 21 were superposed and heat-treated under pressure with a hot press and integrated to produce the susceptor 25 of Example 1. The pressurization and heat treatment conditions at this time were a temperature of 1750 ° C. and a pressure of 7.5 MPa.

「評価」
このようにして作製されたサセプタ25の接合断面をSEM観察したところ、前記載置板21と、前記支持板23と、前記給電用端子24,24とは良好に接合されていた。
また、この実施例としての電極内蔵サセプタ25をCFガスとOガスとの混合ガスのプラズマ中に15時間曝した後、サセプタ25表面の性状を目視観察し、また、サセプタ25の板状試料載置面の表面粗さの変化、吸着力の変化を測定したところ、表面性状に変化は認められず、また、表面粗さも殆ど変化せず(試験前Ra=0.12μm、試験後Ra=0.13μm)、吸着力も変化しない(試験前:0.03MPa、試験後0.03MPa)ことから、耐腐食性、耐プラズマ性が極めて良好であることが判明した。
"Evaluation"
When the cross section of the susceptor 25 thus fabricated was observed with an SEM, the mounting plate 21, the support plate 23, and the power feeding terminals 24 and 24 were well bonded.
In addition, the electrode-embedded susceptor 25 according to this embodiment is exposed to plasma of a mixed gas of CF 4 gas and O 2 gas for 15 hours, and then the surface property of the susceptor 25 is visually observed. When changes in surface roughness and adsorption force of the sample mounting surface were measured, no change was observed in the surface properties, and there was almost no change in surface roughness (Ra before test = 0.12 μm, Ra after test). = 0.13 μm), and the adsorptive power does not change (before the test: 0.03 MPa, after the test 0.03 MPa), it was found that the corrosion resistance and the plasma resistance were extremely good.

(比較例)
上記の絶縁材層27を介在させなかった他は実施例に準じて、比較例としての電極内蔵サセプタを作製した。この電極内蔵サセプタの耐腐食性、耐プラズマ性を実施例に準じて試験したところ、接合面が腐食して内部電極へのプラズマ侵入により異常放電が起こり、耐腐食性、耐プラズマ性が劣ることが判明した。
(Comparative example)
A susceptor with a built-in electrode as a comparative example was fabricated according to the example except that the insulating material layer 27 was not interposed. When the corrosion resistance and plasma resistance of this electrode built-in susceptor were tested according to the examples, the joint surface was corroded and abnormal discharge occurred due to plasma intrusion into the internal electrode, resulting in poor corrosion resistance and plasma resistance. There was found.

本発明のサセプタの一例を示す断面図である。It is sectional drawing which shows an example of the susceptor of this invention. 本発明のサセプタの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the susceptor of this invention. 従来のサセプタの一例を示す断面図である。It is sectional drawing which shows an example of the conventional susceptor. 従来のサセプタの一例における載置板および支持板の形状を示す断面図である。It is sectional drawing which shows the shape of the mounting plate and support plate in an example of the conventional susceptor. 従来のサセプタの一例における載置板および支持板の形状を示す断面図である。It is sectional drawing which shows the shape of the mounting plate and support plate in an example of the conventional susceptor.

符号の説明Explanation of symbols

21 載置板
22 内部電極
23 支持板
24 給電用端子
25 サセプタ
26 固定孔
27 絶縁材層
21 mounting plate 22 internal electrode 23 support plate 24 power supply terminal 25 susceptor 26 fixing hole 27 insulating material layer

Claims (2)

板状試料を載置する絶縁性セラミックス焼結体からなる載置板と、この載置板を支持する絶縁性セラミックス焼結体からなる支持板と、これら載置板と支持板との間に外部と接しないように設けられ導電性セラミックスからなる内部電極と、この内部電極に接するように前記支持板に貫通して設けられ導電性セラミックスからなる給電用端子とからなり、
前記載置板と前記支持板とが、これらを構成する材料と同一組成または主成分が同一の絶縁性材料からなる絶縁材層により接合一体化されてなることを特徴とするサセプタ。
A mounting plate made of an insulating ceramic sintered body for mounting a plate-like sample, a support plate made of an insulating ceramic sintered body for supporting the mounting plate, and between the mounting plate and the supporting plate An internal electrode made of conductive ceramics provided so as not to contact the outside, and a power feeding terminal made of conductive ceramics provided so as to penetrate the support plate so as to contact the internal electrodes,
A susceptor, wherein the mounting plate and the support plate are joined and integrated by an insulating material layer made of an insulating material having the same composition or a main component as the material constituting them.
絶縁性セラミックス焼結体から板状の載置板及び支持板を作製し、次いでこの支持板に固定孔を形成し、次いで、この固定孔に導電性セラミックスからなる給電用端子を、支持板を貫通するようにしてはめ込み、次いで、この給電用端子を保持する支持板上に、給電用端子に接するように、内部電極となる導電性セラミックスからなる導電材層を形成し、次いで、支持板上の、前記導電材層の形成部分以外の領域に、前記載置板と支持板を構成する材料と同一組成または主成分が同一の粉末絶縁材料からなる絶縁材層を形成し、次いで、前記導電材層と絶縁材層を介して支持板と載置板とを重ね合わせ、加圧下にて熱処理することによりこれらを一体化すると共に、これらの支持板と載置板との間に、前記導電材層からなる内部電極を形成または配設することを特徴とするサセプタの製造方法。   A plate-like mounting plate and a support plate are produced from the insulating ceramic sintered body, and then a fixing hole is formed in the support plate. Next, a power supply terminal made of conductive ceramics is provided in the fixing hole, and the support plate is mounted. Then, a conductive material layer made of conductive ceramic serving as an internal electrode is formed on the support plate holding the power supply terminal so as to be in contact with the power supply terminal, and then on the support plate An insulating material layer made of a powder insulating material having the same composition or main component as the material constituting the mounting plate and the supporting plate is formed in a region other than the conductive material layer forming portion, and then the conductive material layer is formed. The support plate and the mounting plate are overlapped with each other through the material layer and the insulating material layer, and they are integrated by heat treatment under pressure, and the conductive layer is interposed between the support plate and the mounting plate. Form internal electrodes consisting of material layers. Method of manufacturing a susceptor, characterized in that is provided.
JP2006239511A 2006-09-04 2006-09-04 Susceptor and its manufacturing method Pending JP2006344999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239511A JP2006344999A (en) 2006-09-04 2006-09-04 Susceptor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239511A JP2006344999A (en) 2006-09-04 2006-09-04 Susceptor and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000118582A Division JP2001308165A (en) 2000-04-05 2000-04-19 Susceptor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006344999A true JP2006344999A (en) 2006-12-21

