JP2006341204A - Method for manufacturing near infrared ray shielding body and plate-like body for display - Google Patents

Method for manufacturing near infrared ray shielding body and plate-like body for display Download PDF

Info

Publication number
JP2006341204A
JP2006341204A JP2005169783A JP2005169783A JP2006341204A JP 2006341204 A JP2006341204 A JP 2006341204A JP 2005169783 A JP2005169783 A JP 2005169783A JP 2005169783 A JP2005169783 A JP 2005169783A JP 2006341204 A JP2006341204 A JP 2006341204A
Authority
JP
Japan
Prior art keywords
infrared
solvent
compound
infrared absorbing
near infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005169783A
Other languages
Japanese (ja)
Inventor
Yuji Yamashita
勇司 山下
Noriaki Otani
紀昭 大谷
Teruhisa Miyata
照久 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005169783A priority Critical patent/JP2006341204A/en
Publication of JP2006341204A publication Critical patent/JP2006341204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Optical Filters (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near infrared ray shielding body suppressed with the degradation over time of a near infrared ray absorption characteristic under a high-temperature and a highly humid use conditions, and having high transparency; and a plate-like body for display using it. <P>SOLUTION: A method for manufacturing the near infrared ray shielding body including a substrate and a near infrared ray absorption layer arranged on the principal plane of one side of the substrate comprises a near infrared ray absorption layer formation process for forming the near infrared ray absorption layer by applying a coating containing one kind or more of near infrared ray absorption compound, a solvent and a binder resin wherein the solvent has a poor solvent with a solubility of at least one kind of the near infrared ray absorption compound among one kind or more of near infrared ray absorption compound at 25°C of 0.01 wt.% or more, and less than 1.5 wt.%; and a good solvent with solubility of at least one kind of the near infrared ray absorption compound among one kind or more of near infrared ray absorption compound at 25°C of 1.5 wt.% or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、近赤外線遮蔽体の製造方法、およびこの製造方法により作製された近赤外線遮蔽体を用いたディスプレイ用板状体(例えば、ディスプレイ用前面板)に関する。   The present invention relates to a method for producing a near-infrared shield, and a display plate (for example, a display front plate) using the near-infrared shield produced by the production method.

近年、大型テレビをはじめとする種々の電子機器の表示パネルとして、プラズマディスプレイパネル(PDP)の需要が増大している。PDPにおいては、2枚のガラス板の間にキセノンとネオンとを含む混合ガスが封入されている。この混合ガスに高電圧をかけると紫外線が発生し、紫外線がガラス板に塗布された蛍光体にあたって、蛍光体が発光する。   In recent years, a demand for a plasma display panel (PDP) is increasing as a display panel of various electronic devices such as a large television. In PDP, a mixed gas containing xenon and neon is sealed between two glass plates. When a high voltage is applied to the mixed gas, ultraviolet rays are generated, and the phosphors emit light when the ultraviolet rays are applied to the glass plate.

しかし、この時、紫外線以外に、波長850nm〜1100nmの近赤外線や電磁波等も発生する。この近赤外線の波長領域は、近赤外線通信や電子機器のリモートコントロールに使用される波長領域と重複するため、PDPにおける近赤外線の発生が、電子機器の誤作動を引き起こす原因になる。そこで、PDPの前面板に、近赤外線を吸収する近赤外線遮蔽体を設けて、この近赤外線を吸収している。   At this time, however, near-infrared rays and electromagnetic waves having a wavelength of 850 nm to 1100 nm are also generated in addition to ultraviolet rays. Since the near infrared wavelength region overlaps with the wavelength region used for near infrared communication and remote control of electronic equipment, the generation of near infrared light in the PDP causes malfunction of the electronic equipment. Therefore, a near-infrared shield that absorbs near infrared rays is provided on the front plate of the PDP to absorb the near infrared rays.

この近赤外線遮蔽体の一例として、例えば、基材上に近赤外線吸収化合物を含む近赤外線吸収層が配置された構成のものが知られている(例えば、特許文献1参照)。近赤外線吸収層は、近赤外線吸収化合物とバインダー樹脂と所定の有機溶媒とを含む塗料を基材上に塗布することにより形成される。しかし、上記有機溶媒として、バインダー樹脂の溶解度が高い有機溶媒を用いると、近赤外線吸収化合物の解離が進行しやすい。その結果、近赤外線吸収化合物を構成するイオン対間の結合力が弱まった状態で、近赤外線吸収化合物がバインダー樹脂に固定されるので、得られる近赤外線吸収層の近赤外線吸収能が低下してしまう。また、イオン対間の結合力が弱まった状態で近赤外線吸収化合物がバインダー樹脂に固定されると、近赤外線吸収特性の経時的な劣化の程度が大きくなる。特に、イオン結合性化合物および金属錯体化合物を近赤外線化合物として用いた場合、異なる化合物間で塩交換反応等が進行し、近赤外線吸収特性の経時的な劣化が顕著となる。更に、高温高湿等の条件下において近赤外線遮蔽体を長時間使用する場合には、近赤外線吸収特性の経時的な劣化はより顕著となる。   As an example of this near-infrared shield, for example, a structure in which a near-infrared absorbing layer containing a near-infrared absorbing compound is disposed on a substrate is known (see, for example, Patent Document 1). A near-infrared absorption layer is formed by apply | coating the coating material containing a near-infrared absorption compound, binder resin, and a predetermined organic solvent on a base material. However, when an organic solvent having high binder resin solubility is used as the organic solvent, dissociation of the near-infrared absorbing compound is likely to proceed. As a result, since the near-infrared absorbing compound is fixed to the binder resin in a state where the binding force between the ion pairs constituting the near-infrared absorbing compound is weakened, the near-infrared absorbing ability of the obtained near-infrared absorbing layer is reduced. End up. Further, when the near-infrared absorbing compound is fixed to the binder resin in a state where the binding force between the ion pairs is weakened, the degree of deterioration of the near-infrared absorption characteristics with time increases. In particular, when an ion binding compound and a metal complex compound are used as a near infrared compound, a salt exchange reaction or the like proceeds between different compounds, and the deterioration of the near infrared absorption characteristics over time becomes remarkable. Further, when the near-infrared shield is used for a long time under conditions such as high temperature and high humidity, the deterioration of the near-infrared absorption characteristics over time becomes more remarkable.

そこで、近赤外線吸収能が高く、かつ近赤外線吸収特性の経時劣化が抑制された近赤外線吸収層を得るための手段の一つとして、近赤外線吸収化合物の溶解度が低い有機溶媒を用いることが知られている。この場合、近赤外線吸収化合物の微粒子は、塗料に含まれる樹脂中において分散されることとなる(例えば、特許文献2参照)。
特開2003−21715号公報 特開2001−19898号公報
Therefore, it is known to use an organic solvent having a low solubility of the near-infrared absorbing compound as one of means for obtaining a near-infrared absorbing layer having a high near-infrared absorbing ability and suppressing deterioration with time of the near-infrared absorbing property. It has been. In this case, the fine particles of the near-infrared absorbing compound are dispersed in the resin contained in the paint (see, for example, Patent Document 2).
JP 2003-21715 A JP 2001-1998A

しかし、この場合、近赤外線吸収化合物の微粒子により光の散乱が生じる。可視波長域において高い透光性が求められる用途では、上記光の散乱に起因して生じる近赤外線吸収層のHaze値の上昇が、問題となる。   However, in this case, light scattering occurs due to the fine particles of the near-infrared absorbing compound. In applications where high translucency is required in the visible wavelength range, an increase in the Haze value of the near-infrared absorbing layer caused by the light scattering becomes a problem.

本発明は、高温高湿な使用条件下における近赤外線吸収特性の経時劣化が抑制され、透光性の高い近赤外線遮蔽体を提供可能とする、近赤外線遮蔽体の製造方法を提供する。   The present invention provides a method for producing a near-infrared shield that can suppress deterioration with time of near-infrared absorption characteristics under high-temperature and high-humidity use conditions and can provide a highly transparent near-infrared shield.

本発明の近赤外線遮蔽体の製造方法は、基材と、前記基材の一方の主面上に配置された近赤外線吸収層とを備えた近赤外線遮蔽体の製造方法であって、1種以上の近赤外線吸収化合物と溶媒とバインダー樹脂とを含む塗料を塗布することにより、前記近赤外線吸収層を形成する、近赤外線吸収層形成工程を含み、前記溶媒は、前記1種以上の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が0.01重量%以上1.5重量%未満の貧溶媒と、前記1種以上の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が1.5重量%以上の良溶媒とを含むことを特徴とする。   The manufacturing method of the near-infrared shielding body of this invention is a manufacturing method of the near-infrared shielding body provided with the base material and the near-infrared absorption layer arrange | positioned on one main surface of the said base material, 1 type It includes a near-infrared absorbing layer forming step of forming the near-infrared absorbing layer by applying a paint containing the above-mentioned near-infrared absorbing compound, a solvent, and a binder resin, and the solvent includes the one or more near-infrared rays. A poor solvent having a solubility at 25 ° C. of at least one near-infrared absorbing compound of the absorbing compounds of 0.01 wt% or more and less than 1.5 wt%, and at least one of the one or more near-infrared absorbing compounds; It contains the good solvent whose solubility in 25 degreeC of the seed | species near-infrared absorption compound is 1.5 weight% or more.

本発明によれば、高温高湿な使用条件下における近赤外線吸収特性の経時劣化が抑制された、透光性の高い近赤外線遮蔽体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the near-infrared shielding body with high translucency which the time-dependent deterioration of the near-infrared absorption characteristic on the use conditions of high temperature and high humidity was suppressed can be provided.

以下に、本発明を図面を用いてより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

(実施形態1)
実施形態1では、本実施形態の近赤外線遮蔽体の製造方法の一例を説明する。図1は、本実施形態の近赤外線遮蔽体の製造方法の一例によって製造される近赤外線遮蔽体の一例の断面図である。図1に示した近赤外線遮蔽体は、基材1と、基材1の一方の主面上に配置された近赤外線吸収層2から構成されている。
(Embodiment 1)
Embodiment 1 demonstrates an example of the manufacturing method of the near-infrared shield of this embodiment. FIG. 1 is a cross-sectional view of an example of a near-infrared shield manufactured by an example of a method for manufacturing a near-infrared shield of the present embodiment. The near-infrared shield shown in FIG. 1 is composed of a base material 1 and a near-infrared absorption layer 2 disposed on one main surface of the base material 1.

