JP2006331908A - Manufacturing method of iron lithium phosphate thin film electrode - Google Patents

Manufacturing method of iron lithium phosphate thin film electrode Download PDF

Info

Publication number
JP2006331908A
JP2006331908A JP2005155250A JP2005155250A JP2006331908A JP 2006331908 A JP2006331908 A JP 2006331908A JP 2005155250 A JP2005155250 A JP 2005155250A JP 2005155250 A JP2005155250 A JP 2005155250A JP 2006331908 A JP2006331908 A JP 2006331908A
Authority
JP
Japan
Prior art keywords
film electrode
thin film
heat treatment
iron phosphate
lithium iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005155250A
Other languages
Japanese (ja)
Other versions
JP5092205B2 (en
Inventor
Tetsuo Minamino
哲郎 南野
Hidekazu Tamai
秀和 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005155250A priority Critical patent/JP5092205B2/en
Publication of JP2006331908A publication Critical patent/JP2006331908A/en
Application granted granted Critical
Publication of JP5092205B2 publication Critical patent/JP5092205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a thin-film electrode of a low-cost phosphoric acid system active material. <P>SOLUTION: In the manufacturing method of iron lithium phosphate thin-film electrode applying solution containing at least Li, Fe and P on a metal substrate, and putting it under heat treatment to make a thin-film electrode, the heat treatment is carried out at 500°C or more and 800°C or less under a low-oxygen partial pressure gas atmosphere containing vapor by 5 to 90 volume percent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はリン酸鉄リチウムから構成される薄膜電極の製造方法に関する。   The present invention relates to a method for producing a thin film electrode composed of lithium iron phosphate.

電子機器の小型化に伴い、その主電源やバックアップ電源として高エネルギー密度を有する電池が要望されている。中でもリチウムイオン二次電池は、従来の水溶液系電池に比べ、高電圧・高エネルギー密度を有しており注目を集めている。   With downsizing of electronic devices, a battery having high energy density is demanded as its main power source or backup power source. In particular, lithium ion secondary batteries are attracting attention because they have higher voltages and higher energy densities than conventional aqueous batteries.

リチウムイオン二次電池は、正極としてLiCoO2やLiMn24、LiNiO2などの酸化物、負極としてカーボンやSiなどの合金、Li4/3Ti5/34などの酸化物、電解液には炭酸エステルやエーテル系の有機溶媒にLi塩を溶解したものが用いられている。電解液は危険物の第四類に分類される可燃物が使用されており、漏液の可能性があるほか、誤使用時に発火・破裂の恐れがある。リチウムイオン二次電池の安全性及び信頼性を高めるために、安全性に優れるリン酸系活物質の研究開発が盛んに行われている。 Lithium ion secondary batteries are composed of oxides such as LiCoO 2 , LiMn 2 O 4 and LiNiO 2 as positive electrodes, alloys such as carbon and Si as negative electrodes, oxides such as Li 4/3 Ti 5/3 O 4 , electrolytes In this case, a solution obtained by dissolving a Li salt in a carbonic acid ester or an ether organic solvent is used. The electrolyte is a flammable material classified as Class 4 hazardous materials, which may cause leakage and may ignite or rupture when misused. In order to enhance the safety and reliability of lithium ion secondary batteries, research and development of phosphoric acid-based active materials that are excellent in safety are being actively conducted.

リン酸系活物質はその低い電子導電性のため、高率放電特性に課題があり、その導電性を改善するためにカーボンなどの電子導電助剤との混合方法や活物質の1次粒子径の低減などに関して種々の検討が行われてきた(特許文献1、特許文献2)。   Phosphoric acid-based active materials have problems with high-rate discharge characteristics due to their low electronic conductivity, and in order to improve their conductivity, the method of mixing with an electronic conductive aid such as carbon and the primary particle size of the active material Various studies have been made on the reduction of noise (Patent Document 1, Patent Document 2).

