JP2006341232A - Fluid treatment apparatus and fluid treatment method - Google Patents

Fluid treatment apparatus and fluid treatment method Download PDF

Info

Publication number
JP2006341232A
JP2006341232A JP2005171429A JP2005171429A JP2006341232A JP 2006341232 A JP2006341232 A JP 2006341232A JP 2005171429 A JP2005171429 A JP 2005171429A JP 2005171429 A JP2005171429 A JP 2005171429A JP 2006341232 A JP2006341232 A JP 2006341232A
Authority
JP
Japan
Prior art keywords
fluid
wall surface
displacement
mixing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005171429A
Other languages
Japanese (ja)
Inventor
Hitoshi Toma
均 当麻
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005171429A priority Critical patent/JP2006341232A/en
Publication of JP2006341232A publication Critical patent/JP2006341232A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid treatment apparatus which enables a fluid to be rapidly uniformalized and also is very suitable for mass production. <P>SOLUTION: The forced-mixing type fluid treatment apparatus is structured so that a rotary disk 60 connecting a rotary means of a motor 65 is arranged to be faced to a fixed disk 59, at least two fluids are introduced into a reaction space made to form by these disks, that is into the process space, each other independently from a fluid A inlet 56 and a fluid B inlet 57 in the relationship of relative position of upper and lower flow, and mixing/reaction can be carried out in a uniform concentration space, wherein a uniform mixing of fluids can be instantaneously produced by a circular flow of fluid to be brought about from rotational motion of the rotary disk 60 without giving an influence to the residence time of fluid in the apparatus. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体処理装置および流体処理方法に関する。特に、強制混合型微小間隙式流体処理装置および微小間隙を用いる流体処理方法に適用可能な装置及び方法に関する。   The present invention relates to a fluid processing apparatus and a fluid processing method. In particular, the present invention relates to a forced mixing type micro-gap fluid processing apparatus and an apparatus and method applicable to a fluid processing method using a micro-gap.

一般的に微小流路式混合器、微小流路式反応器、微小流路式熱交換器等の微小間隙式流体処理装置は、数十μm〜数mmの微細流路構造体に流体を流し流路内部で混合・反応・熱交換・抽出等の化学反応の基本操作を行う装置として総称される。微小間隙式流体処理装置は、従来のmm単位からcm単位以上の混合器、反応器、熱交換器と比較すると、マクロからミクロな化学反応へ転換し、化学合成の技術を大きく変革するのである。その基本的な特徴は、化学反応に関与する物質がマクロな均一化からミクロな均一化を達成することで、濃度と温度の均一化と反応条件の制御性を向上する効果が得られることである。   In general, micro-gap fluid processing devices such as micro-channel mixers, micro-channel reactors, and micro-channel heat exchangers flow fluid through a micro-channel structure of several tens of μm to several mm. It is a generic term for devices that perform basic operations of chemical reactions such as mixing, reaction, heat exchange, and extraction within the flow path. Compared with conventional mixers, reactors, and heat exchangers with a size of centimeters or more, micro-gap fluid processing devices change from macro to micro chemical reactions and greatly change the technology of chemical synthesis. . The basic feature is that the substances involved in the chemical reaction achieve macro-uniformity to micro-homogeneity, and the effect of improving the uniformity of concentration and temperature and controllability of reaction conditions is obtained. is there.

微小間隙式流体処理装置による反応は、これまでのマクロ反応と比較すると、次の様なマクロ反応系では得られなかった特徴を実現できることにある。
1.微粒子の生成に関して、平均粒径の小さな且つ粒度分布の狭い微粒子を製造できる。2.副生成物の抑制で反応収率が向上する。
3.異性体等の生成比率がことなり、目的とする異性体を高収率で生成できる。4.混合の促進、若しくは反応温度を高くすることができ、反応を高速化できる。
The reaction by the micro-gap fluid processing apparatus is that the following characteristics that cannot be obtained by the macro reaction system can be realized as compared with the conventional macro reaction.
1. Regarding the production of fine particles, fine particles having a small average particle diameter and a narrow particle size distribution can be produced. 2. The reaction yield is improved by suppressing by-products.
3. The production ratio of isomers is different, and the desired isomer can be produced in high yield. 4). Mixing can be promoted or the reaction temperature can be increased, and the reaction can be accelerated.

微小間隙式流体処理装置の典型的な構成は、数十ミクロンから場合によっては数ミリの間隙で形成される空間領域若しくは流路構造体である。かかる空間での流体の挙動は、比較的流速の遅い層流領域から流速の早い乱流領域での挙動を示すことが知られている。層流領域では、流れ方向に垂直な方向への応力が作用しないことから、流体の混合は主に拡散に依存する。一方、乱流領域では、流れ方向に垂直な応力による混合が作用するので、液体の混合は液体の拡散の他に乱流成分による寄与が大きくなる。しかしながら、混合性の優れた速度の速い乱流領域では、微小間隙式流体処理装置内での滞留時間が短くなる為に、早い流速を補うためには装置を大型化して滞留時間を長くしなければならないために、微小間隙式流体処理装置としての特徴の一つである小型化の特徴を失うことになる。従って、微小間隙式流体処理装置においては、均一な混合が極めて重要な課題となっている。   A typical configuration of a micro-gap fluid processing apparatus is a spatial region or a flow channel structure formed with a gap of several tens of microns to a few millimeters in some cases. It is known that the behavior of a fluid in such a space shows a behavior from a laminar flow region having a relatively low flow velocity to a turbulent flow region having a high flow velocity. In the laminar flow region, since the stress in the direction perpendicular to the flow direction does not act, the mixing of the fluid mainly depends on diffusion. On the other hand, in the turbulent flow region, mixing due to stress perpendicular to the flow direction acts, so that the mixing of the liquid is greatly contributed by the turbulent component in addition to the liquid diffusion. However, in a turbulent flow region with excellent mixing properties and a high speed, the residence time in the micro-gap fluid treatment device is shortened. To compensate for the high flow rate, the device must be enlarged to increase the residence time. Therefore, the feature of miniaturization, which is one of the features of the micro-gap fluid processing device, is lost. Therefore, uniform mixing is a very important issue in the micro-gap fluid processing apparatus.

かかる課題の改善を目的として、此れまでに次の発明がなされている。
特許文献1においては、微細流路構造体の流体の流れ方向に直角に連続状凸部を設け、該凸部での流れ方向の向きが変化するときの内外の曲率の変化、若しくは流れの乱れにより、流体の混合を促進するものである。
The following inventions have been made so far in order to improve such problems.
In Patent Document 1, a continuous convex portion is provided at right angles to the fluid flow direction of the fine channel structure, and the change in curvature inside or outside when the direction of the flow direction at the convex portion changes, or the flow disturbance Thus, the mixing of the fluid is promoted.

特許文献2においては、流路構造体の一部に回転攪拌子を収納し、該攪拌子で液の均一化をより高めるようにしている。
特許文献3においては、互いに反応しない気体と液体を回転体を用いて十分に混合する方法が記載されている。
In Patent Document 2, a rotating stirrer is housed in a part of the flow path structure, and the homogenization of the liquid is further enhanced by the stirrer.
Patent Document 3 describes a method of sufficiently mixing a gas and a liquid that do not react with each other using a rotating body.

しかしながら、上記発明においても依然として、次の課題が解決されていない。
特許文献1においては、流れの速度に混合状態が依存する事になり、レイノルズ数の低い領域の流速では、高速混合あるいは均一混合が困難となる可能性がある。
However, the following problems are still not solved in the above invention.
In Patent Document 1, the mixing state depends on the flow speed, and high-speed mixing or uniform mixing may be difficult at a flow rate in a region where the Reynolds number is low.

また、特許文献2による回転攪拌子による混合では、混合性は改善されているが、さらなる高速混合と均一化処理が可能なプロセスとしては不十分である。すなわち、攪拌子による攪拌を受けずに攪拌領域をすり抜ける構造となっている。また攪拌が微小間隙式流動反応構造体の一部での攪拌に限定されており、該攪拌領域を通過した後は、攪拌効果がさほど期待できない構造となっている。さらに、回転攪拌子を収納する空間で攪拌を受ける結果、経過時間の短いものが先に後方流路に排出される逆転現象を生じ、後方流路で未反応液と反応液、若しくは反応経過時間の異なる状態の反応液が入り混じった純度の低い状態を作り出す可能性がある。
特許文献3に記載された回転体を用いた混合では、相互に反応性がない液体と気体を用いている為に流路内部での流体の滞留は混合処理にさほど影響を与えないが、相互に反応する系では重要となる。従って、特許文献3に記載された発明についても更に改善の余地がある。
Moreover, in the mixing by the rotary stirrer according to Patent Document 2, the mixing property is improved, but it is insufficient as a process capable of further high-speed mixing and homogenization. That is, it has a structure that passes through the stirring region without being stirred by the stirring bar. Further, stirring is limited to stirring in a part of the micro-gap fluid reaction structure, and after passing through the stirring region, the stirring effect cannot be expected so much. Furthermore, as a result of being stirred in the space containing the rotary stirrer, a reverse phenomenon occurs in which a short elapsed time is first discharged to the rear flow path, and the unreacted liquid and the reaction liquid or the reaction elapsed time in the rear flow path There is a possibility of creating a low purity state in which reaction liquids of different states are mixed.
In the mixing using the rotating body described in Patent Document 3, fluid and gas that are not reactive to each other are used, so the retention of fluid in the flow path does not affect the mixing process so much. This is important for systems that react to Therefore, there is room for further improvement in the invention described in Patent Document 3.

特開2002−346355号公報JP 2002-346355 A 特開2004−321063号公報JP 2004-321063 A 特開平3−68439号公報JP-A-3-68439

以上、従来例に見られる微小間隙式流体処理装置は相対する流体の混合を、拡散・若しくは流体の流れを曲げること、あるいは部分的な攪拌等による混合により行うもので、外力による積極的な混合を主として行っていないことからパッシブ型微小間隙式流動反応装置と称することができる。反応を速やかに、且つ積極的に均一化を図り、微小流路式反応器本来の特徴を引き出すこと、もしくは反応に適した構造の改善が未だ不十分である。   As described above, the micro-gap type fluid processing apparatus found in the conventional example performs mixing of the opposing fluids by diffusion, bending of the fluid flow, or mixing by partial stirring, etc., and active mixing by external force Therefore, it can be called a passive micro-gap flow reactor. It is still insufficient to make the reaction promptly and positively uniform, to bring out the original characteristics of the microchannel reactor, or to improve the structure suitable for the reaction.

本発明は、この様な背景技術に鑑みてなされたものであり、第一の目的は、微小流路式反応器若しくは微小間隙式流動反応装置に適用可能な流体処理装置であって、従来の技術とは異なる、流体の高速混合もしくは高速均一化を可能にし、且つ大量生産に適した流体処理装置を提供することであり、また、流体処理方法を提供することである。   The present invention has been made in view of such background art, and a first object is a fluid processing apparatus applicable to a micro-channel reactor or a micro-gap fluid reactor, It is to provide a fluid processing apparatus that enables high-speed mixing or uniformization of a fluid, which is different from the technology, and is suitable for mass production, and to provide a fluid processing method.

本発明の第二の目的は、反応液の化学量論的反応空間(反応から規定される過不足ない濃度で均一に混合されている状態)を形成する極めて優れた強制混合型微小間隙式流体処理装置に適用可能な流体処理装置を提供することである。   The second object of the present invention is a very excellent forced mixing type micro-gap fluid that forms a stoichiometric reaction space of the reaction solution (a state in which the reaction solution is uniformly mixed at a concentration not excessively or insufficiently defined from the reaction). To provide a fluid processing apparatus applicable to a processing apparatus.

本発明により提供される流体処理装置は、少なくとも二つの流体を混合若しくは反応させる流体処理装置において、少なくとも二つの流体を上流下流なる相対的位置関係で導入して混合若しくは反応させる処理空間と、該処理空間を形成する相対する壁面と、該壁面を相対的に変位させる変位手段とを有することを特徴とするものである。   The fluid processing apparatus provided by the present invention is a fluid processing apparatus that mixes or reacts at least two fluids, and a processing space that introduces and mixes or reacts at least two fluids in a relative positional relationship upstream and downstream; It has a wall surface which forms a processing space, and a displacement means for relatively displacing the wall surface.

また、本発明により提供される流体処理方法は、少なくとも二つの流体を混合若しくは反応させる流体処理方法において、少なくとも二つの流体を上流下流なる相対的位置関係をもって、処理空間に導入する工程と、該処理空間を形成する相対する壁面を相対的に変位させて、前記少なくとも二つの流体を混合若しくは反応させる工程と、を有することを特徴とするものである。   The fluid processing method provided by the present invention is a fluid processing method in which at least two fluids are mixed or reacted, and the step of introducing at least two fluids into a processing space with a relative positional relationship upstream and downstream; A step of mixing or reacting the at least two fluids by relatively displacing opposing wall surfaces forming a processing space.

本発明においては、前記相対する壁面の相対的変位を、流体の注入口から排出口に向かう流れに対して独立した方向の相対的変位とすることができる。
前記相対する壁面を円盤状の固定壁面及び変位壁面で構成し、該変位壁面の変位を回転運動とすることができる。
In the present invention, the relative displacement of the opposing wall surfaces can be a relative displacement in a direction independent of the flow from the fluid inlet to the outlet.
The opposing wall surfaces may be constituted by a disk-shaped fixed wall surface and a displacement wall surface, and the displacement of the displacement wall surface may be a rotational motion.