本実施形態の近赤外線遮蔽体の製造方法は、1種以上の近赤外線吸収化合物と溶媒とバインダー樹脂とを含む塗料を、基材1の一方の主面に塗布することにより、近赤外線吸収層を形成する、近赤外線吸収層形成工程を含む。上記溶媒は、1種以上の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が0.01重量%以上1.5重量%未満の貧溶媒と、1種以上の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が1.5重量%以上の良溶媒とを含んでいる。   The manufacturing method of the near-infrared shielding body of this embodiment applies a paint containing one or more kinds of near-infrared absorbing compounds, a solvent, and a binder resin to one main surface of the substrate 1, whereby a near-infrared absorbing layer. Forming a near-infrared absorbing layer. The solvent includes a poor solvent having a solubility at 25 ° C. of at least one near-infrared absorbing compound of one or more near-infrared absorbing compounds of 0.01 wt% or more and less than 1.5 wt%, and one or more It contains a good solvent having a solubility at 25 ° C. of at least one near-infrared absorbing compound of the near-infrared absorbing compounds of 1.5% by weight or more.

本実施形態の近赤外線遮蔽体の製造方法では、塗料を構成する溶媒として、上記貧溶媒と上記良溶媒とを含む混合溶媒を用いているので、溶媒が良溶媒のみからなる場合よりも、近赤外線吸収化合物の解離を抑制でき、溶媒が貧溶媒からなる場合よりも、近赤外線吸収化合物の微粒子による光の散乱を抑制できる。よって、後述する実施例に示すように、本実施形態の近赤外線遮蔽体の製造方法により作製された近赤外線遮蔽体は、高温高湿な使用条件下における近赤外線吸収特性の経時劣化が抑制されており、透光性が高い。   In the method for producing a near-infrared shield of the present embodiment, a mixed solvent containing the poor solvent and the good solvent is used as a solvent constituting the paint, so that the solvent is closer than the case where the solvent is composed of only the good solvent. Dissociation of the infrared absorbing compound can be suppressed, and light scattering by the near-infrared absorbing compound fine particles can be suppressed as compared with the case where the solvent is a poor solvent. Therefore, as shown in the examples described later, the near-infrared shield produced by the method for producing a near-infrared shield of the present embodiment can suppress the deterioration of near-infrared absorption characteristics with time under high temperature and high humidity use conditions. And has high translucency.

基材1については、透光性を有する材料で形成されていれば、その形状や製造方法等について特に制限はない。基材1には、例えば、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアクリル酸エステル系樹脂、脂環式ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリエーテルスルホン酸系樹脂、トリアセチルセルロース系樹脂等の樹脂を、フィルム状又はシート状に加工したものを用いることができる。   If it is formed with the material which has translucency about the base material 1, there will be no restriction | limiting in particular about the shape, a manufacturing method, etc. Examples of the base material 1 include polyester resin, polycarbonate resin, polyacrylate resin, alicyclic polyolefin resin, polystyrene resin, polyvinyl chloride resin, polyvinyl acetate resin, and polyether sulfonic acid. A resin obtained by processing a resin such as a resin in the form of a resin or a triacetyl cellulose resin into a film shape or a sheet shape can be used.

上記樹脂をフィルム状又はシート状に加工する方法としては、例えば、押し出し成形、カレンダー成形、圧縮成形、射出成形、上記樹脂を溶剤に溶解させてキャスティングする方法等が挙げられる。基材1の厚さは、通常10μm〜500μm程度である。なお、上記樹脂には、酸化防止剤、難燃剤、耐熱防止剤、紫外線吸収剤、易滑剤、帯電防止剤等の添加剤が添加されていてもよい。   Examples of methods for processing the resin into a film or sheet include extrusion molding, calender molding, compression molding, injection molding, and a method in which the resin is dissolved in a solvent and cast. The thickness of the base material 1 is usually about 10 μm to 500 μm. In addition, additives, such as antioxidant, a flame retardant, a heat-resistant agent, a ultraviolet absorber, a slipping agent, and an antistatic agent, may be added to the resin.

塗料に含まれる近赤外線吸収化合物は、波長領域850nm以上1100nm以下に最大吸収波長を有する化合物であれば、その構造等について特に制限はない。近赤外線吸収化合物には、例えば、アミニウム系、アゾ系、アジン系、アントラキノン系、インジゴイド系、オキサジン系、キノフタロニン系、スクワリウム系、スチルベン系、トリフェニルメタン系、ナフトキノン系、ジイモニウム系、フタロシアニン系、シアニン系等の有機色素化合物を用いることができる。   The near-infrared absorbing compound contained in the paint is not particularly limited in terms of its structure and the like as long as it is a compound having a maximum absorption wavelength in the wavelength region of 850 nm to 1100 nm. Near-infrared absorbing compounds include, for example, aminium, azo, azine, anthraquinone, indigoid, oxazine, quinophthalonine, squalium, stilbene, triphenylmethane, naphthoquinone, dimonium, phthalocyanine, Organic dye compounds such as cyanine can be used.

塗料には、2種以上の近赤外線吸収化合物が含まれていてもよい。この場合、2種以上の近赤外線吸収化合物から選ばれる2種以上の近赤外線吸収化合物について、互いに最大吸収波長が相違していると好ましい。最大吸収波長が相違する2種以上の近赤外線吸収化合物を用いれば、1種の近赤外線吸収化合物を用いる場合よりも、近赤外線波長領域(850nm〜1100nm)のうちの、より広い波長域の光を吸収できるからである。近赤外線波長領域(850nm〜1100nm)の光をほぼ全て吸収可能なように、最大吸収波長が相違する2種以上の近赤外線吸収化合物を用いれば、より好ましい。   The paint may contain two or more near infrared absorbing compounds. In this case, it is preferable that the two or more near-infrared absorbing compounds selected from two or more near-infrared absorbing compounds have different maximum absorption wavelengths. When two or more near-infrared absorbing compounds having different maximum absorption wavelengths are used, light in a wider wavelength region in the near-infrared wavelength region (850 nm to 1100 nm) than when one kind of near-infrared absorbing compound is used. It is because it can absorb. It is more preferable to use two or more near-infrared absorbing compounds having different maximum absorption wavelengths so that almost all light in the near-infrared wavelength region (850 nm to 1100 nm) can be absorbed.

塗料を構成する溶媒が良溶媒のみからなると、イオン結合性化合物または金属錯体化合物である近赤外線吸収化合物は、塗料中(バインダー樹脂中)において、解離し易い状態となる。塗料に2種以上の近赤外線吸収化合物が含まれている場合には、異種の近赤外線吸収化合物間で塩交換反応等が生じ、近赤外線吸収能が低下するという問題が生じる。しかし、本実施形態の近赤外線遮蔽体の製造方法では、良溶媒と貧溶媒とを含む混合溶媒を用いているので、溶媒が良溶媒からなる場合よりも、近赤外線吸収化合物の解離を抑制でき、異種の近赤外線吸収化合物間の塩交換反応等に起因する近赤外線吸収能の低下を抑制できる。   When the solvent constituting the paint is composed only of a good solvent, the near-infrared absorbing compound that is an ion binding compound or a metal complex compound is easily dissociated in the paint (in the binder resin). When the paint contains two or more near-infrared absorbing compounds, a salt exchange reaction or the like occurs between different kinds of near-infrared absorbing compounds, resulting in a problem that the near-infrared absorbing ability is lowered. However, in the method for producing a near-infrared shield of this embodiment, since a mixed solvent containing a good solvent and a poor solvent is used, dissociation of the near-infrared absorbing compound can be suppressed as compared with the case where the solvent is a good solvent. Moreover, the fall of the near-infrared absorptivity resulting from the salt exchange reaction etc. between different near-infrared absorption compounds can be suppressed.

2種以上の近赤外線吸収化合物の組み合わせは、例えば、ジイモニウム系化合物(イオン結合性化合物)とフタロシアニン系化合物(金属錯体化合物)、シアニン系化合物(イオン結合性化合物)とフタロシアニン系化合物(金属錯体化合物)などが挙げられる。   The combination of two or more near-infrared absorbing compounds is, for example, a diimonium compound (ion binding compound) and a phthalocyanine compound (metal complex compound), a cyanine compound (ion binding compound) and a phthalocyanine compound (metal complex compound). ) And the like.

塗料における近赤外線吸収化合物の含有量について特に制限はないが、例えば、バインダー樹脂100重量部に対して、0.01重量部以上15重量部以下であると好ましい。また、2種以上の近赤外線吸収化合物を組み合わせて用いる場合、各近赤外線吸収化合物は、バインダー樹脂100重量部に対して、0.01重量部以上5.0重量部以下であると好ましい。   Although there is no restriction | limiting in particular about content of the near-infrared absorption compound in a coating material, For example, it is preferable in it being 0.01 to 15 weight part with respect to 100 weight part of binder resins. Moreover, when using in combination of 2 or more types of near-infrared absorption compounds, it is preferable that each near-infrared absorption compound is 0.01 to 5.0 weight part with respect to 100 weight part of binder resins.

塗料に含まれるバインダー樹脂について、透光性を有していれば特に制限はないが、例えば、アクリル樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、エポキシ樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、セルロース、ポリブチラール樹脂、ポリエステル樹脂、ポリイミド樹脂等を用いることができる。また、これらの樹脂を2種以上ブレンドしたポリマーブレンドをバインダー樹脂としても用いてもよい。   The binder resin contained in the paint is not particularly limited as long as it has translucency. For example, acrylic resin, polyurethane resin, polyvinyl chloride resin, epoxy resin, polyvinyl acetate resin, polystyrene resin, cellulose, poly A butyral resin, a polyester resin, a polyimide resin, or the like can be used. A polymer blend obtained by blending two or more of these resins may be used as the binder resin.

バインダー樹脂には、近赤外線吸収化合物との相溶性が良いものを用いると好ましい。近赤外線吸収化合物をバインダー樹脂に強く固定でき、近赤外線吸収層の耐熱性を向上させることができるからである。   It is preferable to use a binder resin having good compatibility with the near-infrared absorbing compound. This is because the near-infrared absorbing compound can be strongly fixed to the binder resin, and the heat resistance of the near-infrared absorbing layer can be improved.

また、バインダー樹脂として、ガラス転移温度が80℃以上の樹脂を用いると好ましい。近赤外線吸収化合物が樹脂に強く固定化された状態を保つことができ、近赤外線吸収層の耐熱性を向上させることができるからである。また、疎水性成分を含む樹脂(例えば、イソボニルを含む共重合体など)と、ガラス転移温度が80℃以上の樹脂とを併用すれば、近赤外線吸収層の耐熱性および耐湿性を向上させることができるので、より一層好ましい。   Further, it is preferable to use a resin having a glass transition temperature of 80 ° C. or higher as the binder resin. This is because the near-infrared absorbing compound can be kept strongly fixed to the resin, and the heat resistance of the near-infrared absorbing layer can be improved. Also, if a resin containing a hydrophobic component (for example, a copolymer containing isobonyl) and a resin having a glass transition temperature of 80 ° C. or more are used in combination, the heat resistance and moisture resistance of the near infrared absorption layer can be improved. Is more preferable.