一方で、導電性の悪いリン酸系活物質を薄膜化することで高速充放電が可能であることが報告されている(非特許文献1)。レーザーアブレーション法を用いてLiFePO4ターゲットをアルゴン雰囲気にて白金板上へと薄膜形成させた後、500℃にて3時間アニール処理すると、1M LiClO4/PC系電解液中で可逆性良く動作することが報告されている。このようにレーザーアブレーションなどの真空プロセスを用いると種々の活物質を種々の基板上に薄膜形成させることが可能であるが、一方でこのような真空プロセスはプロセスコストが高いため量産には不向きである、という課題があった。 On the other hand, it has been reported that high-speed charge / discharge is possible by thinning a phosphoric acid active material having poor conductivity (Non-patent Document 1). When a LiFePO 4 target is formed into a thin film on a platinum plate in an argon atmosphere using a laser ablation method and then annealed at 500 ° C. for 3 hours, it operates reversibly in a 1M LiClO 4 / PC electrolyte. It has been reported. As described above, when a vacuum process such as laser ablation is used, various active materials can be formed into thin films on various substrates. On the other hand, such a vacuum process is not suitable for mass production because of high process cost. There was a problem of being.

また、薄膜極板を作製するためのプロセスとして、ゾルーゲル法を用いたものが知られている。非特許文献2において、リチウムイソプロポキシド、酢酸コバルト、ポリビニルピロリドン、酢酸、イソプロパノール、水からなる前駆体を金基板上にスピンコートし、800℃1時間空気雰囲気で焼成することでLiCoO2薄膜が形成されることが報告されている。また、酢酸コバルトに換えて酢酸マンガンを用いることでLiMn24薄膜極板が得られることも報告されている。Co(III)またはMn(IV)を有するこれらの活物質は空気などの酸化雰囲気での焼成が必須であり、また、有機溶媒を用いる系においては生成するカーボンを酸素により焼き飛ばす必要があるため、用いられる基板の材料としては高温・酸化雰囲気で安定に存在し得る金、白金、銀などの貴金属を用いる必要があった。このため、量産に際しては集電体材料コストが高くなるという課題があった。 Also, a process using a sol-gel method is known as a process for producing a thin film electrode plate. In Non-Patent Document 2, a precursor made of lithium isopropoxide, cobalt acetate, polyvinyl pyrrolidone, acetic acid, isopropanol, and water is spin-coated on a gold substrate and baked in an air atmosphere at 800 ° C. for 1 hour to obtain a LiCoO 2 thin film. It is reported to form. It has also been reported that a LiMn 2 O 4 thin film electrode plate can be obtained by using manganese acetate instead of cobalt acetate. These active materials having Co (III) or Mn (IV) must be baked in an oxidizing atmosphere such as air, and in a system using an organic solvent, it is necessary to burn off generated carbon with oxygen. As a substrate material to be used, it was necessary to use a noble metal such as gold, platinum or silver which can exist stably in a high temperature / oxidizing atmosphere. For this reason, in mass production, there existed a subject that the current collector material cost became high.

また、液相からLiFePO4を合成した例として非特許文献3がある。本報文によれば、酢酸リチウム、酢酸鉄、リン酸をエチレングリコールに溶解させてゲルを作製し、これを窒素雰囲気中にて700℃12時間の熱処理を施すことで表面がカーボンコートされたLiFePO4を得るというものである。しかしながら、その目的はLiFePO4粒子をカーボン被覆して粒子の電子導電性を向上させるためであり、カーボン被覆された粒子は緻密化が進行しないため、緻密な構造を有するLiFePO4薄膜極板を作製することは困難であった。
特開2003−203628号公報 特開2004−296367号公報 「新エネルギー・産業技術総合開発機構 平成13年度産業技術研究助成事業研究成果報告書」,平成14年3月,01B60011c 「ジャーナル・オブ・ジ・エレクトロケミカル・ソサイエティ(J.Electrochem.Soc.)」,2003年,150(1)A107−A111 アブストラクト・294・206ス・ミーティング(Abs.294,206th Meeting),「ジ・エレクトロケミカル・ソサイエティ(The Electrochemical Society,Inc.)」,2004年
Non-patent document 3 is an example of synthesizing LiFePO 4 from the liquid phase. According to this report, lithium acetate, iron acetate, and phosphoric acid were dissolved in ethylene glycol to prepare a gel, and this was heat-treated at 700 ° C. for 12 hours in a nitrogen atmosphere, and the surface was carbon coated. LiFePO 4 is obtained. However, the purpose is to improve the electronic conductivity of the particles by coating the LiFePO 4 particles with carbon. Since the carbon-coated particles do not progress in densification, a LiFePO 4 thin film electrode having a dense structure is produced. It was difficult to do.
JP 2003-203628 A JP 2004-296367 A "New Energy and Industrial Technology Development Organization 2001 Industrial Technology Research Grants Research Results Report", March 2002, 01B60011c "Journal of the Electrochemical Society (J. Electrochem. Soc.)", 2003, 150 (1) A107-A111. Abstracts 294/206 Meeting (Abs. 294, 206th Meeting), “The Electrochemical Society, Inc.”, 2004.