前記固定壁面及び該変位壁面が同軸の対称軸を有し、該変位壁面が同軸の対称軸を中心とする回転運動により変位するようにすることができる。
前記プロセス空間への流体の導入口を固定壁面に設けることができる。
The fixed wall surface and the displacement wall surface may have a coaxial symmetry axis, and the displacement wall surface may be displaced by a rotational motion around the coaxial symmetry axis.
An inlet for introducing fluid into the process space can be provided on the fixed wall surface.

前記壁面に熱制御手段を設けて処理空間の流体の熱制御を行うことができる。
また、前記壁面に処理空間内の流体の状態を観測するモニターを設けることもできる。
Heat control means can be provided on the wall surface to control the heat of the fluid in the processing space.
A monitor for observing the state of the fluid in the processing space may be provided on the wall surface.

本発明によれば、微小流路式反応器若しくは微小間隙式流動反応装置に適用可能で、流体の高速混合もしくは高速均一化が可能で、且つ大量生産に適した流体処理装置および流体処理方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the fluid processing apparatus and fluid processing method which can be applied to a microchannel type | mold reactor or a micro gap | interval type | mold flow reactor, can perform high-speed mixing or uniformization of a fluid, and are suitable for mass production. Provided.

また、本発明は、反応液の化学量論的反応空間を形成するのに極めて優れた強制混合型流体処理装置および流体処理方法を提供することができる。   In addition, the present invention can provide a forced mixing fluid processing apparatus and a fluid processing method that are extremely excellent in forming a stoichiometric reaction space of a reaction solution.

本発明の流体処理装置は、少なくとも二つの流体を混合若しくは反応させる流体処理装置において、少なくとも二つの流体を上流下流なる相対的位置関係で導入して混合若しくは反応させる処理空間と、該処理空間を形成する相対する壁面と、該壁面を相対的に変位させる変位手段とを有することを特徴としている。
以下では、本発明の流体処理装置を主に強制混合型微小間隔式流体処理装置に適用した例に基づいて説明するが、本発明は、強制混合型微小間隔式流体処理装置に限定されるものではない。
The fluid processing apparatus according to the present invention is a fluid processing apparatus that mixes or reacts at least two fluids. A processing space that mixes or reacts by introducing at least two fluids in a relative positional relationship upstream and downstream; and the processing space. It is characterized by having opposing wall surfaces to be formed and displacement means for relatively displacing the wall surfaces.
Hereinafter, the fluid processing apparatus of the present invention will be described mainly based on an example in which the fluid processing apparatus is applied to a forced mixing type micro-interval fluid processing apparatus, but the present invention is limited to the forced mixing type micro-interval fluid processing apparatus. is not.

先ず、従来例に見られる非攪拌型微小間隙式流動反応プロセスでの二種類の液体における混合状態を図13に示す。図13は相溶性にきわめて優れる液体をY型微小流路で混合するものであるが、M液およびN液の二液が均一な状態に混合できずに、夫々が分離して流れを形成し、接触する面で界面4を形成する。従って、極めて混合され難い状況で存在する。この界面4での二液の夫々の濃度分布を測定した結果を図14に示す。分子レベルで見ると、夫々の物質の分布は濃度勾配を持っており、時間を如何に長くしても均一な分布は大変難しいことが判明する。例えば界面からの距離±200ミクロンメータの領域で、経過時間20秒を例にとると、夫々15%から85%の範囲で分布することになる。従って分子レベルでの濃度分布は、未だ均一化が達成されていないことになる。以上の状況から従来例に見られる非攪拌型微小間隙式流動反応においては、微小間隙式流動反応、即ち化学量論的な均一状態下での反応により本質的な特徴が未だ十分に発揮しえない状況であることが理解できる。   First, FIG. 13 shows a mixed state of two types of liquids in a non-stirring type micro-gap fluid reaction process found in a conventional example. FIG. 13 shows a case where a liquid having excellent compatibility is mixed in the Y-shaped microchannel, but the two liquids of the M liquid and the N liquid cannot be mixed in a uniform state, and each of them separates to form a flow. The interface 4 is formed on the contact surface. Therefore, it exists in a situation where mixing is extremely difficult. The results of measuring the concentration distribution of each of the two liquids at the interface 4 are shown in FIG. At the molecular level, the distribution of each substance has a concentration gradient, and it turns out that uniform distribution is very difficult no matter how long the time is. For example, if the elapsed time of 20 seconds is taken as an example in the region of the distance of ± 200 microns from the interface, the distribution is in the range of 15% to 85%. Therefore, the concentration distribution at the molecular level is not yet achieved. From the above situation, in the non-stirring type micro-gap type flow reaction seen in the conventional example, the essential characteristics can still be fully exerted by the micro-gap type flow reaction, that is, the reaction in a stoichiometric uniform state. I can understand that there is no situation.

これに対して、本発明は、互に独立する少なくとも二つ以上の流体を、相対する壁面で相対的に変位する該壁面が形成する処理空間に、独立に上流下流の相対的位置関係で該流体を流入させる。そして、相対的に変位する壁面からの接触流体へのせん断応力若しくは法線応力により、流体本体の流入から排出方向への流れ以外の新たな流れを発生させ、それにより流体の攪拌・混合を行う。該壁面の相対変位による攪拌・混合の流れの形成は、本発明がはじめて実現したものであり、瞬間的な分子レベルの均一化が実現できる。   On the other hand, in the present invention, at least two or more fluids independent of each other are independently in the upstream and downstream relative positional relationship in the processing space formed by the wall surfaces relatively displaced by the opposing wall surfaces. Let the fluid flow in. Then, a new flow other than the flow from the inflow of the fluid body to the discharge direction is generated by the shear stress or normal stress to the contact fluid from the relatively displaced wall surface, thereby stirring and mixing the fluid. . Formation of a stirring / mixing flow by relative displacement of the wall surface is realized for the first time by the present invention, and instantaneous homogenization of the molecular level can be realized.

図1を用いて説明すると、移動壁面5と固定壁面6により囲まれる処理空間100に、移動壁面5に接する流体A7及び固定壁面に接する流体B8が流体の処理空間入口101から出口102に向けの最短距離に沿った流体流れ10の基本的なマクロ流れに対し、移動壁面の壁面移動方向9に沿った壁面誘起流れ11を新たに生ずる。この壁面誘起流れの作用により、流体A及び流体Bの分子レベルの瞬間的な混合が可能になる。   Referring to FIG. 1, in the processing space 100 surrounded by the moving wall surface 5 and the fixed wall surface 6, the fluid A <b> 7 in contact with the moving wall surface 5 and the fluid B <b> 8 in contact with the fixed wall surface are directed from the fluid processing space inlet 101 to the outlet 102. For the basic macro flow of the fluid flow 10 along the shortest distance, a wall surface induced flow 11 along the wall surface moving direction 9 of the moving wall surface is newly generated. The action of the wall-induced flow enables instantaneous mixing of fluid A and fluid B at the molecular level.

かかる作用により、従来の非攪拌型微小間隙式流動反応装置では得られなかった次の効果が得られる。
1.反応等の処理を行う上での理想的な状態、すなわち物質・熱の偏りの無い理想的な状態が、非攪拌型微小間隙式流動反応装置よりも優れた状態で実現できる。
2.非攪拌型微小間隙式流動反応装置よりも物質・熱の偏りが無いので、更に副反応が抑制でき、収率の向上がみとめられる。
3.非攪拌型微小間隙式流動反応装置よりも異性体等の余分な成分の派生が抑制され、生成物の生成分布がより異なった特徴を有してくる。
4.非攪拌型微小間隙式流動反応装置よりも反応温度を高くすることが出来、より反応時間が短く出来る。
By this action, the following effects that cannot be obtained with the conventional non-stirring type micro-gap type flow reactor can be obtained.
1. An ideal state for carrying out a treatment such as a reaction, that is, an ideal state without material / heat bias can be realized in a state superior to a non-stirring type micro-gap type flow reactor.
2. Since there is no material / heat bias compared to the non-stirring type micro-gap type flow reactor, side reactions can be further suppressed and the yield can be improved.
3. Derivation of extra components such as isomers is suppressed, and the product distribution is different from that of the non-stirring type micro-gap flow reactor.
4). The reaction temperature can be increased and the reaction time can be shortened compared with a non-stirring type micro-gap type flow reactor.

以上は本発明から得られる効果の一例である。本発明の本質的な作用である濃度・熱の急速な均一化による作用から生ずる効果としては、前述の効果に限定されるのもではない。   The above is an example of the effects obtained from the present invention. The effect resulting from the action of rapid homogenization of concentration and heat, which is the essential action of the present invention, is not limited to the aforementioned effect.

次に、本発明のその他の構成要件を次にのべる。
[壁面の相対的変位]
本発明における壁面の相対的変位は、相対する該壁面の間隔を広げるまたは狭める方向での繰り返しの縦型相対変位、もしくは該空間の間隔を一定に保持し該壁面に平行に変位させる横型相対変位、該平面内での繰返しの往復による横型相対変位、若しくはそれらを組み合わせた複合変位により構成される。
Next, other structural requirements of the present invention will be described.
[Relative displacement of wall surface]
In the present invention, the relative displacement of the wall surface is a repetitive vertical relative displacement in the direction of widening or narrowing the space between the opposing wall surfaces, or a horizontal relative displacement that keeps the space interval constant and displaces in parallel to the wall surface. , A horizontal relative displacement by reciprocal reciprocation in the plane, or a combined displacement combining them.

相対変位の方向によっては、流体の流出方向への速度に影響を与え、流出時間を短くした長くしたりすることがあるので、プロセスを通過する時間を変化させる方向での該壁面の変位は、プロセス条件を変化させることになるので、あまり望ましくは無い。特に望ましい該壁面における相対変位は相対する壁面を、プロセスの入り口から出口に向けた流体の流れ方向に対し、概ね直行する向きでの変位である。其れにより流体の流れは、該壁面の変位から受けるせん断応力により様々な混合流を新たに生ずることになる。特にプロセスの通過時間は、全体としてはプロセスの入り口から出口に向けた流速によるものであるから、直行方向の相対変位は流体の流速を早めることも無く、遅くすることも無いので、プロセスを進める上では好都合である。   Depending on the direction of the relative displacement, it may affect the speed of the fluid in the outflow direction, and the outflow time may be shortened or lengthened. Therefore, the displacement of the wall surface in the direction of changing the time passing through the process is This is not desirable because it will change the process conditions. A particularly desirable relative displacement in the wall surface is a displacement in a direction in which the opposite wall surface is substantially perpendicular to the flow direction of the fluid from the process inlet to the outlet. As a result, various mixed flows are newly generated in the fluid flow due to the shear stress received from the displacement of the wall surface. In particular, the process transit time is generally due to the flow rate from the inlet to the outlet of the process, so the relative displacement in the orthogonal direction does not increase or decrease the flow rate of the fluid. Above is convenient.

特に壁面の相対的変位が回転運動による壁面の変位は、入り口から出口に向けた流体の平均的な排出時間に対して、影響を与えない混合流速を形成しやすいこと、また高速の変位を該流体に印加できるので、特に望ましい変位方法である。   In particular, the relative displacement of the wall surface due to the rotational movement tends to form a mixing flow velocity that does not affect the average discharge time of the fluid from the inlet to the outlet, and the high speed displacement. This is a particularly desirable displacement method because it can be applied to a fluid.

また、壁面の相対的変位の速度は、該壁面の間隔以外に、対象とする流体の粘度・流速・変位速度・必要な混合速度・温度・該壁面の表面状態・流体の化学的特性等に依存することになるが、概ね前述の特性に合わせて流体の混合が促進される速度に設定される。望ましくは数cm/秒から数十m/秒の範囲に設定される。特に、流体がプロセスを通過する時間に影響を与えない壁面の相対変位であるので、相対変位の機構的なデメリットが無ければ、変位速度は速いほうが望ましい。   The relative displacement speed of the wall depends on the viscosity, flow velocity, displacement speed, required mixing speed, temperature, surface condition of the wall, chemical properties of the fluid, etc. Although it depends, it is set to a speed at which mixing of the fluid is promoted in accordance with the aforementioned characteristics. Desirably, it is set in the range of several cm / second to several tens of meters / second. In particular, since the relative displacement of the wall surface does not affect the time during which the fluid passes through the process, it is desirable that the displacement speed be fast unless there is a mechanical disadvantage of the relative displacement.

壁面も相対的な変位については、双方の壁面が相反する方向に変位する相対変位、若しくは一方が固定、一方が変位の方法等を用いることが可能である。とりわけ一方を固定壁面、一方を変位壁面とする方法は、装置の全体的な構成の簡略化、流体の流入手段が簡便に設けることが出来る、熱制御手段あるいは観察手段を簡便に設けられる等々の理由で好ましい。   As for the relative displacement of the wall surfaces, it is possible to use a relative displacement in which both wall surfaces are displaced in opposite directions or a method in which one is fixed and one is displaced. In particular, the method in which one is a fixed wall surface and one is a displacement wall surface simplifies the overall configuration of the apparatus, the fluid inflow means can be simply provided, the heat control means or the observation means can be simply provided, etc. Preferred for reasons.