塗料に含まれる溶媒には、貧溶媒と良溶媒とを含む混合溶媒を用いる。貧溶媒としては、塗料に含まれる1種以上の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が0.01重量%以上1.5重量%未満のものを用いる。良溶媒としては、塗料に含まれる1種以上の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が1.5重量%以上のものを用いる。なお、良溶媒に対する上記溶解度の上限について、特に制限はないが、通常50重量%以下である。   As the solvent contained in the paint, a mixed solvent containing a poor solvent and a good solvent is used. As the poor solvent, a solvent having a solubility at 25 ° C. of at least one near-infrared absorbing compound of at least one of the one or more near-infrared absorbing compounds contained in the paint is 0.01 wt% or more and less than 1.5 wt%. . As the good solvent, a solvent having a solubility at 25 ° C. of 1.5% by weight or more of at least one near-infrared absorbing compound among one or more near-infrared absorbing compounds contained in the paint is used. In addition, although there is no restriction | limiting in particular about the upper limit of the said solubility with respect to a good solvent, Usually, it is 50 weight% or less.

また、本願において、「近赤外線吸収化合物の溶解」とは、近赤外線吸収化合物が、溶媒中に溶け込み、固体の形状になく、イオン対または錯体の状態となることを意味する。一方「近赤外線吸収化合物の解離」とは、近赤外線吸収化合物が、イオン対または錯体をなさないほどに、さらに溶媒に溶け込むことを意味する。   Further, in the present application, “dissolution of the near-infrared absorbing compound” means that the near-infrared absorbing compound dissolves in the solvent and does not have a solid shape but is in an ion pair or complex state. On the other hand, “dissociation of a near-infrared absorbing compound” means that the near-infrared absorbing compound is further dissolved in a solvent so as not to form an ion pair or a complex.

実施形態の近赤外線遮蔽体の製造方法では、近赤外線吸収層形成工程において、基材1に塗布された塗料から、貧溶媒および良溶媒を可能な限り蒸発などにより除去するが、経時的に、良溶媒を貧溶媒よりも早く蒸発させると好ましい。仮に、貧溶媒が良溶媒よりも早く蒸発してしまうと、貧溶媒の減少に伴う良溶媒の配合割合の増大により、近赤外線吸収化合物の解離が生じ、得られる近赤外線吸収層の近赤外線吸収能が低くなるおそれがあるからである。したがって、良溶媒を貧溶媒よりも早く蒸発させ、良溶媒による近赤外線吸収化合物の解離を極力抑制した状態で、近赤外線吸収化合物をバインダー樹脂に固定させるべく、貧溶媒の沸点は、良溶媒の沸点よりも高いと好ましい。さらには、貧溶媒の蒸発速度が良溶媒の蒸発速度よりも小さいと好ましい。貧溶媒の沸点が良溶媒の沸点よりも高くても、貧溶媒の蒸発速度が良溶媒の蒸発速度よりも大きいと、稀ではあるが、貧溶媒が良溶媒よりも先に蒸発してしまう場合があるからである。   In the manufacturing method of the near-infrared shield of the embodiment, in the near-infrared absorbing layer forming step, the poor solvent and the good solvent are removed by evaporation as much as possible from the paint applied to the substrate 1, but over time, It is preferable to evaporate the good solvent faster than the poor solvent. If the poor solvent evaporates faster than the good solvent, dissociation of the near-infrared absorbing compound occurs due to an increase in the proportion of the good solvent accompanying the decrease in the poor solvent, and the near-infrared absorption of the obtained near-infrared absorbing layer This is because the performance may be lowered. Therefore, in order to fix the near-infrared absorbing compound to the binder resin in a state where the good solvent is evaporated earlier than the poor solvent and dissociation of the near-infrared absorbing compound by the good solvent is suppressed as much as possible, the boiling point of the poor solvent is Preferably it is higher than the boiling point. Furthermore, it is preferable that the evaporation rate of the poor solvent is smaller than the evaporation rate of the good solvent. Even if the boiling point of the poor solvent is higher than the boiling point of the good solvent, if the evaporation rate of the poor solvent is larger than the evaporation rate of the good solvent, it is rare but the poor solvent evaporates before the good solvent. Because there is.

貧溶媒の沸点と良溶媒の沸点との差について、特に制限はないが、20℃以上50℃以下であると好ましい。差が小さすぎると、近赤外線吸収層形成工程において、良溶媒を貧溶媒よりも早く蒸発させるために、溶媒を蒸発させるための加熱処理における温度制御を厳密に行わなければならない。一方、差が大きすぎると、上記加熱処理における加熱温度が高くなり、塗膜に悪影響が及ぶ恐れがある。   Although there is no restriction | limiting in particular about the difference of the boiling point of a poor solvent, and a good solvent, It is preferable in it being 20 to 50 degreeC. If the difference is too small, the temperature control in the heat treatment for evaporating the solvent must be strictly performed in order to evaporate the good solvent faster than the poor solvent in the near infrared absorption layer forming step. On the other hand, if the difference is too large, the heating temperature in the heat treatment is increased, which may adversely affect the coating film.

貧溶媒と良溶媒の組み合わせは、それぞれが近赤外線吸収化合物の溶解度に関する条件を満たしていれば特に制限はない。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸プロピル、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ヘキサン、シクロヘキサン、ジアセトンアルコール、イソホロン、トルエン、キシレン、テトラヒドロキシフラン、エタノール、メタノール、イソプロピルアルコール、n-プチルアルコール、イソプチルアルコール、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、Nメチル2ピロリドン等から、適宜、貧溶媒と良溶媒とを選択すればよい。   The combination of the poor solvent and the good solvent is not particularly limited as long as each satisfies the conditions regarding the solubility of the near-infrared absorbing compound. For example, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, ethyl acetate, propyl acetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, hexane, cyclohexane, di From acetone alcohol, isophorone, toluene, xylene, tetrahydroxyfuran, ethanol, methanol, isopropyl alcohol, n-ptyl alcohol, isoptyl alcohol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc. What is necessary is just to select a poor solvent and a good solvent suitably.

溶媒における貧溶媒と良溶媒との混合割合としては、バインダー樹脂および色素の両者を溶解できる任意の割合であればよいが、例えば、貧溶媒と良溶媒との混合割合は、重量比で10:90〜90:10であると好ましい。良溶媒が少なすぎると、バインダー樹脂を十分に溶解させることができず、塗料の塗布性が悪くなる。一方、良溶媒が多すぎると近赤外線吸収化合物が解離し、その結果、得られる近赤外線吸収層の近赤外線吸収能が低下する。貧溶媒と良溶媒との混合割合が、10:90〜90:10であれば、近赤外線吸収能が高く、経時的な近赤外線吸収特性の劣化が抑制された近赤外線吸収層を形成できる。   The mixing ratio of the poor solvent and the good solvent in the solvent may be any ratio that can dissolve both the binder resin and the dye. For example, the mixing ratio of the poor solvent and the good solvent is 10 by weight. It is preferable that it is 90-90: 10. When there are too few good solvents, binder resin cannot fully be dissolved and the applicability | paintability of a coating material will worsen. On the other hand, when there are too many good solvents, a near-infrared absorption compound will dissociate and, as a result, the near-infrared absorption capability of the near-infrared absorption layer obtained will fall. When the mixing ratio of the poor solvent and the good solvent is 10:90 to 90:10, it is possible to form a near-infrared absorbing layer having high near-infrared absorbing ability and suppressing deterioration of near-infrared absorbing characteristics over time.

塗料は、近赤外線吸収化合物の他に、波長領域580nm〜620nmに最大吸収波長を有する化合物をさらに含んでいるとこのましい。PDPでは、ネオンガスの放電に伴い、ネオンが赤橙色に発光する。ネオンの発光は、PDPの色再現性を低下させる原因の一つである。上記塗料が、上記化合物を含んでいれば、ネオンから生じた光を、本実施形態の近赤外線遮蔽体によって吸収することができ、PDPの赤色をより鮮やかに発色させることができる。   It is preferable that the paint further contains a compound having a maximum absorption wavelength in the wavelength region of 580 nm to 620 nm in addition to the near infrared ray absorbing compound. In the PDP, neon emits reddish orange as the neon gas is discharged. Neon light emission is one of the causes of reducing the color reproducibility of the PDP. If the paint contains the compound, the light generated from neon can be absorbed by the near-infrared shield of the present embodiment, and the red color of the PDP can be developed more vividly.

この化合物は、近赤外線吸収層2の、波長領域850nm〜1100nmにおける分光透過率を変化させない化合物であれば特に限定されない。上記化合物には、例えば、シアニン系、アズレニウム系、スクワリウム系、ジフェニルメタン系、トリフェニルメタン系、オキサジン系、アジン系、チオピリウム系、ビオローゲン系、アゾ系、アゾ金属錯塩系、アザポルフィリン系、ビスアゾ系、アントラキノン系、フタロシアニン系等の有機色素化合物を用いることができる。また、上記化合物には、バインダー樹脂と近赤外線吸収化合物との相溶性に悪影響を及ぼさない化合物を用いることが、より一層好ましい。   This compound is not particularly limited as long as it does not change the spectral transmittance of the near-infrared absorbing layer 2 in the wavelength region of 850 nm to 1100 nm. Examples of the compound include cyanine, azurenium, squalium, diphenylmethane, triphenylmethane, oxazine, azine, thiopylium, viologen, azo, azo metal complex, azaporphyrin, and bisazo. Organic dye compounds such as anthraquinone and phthalocyanine can be used. In addition, it is even more preferable to use a compound that does not adversely affect the compatibility between the binder resin and the near-infrared absorbing compound.

塗料を基材1の一方の主面に塗布する方法について、特に制限はないが、例えば、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート等の塗工法、グラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷等の印刷法を用いることができる。   Although there is no restriction | limiting in particular about the method of apply | coating a coating material to one main surface of the base material 1, For example, coating methods, such as roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, gravure printing Printing methods such as screen printing, offset printing, and ink jet printing can be used.

本実施形態の近赤外線遮蔽体の製造方法により作製された近赤外線遮蔽体は、Haze値が1%以下であると好ましい。Haze値が1%以下であると、例えば、上記近赤外線遮蔽体をPDPの前面板の構成部材として使用した場合に、画像の鮮やかさが損なわれないからである。なお、Haze値は、曇価とも呼ばれ、プラスチックの内部や表面の曇りの度合いを表す値であり、低ければ低いほど好ましい。本願において、Haze値は、JIS K7105に規定の方法により測定した値である。   The near-infrared shield produced by the method for producing a near-infrared shield of the present embodiment preferably has a Haze value of 1% or less. This is because, when the haze value is 1% or less, for example, when the near-infrared shield is used as a constituent member of the front plate of the PDP, the vividness of the image is not impaired. The Haze value is also called a haze value, and is a value representing the degree of haze inside or on the surface of the plastic. The lower the value, the better. In the present application, the Haze value is a value measured by a method defined in JIS K7105.