Family

ID=37641653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239511A Pending JP2006344999A (en) 2006-09-04 2006-09-04 Susceptor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006344999A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305968A (en) * 2007-06-07 2008-12-18 Sei Hybrid Kk Electrode connection structure of wafer holder
JP2015035485A (en) * 2013-08-08 2015-02-19 株式会社東芝 Electrostatic chuck, placement plate support and manufacturing method of electrostatic chuck
JP2021141116A (en) * 2020-03-02 2021-09-16 東京エレクトロン株式会社 Manufacturing method for electrostatic chuck, electrostatic chuck, and substrate processing device
CN113896513A (en) * 2021-11-02 2022-01-07 珠海粤科京华科技有限公司 High-performance alumina ceramic substrate and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300136A (en) * 1991-03-26 1992-10-23 Ngk Insulators Ltd Electrostatic chuck and its manufacture
JPH0513558A (en) * 1990-12-25 1993-01-22 Ngk Insulators Ltd Wafer heating device and its manufacture
JPH09283606A (en) * 1996-04-08 1997-10-31 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JPH10144779A (en) * 1996-11-14 1998-05-29 Fujitsu Ltd Electrostatic chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513558A (en) * 1990-12-25 1993-01-22 Ngk Insulators Ltd Wafer heating device and its manufacture
JPH04300136A (en) * 1991-03-26 1992-10-23 Ngk Insulators Ltd Electrostatic chuck and its manufacture
JPH09283606A (en) * 1996-04-08 1997-10-31 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JPH10144779A (en) * 1996-11-14 1998-05-29 Fujitsu Ltd Electrostatic chuck

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305968A (en) * 2007-06-07 2008-12-18 Sei Hybrid Kk Electrode connection structure of wafer holder
JP2015035485A (en) * 2013-08-08 2015-02-19 株式会社東芝 Electrostatic chuck, placement plate support and manufacturing method of electrostatic chuck
JP2021141116A (en) * 2020-03-02 2021-09-16 東京エレクトロン株式会社 Manufacturing method for electrostatic chuck, electrostatic chuck, and substrate processing device
CN113896513A (en) * 2021-11-02 2022-01-07 珠海粤科京华科技有限公司 High-performance alumina ceramic substrate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4040284B2 (en) Electrode built-in susceptor for plasma generation and manufacturing method thereof
JP4744855B2 (en) Electrostatic chuck
JP4482472B2 (en) Electrostatic chuck and manufacturing method thereof
JP3155802U (en) Wafer mounting device
JP4467453B2 (en) Ceramic member and manufacturing method thereof
TW541639B (en) Substrate processing apparatus
KR100553444B1 (en) Susceptors and the methods of manufacturing them
JP4879929B2 (en) Electrostatic chuck and manufacturing method thereof
KR100978395B1 (en) Electrode-built-in susceptor and a manufacturing method therefor
JP3973872B2 (en) Electrode built-in susceptor and manufacturing method thereof
JP2001308165A (en) Susceptor and its manufacturing method
JP2001351966A (en) Suscepter and method for manufacturing the suscepter
JP3746935B2 (en) Susceptor and manufacturing method thereof
JP3685962B2 (en) Susceptor and manufacturing method thereof
JP2006344999A (en) Susceptor and its manufacturing method
JP2003152064A (en) Electrode built-in susceptor and its manufacturing method
JP2004055608A (en) Susceptor with built-in electrode
JP2003124296A (en) Susceptor and its manufacturing method
JP2009141344A (en) Substrate support
JP2003017223A (en) Ceramic heater and electrostatic chuck with built-in ceramic heater
JP2003017552A (en) Ceramic heater, and electrostatic chuck incorporating same
TW200415693A (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
JP7184652B2 (en) holding device
JP2023138085A (en) Electrostatic chuck member and electrostatic chuck device
JP2023138087A (en) Electrostatic chuck member, electrostatic chuck device, and method for manufacturing electrostatic chuck member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Effective date: 20100519

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A02