壁面の縦・横方向の変位は、直接的もしくは間接的な変位手段によって行われる。直接的な変位方法としては、圧電素子による方法、あるいはバイプレータ等による振動変位等、各種のアクチュエータ等、その他の一般的に知られる各種の変位素子が使用される。また間接的な変位手段では、電磁場による変位、あるいは超音波等での変位、その他一般的に知られる変位手段を用いる事が出来る。   The vertical and horizontal displacement of the wall surface is performed by direct or indirect displacement means. As a direct displacement method, various other generally known displacement elements such as a method using a piezoelectric element or various actuators such as vibration displacement using a vibrator or the like are used. As the indirect displacement means, displacement by an electromagnetic field, displacement by an ultrasonic wave, or other generally known displacement means can be used.

また回転変位については、モータ等の回転運動体を調節に接続することで直接的な変位が可能である。また電磁スターラのようなものでの間接的な回転変位を付与する事も可能である。その他の一般的に知られる回転付与装置を用いることもできる。   Further, the rotational displacement can be directly displaced by connecting a rotary motion body such as a motor for adjustment. It is also possible to apply an indirect rotational displacement with an electromagnetic stirrer. Other generally known rotation imparting devices can also be used.

[壁面の間隔]
相対する該壁面の間隔は、対象とする流体の粘度・流速・変位速度・必要な混合速度・温度・該壁面の表面状態・流体の化学的特性等により関係する点もあるが、概ね数μmから数mmの範囲に設定される。従来例に見られる非攪拌型微小間隙式流動反応装置の流路間隔と比較すると、本発明は変位壁面の積極な均一化作用により、壁面間隔を広く設定でき、プロセス条件の安定性・大量の処理を可能にする等の特徴を有する。
[Wall spacing]
The distance between the opposing wall surfaces is related to the viscosity, flow velocity, displacement rate, required mixing speed, temperature, surface condition of the wall surface, chemical properties of the fluid, etc. To a few mm. Compared with the flow path interval of the non-stirring type micro-gap type flow reaction device found in the conventional example, the present invention can set the wall interval widely by the active uniformizing action of the displacement wall surface, the stability of the process condition, It has features such as enabling processing.

[壁面の形態]
相対向する壁面が形成するプロセス空間は、対象とする流体の粘度・流速・変位速度・必要な混合速度・温度・該壁面の表面状態・流体の化学的特性等により関係するが、概ね流路状、平板、円筒状・円錐状等のの形態にすることが好ましい。
[Wall shape]
The process space formed by the opposite wall surfaces is related to the viscosity, flow velocity, displacement speed, required mixing speed, temperature, surface condition of the wall surface, chemical properties of the fluid, etc. It is preferable to use a shape such as a shape, a flat plate, a cylindrical shape, or a conical shape.

特に、壁面を円型ディスクで形成する方法は、流体の入口から出口にむけて空間間隔を一定に維持し、プロセス空間を徐々に拡大できることにより新たな効果が発現できる。入口から出口に向けた流速をディスクの半径の逆数に比例して遅く出来ること、また壁面の変位速度がディスクの半径に比例して速くできることの二つの特徴により、混合がより加速される。   In particular, the method of forming the wall surface with a circular disk can exhibit a new effect by maintaining a constant space interval from the fluid inlet to the outlet and gradually expanding the process space. Mixing is further accelerated by two features: the flow velocity from the inlet to the outlet can be slowed in proportion to the reciprocal of the radius of the disk, and the wall displacement rate can be made fast in proportion to the radius of the disk.

具体的には、φ100mmの円型ディスクを400μmの間隔、プロセス流量500ml/分、ディスク回転数5000rpmなる条件下での挙動を図2(A)および図2(B)に示す。プロセス流速は回転中心付近で約200cm/秒から最外周部での7cm/秒迄、半径に逆比例して低下する。一方回転ディスクの回転速度は、100cm/秒から3000cm/秒に高速化される。その結果、プロセス流れとディスク回転速度の差は、0.5倍から400倍程の速度程の速度差を生じている。一方プロセス時間は、中心付近では0.006秒/cmから最外周部で0.15秒/cmとなり、ディスクによる作用を受け易い状態になる事がわかる。このことはディスクを利用した回転型の強制混合型微小間隙式流動反応装置においては、液の流入口を設ける場所によりプロセスを起動する二液の混合状態を各種設定できる特徴を有する。   Specifically, FIGS. 2 (A) and 2 (B) show the behavior of a circular disk with a diameter of 100 mm under the conditions of an interval of 400 μm, a process flow rate of 500 ml / min, and a disk rotational speed of 5000 rpm. The process flow rate decreases in inverse proportion to the radius from about 200 cm / second near the center of rotation to 7 cm / second at the outermost periphery. On the other hand, the rotational speed of the rotating disk is increased from 100 cm / second to 3000 cm / second. As a result, the difference between the process flow and the disk rotation speed has a speed difference of about 0.5 to 400 times. On the other hand, the process time is from 0.006 sec / cm near the center to 0.15 sec / cm at the outermost periphery, and it can be seen that the process time is easily affected by the disc. This is characterized in that in the rotary type forced mixing type micro-gap flow reaction apparatus using a disk, various mixing states of two liquids for starting the process can be set depending on the place where the liquid inlet is provided.

かかる構成の強制混合型微小間隙式流動反応装置は、本発明で初めて実現されたプロセス及び装置であり、極めて優れた特性を示すものである。   The forced mixing type micro-gap type flow reactor having such a configuration is a process and apparatus realized for the first time in the present invention, and exhibits extremely excellent characteristics.

[壁面の形成素材と壁面の表面状態]
壁面については、壁面を形成できる素材であれば本発明の目的を達成することが出来る。例えば鉄・銅・クロム・ニッケル・シリコン等の金属素材、あるいはステンレス・SMS−HB、SMS―HC、SMS−HX・SMS−600、SMS−X700、SMS−IN等の合金材、あるいはルビー材、メノー材、大理石材、御影石材等の石材、あるいはガラス、窒化珪素、アルミナ、ジルコニア等のセラミック材等々が使用される。
[Wall forming material and surface condition]
As for the wall surface, any material that can form the wall surface can achieve the object of the present invention. For example, metal materials such as iron, copper, chromium, nickel, and silicon, or alloy materials such as stainless steel, SMS-HB, SMS-HC, SMS-HX, SMS-600, SMS-X700, SMS-IN, or ruby materials, A stone material such as menor material, marble material, granite material, or ceramic material such as glass, silicon nitride, alumina, zirconia, or the like is used.

特に材質により本発明の本質的な作用及び効果が影響を受けるものではない。壁面を作成するには、該壁面により形成される空間の精度を要求される場合においては、研磨により平面精度を高くすることが望ましい。また壁面の表面状態は、凹凸・溝・バンクによる表面微細構造とする等の処理が望ましい。あるいはスパッタリング処理・エッチング処理・蒸着処理・CVD処理等の表面処理を施すことで、本発明の本質的な作用・効果を高めることも出来る。   In particular, the essential functions and effects of the present invention are not affected by the material. In order to create a wall surface, when the accuracy of the space formed by the wall surface is required, it is desirable to increase the plane accuracy by polishing. Further, the surface state of the wall surface is preferably processed such as a surface fine structure by irregularities, grooves, and banks. Alternatively, by performing surface treatment such as sputtering treatment, etching treatment, vapor deposition treatment, and CVD treatment, the essential functions and effects of the present invention can be enhanced.

[反応]
少なくとも二種類以上の流体については、反応空間に入る前に接触して一つにすると望ましくない状態に遷移することがある。相対する壁面が構成する空間で初めて接触することが重要である。其れにより先行する混合による望ましくない遷移を完全に除外することが可能になる。又反応空間への流体の導入は流体の流れに対して滞留する状態を形成させないようにすることが反応を行う上で極めて重要である。つまり滞留箇所ができるとその部分の混合状態および反応時間に異常をきたし、反応の制御ができなくなる。この視点から流体を上流下流の相対的位置関係で反応空間に導きいれる事は、該空間で反応を行う上での極めて重要な条件の一つである。
[reaction]
At least two or more types of fluids may transition to an undesirable state if they are brought into contact with each other before entering the reaction space. It is important to make contact for the first time in a space formed by opposing wall surfaces. This makes it possible to completely eliminate unwanted transitions due to preceding mixing. In addition, it is extremely important for the reaction to introduce the fluid into the reaction space so as not to form a staying state with respect to the fluid flow. In other words, if a residence portion is formed, the mixed state and reaction time of that portion become abnormal, and the reaction cannot be controlled. From this point of view, introducing the fluid into the reaction space in the relative positional relationship between the upstream and downstream is one of the extremely important conditions for performing the reaction in the space.

該反応として、複数の流体の混合、混合の結果生ずる反応・若しくは状態変化(液体状態から固体状態への相変化等)、あるいは加熱・冷却の熱制御等、及びこれらを複合したものを総称するものである。   The reaction is a general term for mixing a plurality of fluids, reaction / state change resulting from mixing (phase change from liquid state to solid state, etc.), heat control of heating / cooling, etc., and a combination of these. Is.

[熱制御機構]
反応において冷却・加熱・定温等の熱制御を要する場合があるが、筐体からの熱制御に加えて、反応空間を形成する壁面材により熱制御する事が、すなわち反応空間を直接構成する壁面を介しての効率的な制御を可能にしている。この効果は、変位壁面が誘起する流れによりプロセス空間を充填する流体に瞬間的に熱拡散を可能にする作用によるものである。
[Thermal control mechanism]
The reaction may require heat control such as cooling, heating, and constant temperature, but in addition to the heat control from the housing, it is possible to control the heat with the wall material that forms the reaction space, that is, the wall surface that directly constitutes the reaction space It enables efficient control via This effect is due to the action of instantaneously allowing thermal diffusion to the fluid filling the process space by the flow induced by the displacement wall surface.

[観測系]
此れは壁面材に観測系、光学ファイバー等を介してのCCDによる状態観察、各種分光器による分光観察、弾性波等による粘性観察等の各種の観察手段により、プロセス条件を直接もしくは間接に観察する観測系を設けることで、より直接的なプロセス状態の制御を可能にする。
[Observation system]
This is a direct or indirect observation of the process conditions by various observation means such as observation of the state of the wall with a CCD via an observation system, optical fiber, etc., spectroscopic observation with various spectroscopes, viscosity observation with elastic waves, etc. This makes it possible to control the process state more directly.

以下本発明について実施態様例に基づきより詳しく説明する。
図3に二液分離流入タイプの強制混合型微小間隙式流動反応プロセスを例示する。固定ディスク(固定壁面材)15の中央から流体A13を流入し、流体B14は固定ディスク15の中心から離れた部分に貫通穴を設け、プロセス空間に注入する。中心から周辺に向けてのプロセス流れに加え、回転壁面材17の回転運動により円周方向の流れを発生させることが可能になる。ここでは、流体A流入口13が上流側に位置しており、流体B流入口14が下流側に位置している。
Hereinafter, the present invention will be described in more detail based on exemplary embodiments.
FIG. 3 illustrates a forced mixing type micro-gap flow reaction process of a two-component separation inflow type. The fluid A13 flows from the center of the fixed disk (fixed wall surface material) 15, and the fluid B14 is provided with a through hole in a portion away from the center of the fixed disk 15 and injected into the process space. In addition to the process flow from the center toward the periphery, it is possible to generate a circumferential flow by the rotational motion of the rotating wall member 17. Here, the fluid A inlet 13 is located on the upstream side, and the fluid B inlet 14 is located on the downstream side.

図4に固定壁面材15を示す。流体Bの流入口を4ヶ所設け、プロセス空間への出口に流入口を連通させる溝を設けてある。流入口の数・位置・口径・連通溝等は、プロセス内容、対象とする流体の粘度・流速・変位速度・必要な混合速度・温度・該壁面の表面状態・流体等の条件により設定する。またプロセス空間への流体流入口の出口に関するR加工等のエッジ処理は、対象とする流体の粘度・流速・変位速度・必要な混合速度・温度・該壁面の表面状態・流体の化学的特性等の条件により設定する。   FIG. 4 shows the fixed wall surface material 15. Four inlets for fluid B are provided, and a groove for communicating the inlet is provided at the outlet to the process space. The number, position, diameter, communication groove, etc. of the inlet are set according to the conditions of the process, the viscosity, flow velocity, displacement speed, required mixing speed, temperature, surface condition of the wall, fluid, etc. of the target fluid. In addition, edge processing such as R processing related to the outlet of the fluid inlet to the process space includes the viscosity, flow velocity, displacement speed, required mixing speed, temperature, surface condition of the wall surface, chemical characteristics of the fluid, etc. Set according to the conditions.

図5は、図3を基本として、熱制御系24と観測系25を備え付けた強制混合型微小間隙式流動反応プロセスである。
図6は、流体の注入を同軸管を中央に配し、二液を独立して中央から注入するようにしたものであり、図3を基本に変形したものである。
FIG. 5 shows a forced mixing type micro-gap flow reaction process equipped with a thermal control system 24 and an observation system 25 based on FIG.
FIG. 6 shows a fluid injection in which a coaxial tube is arranged at the center and two liquids are injected independently from the center, and is modified based on FIG.