また、本実施形態の近赤外線遮蔽体の製造方法により作製された近赤外線遮蔽体は、波長領域850nm〜1100nmにおける分光透過率が、15%以下であることが好ましく、10%以下であることがより好ましい。分光透過率がこの範囲であれば、近赤外線遮蔽体によって電子機器の誤作動を十分に抑制できる。なお、上記分光透過率は低ければ低いほど好ましい。   Further, the near-infrared shield produced by the method for producing a near-infrared shield of the present embodiment preferably has a spectral transmittance of 15% or less in the wavelength region of 850 nm to 1100 nm, preferably 10% or less. More preferred. If the spectral transmittance is within this range, the malfunction of the electronic device can be sufficiently suppressed by the near-infrared shield. The spectral transmittance is preferably as low as possible.

近赤外線吸収層2の厚さは、2μm以上15μm以下であると好ましく、3μm以上10μm以下であるとより好ましい。近赤外線吸収層2の厚さが2μm未満の場合、波長領域850nm〜1100nmにおける分光透過率を15%以下にするためには、バインダー樹脂に対する近赤外線吸収化合物の添加量を増加させる必要がある。この場合、未溶解の近赤外線吸収化合物に起因する光の散乱が生じ、その結果、Haze値が大きくなるという問題が生じる場合がある。また、近赤外線吸収層2の厚さが15μmを越える場合、波長領域850nm〜1100nmにおける分光透過率を15%以下に維持できるものの、近赤外線吸収層2中に遊離した溶剤が残る場合がある。この残存溶剤は、近赤外線吸収化合物の再溶解または解離等を引き起こして、近赤外線吸収特性の経時劣化をもたらす。近赤外線吸収層2の厚さが、2μm以上15μm以下であれば、これらの問題が生じないため好ましい。なお、貧溶媒が、近赤外線吸収層2の膜中に5重量%より多く残存していても、近赤外線吸収化合物に影響を及ぼさない場合もある。   The thickness of the near infrared absorption layer 2 is preferably 2 μm or more and 15 μm or less, and more preferably 3 μm or more and 10 μm or less. When the thickness of the near-infrared absorbing layer 2 is less than 2 μm, it is necessary to increase the amount of the near-infrared absorbing compound added to the binder resin in order to make the spectral transmittance in the wavelength region 850 nm to 1100 nm 15% or less. In this case, light scattering due to the undissolved near-infrared absorbing compound occurs, and as a result, there may be a problem that the Haze value increases. When the thickness of the near infrared absorption layer 2 exceeds 15 μm, although the spectral transmittance in the wavelength region 850 nm to 1100 nm can be maintained at 15% or less, a free solvent may remain in the near infrared absorption layer 2. This residual solvent causes redissolution or dissociation of the near-infrared absorbing compound and causes deterioration of the near-infrared absorption characteristics over time. It is preferable that the near-infrared absorbing layer 2 has a thickness of 2 μm or more and 15 μm or less because these problems do not occur. Even if the poor solvent remains in the film of the near-infrared absorbing layer 2 in an amount of more than 5% by weight, the near-infrared absorbing compound may not be affected.

(実施形態2)
実施形態2では、本実施形態の近赤外線遮蔽体の製造方法によって作製される近赤外線遮蔽体の他の例について説明する。図2は、本実施形態の近赤外線遮蔽体を示す断面図である。図2において、図1に示した近赤外線遮蔽体の構成部材と同じ構成部材には同じ符号を付し、その説明を省略する。また、実施形態1と同様の構成については、本実施形態においても、同様の効果を奏する。
(Embodiment 2)
Embodiment 2 demonstrates the other example of the near-infrared shield produced by the manufacturing method of the near-infrared shield of this embodiment. FIG. 2 is a cross-sectional view showing the near-infrared shield of the present embodiment. In FIG. 2, the same components as those of the near-infrared shield shown in FIG. Moreover, about the structure similar to Embodiment 1, there exists the same effect also in this embodiment.

図2に示すように、本実施形態の近赤外線遮蔽体は、基材1と、基材1の一方の主面に配置された近赤外線吸収層2と、この基材1の他方の主面に配置されたハードコート層3と、このハードコート層3の上に配置された反射防止層4から形成されている。上記反射防止層4は、屈折率の異なる3つの膜から形成され、3つの膜は、ハードコート層3側から中屈折率膜4a、高屈折率膜4b、低屈折率膜4cの順に配置されている。   As shown in FIG. 2, the near-infrared shield of the present embodiment includes a base material 1, a near-infrared absorbing layer 2 disposed on one main surface of the base material 1, and the other main surface of the base material 1. The hard coat layer 3 is disposed on the hard coat layer 3 and the antireflection layer 4 is disposed on the hard coat layer 3. The antireflection layer 4 is formed of three films having different refractive indexes, and the three films are arranged in the order of the medium refractive index film 4a, the high refractive index film 4b, and the low refractive index film 4c from the hard coat layer 3 side. ing.

ハードコート層3の材料は、透光性を有し、基材1よりも高硬度の層を形成できれば特に限定されない。ハードコート層3の材料には、例えば、ウレタン系、メラミン系、エポキシ系、アクリル系等の熱硬化型樹脂組成物、電磁波硬化型樹脂組成物等を用いることができる。特に表面硬度が高い電磁波硬化型樹脂組成物を用いることがより好ましい。また、ハードコート層3は、無機微粒子をさらに含んでいると好ましい。無機微粒子を含むことによって、より高い表面硬度を有するハードコート層3が得られるとともに、樹脂等の硬化による収縮を緩和できる。無機微粒子の材料としては、例えば、二酸化珪素(シリカ)、錫ドープ酸化インジウム、アンチモンドープ酸化錫、酸化ジルコニウム等を用いることができる。   The material of the hard coat layer 3 is not particularly limited as long as it has translucency and can form a layer having a higher hardness than that of the substrate 1. As the material of the hard coat layer 3, for example, urethane-based, melamine-based, epoxy-based, acrylic-based thermosetting resin compositions, electromagnetic wave curable resin compositions, and the like can be used. In particular, it is more preferable to use an electromagnetic wave curable resin composition having a high surface hardness. Moreover, it is preferable that the hard coat layer 3 further contains inorganic fine particles. By including the inorganic fine particles, the hard coat layer 3 having a higher surface hardness can be obtained, and shrinkage due to curing of the resin or the like can be reduced. As the material of the inorganic fine particles, for example, silicon dioxide (silica), tin-doped indium oxide, antimony-doped tin oxide, zirconium oxide, or the like can be used.

基材1上にハードコート層3を形成する方法について、特に制限はないが、例えば、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート等の塗工法、グラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷等の印刷法を用いることができる。ハードコート層3の厚さは、1μm以上10μm以下が好ましく、2μm以上7μm以下がより好ましい。   Although there is no restriction | limiting in particular about the method of forming the hard-coat layer 3 on the base material 1, For example, coating methods, such as roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, gravure printing, Printing methods such as screen printing, offset printing, and ink jet printing can be used. The thickness of the hard coat layer 3 is preferably 1 μm or more and 10 μm or less, and more preferably 2 μm or more and 7 μm or less.

反射防止層4の平均反射率は、波長領域450nm〜650nmにおいては0.05%以上1%以下、波長領域650nm〜750nmにおいては0.05%以上1.5%以下であると好ましい。このような反射防止層4を用いることにより、広い波長領域において反射率が低い近赤外線遮蔽体が得られる。この近赤外線遮蔽体を備えたディスプレイ用前面板に用いれば、ディスプレイの表示品位を高品質化できる。   The average reflectance of the antireflection layer 4 is preferably 0.05% or more and 1% or less in the wavelength region 450 nm to 650 nm, and 0.05% or more and 1.5% or less in the wavelength region 650 nm to 750 nm. By using such an antireflection layer 4, a near-infrared shield having a low reflectance in a wide wavelength region can be obtained. If it uses for the display front board provided with this near-infrared shield, the display quality of a display can be improved.

ハードコート層3上に反射防止層4を形成する方法について、特に制限はないが、例えば、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート等の塗工法、グラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷等の印刷法を用いることができる。   Although there is no restriction | limiting in particular about the method of forming the antireflection layer 4 on the hard-coat layer 3, For example, coating methods, such as roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, gravure printing Printing methods such as screen printing, offset printing, and ink jet printing can be used.

中屈折率膜4aは、透光性を有し、かつ、その屈折率nが1.55以上1.65以下、さらには、1.57以上1.63以下であると好ましい。中屈折率膜4aの形成には、例えば、屈折率が相対的に低屈折率膜4cに含まれる無機微粒子よりも高い無機微粒子を、有機成分中に均一に分散させて得たコーティング組成物が好適に用いられる。有機物成分としては、熱硬化性樹脂組成物または光硬化性樹脂組成物等の架橋可能な有機物を用いることができる。コーティング組成物は、必要に応じて、重合開始剤や、各種添加剤を含んでいてもよい。 The medium refractive index film 4a is translucent and has a refractive index nm of 1.55 to 1.65, and more preferably 1.57 to 1.63. For the formation of the medium refractive index film 4a, for example, a coating composition obtained by uniformly dispersing inorganic fine particles having a refractive index higher than the inorganic fine particles contained in the low refractive index film 4c in the organic component is used. Preferably used. As the organic component, a crosslinkable organic material such as a thermosetting resin composition or a photocurable resin composition can be used. The coating composition may contain a polymerization initiator and various additives as required.

中屈折率膜4aに含まれる無機微粒子としては、例えば、酸化チタン、酸化錫、酸化インジウム、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、酸化ジルコニウム、酸化亜鉛、または酸化セリウム等の微粒子が用いられる。これらの微粒子は、単独で用いてもよいし二種以上組み合わせて用いてもよい。特に、高い導電性を有するITO微粒子又はATO微粒子を用いれば、中屈折率膜4aの帯電を防止する効果が得られるのでより好ましい。これらの無機微粒子の好ましい平均粒径は、3nm〜100nm、特に30nm〜80nmである。   Examples of the inorganic fine particles contained in the medium refractive index film 4a include titanium oxide, tin oxide, indium oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), zirconium oxide, zinc oxide, and cerium oxide. Are used. These fine particles may be used alone or in combination of two or more. In particular, it is more preferable to use ITO fine particles or ATO fine particles having high conductivity because the effect of preventing charging of the medium refractive index film 4a can be obtained. The preferred average particle diameter of these inorganic fine particles is 3 nm to 100 nm, particularly 30 nm to 80 nm.

中屈折率膜4aの屈折率nとその厚さdとの積n(光学厚さ)は、110nm以上163nm以下が好ましく、125nm以上150nm以下がより好ましい。 Refractive index n m of the middle refractive index layer 4a to the product n m d m and its thickness d m (optical thickness) is preferably 110nm or more 163nm or less, more preferably 150nm or more 125 nm.