先述のように、薄膜電極においては電子導電性の低い活物質でも高速充放電が可能となるが、レーザーアブレーションなどの気相法を用いるとプロセスコストが高くなるという課題があった。一方、ゾルーゲル法を用いた場合、副成するカーボンなどを焼き飛ばすため、また遷移金属の酸化数を高く保持するために空気中での焼成が不可欠であり、このために集電体には貴金属を用いる必要があった。このため、集電体材料が高価になるという課題があった。本発明はこれらの課題を解決し、安価にリン酸系活物質の薄膜電極を提供することが可能となる製造方法に関するものである。   As described above, a thin film electrode can be charged and discharged at high speed even with an active material having low electronic conductivity. However, when a vapor phase method such as laser ablation is used, there is a problem that process cost increases. On the other hand, when using the sol-gel method, firing in air is indispensable in order to burn off by-product carbon, etc., and to maintain a high oxidation number of the transition metal. It was necessary to use. For this reason, there existed a subject that a collector material became expensive. The present invention relates to a production method capable of solving these problems and providing a thin film electrode of a phosphoric acid-based active material at a low cost.

本発明は、少なくともLi、Fe、Pを含む溶液を金属基板上へ塗布し、熱処理を施して薄膜電極を作製する製造方法において、水蒸気を5〜90体積%を含む低酸素分圧ガス雰囲気中、500℃以上800℃以下で加熱処理をほどこしてリン酸鉄リチウム薄膜電極を製造することを特徴とする。   The present invention relates to a manufacturing method for producing a thin film electrode by applying a solution containing at least Li, Fe, and P onto a metal substrate and performing a heat treatment in a low oxygen partial pressure gas atmosphere containing 5 to 90% by volume of water vapor. The lithium iron phosphate thin film electrode is manufactured by performing a heat treatment at 500 ° C. or more and 800 ° C. or less.

本発明によれば、リン酸系活物質であるオリビン型のLiFePO4の緻密な薄膜電極を安価に提供することができる。 According to the present invention, a dense thin film electrode of olivine type LiFePO 4 which is a phosphoric acid active material can be provided at low cost.