図7および図8は、三流体に対応するもので、二流体の流入口を中心から離して設置している。此れは流体C38により反応過程の中で複数の過程を行うことを目的にするものである。流体B及び流体Cの流入口の設置は、複数の反応条件に合わせて設定する。   7 and 8 correspond to three fluids, and the two fluid inlets are installed away from the center. This is intended to perform a plurality of processes among the reaction processes by the fluid C38. Installation of the inlets of fluid B and fluid C is set in accordance with a plurality of reaction conditions.

図9は、処理(反応)空間を平面から軸中心を有する円柱にしたものである。幅400μm、深さ200μmの流路で流体Aと流体Bの流路を、半割の筐体50の表面に設ける。φ10mmの回転壁面子を納め、筐体内表面と回転壁面子の間隙が400μmのプロセス空間を確保する半割の収納空間を加工する。該空間にφ10mmの回転壁面子を納め、半割の筐体を結合したものである。図9の装置においては、流体A流入口66が上流側に位置しており、流体B流入口67が下流側に位置していることになる。   FIG. 9 shows a processing (reaction) space formed into a cylinder having an axial center from a plane. The flow paths of fluid A and fluid B are provided on the surface of the half case 50 with a flow path having a width of 400 μm and a depth of 200 μm. A rotating wall element having a diameter of 10 mm is accommodated, and a half-spaced storage space that secures a process space in which the gap between the inner surface of the casing and the rotating wall element is 400 μm is processed. A rotating wall element having a diameter of 10 mm is placed in the space, and a half case is coupled. In the apparatus of FIG. 9, the fluid A inlet 66 is located on the upstream side, and the fluid B inlet 67 is located on the downstream side.

図10は反応空間を円柱から円錐にしたものである。
図11は、図3を基本に、封止材・封止装置により筐体に納め、圧力付与装置・モータを取り付け、二流体分離注入型の円盤回転式強制攪拌型流体処理装置の一例である。
FIG. 10 shows a reaction space made from a cylinder to a cone.
FIG. 11 is an example of a two-fluid separation / injection type disc rotating forced stirring type fluid treatment device that is housed in a casing with a sealing material / sealing device and attached with a pressure applying device / motor, based on FIG. .

固定ディスク59は、外形Φ100mmで厚み15mmの成型ガラス材を基に、中心に4mmの貫通穴を設け、回転ディスク60と対向する出口を10Rの面取り加工を施す。ここにφ6mmのフッ素樹脂管を接続し、第一系統の流体配管とする。中心から10mm離し2mmの貫通穴を等間隔に四穴あけ、回転ディスク60と対向する出口に幅3mm、深さ200μmの連通溝を設ける。ここに外形4mmのフッ素樹脂管を接続し、4本をまとめ第二系統の流体配管とする。固定ディスクと対向する回転面は、表面研磨を行い表面凹凸0.5μm以内の精度の平面研磨を行う。   The fixed disk 59 is based on a molded glass material having an outer diameter of Φ100 mm and a thickness of 15 mm, and a 4 mm through hole is provided at the center, and the exit facing the rotating disk 60 is chamfered by 10R. Here, a φ6 mm fluororesin pipe is connected to form a first system fluid pipe. Four through-holes of 2 mm apart from each other by 10 mm from the center are formed at equal intervals, and a communication groove having a width of 3 mm and a depth of 200 μm is provided at the outlet facing the rotating disk 60. Here, a fluororesin pipe having an outer diameter of 4 mm is connected, and the four pipes are combined into a second system fluid pipe. The rotating surface facing the fixed disk is subjected to surface polishing and surface polishing with an accuracy within 0.5 μm of surface irregularities.

回転ディスクは、外形φ100mmで厚み10mmの成型ガラス材を基に、固定ディスクと対向する回転面は表面研磨を行い表面凹凸0.5μm以内の精度の平面研磨を行い、仕上げる。   The rotating disk is finished based on a molded glass material having an outer diameter of 100 mm and a thickness of 10 mm, and the rotating surface facing the fixed disk is subjected to surface polishing and surface polishing with an accuracy of 0.5 μm or less on the surface irregularities.

固定ディスクは回転軸を取り付け、モータ65と接続し、モータによる回転を行う。
ディスクの周辺での流体の密封を行うために、固定ディスクはOリンク型の封止材63、また回転ディスクは回転型封止装置64を取り付け、固定ディスク・回転ディスクを筐体に収める。回転ディスクと固定ディスクの間隔設定の為、固定ディスクと筐体の間にφ2mmの加圧液体注入のステンレス管を接続する。これらの条件は一例であり、本発明を限定するものではない。
The fixed disk is attached with a rotating shaft, connected to the motor 65, and rotated by the motor.
In order to seal the fluid around the disk, an O-link type sealing material 63 is attached to the fixed disk, and a rotary type sealing device 64 is attached to the rotary disk, and the fixed disk and the rotary disk are housed in the casing. In order to set the interval between the rotating disk and the fixed disk, a φ2 mm pressurized liquid injection stainless steel tube is connected between the fixed disk and the housing. These conditions are examples and do not limit the present invention.

図12は、図10を基に、筐体に磁性回転体を取り付け回転壁面子を回転させる、二流体分離流入タイプの円錐回転子強制混合型流体処理装置の一例である。   FIG. 12 is an example of a two-fluid separation inflow type conical rotor forced mixing type fluid treatment apparatus in which a magnetic rotating body is attached to a housing and a rotating wall surface element is rotated based on FIG.

以下、本発明を実施例等を用いて更に詳細に述べる。なお、部は重量基準を示す。
実施例1
析出反応の実施例を示す。図11に示す二液分離流入タイプの強制混合型流体処理装置を用いて、銅フタロシアニンの濃硫酸溶液を水に希釈析出する、所謂酸ペースト法と称される再結晶化による結晶生成を行う。
Hereinafter, the present invention will be described in more detail with reference to examples and the like. In addition, a part shows a weight reference | standard.
Example 1
Examples of the precipitation reaction are shown. Crystal formation is performed by recrystallization called a so-called acid paste method, in which a concentrated sulfuric acid solution of copper phthalocyanine is diluted and precipitated in water by using a two-component separation inflow type forced-mixing fluid processing apparatus shown in FIG.

中央の第一系統から水を500ml/分の流量で流し、第二系統から98%の濃硫酸に1%濃度で溶解した銅フタロシアニン溶液を500ml/分の流量で流す。固定ディスクと回転ディスクの間隔は400μmで、回転ディスクは5000rpmの回転数とする。尚、強制混合型流体処理装置から析出液を取り出した後、10%アンモニア水で中和し、粒度分布を測定する。   From the central first system, water is flowed at a flow rate of 500 ml / min, and from the second system, a copper phthalocyanine solution dissolved in 98% concentrated sulfuric acid at a concentration of 1% is flowed at a flow rate of 500 ml / min. The interval between the fixed disk and the rotating disk is 400 μm, and the rotating disk has a rotational speed of 5000 rpm. In addition, after taking out a deposit liquid from a forced mixing type fluid processing apparatus, it neutralizes with 10% ammonia water, and measures a particle size distribution.

実施例2
実施例1と同じ液組成と流量で、以下の通り条件を変えて同様の反応を行う。
固定ディスクと回転ディスクの間隔:20μm
回転ディスクの回転数 :5000rpm
Example 2
The same reaction is carried out under the same liquid composition and flow rate as in Example 1 but changing the conditions as follows.
Distance between fixed disk and rotating disk: 20 μm
Number of rotations of rotating disk: 5000 rpm

実施例3
実施例1と同じ液組成と流量で、以下の通り条件を変えて同様の反応を行う。
固定ディスクと回転ディスクの間隔:2000μm
回転ディスクの回転数 :5000rpm
Example 3
The same reaction is carried out under the same liquid composition and flow rate as in Example 1 but changing the conditions as follows.
Distance between fixed disk and rotating disk: 2000 μm
Number of rotations of rotating disk: 5000 rpm

実施例4
実施例1と同じ液組成と流量で、以下の通り条件を変えて同様の反応を行う。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :2000rpm
Example 4
The same reaction is carried out under the same liquid composition and flow rate as in Example 1 but changing the conditions as follows.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 2000 rpm

実施例5
実施例1と同じ液組成と流量で、以下の通り条件を変えて同様の反応を行う。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :7500rpm
Example 5
The same reaction is carried out under the same liquid composition and flow rate as in Example 1 but changing the conditions as follows.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 7500 rpm

実施例6
実施例1と同じ液組成で98%の濃硫酸に1%濃度で溶解した銅フタロシアニン溶液を1000ml/分、水を10000ml/分とし、以下の通り条件を変えて同様の反応を行う。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :5000rpm
Example 6
A copper phthalocyanine solution dissolved at a concentration of 1% in 98% concentrated sulfuric acid with the same liquid composition as in Example 1 was set at 1000 ml / min and water at 10000 ml / min, and the same reaction was carried out under the following conditions.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 5000 rpm

実施例7
実施例1と同じ液組成で98%の濃硫酸に1%濃度で溶解した銅フタロシアニン溶液を1000ml/分、水を500ml/分とし、以下の条件で反応を行う。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :5000rpm
Example 7
A copper phthalocyanine solution dissolved in 98% concentrated sulfuric acid at a concentration of 1% in the same liquid composition as in Example 1 is 1000 ml / min and water is 500 ml / min, and the reaction is carried out under the following conditions.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 5000 rpm

実施例8
実施例―1において、98%濃硫酸に銅フタロシアニンを5wt%で溶解し、同じ500ml/分の流量で結晶生成を行う。尚、装置の条件は、以下とする。固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :5000rpm
Example 8
In Example-1, copper phthalocyanine is dissolved at 5 wt% in 98% concentrated sulfuric acid, and crystals are formed at the same flow rate of 500 ml / min. The apparatus conditions are as follows. Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 5000 rpm

比較例1
実施例1で用いた強制混合型流体処理装置で回転をさせないことで従来型のパッシブ型流体処理装置として転用し、実施例1で用いた銅フタロシアニン1%濃硫酸溶液と水を混合することで銅フタロシアニン結晶を再沈殿させる。尚流量は夫々500ml/分とする。
Comparative Example 1
By not rotating in the forced mixing fluid treatment device used in Example 1, it can be used as a conventional passive fluid treatment device, and by mixing the copper phthalocyanine 1% concentrated sulfuric acid solution used in Example 1 with water. Reprecipitate copper phthalocyanine crystals. The flow rate is 500 ml / min.

比較例2
実施例7で用いた銅フタロシアニン5%濃硫酸溶液と水を混合することで銅フタロシアニン結晶を再沈殿させる。流体処理装置の条件は、比較例1と同じである。
Comparative Example 2
Copper phthalocyanine crystals are reprecipitated by mixing the copper phthalocyanine 5% concentrated sulfuric acid solution used in Example 7 with water. The conditions of the fluid processing apparatus are the same as those in Comparative Example 1.

以下に実施例1〜実施例8、及び比較例1,2の銅フタロシアニンの粒径データを表1に示す。
生成結晶の平均粒径サイズ(D50:体積が50%となる粒径)と粒子の分布幅(D10:体積が10%となる粒径、及びD90:体積が90%となる粒径)を測定した。
Table 1 shows the particle size data of copper phthalocyanine in Examples 1 to 8 and Comparative Examples 1 and 2.
Average particle size (D 50 : particle size at which the volume is 50%) and particle distribution width (D 10 : particle size at which the volume is 10%, and D 90 : particle size at which the volume is 90% ) Was measured.

尚、実施例1〜実施例8で得られる銅フタロシアニンは、比較例1及び比較例2で得られるものよりも、顔料としての発色性は何れも優れている。   The copper phthalocyanine obtained in Examples 1 to 8 is superior in color developability as a pigment than those obtained in Comparative Examples 1 and 2.

Figure 2006341232
Figure 2006341232

実施例9
15部の2,2′,5,5′−テトラクロロ−4,4′−ジアミノビフェニルを、250部の水と、15部の35%塩酸中に投入、30分撹拌後、更に24部の35%塩酸を追加して30分攪拌を行い、ジアミンヒドロクロライドを得る。この反応液に、7部の亜硝酸ソーダを15部の水に溶解した亜硝酸ソーダ水溶液を加え0〜10℃でジアゾ化する。ジアゾ化が終了した後に、過剰な亜硝酸を1.36部のスルファミン酸で分解した後濾過し、カップリング用のジアゾ液とする。
Example 9
15 parts of 2,2 ', 5,5'-tetrachloro-4,4'-diaminobiphenyl are put into 250 parts of water and 15 parts of 35% hydrochloric acid, stirred for 30 minutes and then 24 parts of water. Add 35% hydrochloric acid and stir for 30 minutes to obtain diamine hydrochloride. To this reaction solution, a sodium nitrite aqueous solution in which 7 parts of sodium nitrite is dissolved in 15 parts of water is added and diazotized at 0 to 10 ° C. After the diazotization is completed, excess nitrous acid is decomposed with 1.36 parts of sulfamic acid and then filtered to obtain a diazo solution for coupling.

次に、20部のN−アセトアセチル−2,4−ジメチルアニリンを300部の水に加えて撹拌し、0.2部のジメチルラウリルアミンを添加してカップラーを分散する。次いで10%塩酸にてpHを3.6に調整し、これをカップラー液とする。   Next, 20 parts of N-acetoacetyl-2,4-dimethylaniline is added to 300 parts of water and stirred, and 0.2 part of dimethyllaurylamine is added to disperse the coupler. Next, the pH is adjusted to 3.6 with 10% hydrochloric acid, and this is used as a coupler solution.