高屈折率膜4bは、透光性を有し、かつ、その屈折率nが、1.75〜1.85、さらには1.76〜1.84であると好ましい。高屈折率膜4bの形成には、例えば、屈折率が相対的に低屈折率膜4cに含まれる無機微粒子よりも高い無機微粒子(例えば、酸化チタン微粒子)を、有機物成分中に均一に分散させて得たコーティング組成物が好適に用いられる。有機物成分としては、熱硬化性樹脂組成物または光硬化性樹脂組成物等の架橋可能な有機物を用いることができる。コーティング組成物は、必要に応じて、重合開始剤や、各種添加剤を含んでいてもよい。 High refractive index film 4b has a translucency, and a refractive index n h is 1.75 to 1.85, still more when is from 1.76 to 1.84 preferred. For the formation of the high refractive index film 4b, for example, inorganic fine particles (for example, titanium oxide fine particles) whose refractive index is relatively higher than the inorganic fine particles contained in the low refractive index film 4c are uniformly dispersed in the organic component. The coating composition obtained in this way is preferably used. As the organic component, a crosslinkable organic material such as a thermosetting resin composition or a photocurable resin composition can be used. The coating composition may contain a polymerization initiator and various additives as required.

酸化チタン微粒子としては、光触媒作用が弱く、かつ、屈折率が高いルチル構造の酸化チタン微粒子を用いることが好ましい。アナターゼ構造の酸化チタン微粒子は、光触媒作用があり、紫外線の照射により高屈折率膜4bを構成する樹脂成分や基材等の有機物を分解してしまうからである。酸化チタン微粒子の含有量は、硬化後の高屈折率膜4bの全重量の50重量%以上65重量%以下が好ましい。   As the titanium oxide fine particles, it is preferable to use rutile titanium oxide fine particles having a weak photocatalytic action and a high refractive index. This is because the anatase-structured titanium oxide fine particles have a photocatalytic action and decompose organic substances such as a resin component and a substrate constituting the high refractive index film 4b by irradiation with ultraviolet rays. The content of the titanium oxide fine particles is preferably 50% by weight or more and 65% by weight or less of the total weight of the high refractive index film 4b after curing.

高屈折率膜4bの屈折率nとその厚さdとの積n(光学厚さ)は、225nm以上325nm以下が好ましく、250nm以上300nm以下がより好ましい。 High refractive index film 4b product n h d h of the refractive index n h and its thickness d h (optical thickness), 325 nm is preferably less than 225 nm, more preferably 250nm or more 300nm or less.

高屈折率膜4b中の有機物成分の一部は、屈折率が1.60以上1.80以下、より好ましくは1.65以上1.75以下の有機物成分であることが好ましい。例えば、酸化チタン微粒子の量を低減しても、所望の屈折率を確保できるからである。また、酸化チタン微粒子の量を低減することにより、酸化チタン微粒子の添加に伴う有機物成分の架橋の低下を防止できる。よって、有機物成分の硬化を促進し、この層の耐擦傷性を向上させることができる。上記有機物成分の屈折率が1.60未満では、高屈折率膜4b中の微粒子量の低減効果が不十分となる。一方、上記有機物成分の屈折率が1.80を超えると反射光の黄色味が強くなる傾向があるので好ましくない。屈折率が1.60以上1.80以下の範囲にある有機物成分としては、芳香環、硫黄、臭素等を含む有機化合物等を用いることができ、より具体的には、例えば、ジフェニルスルフィドやその誘導体等を用いることができる。   A part of the organic component in the high refractive index film 4b is preferably an organic component having a refractive index of 1.60 to 1.80, more preferably 1.65 to 1.75. For example, even if the amount of titanium oxide fine particles is reduced, a desired refractive index can be secured. Further, by reducing the amount of the titanium oxide fine particles, it is possible to prevent a decrease in the crosslinking of the organic component accompanying the addition of the titanium oxide fine particles. Therefore, curing of the organic component can be promoted and the scratch resistance of this layer can be improved. When the refractive index of the organic component is less than 1.60, the effect of reducing the amount of fine particles in the high refractive index film 4b is insufficient. On the other hand, if the refractive index of the organic component exceeds 1.80, the yellowishness of the reflected light tends to increase, which is not preferable. As the organic component having a refractive index in the range of 1.60 or more and 1.80 or less, an organic compound containing an aromatic ring, sulfur, bromine, or the like can be used. More specifically, for example, diphenyl sulfide or the like Derivatives and the like can be used.

低屈折率膜4cは、透光性を有し、かつ、その屈折率nが、1.30以上1.47以下、さらには1.35以上1.45以上であると好ましい。低屈折率膜4cの形成には、例えば、フッ素系又はシリコーン系有機化合物と、二酸化珪素(シリカ)、フッ化マグネシウム等の無機微粒子等とを、有機物成分中に均一に分散させて得たコーティング組成物を好適に用いることができる。上記有機物成分としては、例えば、熱硬化型樹脂組成物又は電磁波硬化型樹脂組成物等の架橋可能な有機物を用いることができる。特に、電磁波硬化型樹脂組成物として紫外線硬化型樹脂組成物を用いる場合には、窒素等の不活性ガスをパージして、酸素濃度が1000ppm以下になる条件下で、塗付されたコーティング組成物に対して紫外線照射を行うことが好ましい。これより、酸素による重合阻害を防止できる。 The low refractive index film 4c has translucency, and its refractive index n 1 is preferably 1.30 or more and 1.47 or less, more preferably 1.35 or more and 1.45 or more. For the formation of the low refractive index film 4c, for example, a coating obtained by uniformly dispersing a fluorine-based or silicone-based organic compound and inorganic fine particles such as silicon dioxide (silica) and magnesium fluoride in an organic component. A composition can be used suitably. As the organic component, for example, a crosslinkable organic material such as a thermosetting resin composition or an electromagnetic wave curable resin composition can be used. In particular, when an ultraviolet curable resin composition is used as the electromagnetic wave curable resin composition, the coating composition is applied under the condition that the inert gas such as nitrogen is purged and the oxygen concentration is 1000 ppm or less. It is preferable to irradiate with UV rays. Thus, polymerization inhibition due to oxygen can be prevented.

低屈折率膜4cの屈折率nとその厚さdlとの積nl(光学厚さ)は、110nm以上163nm以下が好ましく、125nm以上150nm以下がより好ましい。 The product n l d l (optical thickness) of the refractive index n l and the thickness d l of the low refractive index film 4c is preferably 110 nm or more and 163 nm or less, and more preferably 125 nm or more and 150 nm or less.

本実施形態の反射防止層4は、外光の反射を低減できるものであれば、上述の構成に特に限定されない。例えば、反射防止層の層数は、反射の程度と反射光の品位、コストに応じて、単層、二層、三層などから適宜選択すればよい。一般に、単層構造で反射防止を行うためには、屈折率と厚さの積である光学厚さを、λ/4(λは波長を示す。)とする。二層構造の場合に、人間の視感度の高い波長領域における反射率を低減させるためには、基材側から高屈折率膜、低屈折率膜の順に配置し、それぞれの光学厚さを、λ/4、λ/4とする。二層構造の場合に、広い波長領域における反射率を低くするためには、基材側から高屈折率膜、低屈折率膜の順に配置し、それぞれの光学厚さをλ/2、λ/4とする。三層構造の場合に、より広い波長領域における反射率を低くするためには、基材側から中屈折率膜、高屈折率膜、低屈折率膜の順に配置して、それぞれの光学厚さをλ/4、λ/2、λ/4とする。   The antireflection layer 4 of the present embodiment is not particularly limited to the above configuration as long as it can reduce the reflection of external light. For example, the number of antireflection layers may be appropriately selected from a single layer, two layers, three layers, and the like according to the degree of reflection, the quality of reflected light, and the cost. In general, in order to prevent reflection with a single-layer structure, the optical thickness, which is the product of the refractive index and the thickness, is λ / 4 (λ represents a wavelength). In the case of a two-layer structure, in order to reduce the reflectance in a wavelength region where human visibility is high, the high refractive index film and the low refractive index film are arranged in this order from the substrate side, and the respective optical thicknesses are Let λ / 4 and λ / 4. In the case of a two-layer structure, in order to reduce the reflectance in a wide wavelength region, the high refractive index film and the low refractive index film are arranged in this order from the substrate side, and the optical thicknesses of each are λ / 2, λ / 4 In the case of a three-layer structure, in order to lower the reflectance in a wider wavelength region, the medium refractive index film, the high refractive index film, and the low refractive index film are arranged in this order from the substrate side, and the respective optical thicknesses are arranged. Are λ / 4, λ / 2, and λ / 4.

なお、実施形態1の近赤外線遮蔽体でも、ディスプレイ用の前面板の構成部材として使用できるが、実施形態2に示したように、反射防止機能等の他の機能を備えた近赤外線遮蔽体を使用するほうがより好ましい。   In addition, although the near-infrared shielding body of Embodiment 1 can also be used as a constituent member of a front plate for a display, as shown in Embodiment 2, a near-infrared shielding body having other functions such as an antireflection function can be used. It is more preferable to use it.

(実施形態3)
実施形態3では、本発明のディスプレイ用板状体の一例について説明する。図3には、本発明のディスプレイ用板部材の一例として、ディスプレイ用前面板の一例の断面図を示している。本実施形態のディスプレイ用前面板11は、基板12と、基板12の一方の主面に配置された近赤外線遮蔽体13と、基板12の他方の主面に配置された電磁波遮蔽体14と、電極(アース)15とから形成されている。
(Embodiment 3)
In Embodiment 3, an example of the plate for display according to the present invention will be described. FIG. 3 shows a cross-sectional view of an example of a display front plate as an example of the display plate member of the present invention. The display front plate 11 of the present embodiment includes a substrate 12, a near-infrared shield 13 arranged on one main surface of the substrate 12, an electromagnetic wave shield 14 arranged on the other main surface of the substrate 12, And an electrode (earth) 15.

基板12の材料は、透光性を有する材料であれば特に限定されず、例えば、強化ガラス等を用いることができる。近赤外線遮蔽体13としては、例えば、実施形態2の近赤外線遮蔽体を用いることができる。   The material of the board | substrate 12 will not be specifically limited if it is a material which has translucency, For example, tempered glass etc. can be used. As the near-infrared shield 13, for example, the near-infrared shield of Embodiment 2 can be used.

本実施形態のディスプレイ用前面板は、実施形態2の近赤外線遮蔽体を用いているので、高温高湿な使用条件下における近赤外線吸収特性の経時劣化が抑制されており、電磁波遮蔽機能を有している。   Since the display front plate of the present embodiment uses the near-infrared shield of Embodiment 2, deterioration with time of near-infrared absorption characteristics under high-temperature and high-humidity use conditions is suppressed, and an electromagnetic wave shielding function is provided. is doing.

以下、実施例に基づき本発明をより具体的に説明する。なお、本発明は、以下の実施例に限定されない。   Hereinafter, based on an Example, this invention is demonstrated more concretely. In addition, this invention is not limited to a following example.