本発明は、少なくともLi、Fe、Pを含む溶液を金属基板上へ塗布し、熱処理を施して薄膜電極を作製する製造方法において、水蒸気を5〜90体積%を含む低酸素分圧ガス雰囲気中、800℃以下で加熱処理することを特徴とするリン酸鉄リチウム薄膜電極の製造方法に関する。この水蒸気の添加により、有機物の熱分解が促進されるため、カーボン類の副成を抑制することができるため、合成されるLiFePO4を緻密化することが可能となる。また、有機化合物の熱分解は吸熱反応であるため、CO2やH2及びN2などと比べて比熱の大きいH2Oを用いることで分解に必要な熱が円滑に供給される効果もある。熱処理温度が500℃を下回ると活物質であるLiFePO4の生成は困難であり、熱処理温度が800℃を上回ると活物質の異常粒成長が起こり活物質層の平滑性が低下したり、集電体の熱変形が生じる恐れがある。 The present invention relates to a manufacturing method for producing a thin film electrode by applying a solution containing at least Li, Fe, and P onto a metal substrate and performing a heat treatment in a low oxygen partial pressure gas atmosphere containing 5 to 90% by volume of water vapor. The present invention relates to a method for producing a lithium iron phosphate thin film electrode, characterized by heat treatment at 800 ° C. or lower. Since the thermal decomposition of the organic matter is promoted by the addition of the water vapor, carbon by-products can be suppressed, so that the synthesized LiFePO4 can be densified. Moreover, since the thermal decomposition of the organic compound is an endothermic reaction, there is an effect that the heat necessary for the decomposition can be smoothly supplied by using H 2 O having a large specific heat compared with CO 2 , H 2 and N 2. . When the heat treatment temperature is lower than 500 ° C., it is difficult to produce LiFePO 4 as an active material. When the heat treatment temperature is higher than 800 ° C., abnormal grain growth of the active material occurs and the smoothness of the active material layer is reduced. There is a risk of thermal deformation of the body.

合成される活物質LiFePO4中のFeの酸化数は2価であり、この2価のFeが安定な領域で熱処理を行う必要がある。そのため、熱処理する雰囲気の酸素分圧は下記一般式(1)の範囲内であることが望ましく、 The oxidation number of Fe in the synthesized active material LiFePO 4 is divalent, and it is necessary to perform heat treatment in a region where the divalent Fe is stable. Therefore, the oxygen partial pressure of the atmosphere to be heat-treated is preferably within the range of the following general formula (1),

Figure 2006331908
Figure 2006331908

酸素分圧が一般式(1)で規定される範囲を上回るとFeが酸化されたり、後述する金属基板が酸化される恐れがある。一方、酸素分圧が一般式(1)で規定される範囲未満にす
ると副成するカーボン類の除去が困難となる。
If the oxygen partial pressure exceeds the range defined by the general formula (1), Fe may be oxidized or a metal substrate described later may be oxidized. On the other hand, when the oxygen partial pressure is less than the range defined by the general formula (1), it is difficult to remove carbons generated as by-products.

金属基板としてAl、Ti、Ni、SUSなどを用いることができる。ただし、Alは融点が660℃であるため、熱処理温度は600℃以下で行うことが必要である。   Al, Ti, Ni, SUS, or the like can be used as the metal substrate. However, since Al has a melting point of 660 ° C., the heat treatment temperature must be 600 ° C. or lower.

酸素分圧を一般式(1)で規定される範囲に安定して調整するために、二酸化炭素と水素及び窒素からなるガスを用いることができる。水素の体積含有率は安全のため、水素の爆発限界以下の4%以下にすることが望ましい。これらの気体から構成されるガスは平衡反応により、安定した酸素分圧を維持することが可能となる。   In order to stably adjust the oxygen partial pressure within the range defined by the general formula (1), a gas composed of carbon dioxide, hydrogen, and nitrogen can be used. For safety, the volume content of hydrogen is preferably 4% or less, which is below the explosion limit of hydrogen. A gas composed of these gases can maintain a stable oxygen partial pressure by an equilibrium reaction.