実施例1で用いた強制混合型流体処理装置の第一系統から前述のカップラー液500ml/分の流量で、また前述のジアゾ液を第二系統から500ml/分の流量で注入し、室温にて反応を行う。流体処理装置から排出された液は完全に反応を終了しており、C.I.ピグメントイエロー81の顔料を得る。ディスク間隔は400μm、回転ディスクの回転数は5000rpmの条件である。   The above-mentioned coupler liquid was injected at a flow rate of 500 ml / min from the first system of the forced mixing type fluid treatment device used in Example 1, and the diazo liquid was injected at a flow rate of 500 ml / min from the second system at room temperature. Perform the reaction. The liquid discharged from the fluid processing apparatus has completely finished the reaction, and C.I. I. Pigment Yellow 81 pigment is obtained. The disk interval is 400 μm, and the rotational speed of the rotating disk is 5000 rpm.

実施例10
実施例9と同じ液組成と流量で、流体処理装置の条件を以下とする。
固定ディスクと回転ディスクの間隔:20μm
回転ディスクの回転数 :5000rpm
Example 10
The conditions of the fluid processing apparatus are as follows with the same liquid composition and flow rate as in Example 9.
Distance between fixed disk and rotating disk: 20 μm
Number of rotations of rotating disk: 5000 rpm

実施例11
実施例9と同じ液組成と流量で、流体処理装置の条件を以下とする。
固定ディスクと回転ディスクの間隔:2000μm
回転ディスクの回転数 :5000rpm
Example 11
The conditions of the fluid processing apparatus are as follows with the same liquid composition and flow rate as in Example 9.
Distance between fixed disk and rotating disk: 2000 μm
Number of rotations of rotating disk: 5000 rpm

実施例12
実施例9と同じ液組成と流量で、流体処理装置の条件を以下とする。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :2000rpm
Example 12
The conditions of the fluid processing apparatus are as follows with the same liquid composition and flow rate as in Example 9.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 2000 rpm

実施例13
実施例9と同じ液組成と流量で、流体処理装置の条件を以下とする。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :7500rpm
Example 13
The conditions of the fluid processing apparatus are as follows with the same liquid composition and flow rate as in Example 9.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 7500 rpm

実施例14
実施例9と同じ液組成で流量を1000ml/分とし、流体処理装置の条件を以下とする。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :5000rpm
Example 14
The flow rate is 1000 ml / min with the same liquid composition as in Example 9, and the conditions of the fluid processing apparatus are as follows.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 5000 rpm

実施例15
15部の2,2′,5,5′−テトラクロロ−4,4′−ジアミノビフェニルを、125部の水と、15部の35%塩酸中に投入、30分撹拌後、更に24部の35%塩酸を追加して30分攪拌を行い、ジアミンヒドロクロライドを得る。この反応液に、7部の亜硝酸ソーダを15部の水に溶解した亜硝酸ソーダ水溶液を加え0〜10℃でジアゾ化する。ジアゾ化が終了した後に、過剰な亜硝酸を1.4部のスルファミン酸で分解した後濾過し、実施例9の倍濃度カップリング用ジアゾ液とする。
Example 15
15 parts of 2,2 ', 5,5'-tetrachloro-4,4'-diaminobiphenyl are put into 125 parts of water and 15 parts of 35% hydrochloric acid, stirred for 30 minutes and then 24 parts of water. Add 35% hydrochloric acid and stir for 30 minutes to obtain diamine hydrochloride. To this reaction solution, a sodium nitrite aqueous solution in which 7 parts of sodium nitrite is dissolved in 15 parts of water is added and diazotized at 0 to 10 ° C. After the diazotization is completed, excess nitrous acid is decomposed with 1.4 parts of sulfamic acid and then filtered to obtain the double concentration coupling diazo liquid of Example 9.

次に20部のN−アセトアセチル−2,4−ジメチルアニリンを150部の水に加えて撹拌し、0.2部のジメチルラウリルアミンを添加してカップラーを分散する。次いで10%塩酸にてpHを3.6に調整し、これを実施例9の倍濃度カップラー液とする。これらの倍濃度ジアゾ液及び倍濃度カップラー液を用いて、実施例9と同様の手順で反応を行う。流体処理装置から排出される液は反応を完全に終了しており、C.I.ピグメントイエロー81の顔料を得る。   Next, 20 parts of N-acetoacetyl-2,4-dimethylaniline is added to 150 parts of water and stirred, and 0.2 parts of dimethyllaurylamine is added to disperse the coupler. Next, the pH is adjusted to 3.6 with 10% hydrochloric acid, and this is used as the double-concentration coupler solution of Example 9. Using these double-concentration diazo liquid and double-concentration coupler liquid, the reaction is performed in the same procedure as in Example 9. The liquid discharged from the fluid processing apparatus has completely completed the reaction. I. Pigment Yellow 81 pigment is obtained.

尚、強制混合型流体処理装置の稼動は、以下の条件で行う。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :5000rpm
The operation of the forced mixing fluid processing apparatus is performed under the following conditions.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 5000 rpm

比較例3
比較例1の流体処理装置を用い同条件下で、実施例9で用いたジアゾ液とカップラー液夫々100ml/分の流量でマイクロに送り込み、反応を行う。装置から取り出された分散液をさらに90℃で30分加温し、C.I.ピグメントイエロー81を得る。
Comparative Example 3
Using the fluid processing apparatus of Comparative Example 1, under the same conditions, the diazo liquid and coupler liquid used in Example 9 are each sent to the micro at a flow rate of 100 ml / min to carry out the reaction. The dispersion liquid taken out from the apparatus was further heated at 90 ° C. for 30 minutes, and C.I. I. Pigment Yellow 81 is obtained.

比較例4
比較例1の流体処理装置を用い同条件下で、実施例15で用いた倍濃度ジアゾ液と倍濃度カップラー液夫々を100ml/分の流量で微小流路式混合器に送り込み、反応を行う。装置から取り出された分散液をさらに90℃で30分加温し、C.I.ピグメントイエロー81を得る。
Comparative Example 4
Under the same conditions using the fluid processing apparatus of Comparative Example 1, the double-concentration diazo liquid and double-concentration coupler liquid used in Example 15 are each sent to a micro-channel mixer at a flow rate of 100 ml / min to perform the reaction. The dispersion liquid taken out from the apparatus was further heated at 90 ° C. for 30 minutes, and C.I. I. Pigment Yellow 81 is obtained.

実施例9〜実施例15においても、流体処理装置から排出された液は完全に反応を終了しており、C.I.ピグメントイエロー81の顔料を得ることができる。
尚、実施例8〜実施例15で得られるC.I.ピグメントイエロー81は、比較例3及び比較例4で得られるものよりも、顔料としての発色性は何れも優れている。
Also in Examples 9 to 15, the liquid discharged from the fluid processing apparatus has completely finished the reaction. I. Pigment Yellow 81 pigment can be obtained.
In addition, C.I. obtained in Examples 8-15. I. Pigment Yellow 81 is superior in color developability as a pigment than those obtained in Comparative Examples 3 and 4.

以下に実施例9〜実施例15、及び比較例3〜比較例4の粒径データを表2に示す。   Table 2 shows the particle size data of Examples 9 to 15 and Comparative Examples 3 to 4.

Figure 2006341232
Figure 2006341232

実施例16
図11に示す二液分離流入タイプの強制混合型流体処理装置を用いて、銅フタロシアニンの濃硫酸溶液を水に希釈し、銅フタロシアニンの析出反応を行う。
Example 16
A concentrated solution of copper phthalocyanine is diluted in water using a two-component separation inflow type forced-mixing fluid processing apparatus shown in FIG. 11 to perform precipitation reaction of copper phthalocyanine.

中央の第一系統から分散剤としてアンモニアで中和したポリスチレンスルホン酸(PSSと略記)を1wt%溶解した水を500ml/分の流量で流し、第二系統から98%の濃硫酸に1%濃度で溶解した銅フタロシアニン溶液を500ml/分の流量で流す。固定ディスクと回転ディスクの間隔は400μmで、回転ディスクは5000rpmの回転数とする。尚、強制混合型流体処理装置から析出液を取り出した後、10%アンモニア水で中和し、粒度分布を測定する。   From the first system in the center, 1 wt% of polystyrene sulfonic acid (abbreviated as PSS) neutralized with ammonia as a dispersant was flowed at a flow rate of 500 ml / min, and from the second system, 1% concentration in 98% concentrated sulfuric acid. The copper phthalocyanine solution dissolved in is flowed at a flow rate of 500 ml / min. The interval between the fixed disk and the rotating disk is 400 μm, and the rotating disk has a rotational speed of 5000 rpm. In addition, after taking out a deposit liquid from a forced mixing type fluid processing apparatus, it neutralizes with 10% ammonia water, and measures a particle size distribution.

実施例17
実施例16で用いたPSS1wt%添加の水を第一系統から500ml/分、第二系統から98%の濃硫酸に1%濃度で溶解した銅フタロシアニン溶液を1000ml/分の流量で流す。強制混合型流体処理装置の条件は、以下とし、その他は実験例16に順ずる。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :5000rpm
Example 17
The copper phthalocyanine solution in which 1% by weight of PSS added in Example 16 was dissolved in 1% concentration in 500% / min from the first system and 98% concentrated sulfuric acid from the second system was flowed at a flow rate of 1000 ml / min. The conditions of the forced mixing type fluid processing apparatus are as follows, and other conditions are in accordance with Experimental Example 16.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 5000 rpm

実施例18
実施例16で第二系統の流量を2000ml/分で流す。その他は、実施例16に順ずる。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :5000rpm
Example 18
In Example 16, the second system is flowed at 2000 ml / min. Others are in accordance with Example 16.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 5000 rpm

実施例19
実施例16で用いたPSS1wt%添加の水を第一系統から500ml/分、第二系統から98%の濃硫酸に9%濃度で溶解した銅フタロシアニン溶液を500ml/分の流量で流す。強制混合型流体処理装置の条件は、以下とし、その他は実験例16に順ずる。
固定ディスクと回転ディスクの間隔:400μm
回転ディスクの回転数 :5000rpm
Example 19
A copper phthalocyanine solution prepared by dissolving 9 wt% of PSS 1 wt% water used in Example 16 in 98% concentrated sulfuric acid from the first system and flowing from the second system at a flow rate of 500 ml / min. The conditions of the forced mixing type fluid processing apparatus are as follows, and other conditions are in accordance with Experimental Example 16.
Distance between fixed disk and rotating disk: 400 μm
Number of rotations of rotating disk: 5000 rpm

比較例5
実施例1で用いた強制混合型流体処理装置で回転をさせないことで従来型のパッシブ型流体処理装置として転用し、実施例16で用いた銅フタロシアニン1%濃硫酸溶液と分散剤1wt%添加の水を混合することで銅フタロシアニン結晶を再沈殿させる。尚流量は夫々500ml/分とする。
Comparative Example 5
By not rotating in the forced mixing type fluid treatment device used in Example 1, it was diverted as a conventional passive fluid treatment device, and the copper phthalocyanine 1% concentrated sulfuric acid solution used in Example 16 and the dispersant 1 wt% were added. Copper phthalocyanine crystals are reprecipitated by mixing water. The flow rate is 500 ml / min.

比較例6
実施例19で用いた銅フタロシアニン9%濃硫酸溶液と分散剤1wt%を添加した水を混合することで銅フタロシアニン結晶を再沈殿させる。流体処理装置の条件は、比較例5と同じである。
Comparative Example 6
A copper phthalocyanine crystal is reprecipitated by mixing the copper phthalocyanine 9% concentrated sulfuric acid solution used in Example 19 and water added with 1 wt% dispersant. The conditions of the fluid processing apparatus are the same as those in Comparative Example 5.

以下に実施例16〜実施例19、及び比較例5〜比較例6の銅フタロシアニンの粒径データを表3に示す。
尚、実施例16〜実施例19で得られる銅フタロシアニンは、比較例5及び比較例5で得られるものよりも、顔料としての発色性は何れも優れている。
Table 3 shows the particle size data of copper phthalocyanine in Examples 16 to 19 and Comparative Examples 5 to 6.
The copper phthalocyanine obtained in Examples 16 to 19 is superior in color developability as a pigment than those obtained in Comparative Examples 5 and 5.

Figure 2006341232
Figure 2006341232

本発明の処理装置は、従来例では見られない次の優れた効果を奏する。
1.粒径を格段に小さくできること、およびその分布をより単分散に近づけることを可能にする。
2.反応液処理量を格段に増加でき、かつ安定に長時間の反応を可能にし、量産が可能な大量生産性に極めて優れた強制攪拌式微小間隙式流動反応装置を提供する。
3.従来例よりも反応空間の壁間距離を大きく設定でき、装置の加工の簡略化、大量生産性に極めて優れている。
The processing apparatus of the present invention has the following excellent effects that cannot be seen in the conventional example.
1. The particle size can be remarkably reduced, and the distribution can be made closer to monodispersion.
2. Provided is a forced agitation micro-gap fluidized reaction apparatus that can significantly increase the amount of reaction liquid treated, enables a stable reaction for a long time, and is extremely excellent in mass production capable of mass production.
3. The distance between the walls of the reaction space can be set larger than the conventional example, and the processing of the apparatus is simplified and the mass productivity is extremely excellent.