基材として、表裏両面に易接着処理が施された厚さ100μmのポリエチレンテレフタレート(PET)フィルム(東レ社製“U−34”)を準備した。また、近赤外線吸収層の形成に用いる塗料の材料として、ジイモニウム化合物(日本カーリット社製“CIR−1085”、最大吸収波長1074nm)6重量部、シアニン化合物(住友精化社製“SD50−E04N”、最大吸収波長877nm)1重量部、シアニン化合物(住友精化社製“SD50−E05N”、最大吸収波長833nm)1重量部、ポリエステル樹脂(ユニチカ社製“UE3690”)100重量部、メチルエチルケトン(MEK)280重量部、トルエン280重量部を準備した。次に、これらの材料を混合・撹拌させて得た塗液を、バーコータで上記基材上に塗布した後、塗付された塗量を、110℃で3分間乾燥して、厚さ4μmの近赤外線吸収層とし、近赤外線遮蔽体を得た。   As a base material, a polyethylene terephthalate (PET) film (“U-34” manufactured by Toray Industries, Inc.) having a thickness of 100 μm and subjected to easy adhesion treatment on both front and back surfaces was prepared. In addition, as a coating material used for forming the near-infrared absorption layer, 6 parts by weight of a diimonium compound (Nippon Carlit's “CIR-1085”, maximum absorption wavelength 1074 nm), a cyanine compound (Sumitomo Seika “SD50-E04N”) 1 part by weight of a cyanine compound ("SD50-E05N" manufactured by Sumitomo Seika Co., Ltd., maximum absorption wavelength of 833 nm), 100 parts by weight of a polyester resin ("UE3690" manufactured by Unitika), methyl ethyl ketone (MEK) ) 280 parts by weight and 280 parts by weight of toluene were prepared. Next, a coating liquid obtained by mixing and stirring these materials was applied on the base material with a bar coater, and then the applied coating amount was dried at 110 ° C. for 3 minutes to obtain a thickness of 4 μm. A near-infrared shielding layer was obtained as a near-infrared absorbing layer.

上記近赤外線遮蔽体の分光透過率を、分光光度計(日本分光社製“U−Best V−570”)にて測定したところ、波長領域850nm〜900nmにおける分光透過率は15%以下、波長領域900nm〜1100nmにおける分光透過率は10%以下であった。また、Haze値は0.9%であった。   When the spectral transmittance of the near-infrared shield was measured with a spectrophotometer ("U-Best V-570" manufactured by JASCO Corporation), the spectral transmittance in the wavelength region of 850 nm to 900 nm was 15% or less. The spectral transmittance at 900 nm to 1100 nm was 10% or less. The Haze value was 0.9%.

基材として、表裏両面に易接着処理が施された厚さ100μmのポリエチレンテレフタレート(PET)フィルム(東レ社製“U−34”)を準備した。また、近赤外線吸収層の形成に用いる塗料の材料として、ジイモニウム化合物(日本カーリット社製“CIR−1085”、最大吸収波長1074nm)6重量部、フタロシアニン化合物(日本触媒社製“IR−10A”、最大吸収波長850nm)1.5重量部、及びフタロシアニン化合物(日本触媒社製“IR−12”、最大吸収波長830nm)1.0重量部、フタロシアニン化合物(日本触媒社製“IR−14”、最大吸収波長820nm)1.5重量部、ポリエステル樹脂(ユニチカ社製“UE3690”)100重量部、メチルエチルケトン(MEK)280重量部、トルエン280重量部を準備した。次に、これらの材料を混合・撹拌して得た塗液を、バーコータで上記基材上に塗布した後、塗付された塗量を、110℃で3分間乾燥して、厚さ4μmの近赤外線吸収層とし、近赤外線遮蔽体を得た。   As a base material, a polyethylene terephthalate (PET) film (“U-34” manufactured by Toray Industries, Inc.) having a thickness of 100 μm and subjected to easy adhesion treatment on both front and back surfaces was prepared. Moreover, as a coating material used for forming the near-infrared absorbing layer, 6 parts by weight of a diimonium compound (“CIR-1085” manufactured by Nippon Carlit Co., Ltd., maximum absorption wavelength 1074 nm), a phthalocyanine compound (“IR-10A” manufactured by Nippon Shokubai Co., Ltd.), 1.5 parts by weight of the maximum absorption wavelength 850 nm) and 1.0 part by weight of the phthalocyanine compound (“IR-12” manufactured by Nippon Shokubai Co., Ltd., the maximum absorption wavelength 830 nm), the maximum of phthalocyanine compound (“IR-14” manufactured by Nippon Shokubai Co., Ltd.) An absorption wavelength of 820 nm) 1.5 parts by weight, a polyester resin (“UE3690” manufactured by Unitika Ltd.) 100 parts by weight, methyl ethyl ketone (MEK) 280 parts by weight, and toluene 280 parts by weight were prepared. Next, a coating liquid obtained by mixing and stirring these materials was applied onto the substrate with a bar coater, and then the applied coating amount was dried at 110 ° C. for 3 minutes to obtain a thickness of 4 μm. A near-infrared shielding layer was obtained as a near-infrared absorbing layer.

上記近赤外線遮蔽体の分光透過率を分光光度計(日本分光社製“U−Best V−570”)にて測定したところ、波長領域850nm〜900nmにおける分光透過率は15%以下、波長領域900nm〜1100nmにおける分光透過率は10%以下であった。また、Haze値は0.9%であった。   When the spectral transmittance of the near-infrared shield was measured with a spectrophotometer (“U-Best V-570” manufactured by JASCO Corporation), the spectral transmittance in the wavelength region 850 nm to 900 nm was 15% or less, and the wavelength region 900 nm. The spectral transmittance at ˜1100 nm was 10% or less. The Haze value was 0.9%.

実施例1で使用した、近赤外線吸収層の形成に用いる溶媒(メチルエチルケトン(MEK)280重量部とトルエン280重量部とからなる混合溶媒)に代えて、メチルイソブチルケトン(MIBK)280重量部とトルエン280重量部とからなる混合溶媒を用いたこと以外は、実施例1と同様にして、近赤外線遮蔽体を得た。   Instead of the solvent (mixed solvent consisting of 280 parts by weight of methyl ethyl ketone (MEK) and 280 parts by weight of toluene) used in the formation of the near infrared absorption layer used in Example 1, 280 parts by weight of methyl isobutyl ketone (MIBK) and toluene. A near-infrared shield was obtained in the same manner as in Example 1 except that a mixed solvent consisting of 280 parts by weight was used.

上記近赤外線遮蔽体の分光透過率を分光光度計(日本分光社製“U−Best V−570”)にて測定したところ、波長領域850nm〜900nmにおける分光透過率は15%以下、波長領域900nm〜1100nmにおける分光透過率は10%以下であった。また、Haze値は0.9%であった。   When the spectral transmittance of the near-infrared shield was measured with a spectrophotometer (“U-Best V-570” manufactured by JASCO Corporation), the spectral transmittance in the wavelength region 850 nm to 900 nm was 15% or less, and the wavelength region 900 nm. The spectral transmittance at ˜1100 nm was 10% or less. The Haze value was 0.9%.

基材に、表裏両面に易接着処理が施された厚さ100μmの紫外線カット性PETフィルム(東レ社製“ルミラーQT58”)を用いたこと以外は、実施例1と同様にして近赤外線遮蔽体を作製した。   A near-infrared shield in the same manner as in Example 1, except that a 100 μm thick UV-cut PET film (“Lumirror QT58” manufactured by Toray Industries, Inc.) with easy adhesion treatment on both the front and back surfaces was used as the base material. Was made.

次に、シリカ超微粒子を含有したアクリレート系紫外線硬化型ハードコート材(JSR社製“デソライトZ7501”)100重量部と、メチルイソブチルケトン35重量部とを混合・撹拌してコーティング組成物を調製し、このコーティング組成物を上記PETフィルムの近赤外線吸収層側とは反対の表面に、マイクログラビアコータを用いてコーティングした。その後、コーティングされたコーティング組成物を乾燥し、300mJ/cm2の強度で紫外線を照射して、ハードコート材を硬化させ、上記PETフィルムの表面に厚さ4μmのハードコート層を形成した。 Next, a coating composition is prepared by mixing and stirring 100 parts by weight of an acrylate ultraviolet curable hard coating material containing ultrafine silica particles (“Desolite Z7501” manufactured by JSR) and 35 parts by weight of methyl isobutyl ketone. The coating composition was coated on the surface opposite to the near infrared absorption layer side of the PET film using a micro gravure coater. Thereafter, the coated coating composition was dried and irradiated with ultraviolet rays at an intensity of 300 mJ / cm 2 to cure the hard coat material, thereby forming a hard coat layer having a thickness of 4 μm on the surface of the PET film.

次に、無機超微粒子を含有したアクリレート系紫外線硬化型コート材(JSR社製“オプスターTU4005”)100重量部と、多官能アクリレート(日本化薬社製“DPHA”)5重量部と、シクロヘキサノン200重量部とを混合・撹拌してコーティング組成物を調製し、このコーティング組成物を上記ハードコート層の上に、マイクログラビアコータを用いてコーティングした、その後、コーティングされたコーティング組成物を乾燥し、300mJ/cmの強度で紫外線を照射して、コート材を硬化させ、上記ハードコート層の表面に厚さ72μmの中屈折率膜(屈折率1.60)を形成した。 Next, 100 parts by weight of an acrylate ultraviolet curable coating material containing inorganic ultrafine particles (“OPSTA TU4005” manufactured by JSR), 5 parts by weight of a polyfunctional acrylate (“DPHA” manufactured by Nippon Kayaku Co., Ltd.), and cyclohexanone 200 A coating composition was prepared by mixing and stirring with parts by weight, and this coating composition was coated on the hard coat layer using a microgravure coater, and then the coated coating composition was dried, The coating material was cured by irradiating ultraviolet rays with an intensity of 300 mJ / cm 2 , and a medium refractive index film (refractive index 1.60) having a thickness of 72 μm was formed on the surface of the hard coat layer.