活物質を合成するための前駆体溶液を構成するLi化合物として、酢酸リチウム二水和物、リチウムアルコキシドから選ばれる少なくとも1つを用いることができる。リチウムアルコキシドとしてはメトキシド、エトキシド、イソプロポキシド、ブトキシドが一般的に用いられる。これらの化合物は種々の溶媒に対して易溶であり、前駆体溶液の調整が容易である。Fe源としては、酢酸塩や硝酸塩n水和物(nは0から10までの正数)を用いることができる。特にフェロセン及びその誘導体を前駆体として用いると前駆体溶液の取り扱いが容易になる。P源としてはリン酸、リン酸エステル(PO(OR)3-n(OH)n: Rは炭素数1〜6の脂肪族炭化水素、nは0〜2の整数)から選ばれる少なくとも1つを用いることができる。リン酸エステルの炭素鎖は短い方がカーボンの副成が抑制できるため短時間での合成が可能であるが、リン酸エステルの揮発の恐れがあり化学両論比が狙いからずれる恐れがある。 As the Li compound constituting the precursor solution for synthesizing the active material, at least one selected from lithium acetate dihydrate and lithium alkoxide can be used. As lithium alkoxide, methoxide, ethoxide, isopropoxide and butoxide are generally used. These compounds are easily soluble in various solvents, and the preparation of the precursor solution is easy. As the Fe source, acetate or nitrate n-hydrate (n is a positive number from 0 to 10) can be used. In particular, when ferrocene and its derivatives are used as precursors, handling of the precursor solution becomes easy. The P source is at least one selected from phosphoric acid and phosphoric acid ester (PO (OR) 3-n (OH) n : R is an aliphatic hydrocarbon having 1 to 6 carbon atoms, and n is an integer of 0 to 2). Can be used. The shorter the carbon chain of the phosphate ester, the shorter the carbon by-product can be suppressed, so that the synthesis can be performed in a short time. However, the phosphate ester may volatilize and the stoichiometric ratio may not be aimed.

前駆体溶液を構成する溶媒としてはエタノール、イソプロパノール、酢酸、水、N−メチルピロリドン、エチレングリコール、アセトン、THFから選ばれる少なくとも1つから構成することができる。溶解度が大きく、沸点の低いアセトンやTHFを溶媒とした場合、カーボンの副成が少なくて望ましいが、金属基板への塗布時の溶媒の揮発が激しいため工程の管理が困難となる。反対に、N−メチルピロリドンを用いた場合、前駆体溶液は非常に安定して工程管理が容易であるが、熱分解によりカーボンが生成しやすく薄膜極板製造に長時間を要するという欠点がある。   The solvent constituting the precursor solution can be composed of at least one selected from ethanol, isopropanol, acetic acid, water, N-methylpyrrolidone, ethylene glycol, acetone, and THF. When acetone or THF having a high solubility and a low boiling point is used as a solvent, it is desirable because there are few carbon by-products, but the process is difficult to manage because the solvent is volatile during application to a metal substrate. On the contrary, when N-methylpyrrolidone is used, the precursor solution is very stable and process management is easy, but there is a disadvantage that carbon is easily generated by thermal decomposition and a long time is required for manufacturing a thin film electrode. .

本発明で形成される薄膜極板の活物質層厚みは活物質の前駆体溶液の粘度に大きく左右される。スピンコートなどで金属基板上に前駆体溶液を塗布する場合、ポリビニルピロリドンやポリビニルブチラール、ポリエチレンオキシドなどを添加して溶液の粘度を大きくすることで活物質層厚みを大きくすることができる。   The thickness of the active material layer of the thin film electrode plate formed in the present invention greatly depends on the viscosity of the precursor solution of the active material. When a precursor solution is applied onto a metal substrate by spin coating or the like, the active material layer thickness can be increased by increasing the viscosity of the solution by adding polyvinylpyrrolidone, polyvinyl butyral, polyethylene oxide, or the like.

以下に本発明を実施例に基づいて説明する。   The present invention will be described below based on examples.

(前駆体溶液の調製)
Fe(OCOCH32 870mg、LiOCOCH3 510mg、H3PO4 490mgをそれぞれ秤量し、エルレンマイヤーフラスコへ投入し、N−メチルピロリドン15mLへ溶解させた。
(Preparation of precursor solution)
Fe (OCOCH 3 ) 2 870 mg, LiOCOCH 3 510 mg, and H 3 PO 4 490 mg were weighed, put into an Erlenmeyer flask, and dissolved in 15 mL of N-methylpyrrolidone.

(金属基板への塗布)
表面を粗化処理した直径15mm、厚さ1mmのSUS基板上へ先述の前駆体溶液を3000rpmにてスピンコートした。この前駆体溶液塗布後のSUS基板を150℃にて真空乾燥させた。
(Application to metal substrate)
The precursor solution described above was spin-coated at 3000 rpm on a SUS substrate having a diameter of 15 mm and a thickness of 1 mm whose surface had been roughened. The SUS substrate after the application of the precursor solution was vacuum-dried at 150 ° C.