これ以外にも本発明が目的とする瞬間的な均一混合により次の効果が得られる。
4.副生成物の抑制で反応収率が向上
5.異性体等の生成比率がことなり、目的とする異性体を高収率で生成
6.混合の促進、若しくは反応温度を高くすることができ、反応の高速化
これらの優れた特徴はほんの一例であり、本発明の効果はこれらの特徴に限定されるものではない。
In addition to the above, the following effects can be obtained by the instantaneous uniform mixing aimed by the present invention.
4). 4. The reaction yield is improved by suppressing by-products. 5. The production ratio of isomers is different, and the desired isomer is produced in high yield. The promotion of mixing, or the reaction temperature can be increased, and the speed of the reaction can be increased. These excellent features are only examples, and the effects of the present invention are not limited to these features.

本発明の強制攪拌型微小間隙式流動反応装置は、流体の高速混合もしくは高速均一化を可能にし、且つ大量生産に適しているので、実施例に記載する銅フタロシアニンのナノ顔料生成以外にも各種ナノ顔料の合成・生成、白金バナジウム等の各種金属系のナノ粒子合成・生成、酸化インジウム等のナノ酸化物の合成・生成等において粒径の微細化・粒度分布の狭小化・高純度化・収率の向上・結晶形態の制御・反応時間の短時間化等の効果が得られている。   The forced stirring type micro-gap type flow reactor of the present invention enables high-speed mixing or homogenization of fluids and is suitable for mass production. Therefore, in addition to the production of nano-pigments of copper phthalocyanine as described in the examples, In the synthesis and production of nano pigments, the synthesis and production of various metal-based nanoparticles such as platinum vanadium, and the synthesis and production of nano oxides such as indium oxide, etc. Effects such as improvement of yield, control of crystal form, and shortening of reaction time have been obtained.

また非析出系の反応(反応空間で生成物が析出しない反応系)、例えば鈴木カップリング反応・光延反応・ウイティヒ反応・ベックマン転移反応等においても、反応温度の緩和・反応時間の短時間化・異性体の生成抑制・収率の向上等の効果が得られている。
これらの効果は本発明により得られる効果の一例であり、本発明はこれらに限定される物ではない。
Also in non-precipitation reactions (reaction systems in which products do not precipitate in the reaction space), such as the Suzuki coupling reaction, Mitsunobu reaction, Wittig reaction, Beckmann rearrangement reaction, etc., the reaction temperature is reduced, the reaction time is shortened, Effects such as suppression of isomer formation and improvement of yield are obtained.
These effects are examples of the effects obtained by the present invention, and the present invention is not limited to these.

本発明の基本的な作用である、壁面の変位による流体の攪拌混合を司る流体の速度変化と進行方向を示す概略図である。It is the schematic which shows the speed change and the advancing direction of the fluid which are stirring and mixing of the fluid by the displacement of a wall surface which is the fundamental effect | action of this invention. 本発明における回転ディスクを用いた時の強制混合型流体処理装置のマクロ流体挙動を示すグラフである。It is a graph which shows the macro fluid behavior of the forced mixing type fluid processing apparatus when the rotating disk in the present invention is used. 本発明における回転ディスクを用いた時の強制混合型流体処理装置のマクロ流体挙動を示すグラフである。It is a graph which shows the macro fluid behavior of the forced mixing type fluid processing apparatus when the rotating disk in the present invention is used. 本発明のプロセス例である流入口分離タイプの強制混合型流体処理プロセスを示す概略図である。It is the schematic which shows the inlet-port separation type forced mixing type fluid processing process which is the process example of this invention. 図3のプロセス例に用いられる回転型円形壁面形成部材(流入口分離タイプで二種類の流体対応)を示す概略図である。It is the schematic which shows the rotary type | mold circular wall surface forming member (two types of fluid corresponding | compatible with an inflow port separation type) used for the process example of FIG. 本発明のプロセスの改良として熱制御系及び観察系を有する流入口分離タイプの強制混合型流体処理プロセス(二種類の流体対応)を示す概略図である。It is the schematic which shows the forced-mixing type fluid processing process (corresponding to two types of fluids) of the inlet separation type which has a thermal control system and an observation system as improvement of the process of this invention. 本発明のプロセス形態の一つである二種類の流体に対応する同軸流入口タイプの強制混合型流体処理プロセスを示す概略図である。It is the schematic which shows the forced mixing type fluid processing process of the coaxial inlet type corresponding to two types of fluids which is one of the process forms of this invention. 本発明のプロセス形態の一つである三種類の流体に対応する流入口分離タイプの強制混合型流体処理プロセスを示す概略図である。It is the schematic which shows the forced-mixing type fluid processing process of the inlet_port | entrance separation type corresponding to three types of fluid which is one of the process forms of this invention. 図7のプロセス例に用いられる回転型円形壁面形成部材(流入口分離タイプで三種類の流体対応)を示す概略図である。It is the schematic which shows the rotary type | mold circular wall surface forming member (3 types of fluid correspondence with an inflow port separation type) used for the process example of FIG. 本発明のプロセス形態の一つである円筒回転壁面子タイプの強制混合型流体処理プロセス(二種類の流体対応)を示す概略図である。It is the schematic which shows the forced rotation type fluid treatment process (corresponding to two types of fluids) of the cylindrical rotating wall surface type that is one of the process forms of the present invention. 本発明のプロセス形態の一つである円錐回転壁面子タイプの強制混合型流体処理プロセス(二種類の流体対応)を示す概略図である。It is the schematic which shows the conical rotation wall element type forced mixing type fluid processing process (corresponding to two kinds of fluids) which is one of the process forms of the present invention. 本発明の流体処理装置の一つである二液分離流入タイプの円盤回転式強制混合型流体処理装置を示す概略図である。It is the schematic which shows the two liquid separation inflow type disk rotation type forced mixing type fluid processing apparatus which is one of the fluid processing apparatuses of this invention. 本発明の流体処理装置の一つである二液分離流入タイプの円錐回転子強制混合型流体処理装置を示す概略図である。It is the schematic which shows the two liquid separation inflow type conical rotor forced mixing type fluid processing apparatus which is one of the fluid processing apparatuses of this invention. 従来例におけるパッシブ型流体処理装置での流体の混合状態を示す概略図である。It is the schematic which shows the mixed state of the fluid in the passive type fluid processing apparatus in a prior art example. 図13の従来例における二種類の液体の相互の混合状態を、二種類の液体が接触する境界面における濃度分布の状態を示すグラフである。It is a graph which shows the state of concentration distribution in the interface which two types of liquid contact in the mixed state of two types of liquid in the prior art example of FIG.

符号の説明Explanation of symbols

1 M液及び流れ方向
2 N液及び流れ方向
3 流路幅400μmのY型流路
4 M液/N液の界面
5 移動壁面
6 固定壁面
7 流体A
8 流体B
9 壁面変位方向
10 流入排出流れ
11 壁面誘起流れ
12 流体流れ方向
13 流体A流入口
14 流体B流入口
15 固定壁面材
16 固定壁面
17 回転壁面材
18 回転壁面
19 流体A流入口貫通穴
20 流体B流入口貫通穴
21 流体B流入貫通穴連通溝
22 流体A流入口
23 流体B流入口
24 熱制御系
25 観察系
26 固定壁面材
27 固定壁面
28 回転壁面材
29 回転壁面
30 流体A流入口
31 流体B流入口
32 固定壁面材
33 固定壁面
34 回転壁面材
35 回転壁面
36 流体A流入口
37 流体B流入口
38 流体C流入口
39 固定壁面材
40 固定壁面
41 回転壁面材
42 回転壁面
43 流入A流入貫通穴
44 流体B流入貫通穴
45 流体B流入貫通穴連通溝
46 流体C流入口
47 流体C流入貫通穴連通溝
48 流体A流入口
49 流体B流入口
50 筐体(固定壁面材)
51 回転壁面子
52 流体A流入口
53 流体B流入口
54 筐体(固定壁面材)
55 回転壁面子
56 流体A流入口
57 流体B流入口
58 流体B連通溝
59 固定ディスク
60 回転ディスク
61 筐体
62 固定ディスク加圧流体注入口
63 Oリング型封止材
64 回転型封止材
65 モータ
66 流体A流入口
67 流体B流入口
68 筐体(固定壁面材)
69 回転壁面子
70 磁性回転体
100 処理(反応)空間
101 入口
102 出口
103 貫通穴
DESCRIPTION OF SYMBOLS 1 M liquid and flow direction 2 N liquid and flow direction 3 Y-shaped flow path with flow path width of 400 μm 4 M liquid / N liquid interface 5 Moving wall 6 Fixed wall 7 Fluid A
8 Fluid B
DESCRIPTION OF SYMBOLS 9 Wall surface displacement direction 10 Inflow / outflow flow 11 Wall surface induced flow 12 Fluid flow direction 13 Fluid A inflow port 14 Fluid B inflow port 15 Fixed wall surface material 16 Fixed wall surface 17 Rotating wall surface material 18 Rotating wall surface 19 Fluid A inflow port through hole 20 Fluid B Inlet through hole 21 Fluid B inflow through hole communication groove 22 Fluid A inlet 23 Fluid B inlet 24 Thermal control system 25 Observation system 26 Fixed wall material 27 Fixed wall surface 28 Rotating wall material 29 Rotating wall surface 30 Fluid A inlet 31 Fluid B inlet 32 Fixed wall material 33 Fixed wall 34 Rotating wall material 35 Rotating wall material 36 Fluid A inlet 37 Fluid B inlet 38 Fluid C inlet 39 Fixed wall material 40 Fixed wall surface 41 Rotating wall material 42 Rotating wall surface 43 Inflow A inflow Through hole 44 Fluid B inflow through hole 45 Fluid B inflow through hole communication groove 46 Fluid C inflow port 47 Fluid C inflow through hole communication groove 8 Fluid A inlet 49 fluid B inlet 50 housing (fixed wall material)
51 Rotating Wall Surface Element 52 Fluid A Inlet 53 Fluid B Inlet 54 Case (Fixed Wall Material)
55 Rotating wall element 56 Fluid A inlet 57 Fluid B inlet 58 Fluid B communication groove 59 Fixed disk 60 Rotating disk 61 Housing 62 Fixed disk pressurized fluid inlet 63 O-ring type sealing material 64 Rotating type sealing material 65 Motor 66 Fluid A inlet 67 Fluid B inlet 68 Housing (fixed wall material)
69 Rotating wall element 70 Magnetic rotating body 100 Processing (reaction) space 101 Inlet 102 Outlet 103 Through hole

Claims (10)

少なくとも二つの流体を混合若しくは反応させる流体処理装置において、少なくとも二つの流体を上流下流なる相対的位置関係で導入して混合若しくは反応させる処理空間と、該処理空間を形成する相対する壁面と、該壁面を相対的に変位させる変位手段とを有することを特徴とする流体処理装置。   In a fluid processing apparatus for mixing or reacting at least two fluids, a processing space for introducing and mixing or reacting at least two fluids in a relative positional relationship upstream and downstream; opposing wall surfaces forming the processing space; and A fluid processing apparatus comprising a displacement means for relatively displacing the wall surface. 前記相対する壁面の相対的変位が、流体の注入口から排出口に向かう流れに対して独立した方向の相対的変位であることを特徴とする請求項1記載の流体処理装置。   The fluid processing apparatus according to claim 1, wherein the relative displacement of the opposing wall surfaces is a relative displacement in a direction independent of a flow from the fluid inlet to the outlet. 前記相対する壁面が円盤状の固定壁面及び変位壁面からなり、該変位壁面の変位が回転運動であることを特徴とする請求項1または2に記載の流体処理装置。   The fluid processing apparatus according to claim 1, wherein the opposing wall surfaces include a disk-shaped fixed wall surface and a displacement wall surface, and the displacement of the displacement wall surface is a rotational motion. 前記固定壁面及び該変位壁面が同軸の対称軸を有し、該変位壁面が同軸の対称軸を中心とする回転運動により変移することを特徴とする請求項1乃至3のいずれかの項に記載の流体処理装置。   4. The fixed wall surface and the displacement wall surface have a coaxial symmetry axis, and the displacement wall surface is changed by a rotational motion around the coaxial symmetry axis. Fluid processing equipment. 前記処理空間への流体の導入口が固定壁面に設けるられていることを特徴とする請求項1乃至4のいずれかの項に記載の流体処理装置。   The fluid processing apparatus according to claim 1, wherein an inlet for introducing fluid into the processing space is provided on a fixed wall surface. 前記壁面に熱制御手段を設けて前記処理空間の流体の熱制御を行うことを特徴とする請求項1乃至5のいずれかの項に記載の流体処理装置。   The fluid processing apparatus according to claim 1, wherein a heat control unit is provided on the wall surface to control the heat of the fluid in the processing space. 前記壁面に前記処理空間内の流体の状態を観測するモニターが設けられていることを特徴とする請求項1乃至6のいずれかの項に記載の流体処理装置。   The fluid processing apparatus according to claim 1, wherein a monitor for observing a state of fluid in the processing space is provided on the wall surface. 少なくとも二つの流体を混合若しくは反応させる流体処理方法において、少なくとも二つの流体を上流下流なる相対的位置関係をもって、処理空間に導入する工程と、該処理空間を形成する相対する壁面を相対的に変位させて、前記少なくとも二つの流体を混合若しくは反応させる工程と、を有することを特徴とする流体処理方法。   In a fluid processing method in which at least two fluids are mixed or reacted, a step of introducing at least two fluids into a processing space with a relative positional relationship upstream and downstream, and a relative wall surface forming the processing space are relatively displaced. And a step of mixing or reacting the at least two fluids. 前記相対する壁面の相対的変位が、流体の注入口から排出口に向かう流れに対して独立した方向の相対的変位であることを特徴とする請求項8記載の流体処理方法。   The fluid processing method according to claim 8, wherein the relative displacement of the opposing wall surfaces is a relative displacement in a direction independent of a flow from the fluid inlet to the outlet. 前記相対する壁面が円盤状の固定壁面及び変位壁面からなり、該変位壁面の変位が回転運動であることを特徴とする請求項8または9に記載の流体処理方法。   The fluid processing method according to claim 8 or 9, wherein the opposing wall surfaces include a disk-shaped fixed wall surface and a displacement wall surface, and the displacement of the displacement wall surface is a rotational motion.
JP2005171429A 2005-06-10 2005-06-10 Fluid treatment apparatus and fluid treatment method Pending JP2006341232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171429A JP2006341232A (en) 2005-06-10 2005-06-10 Fluid treatment apparatus and fluid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171429A JP2006341232A (en) 2005-06-10 2005-06-10 Fluid treatment apparatus and fluid treatment method