続いて、酸化チタン超微粒子(石原テクノ社製“TTO55(A)”)30重量部と、ジメチルアミノエチルメタクリレート(共栄社化学社製“ライトエステルDM”)1重量部と、リン酸基含有メタクリレート(日本化薬社製“KAYAMER PM−21”)4重量部と、シクロヘキサノン65重量部とを混合して得た組成物を、サンドグラインドミルを用いてさらに混合して、酸化チタン超微粒子分散体を調製した。この酸化チタン超微粒子分散体に、アクリレート系紫外線硬化型ハードコート材(三洋化成工業社製“サンラッドH−601R”)15重量部と、メチルイソブチルケトン600重量部とを混合してコーティング組成物を調製した。このコーティング組成物を上記中屈折率膜の上に、マイクログラビアコータを用いてコーティングした。その後、コーティングされたコーティング組成物を乾燥し、500mJ/cmの強度で紫外線を照射して、ハードコート材を硬化させ、上記中屈折率膜の表面に、厚さ130μmの高屈折率膜(固形分中に占める酸化チタン微粒子の量60重量%、屈折率1.80)を形成した。 Subsequently, 30 parts by weight of titanium oxide ultrafine particles (“TTO55 (A)” manufactured by Ishihara Techno Co., Ltd.), 1 part by weight of dimethylaminoethyl methacrylate (“Light Ester DM” manufactured by Kyoeisha Chemical Co., Ltd.), and phosphate group-containing methacrylate ( Nippon Kayaku Co., Ltd. “KAYAMER PM-21”) 4 parts by weight and a composition obtained by mixing 65 parts by weight of cyclohexanone were further mixed using a sand grind mill to obtain a titanium oxide ultrafine particle dispersion. Prepared. The titanium oxide ultrafine particle dispersion is mixed with 15 parts by weight of an acrylate ultraviolet curable hard coat material (“Sunrad H-601R” manufactured by Sanyo Kasei Kogyo Co., Ltd.) and 600 parts by weight of methyl isobutyl ketone to form a coating composition. Prepared. This coating composition was coated on the medium refractive index film using a micro gravure coater. Thereafter, the coated coating composition is dried and irradiated with ultraviolet rays at an intensity of 500 mJ / cm 2 to cure the hard coat material. On the surface of the medium refractive index film, a high refractive index film having a thickness of 130 μm ( The amount of titanium oxide fine particles in the solid content was 60% by weight and the refractive index was 1.80).

さらに、フッ素系ポリマー含有熱硬化型低屈折率反射防止材(JSR社製“オプスターTT1006”)100重量部と、メチルイソブチルケトン20重量部とを混合・撹拌してコーティング組成物を調製し、このコーティング組成物を上記高屈折率膜の上に、マイクログラビアコータを用いてコーティングした。その後、コーティングされたコーティング組成物を乾燥し、120℃で6分間加熱して、厚さ92μmの低屈折率膜(屈折率1.41)とした。以上のように、実施例3の近赤外線遮蔽体を作製した。   Furthermore, a coating composition was prepared by mixing and stirring 100 parts by weight of a fluoropolymer-containing thermosetting low-refractive index antireflective material ("OPSTAR TT1006" manufactured by JSR) and 20 parts by weight of methyl isobutyl ketone. The coating composition was coated on the high refractive index film using a micro gravure coater. Thereafter, the coated coating composition was dried and heated at 120 ° C. for 6 minutes to obtain a low refractive index film (refractive index: 1.41) having a thickness of 92 μm. As described above, the near-infrared shield of Example 3 was produced.

次に、この近赤外線遮蔽体の反射率を分光光度計(日本分光社製“U−Best V−570”)を用いて測定したところ、波長領域450nm〜650nmにおける平均反射率は1%以下、波長領域650nm〜750nmにおける平均反射率は1.5%以下であった。また、実施例1と同様の方法で、本実施例の近赤外線遮蔽体の分光透過率を測定したところ、波長領域850nm〜900nmにおける分光透過率は15%以下、波長領域900nm〜1100nmにおける分光透過率は15%以下であった。また、Haze値は0.9%であった。   Next, when the reflectance of this near-infrared shield was measured using a spectrophotometer ("U-Best V-570" manufactured by JASCO Corporation), the average reflectance in the wavelength region of 450 nm to 650 nm was 1% or less, The average reflectance in the wavelength region of 650 nm to 750 nm was 1.5% or less. Further, when the spectral transmittance of the near-infrared shield of this example was measured in the same manner as in Example 1, the spectral transmittance in the wavelength region of 850 nm to 900 nm was 15% or less, and the spectral transmittance in the wavelength region of 900 nm to 1100 nm. The rate was 15% or less. The Haze value was 0.9%.

(比較例1)
実施例1で使用した、近赤外線吸収層の形成に用いる塗料の溶媒(メチルエチルケトン280重量部とトルエン280重量部とからなる混合溶媒)に代えて、メチルエチルケトン(MEK)280重量部とシクロヘキサノン280重量部とからなる混合溶媒を用いたこと以外は実施例1と同様にして比較例1の近赤外線遮蔽体を得た。
(Comparative Example 1)
Instead of the solvent of the coating used in Example 1 for forming the near-infrared absorbing layer (a mixed solvent composed of 280 parts by weight of methyl ethyl ketone and 280 parts by weight of toluene), 280 parts by weight of methyl ethyl ketone (MEK) and 280 parts by weight of cyclohexanone A near-infrared shield of Comparative Example 1 was obtained in the same manner as in Example 1 except that a mixed solvent consisting of

(比較例2)
実施例1で使用した、近赤外線吸収層の形成に用いる塗料の溶媒(メチルエチルケトン280重量部とトルエン280重量部とからなる混合溶媒)に代えて、メチルエチルケトン580重量部を用いたこと以外は実施例1と同様にして比較例2の近赤外線遮蔽体を得た。
(Comparative Example 2)
Example except that 580 parts by weight of methyl ethyl ketone was used instead of the solvent of the coating material used in Example 1 to form the near-infrared absorbing layer (a mixed solvent consisting of 280 parts by weight of methyl ethyl ketone and 280 parts by weight of toluene). The near-infrared shield of Comparative Example 2 was obtained in the same manner as in Example 1.

(比較例3)
実施例1で使用した、近赤外線吸収層の形成に用いる塗料の溶媒(メチルエチルケトン280重量部とトルエン280重量部とからなる混合溶媒)に代えて、メチルエチルケトン(MEK)280重量部とメチルイソブチルケトン(MIBK)280重量部とからなる混合溶媒を用いたこと以外は実施例1と同様にして比較例1の近赤外線遮蔽体を得た。
(Comparative Example 3)
Instead of the solvent of the paint used in the formation of the near infrared absorption layer used in Example 1 (a mixed solvent composed of 280 parts by weight of methyl ethyl ketone and 280 parts by weight of toluene), 280 parts by weight of methyl ethyl ketone (MEK) and methyl isobutyl ketone ( MIBK) A near-infrared shield of Comparative Example 1 was obtained in the same manner as Example 1 except that a mixed solvent consisting of 280 parts by weight was used.

実施例および比較例にて使用した溶媒の沸点、蒸発速度、近赤外線吸収化合物の各溶媒(25℃)の溶解度(重量%)を表1に示している。   Table 1 shows the boiling points of the solvents used in Examples and Comparative Examples, the evaporation rate, and the solubility (wt%) of each solvent (25 ° C.) of the near infrared absorbing compound.

なお、本願において、溶解度は、溶媒(液温25℃)に対して近赤外線吸収化合物が溶けうる最大量を、重量%で表した値である。溶媒(液温25℃)に近赤外線吸収化合物を徐々に溶解させながら、その様子(溶媒の着色)を目視により確認することにより、溶解限界量、すなわち、飽和溶液中の溶質量を決定し、近赤外線吸収化合物の濃度(溶解度)を決定した。   In addition, in this application, solubility is the value which represented the maximum amount which a near-infrared absorptive compound can melt | dissolve with respect to a solvent (liquid temperature 25 degreeC) with weight%. While gradually dissolving the near-infrared absorbing compound in the solvent (liquid temperature 25 ° C.), by visually checking the state (coloration of the solvent), the solubility limit amount, that is, the dissolved mass in the saturated solution is determined, The concentration (solubility) of the near infrared absorbing compound was determined.

蒸発速度とは、酢酸ブチルの蒸発速度を100とした場合の相対値である。   The evaporation rate is a relative value when the evaporation rate of butyl acetate is 100.

Figure 2006341204
Figure 2006341204

<保存試験>
次に、実施例と比較例の近赤外線遮蔽体について、温度60℃90%RHで500時間保存する試験を行い、この試験前後の分光透過率を分光光度計(日本分光社製“U−Best V−570”)を用いて測定した.その結果を表2に示している。
<Storage test>
Next, for the near-infrared shields of Examples and Comparative Examples, a test for storage for 500 hours at a temperature of 60 ° C. and 90% RH was performed, and the spectral transmittance before and after this test was measured by a spectrophotometer V-570 "). The results are shown in Table 2.

Figure 2006341204
Figure 2006341204

表1および表2に示すように、複数種の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が0.01重量%以上1.5重量%未満の貧溶媒と、複数の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が1.5重量%以上の良溶媒とからなる混合溶媒を用いた実施例1の近赤外線遮蔽体では、比較例1の近赤外線遮蔽体に比べ、保存試験の前後における、波長850nm、1000nm及び1100nmにおける分光透過率変化が小さいことが分かった。すなわち、実施例1の近赤外線遮蔽体は、比較例1の近赤外線遮蔽体よりも、高温高湿な使用条件下における近赤外線吸収特性の経時的な劣化が抑制されていることが分かった。   As shown in Table 1 and Table 2, a poor solvent having a solubility at 25 ° C. of at least one near-infrared absorbing compound of a plurality of types of near-infrared absorbing compounds of 0.01 wt% or more and less than 1.5 wt% In the near-infrared shield of Example 1 using a mixed solvent composed of a good solvent having a solubility at 25 ° C. of at least one near-infrared absorbing compound of a plurality of near-infrared absorbing compounds at 1.5 ° C. Compared with the near-infrared shield of Comparative Example 1, it was found that the change in spectral transmittance at wavelengths of 850 nm, 1000 nm, and 1100 nm before and after the storage test was small. That is, it was found that the near-infrared shielding body of Example 1 was less deteriorated over time in near-infrared absorption characteristics under high temperature and high humidity use conditions than the near-infrared shielding body of Comparative Example 1.

実施例1において用いた、複数種の近赤外線吸収化合物(シアニン系化合物、ジイモニウム系化合物)は、いずれもイオン結合性化合物であるが、実施例2では、金属錯体化合物であるフタロシアニン系化合物とイオン結合性化合物であるジイモニウム系化合物を用いた。   The multiple types of near-infrared absorbing compounds (cyanine compounds and diimonium compounds) used in Example 1 are all ion-binding compounds, but in Example 2, phthalocyanine compounds and ions that are metal complex compounds. A diimonium compound which is a binding compound was used.

表2に示すように、実施例2の近赤外線遮蔽体についても、高温高湿な使用条件下における近赤外線吸収特性の経時的な劣化が抑制されていた。これにより、近赤外線吸収化合物として、イオン結合性化合物と金属錯体化合物の双方を用いた場合でも、近赤外線吸収特性の経時劣化が抑制されることが確認できた。   As shown in Table 2, the near-infrared shield of Example 2 was also inhibited from deterioration over time in the near-infrared absorption characteristics under high temperature and high humidity use conditions. Thereby, even when both an ion binding compound and a metal complex compound were used as the near-infrared absorbing compound, it was confirmed that the deterioration with time of the near-infrared absorbing characteristics was suppressed.