Publications (1)

Publication Number Publication Date
JP2006341232A true JP2006341232A (en) 2006-12-21

Family

ID=37638586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171429A Pending JP2006341232A (en) 2005-06-10 2005-06-10 Fluid treatment apparatus and fluid treatment method

Country Status (1)

Country Link
JP (1) JP2006341232A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268503A (en) * 2006-03-31 2007-10-18 National Institute Of Advanced Industrial & Technology Supercritical micro mixing device
WO2009008388A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Pigment nano-fine particle manufacturing method using a forced ultra-thin film rotating reaction method, its pigment nano particles, and ink-jet ink using the particles
JP2009082902A (en) * 2007-07-06 2009-04-23 M Technique Co Ltd Nanoparticle production method using forced ultrathin film rotating treatment method
JP2009131831A (en) * 2007-11-09 2009-06-18 M Technique Co Ltd Fine particle making method and fine particle
JP4446129B1 (en) * 2009-03-03 2010-04-07 エム・テクニック株式会社 Method for producing fine particles
JP4446128B1 (en) * 2009-03-03 2010-04-07 エム・テクニック株式会社 Method for producing fine particles
EP2177294A1 (en) * 2007-07-06 2010-04-21 M Technique Co., Ltd. Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
EP2177210A1 (en) * 2007-07-06 2010-04-21 M Technique Co., Ltd. Method of producing microparticles to be ingested into the body, microparticles to be ingested into the body and dispersion and medicinal composition containing the same
EP2179966A1 (en) * 2007-07-06 2010-04-28 M Technique Co., Ltd. Process for production of ceramic nanoparticle
EP2179791A1 (en) * 2007-07-06 2010-04-28 M Technique Co., Ltd. Method for production of metal-supporting carbon, method for production of crystal composed of fullerene molecule and fullerene nanowhisker/nanofiber nanotube, and apparatus for production of fullerene molecule and fullerene nanowhisker/nanofiber nanotube
EP2184772A1 (en) * 2007-08-09 2010-05-12 M Technique Co., Ltd. Process for producing semiconductor fine particles and the fine particles
EP2184110A1 (en) * 2007-07-06 2010-05-12 M Technique Co., Ltd. Liquid treating apparatus, and treating method
EP2210658A1 (en) * 2007-11-09 2010-07-28 M Technique Co., Ltd. Method of producing emulsion and emulsion obtained thereby
EP2216312A1 (en) * 2007-10-22 2010-08-11 M Technique Co., Ltd. Process for producing organic compound and organic compound obtained by the same
WO2010100794A1 (en) * 2009-03-03 2010-09-10 エム・テクニック株式会社 Method of treating surface of fine pigment particles
EP2351796A1 (en) * 2008-09-29 2011-08-03 M Technique Co., Ltd. Novel copper phthalocyanine pigment and process for producing copper phthalocyanine fine particles
WO2011105333A1 (en) * 2010-02-26 2011-09-01 エム・テクニック株式会社 Fluid treatment device and treatment method
WO2011122586A1 (en) * 2010-03-29 2011-10-06 国立大学法人横浜国立大学 Chemical and physical processing device and chemical and physical processing method
WO2011126124A1 (en) * 2010-04-08 2011-10-13 エム・テクニック株式会社 Fluid treatment device and treatment method
US20120024772A1 (en) * 2008-11-25 2012-02-02 M. Technique Co., Ltd. Fluid treatment equipment and treatment method
CN102516809A (en) * 2007-07-06 2012-06-27 M技术株式会社 Method for producing nanoparticles by forced ultra-thin film rotary processing
WO2012165000A1 (en) * 2011-05-28 2012-12-06 エム・テクニック株式会社 Method for preventing adhesion of processed object using forced thin-film fluid processing device
WO2012164999A1 (en) * 2011-05-28 2012-12-06 エム・テクニック株式会社 Method for increasing production of fine particles using forced thin-film fluid treatment device
CN102822286A (en) * 2010-06-03 2012-12-12 M技术株式会社 Novel copper phthalocyanine pigments and processes for production of copper phthalocyanine fine particles
CN102895905A (en) * 2012-10-26 2013-01-30 重庆大学 Nanoscale fluid mixing method and mixer thereof
CN102993775A (en) * 2011-09-08 2013-03-27 佳能株式会社 Pigment particle, ink, ink cartridge, and ink jet recording method
WO2013128592A1 (en) * 2012-02-29 2013-09-06 エム・テクニック株式会社 Microparticle manufacturing method
WO2013164886A1 (en) * 2012-05-01 2013-11-07 エム・テクニック株式会社 Method for manufacturing fine grains
JP2013249340A (en) * 2012-05-30 2013-12-12 Kyocera Document Solutions Inc Method of manufacturing resin particle, and method of manufacturing electrostatic latent image developing toner
KR20140019305A (en) * 2011-06-10 2014-02-14 엠. 테크닉 가부시키가이샤 Fluid treatment method including extraction
EP2716352A1 (en) * 2011-05-27 2014-04-09 M. Technique Co., Ltd. Microbubble-generating device, microbubble-generating method, and gas-liquid reaction method using same
WO2014178388A1 (en) * 2013-04-30 2014-11-06 エム・テクニック株式会社 Fluid processing device
WO2014178387A1 (en) * 2013-04-30 2014-11-06 エム・テクニック株式会社 Fluid processing method
JP2015180501A (en) * 2015-06-11 2015-10-15 エム・テクニック株式会社 Fine air bubble generator, fine air bubble generating method, and air bubble reaction method using the former
JP2017131801A (en) * 2016-01-25 2017-08-03 株式会社エディプラス Temperature adjustment device
JP2017189771A (en) * 2017-04-28 2017-10-19 エム・テクニック株式会社 Production method of fine particle

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268503A (en) * 2006-03-31 2007-10-18 National Institute Of Advanced Industrial & Technology Supercritical micro mixing device
JP2010189661A (en) * 2007-07-06 2010-09-02 M Technique Co Ltd Method for producing pigment nanoparticle and method for producing inkjet ink
US10046296B2 (en) 2007-07-06 2018-08-14 M. Technique Co., Ltd. Fluid processing apparatus and processing method
EP3284540A1 (en) * 2007-07-06 2018-02-21 M. Technique Co., Ltd. Method for producing crystals consisting of fullerene molecules and fullerene nanowhisker/nanofiber nanotubes, and apparatus for producing the same
JP2013039567A (en) * 2007-07-06 2013-02-28 M Technique Co Ltd Fluid treatment apparatus and treatment method
EP2184110A4 (en) * 2007-07-06 2013-02-27 M Tech Co Ltd Liquid treating apparatus, and treating method
EP2177294A1 (en) * 2007-07-06 2010-04-21 M Technique Co., Ltd. Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
JPWO2009008388A1 (en) * 2007-07-06 2010-09-09 エム・テクニック株式会社 Method for producing pigment nanoparticles and method for producing ink jet ink
EP2179966A1 (en) * 2007-07-06 2010-04-28 M Technique Co., Ltd. Process for production of ceramic nanoparticle
EP2179791A1 (en) * 2007-07-06 2010-04-28 M Technique Co., Ltd. Method for production of metal-supporting carbon, method for production of crystal composed of fullerene molecule and fullerene nanowhisker/nanofiber nanotube, and apparatus for production of fullerene molecule and fullerene nanowhisker/nanofiber nanotube
EP2184109A1 (en) * 2007-07-06 2010-05-12 M Technique Co., Ltd. Method for producing nanoparticles by forced ultra-thin film rotary processing
JP2013027872A (en) * 2007-07-06 2013-02-07 M Technique Co Ltd Device and method for treatment of fluid
EP2184110A1 (en) * 2007-07-06 2010-05-12 M Technique Co., Ltd. Liquid treating apparatus, and treating method
US9917308B2 (en) 2007-07-06 2018-03-13 M. Technique Co., Ltd. Method for producing crystals comprising fullerene molecules and fullerene nanowhisker/nanofiber nanotubes
CN101796143A (en) * 2007-07-06 2010-08-04 M技术株式会社 Pigment nano-fine particle manufacturing method using a forced ultra-thin film rotating reaction method, its pigment nano particles, and ink-jet ink using the particles
WO2009008388A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Pigment nano-fine particle manufacturing method using a forced ultra-thin film rotating reaction method, its pigment nano particles, and ink-jet ink using the particles
JP2009082902A (en) * 2007-07-06 2009-04-23 M Technique Co Ltd Nanoparticle production method using forced ultrathin film rotating treatment method
EP2177210A1 (en) * 2007-07-06 2010-04-21 M Technique Co., Ltd. Method of producing microparticles to be ingested into the body, microparticles to be ingested into the body and dispersion and medicinal composition containing the same
CN102516809B (en) * 2007-07-06 2015-04-01 M技术株式会社 Method for producing nanoparticles by forced ultra-thin film rotary processing
US8911545B2 (en) 2007-07-06 2014-12-16 M. Technique Co., Ltd. Method for producing pigment nanoparticles by forced ultrathin film rotary reaction method, pigment nanoparticles, and inkjet ink using the same
US9211510B2 (en) 2007-07-06 2015-12-15 M. Technique Co., Ltd. Method for producing nanoparticles by forced ultrathin film rotary processing
US20100326321A1 (en) * 2007-07-06 2010-12-30 Masakazu Enomura Method for producing pigment nanoparticles by forced ultrathin film rotary reaction method, pigment nanoparticles, and inkjet ink using the same
JP4691698B2 (en) * 2007-07-06 2011-06-01 エム・テクニック株式会社 Method for producing pigment nanoparticles and method for producing ink jet ink
EP2179791A4 (en) * 2007-07-06 2013-01-16 M Tech Co Ltd Method for production of metal-supporting carbon, method for production of crystal composed of fullerene molecule and fullerene nanowhisker/nanofiber nanotube, and apparatus for production of fullerene molecule and fullerene nanowhisker/nanofiber nanotube
EP2179966A4 (en) * 2007-07-06 2013-01-02 M Tech Co Ltd Process for production of ceramic nanoparticle
EP2177294A4 (en) * 2007-07-06 2012-12-26 M Tech Co Ltd Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
EP2184109A4 (en) * 2007-07-06 2012-12-26 M Tech Co Ltd Method for producing nanoparticles by forced ultra-thin film rotary processing
US8747699B2 (en) 2007-07-06 2014-06-10 M. Technique Co., Ltd. Method for producing metal microparticles, and metal colloidal solution containing the metal microparticles
US8623415B2 (en) 2007-07-06 2014-01-07 M. Technique Co., Ltd. Method for producing biologically ingestible microparticles, biologically ingestible microparticles, and dispersion and pharmaceutical composition containing the same
US8708550B2 (en) 2007-07-06 2014-04-29 M. Technique Co., Ltd. Fluid processing apparatus and processing method
CN102516809A (en) * 2007-07-06 2012-06-27 M技术株式会社 Method for producing nanoparticles by forced ultra-thin film rotary processing
US8974986B2 (en) 2007-07-06 2015-03-10 M. Technique Co., Ltd. Method for producing metal-supported carbon, method for producing crystals consisting of fullerene molecules and fullerene nanowhisker/nanofiber nanotubes, and apparatus for producing the same
EP2177210A4 (en) * 2007-07-06 2013-01-23 M Tech Co Ltd Method of producing microparticles to be ingested into the body, microparticles to be ingested into the body and dispersion and medicinal composition containing the same
EP2184772A1 (en) * 2007-08-09 2010-05-12 M Technique Co., Ltd. Process for producing semiconductor fine particles and the fine particles
US20150034884A1 (en) * 2007-08-09 2015-02-05 M.Technique Co., Ltd. Method for producing semiconductor microparticles and the microparticles
US9337382B2 (en) 2007-08-09 2016-05-10 M Technique Co., Ltd. Method for producing semiconductor microparticles and the microparticles
EP3106227A1 (en) * 2007-08-09 2016-12-21 M Technique Co., Ltd. Process for producing semiconductor fine particles and the fine particles
US8841352B2 (en) 2007-08-09 2014-09-23 M Technique Co., Ltd. Method for producing semiconductor microparticles and the microparticles
EP2184772A4 (en) * 2007-08-09 2012-12-26 M Tech Co Ltd Process for producing semiconductor fine particles and the fine particles
EP2216312A1 (en) * 2007-10-22 2010-08-11 M Technique Co., Ltd. Process for producing organic compound and organic compound obtained by the same
EP2216312A4 (en) * 2007-10-22 2012-04-18 M Tech Co Ltd Process for producing organic compound and organic compound obtained by the same
US8592498B2 (en) 2007-10-22 2013-11-26 M. Technique Co., Ltd. Method for producing organic compound and organic compound obtained by the method
EP2210658A1 (en) * 2007-11-09 2010-07-28 M Technique Co., Ltd. Method of producing emulsion and emulsion obtained thereby
EP2210658A4 (en) * 2007-11-09 2014-04-30 M Tech Co Ltd Method of producing emulsion and emulsion obtained thereby
US8980958B2 (en) 2007-11-09 2015-03-17 M. Technique Co., Ltd. Method for producing emulsion and thereby obtained emulsion
JP2012157858A (en) * 2007-11-09 2012-08-23 M Technique Co Ltd Fine particle making method
JP2009131831A (en) * 2007-11-09 2009-06-18 M Technique Co Ltd Fine particle making method and fine particle
CN102165020A (en) * 2008-09-29 2011-08-24 M技术株式会社 Novel copper phthalocyanine pigment and process for producing copper phthalocyanine fine particles
EP2351796A1 (en) * 2008-09-29 2011-08-03 M Technique Co., Ltd. Novel copper phthalocyanine pigment and process for producing copper phthalocyanine fine particles
CN102165020B (en) * 2008-09-29 2014-10-15 M技术株式会社 Novel copper phthalocyanine pigment and process for producing copper phthalocyanine fine particles
EP2351796A4 (en) * 2008-09-29 2012-05-30 M Tech Co Ltd Novel copper phthalocyanine pigment and process for producing copper phthalocyanine fine particles
JP5382738B2 (en) * 2008-11-25 2014-01-08 エム・テクニック株式会社 Fluid processing apparatus and processing method
US8609035B2 (en) * 2008-11-25 2013-12-17 M. Technique Co., Ltd. Fluid processing apparatus and processing method
US20120024772A1 (en) * 2008-11-25 2012-02-02 M. Technique Co., Ltd. Fluid treatment equipment and treatment method
EP2418015A1 (en) * 2008-11-25 2012-02-15 M Technique Co., Ltd. Fluid treatment equipment and treatment method
EP2418015A4 (en) * 2008-11-25 2014-10-15 M Tech Co Ltd Fluid treatment equipment and treatment method
JPWO2010061430A1 (en) * 2008-11-25 2012-04-19 エム・テクニック株式会社 Fluid processing apparatus and processing method
JP4446128B1 (en) * 2009-03-03 2010-04-07 エム・テクニック株式会社 Method for producing fine particles
JP2010201343A (en) * 2009-03-03 2010-09-16 M Technique Co Ltd Method of producing microparticles
JP2010201344A (en) * 2009-03-03 2010-09-16 M Technique Co Ltd Method of producing microparticles
WO2010100794A1 (en) * 2009-03-03 2010-09-10 エム・テクニック株式会社 Method of treating surface of fine pigment particles
CN102325844A (en) * 2009-03-03 2012-01-18 M技术株式会社 Method of treating surface of fine pigment particles
JP4446129B1 (en) * 2009-03-03 2010-04-07 エム・テクニック株式会社 Method for producing fine particles
US9255202B2 (en) 2009-03-03 2016-02-09 M. Technique Co., Ltd. Method for treating surface of pigment microparticles
KR101429045B1 (en) 2009-03-03 2014-08-11 엠. 테크닉 가부시키가이샤 Method of treating surface of fine pigment particles
CN102325844B (en) * 2009-03-03 2015-02-11 M技术株式会社 Method of treating surface of fine pigment particles
CN102574095A (en) * 2010-02-26 2012-07-11 M技术株式会社 Fluid treatment device and treatment method
US8978702B2 (en) 2010-02-26 2015-03-17 M. Technique Co., Ltd. Fluid processing apparatus and processing method
WO2011105333A1 (en) * 2010-02-26 2011-09-01 エム・テクニック株式会社 Fluid treatment device and treatment method
WO2011122586A1 (en) * 2010-03-29 2011-10-06 国立大学法人横浜国立大学 Chemical and physical processing device and chemical and physical processing method
JPWO2011122586A1 (en) * 2010-03-29 2013-07-08 均 當麻 Chemical / physical processing equipment and chemical / physical processing method
JP5821072B2 (en) * 2010-04-08 2015-11-24 エム・テクニック株式会社 Fluid processing apparatus and processing method
US9873103B2 (en) 2010-04-08 2018-01-23 M. Technique Co., Ltd. Fluid processing apparatus and processing method
WO2011126124A1 (en) * 2010-04-08 2011-10-13 エム・テクニック株式会社 Fluid treatment device and treatment method
JPWO2011126124A1 (en) * 2010-04-08 2013-07-11 エム・テクニック株式会社 Fluid processing apparatus and processing method
CN105860577B (en) * 2010-06-03 2018-03-16 M技术株式会社 The manufacture method of copper phthalocyanine particulate
US9487658B2 (en) 2010-06-03 2016-11-08 M. Technique Co., Ltd. Copper phthalocyanine pigment and method for producing copper phthalocyanine microparticles
CN102822286A (en) * 2010-06-03 2012-12-12 M技术株式会社 Novel copper phthalocyanine pigments and processes for production of copper phthalocyanine fine particles
CN105860577A (en) * 2010-06-03 2016-08-17 M技术株式会社 Method for producing copper phthalocyanine microparticles
CN102822286B (en) * 2010-06-03 2016-04-20 M技术株式会社 The manufacture method of novel copper phthalocyanine and copper phthalocyanine particulate
EP2716352A4 (en) * 2011-05-27 2014-11-05 M Tech Co Ltd Microbubble-generating device, microbubble-generating method, and gas-liquid reaction method using same
EP2716352A1 (en) * 2011-05-27 2014-04-09 M. Technique Co., Ltd. Microbubble-generating device, microbubble-generating method, and gas-liquid reaction method using same
CN103561856A (en) * 2011-05-28 2014-02-05 M技术株式会社 Method for preventing adhesion of processed object using forced thin-film fluid processing device
WO2012164999A1 (en) * 2011-05-28 2012-12-06 エム・テクニック株式会社 Method for increasing production of fine particles using forced thin-film fluid treatment device
JPWO2012164999A1 (en) * 2011-05-28 2015-02-23 エム・テクニック株式会社 Method for increasing production of fine particles using forced thin film type fluid treatment system
CN103561856B (en) * 2011-05-28 2016-06-15 M技术株式会社 Employ the method preventing dirt settling from adhering to forcing film type fluid treating device
CN103561857B (en) * 2011-05-28 2016-06-15 M技术株式会社 Use the output increase method of forcing the particulate of diaphragm type fluid treating device
US9539642B2 (en) 2011-05-28 2017-01-10 M. Technique Co., Ltd. Method for increasing production volume of fine particles using forced thin film fluid treatment apparatus
CN103561857A (en) * 2011-05-28 2014-02-05 M技术株式会社 Method for increasing production of fine particles using forced thin-film fluid treatment device
JPWO2012165000A1 (en) * 2011-05-28 2015-02-23 エム・テクニック株式会社 Method for preventing adhesion of treated object using forced thin film type fluid treatment system
WO2012165000A1 (en) * 2011-05-28 2012-12-06 エム・テクニック株式会社 Method for preventing adhesion of processed object using forced thin-film fluid processing device
KR101892947B1 (en) * 2011-06-10 2018-08-29 엠. 테크닉 가부시키가이샤 Fluid treatment method including extraction
KR20140019305A (en) * 2011-06-10 2014-02-14 엠. 테크닉 가부시키가이샤 Fluid treatment method including extraction
CN106039764A (en) * 2011-06-10 2016-10-26 M技术株式会社 Fluid treatment method including extraction
US9764250B2 (en) 2011-06-10 2017-09-19 M. Technique Co., Ltd. Fluid processing method including extraction
EP2719433A4 (en) * 2011-06-10 2015-03-11 M Tech Co Ltd Fluid treatment method including extraction
EP2719433A1 (en) * 2011-06-10 2014-04-16 M Technique Co., Ltd. Fluid treatment method including extraction
US8834621B2 (en) 2011-09-08 2014-09-16 Canon Kabushiki Kaisha Pigment particle, ink, ink cartridge, and ink jet recording method
CN102993775A (en) * 2011-09-08 2013-03-27 佳能株式会社 Pigment particle, ink, ink cartridge, and ink jet recording method
CN102993775B (en) * 2011-09-08 2015-01-07 佳能株式会社 Pigment particle, ink, ink cartridge, and ink jet recording method
US9669463B2 (en) 2012-02-29 2017-06-06 M. Technique Co., Ltd. Method for producing microparticles by growing a precipitated seed microparticle
JPWO2013128592A1 (en) * 2012-02-29 2015-07-30 エム・テクニック株式会社 Method for producing fine particles
WO2013128592A1 (en) * 2012-02-29 2013-09-06 エム・テクニック株式会社 Microparticle manufacturing method
JPWO2013164886A1 (en) * 2012-05-01 2015-12-24 エム・テクニック株式会社 Method for producing fine particles
WO2013164886A1 (en) * 2012-05-01 2013-11-07 エム・テクニック株式会社 Method for manufacturing fine grains
CN104284715A (en) * 2012-05-01 2015-01-14 M技术株式会社 Method for manufacturing fine grains
US10166605B2 (en) 2012-05-01 2019-01-01 M. Technique Co., Ltd. Method for producing microparticles
US9436109B2 (en) 2012-05-30 2016-09-06 Kyocera Document Solutions Inc. Method of manufacturing resin particles, apparatus for manufacturing resin particles, and image forming apparatus
JP2013249340A (en) * 2012-05-30 2013-12-12 Kyocera Document Solutions Inc Method of manufacturing resin particle, and method of manufacturing electrostatic latent image developing toner
CN102895905B (en) * 2012-10-26 2015-02-18 重庆大学 Nanoscale fluid mixing method and mixer thereof
CN102895905A (en) * 2012-10-26 2013-01-30 重庆大学 Nanoscale fluid mixing method and mixer thereof
JP2018144039A (en) * 2013-04-30 2018-09-20 エム・テクニック株式会社 Fluid processing method
US11065588B2 (en) 2013-04-30 2021-07-20 M. Technique Co., Ltd. Fluid processing method
JPWO2014178387A1 (en) * 2013-04-30 2017-02-23 エム・テクニック株式会社 Fluid processing method
CN105246585A (en) * 2013-04-30 2016-01-13 M技术株式会社 Fluid processing method
WO2014178388A1 (en) * 2013-04-30 2014-11-06 エム・テクニック株式会社 Fluid processing device
WO2014178387A1 (en) * 2013-04-30 2014-11-06 エム・テクニック株式会社 Fluid processing method
CN105246585B (en) * 2013-04-30 2017-05-03 M技术株式会社 Fluid processing method
JP2015180501A (en) * 2015-06-11 2015-10-15 エム・テクニック株式会社 Fine air bubble generator, fine air bubble generating method, and air bubble reaction method using the former
JP2017131801A (en) * 2016-01-25 2017-08-03 株式会社エディプラス Temperature adjustment device
JP2017189771A (en) * 2017-04-28 2017-10-19 エム・テクニック株式会社 Production method of fine particle

Similar Documents

Publication Publication Date Title
JP2006341232A (en) Fluid treatment apparatus and fluid treatment method
KR101482057B1 (en) Liquid treating apparatus, and treating method
JP6204235B2 (en) Process-enhanced microfluidic device
US8123398B2 (en) Fluid-processing device
JP5001529B2 (en) Method for producing organic pigment fine particles
KR100755886B1 (en) Preparation of disazo condensation pigments in microreactors
JP4407177B2 (en) Reaction method using microreactor
JP5604038B2 (en) Reaction apparatus and reaction plant
JP4743068B2 (en) Method for producing organic pigment fine particles
JP5648986B2 (en) Fluid processing apparatus and fluid processing method
US20050053532A1 (en) Methods of operating surface reactors and reactors employing such methods
CN110508231B (en) Continuous production system of azo reactive dye applying supergravity
JP4060713B2 (en) Method and apparatus for continuous redox regulation in azo coupling
KR20120090935A (en) Tubular flow reactor
WO2012014530A1 (en) Process for producing fine particles with regulated particle diameter
JP2007254176A (en) Method for manufacturing fine particle, static mixer used for manufacturing fine particle and method for mixing plurality of fluids by use of static mixer
CN105073237A (en) Mixing reactor and related process
JP4724619B2 (en) Fluid processing apparatus and fluid processing method
EP1968733A1 (en) Fluid mixing apparatus, integrated fluid mixing apparatus, fluid mixing system and process for producing a fluid mixing apparatus
JP2006193652A (en) Organic pigment fine particle and method for producing the same
JP2007044678A (en) Method for implementing chemical reaction
WO2011105333A1 (en) Fluid treatment device and treatment method
JP2013000677A (en) High-temperature high-pressure fluid mixing apparatus
JP4446128B1 (en) Method for producing fine particles
JP2007144288A (en) Chemical device