実施例1の近赤外線吸収化体では、近赤外線吸収化合物の解離や、異種の近赤外線吸収化合物間における塩交換が抑制されているものと思われる。実施例2の近赤外線吸収化体では、近赤外線吸収化合物(イオン結合性化合物および金属錯体化合物)の解離が抑制されているものと思われる。   In the near-infrared absorbing material of Example 1, it is considered that dissociation of the near-infrared absorbing compound and salt exchange between different types of near-infrared absorbing compounds are suppressed. In the near-infrared absorber of Example 2, it is considered that dissociation of the near-infrared absorbing compound (ion binding compound and metal complex compound) is suppressed.

また、塗料に含まれるすべての近赤外線吸収化合物の25℃における溶解度が、1.5重量%以上の良溶媒を用いた比較例1〜3では、いずれも、高温高湿な使用条件下における近赤外線吸収特性の経時的な劣化の程度が、実施例1〜4よりも大きいことが確認できた。   Further, in Comparative Examples 1 to 3 using a good solvent having a solubility at 25 ° C. of all near-infrared absorbing compounds contained in the paint of 1.5% by weight or more, all of them were used under the conditions of high temperature and high humidity. It was confirmed that the degree of deterioration with time of the infrared absorption characteristics was larger than those of Examples 1 to 4.

また、表2に示すように、貧溶媒の沸点(トルエン:110℃)が良溶媒の沸点(MEK:80℃)よりも高い場合(実施例1、2および4)では、貧溶媒の沸点(MIBK:115℃)が良溶媒の沸点(トルエン:110℃)よりも低い場合(実施例3)よりも、高温高湿な使用条件下における近赤外線吸収特性の経時的な劣化がより抑制されることが確認できた。   Moreover, as shown in Table 2, when the boiling point of the poor solvent (toluene: 110 ° C.) is higher than the boiling point of the good solvent (MEK: 80 ° C.) (Examples 1, 2 and 4), the boiling point of the poor solvent ( MIBK: 115 ° C.) is lower than the boiling point of the good solvent (toluene: 110 ° C.) (Example 3), the deterioration with time of near-infrared absorption characteristics under high temperature and high humidity use conditions is further suppressed. I was able to confirm.

以上説明したように、高温高湿な使用条件下における近赤外線吸収特性の経時劣化が抑制された近赤外線遮蔽体をおよびディスプレイ用板状体(例えば、ディスプレイ前面板)を提供できるので、本発明は有用である。   As described above, a near-infrared shielding body in which deterioration with time of near-infrared absorption characteristics under high-temperature and high-humidity use conditions is suppressed and a plate for display (for example, a display front plate) can be provided. Is useful.

本実施形態の近赤外線遮蔽体の製造方法の一例により作製された近赤外線遮蔽体の一例を示す断面図Sectional drawing which shows an example of the near-infrared shield produced by an example of the manufacturing method of the near-infrared shield of this embodiment 本実施形態の近赤外線遮蔽体の製造方法の他の例により作製された近赤外線遮蔽体の一例を示す断面図Sectional drawing which shows an example of the near-infrared shield produced by the other example of the manufacturing method of the near-infrared shield of this embodiment 本実施形態のディスプレイ用前面板の一例を示す断面図Sectional drawing which shows an example of the front plate for displays of this embodiment

符号の説明Explanation of symbols

1 基材
2 近赤外線吸収層
3 ハードコート層
4 反射防止層
4a 中屈折率膜
4b 高屈折率膜
4c 低屈折率膜
11 ディスプレイ用前面板
12 基板
13 近赤外線遮蔽体
14 電磁波遮蔽体
15 電極
DESCRIPTION OF SYMBOLS 1 Base material 2 Near-infrared absorption layer 3 Hard coat layer 4 Antireflection layer 4a Medium refractive index film 4b High refractive index film 4c Low refractive index film 11 Front plate for display 12 Substrate 13 Near infrared shielding body 14 Electromagnetic wave shielding body 15 Electrode

Claims (6)

基材と、前記基材の一方の主面上に配置された近赤外線吸収層とを備えた近赤外線遮蔽体の製造方法であって、
1種以上の近赤外線吸収化合物と溶媒とバインダー樹脂とを含む塗料を塗布することにより、前記近赤外線吸収層を形成する、近赤外線吸収層形成工程を含み、
前記溶媒は、前記1種以上の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が0.01重量%以上1.5重量%未満の貧溶媒と、前記1種以上の近赤外線吸収化合物のうちの少なくとも1種の近赤外線吸収化合物の25℃における溶解度が1.5重量%以上の良溶媒とを含むことを特徴とする近赤外線遮蔽体の製造方法。
A method for producing a near-infrared shield comprising a substrate and a near-infrared absorbing layer disposed on one main surface of the substrate,
Including a near-infrared absorbing layer forming step of forming the near-infrared absorbing layer by applying a paint containing one or more near-infrared absorbing compounds, a solvent, and a binder resin;
The solvent includes a poor solvent having a solubility at 25 ° C. of at least one near-infrared absorbing compound of the one or more near-infrared absorbing compounds of 0.01% by weight or more and less than 1.5% by weight; The manufacturing method of the near-infrared shielding body characterized by including the good solvent whose solubility in 25 degreeC of the at least 1 sort (s) of near-infrared absorption compound of the above near-infrared absorption compounds is 1.5 weight% or more.
2種以上の前記近赤外線吸収化合物を含み、
前記2種以上の近赤外線吸収化合物から選ばれる2種の近赤外線吸収化合物について、互いに最大吸収波長が相違する請求項1に記載の近赤外線遮蔽体の製造方法。
Including two or more near infrared absorbing compounds,
The manufacturing method of the near-infrared shielding body of Claim 1 from which the maximum absorption wavelength differs about two types of near-infrared absorption compounds chosen from the said 2 or more types of near-infrared absorption compound.
前記近赤外線吸収化合物は、イオン結合性化合物および金属錯体化合物から選ばれる少なくとも1種を含む請求項1に記載の近赤外線遮蔽体の製造方法。   The said near-infrared absorption compound is a manufacturing method of the near-infrared shielding body of Claim 1 containing at least 1 sort (s) chosen from an ion binding compound and a metal complex compound. 前記貧溶媒の沸点は、前記良溶媒の沸点よりも高い請求項1に記載の近赤外線遮蔽体の製造方法。   The method for producing a near-infrared shield according to claim 1, wherein the poor solvent has a boiling point higher than that of the good solvent. 前記貧溶媒の蒸発速度は、前記良溶媒の蒸発速度より小さい請求項4に記載の近赤外線遮蔽体の製造方法。   The method for producing a near-infrared shield according to claim 4, wherein an evaporation rate of the poor solvent is smaller than an evaporation rate of the good solvent. 基板と、前記基板上に配置された請求項1〜5のいずれかの項に記載の近赤外線遮蔽体の製造方法により作製された近赤外線遮蔽体とを含むディスプレイ用板状体。   The plate-shaped body for a display containing a board | substrate and the near-infrared shielding body produced by the manufacturing method of the near-infrared shielding body as described in any one of Claims 1-5 arrange | positioned on the said board | substrate.
JP2005169783A 2005-06-09 2005-06-09 Method for manufacturing near infrared ray shielding body and plate-like body for display Pending JP2006341204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169783A JP2006341204A (en) 2005-06-09 2005-06-09 Method for manufacturing near infrared ray shielding body and plate-like body for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169783A JP2006341204A (en) 2005-06-09 2005-06-09 Method for manufacturing near infrared ray shielding body and plate-like body for display

Publications (1)

Publication Number Publication Date
JP2006341204A true JP2006341204A (en) 2006-12-21

Family

ID=37638559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169783A Pending JP2006341204A (en) 2005-06-09 2005-06-09 Method for manufacturing near infrared ray shielding body and plate-like body for display

Country Status (1)

Country Link
JP (1) JP2006341204A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201952A (en) * 2007-02-21 2008-09-04 Nippon Shokubai Co Ltd Phthalocyanine compound
JP2010024450A (en) * 2008-06-18 2010-02-04 Toyobo Co Ltd Resin composition for hard coat for molding
JP2014071416A (en) * 2012-10-01 2014-04-21 Nippon Shokubai Co Ltd Light selective transmission filter, resin sheet, and solid state imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195026A (en) * 1997-09-22 1999-04-09 Toyobo Co Ltd Infrared absorbing filter
JP2001019898A (en) * 1999-07-05 2001-01-23 Mitsubishi Chemicals Corp Infrared-absorbing film and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195026A (en) * 1997-09-22 1999-04-09 Toyobo Co Ltd Infrared absorbing filter
JP2001019898A (en) * 1999-07-05 2001-01-23 Mitsubishi Chemicals Corp Infrared-absorbing film and preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201952A (en) * 2007-02-21 2008-09-04 Nippon Shokubai Co Ltd Phthalocyanine compound
JP2010024450A (en) * 2008-06-18 2010-02-04 Toyobo Co Ltd Resin composition for hard coat for molding
JP2014071416A (en) * 2012-10-01 2014-04-21 Nippon Shokubai Co Ltd Light selective transmission filter, resin sheet, and solid state imaging device

Similar Documents

Publication Publication Date Title
US7968183B2 (en) Hard-coated film, method of manufacturing the same, optical device, and image display
US7390099B2 (en) Hard-coated antiglare film and method of manufacturing the same
JP5220286B2 (en) Anti-glare hard coat film, polarizing plate and image display device using the same
US7662490B2 (en) Near-infrared shield and display front plate
US20060134400A1 (en) Hard-coated film and method of manufacturing the same
JP4906283B2 (en) Infrared absorption film
US20070178297A1 (en) Hard coat film, antireflection hard coat film, optical element and image display
KR101649015B1 (en) Optical laminate, polarizing plate, and image display device
JP2006201463A (en) Antireflection film
US20080305282A1 (en) Antireflection film and display front plate using the same
JP5154773B2 (en) Antireflection film
US20130122311A1 (en) Optical layered body, polarizer and image display device
JP2007058178A (en) Optical film and image display apparatus panel using the same
JP2008176143A (en) Optical film and front board for display using same
US20070020470A1 (en) Optical film and image display apparatus panel using the same
JP2008181120A (en) Optical laminated body, polarizing plate and image display device
JP2006341204A (en) Method for manufacturing near infrared ray shielding body and plate-like body for display
JP4292048B2 (en) Near-infrared shield and display front plate using the same
JP2009222801A (en) Optical film
JP2008184515A (en) Coating composition, cured film, optical laminated body and method for producing the same
JP2007233392A (en) Optical film and image display apparatus panel using same
JP4311635B2 (en) Antireflection film and front plate for display
JPH1177909A (en) Transparent laminate
TW200916819A (en) Antireflection film and display front plate using the same
JP2008083360A (en) Method for manufacturing optical film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308