(薄膜極板の作製)
上記前駆体溶液を塗布・乾燥させたSUS基板を雰囲気炉に入れ、昇温速度200℃/
h、最高温度700℃、保持時間2hの温度スケジュールを用いて熱処理した。低酸素分圧ガスとしてCO2/H2/N2 = 4.99/0.01/95の組成のガスを用い、水蒸気の体積が5、20、30、50、90%の5水準になるよう調整したガスを、それぞれ総ガス流量が温度700℃、1気圧にて、12L/minとなるように炉内温度が200℃の時点から供給し、薄膜極板を作製した。
これを実施例1とする。
(Preparation of thin film electrode)
The SUS substrate coated with the precursor solution and dried is placed in an atmosphere furnace, and the temperature increase rate is 200 ° C. /
h, heat treatment was performed using a temperature schedule of a maximum temperature of 700 ° C. and a holding time of 2 h. A gas having a composition of CO 2 / H 2 / N 2 = 4.99 / 0.01 / 95 is used as the low oxygen partial pressure gas, and the volume of water vapor becomes five levels of 5, 20, 30, 50, and 90%. The gas thus adjusted was supplied from the time when the furnace temperature was 200 ° C. so that the total gas flow rate was 12 L / min at a total gas flow rate of 700 ° C. and 1 atm to produce a thin film electrode plate.
This is Example 1.

熱処理温度を550℃とし、水蒸気添加量を30体積%としたこと以外は実施例1と同様にして薄膜極板を作製した。これを実施例2とする。   A thin-film electrode plate was produced in the same manner as in Example 1 except that the heat treatment temperature was 550 ° C. and the amount of water vapor was 30% by volume. This is Example 2.

熱処理温度を750℃とし、水蒸気添加量を30体積%としたこと以外は実施例1と同様にして薄膜極板を作製した。これを実施例3とする。   A thin-film electrode plate was produced in the same manner as in Example 1 except that the heat treatment temperature was 750 ° C. and the amount of water vapor was 30% by volume. This is Example 3.

(比較例1)
水蒸気を添加しなかったこと以外は実施例1と同様にして薄膜極板を作製した。これを比較例1とする。
(Comparative Example 1)
A thin film electrode plate was prepared in the same manner as in Example 1 except that no water vapor was added. This is referred to as Comparative Example 1.

(比較例2)
熱処理温度を850℃とし、水蒸気添加量を30体積%としたこと以外は実施例1と同様にして薄膜極板を作製した。これを比較例2とする。
(Comparative Example 2)
A thin-film electrode plate was produced in the same manner as in Example 1 except that the heat treatment temperature was 850 ° C. and the amount of water vapor was 30% by volume. This is referred to as Comparative Example 2.

(比較例3)
熱処理温度を450℃とし、水蒸気添加量を30体積%としたこと以外は実施例1と同様にして薄膜極板を作製した。これを比較例3とする。
(Comparative Example 3)
A thin-film electrode plate was produced in the same manner as in Example 1 except that the heat treatment temperature was 450 ° C. and the amount of water vapor was 30% by volume. This is referred to as Comparative Example 3.

(比較例4)
CO2/H2/N2 = 4.99/0.01/95の組成の低酸素分圧ガスに替えて空気を用い、水蒸気添加量を30体積%としたこと以外は実施例1と同様にして薄膜極板を作製した。これを比較例4とする。
(Comparative Example 4)
Example 1 except that air was used instead of the low oxygen partial pressure gas having a composition of CO 2 / H 2 / N 2 = 4.99 / 0.01 / 95 and the amount of water vapor was 30% by volume. Thus, a thin film electrode plate was produced. This is referred to as Comparative Example 4.

(電池の作製)
作製した薄膜極板にAl製リードを取り付け、リードを取り付けた金属Liを対極としてPP製セパレータを間に挟んで対向させ、電解液に1M LiClO4のエチレンカーボネート/プロピレンカーボネート(体積比1/1)溶液を用いてAlラミネートを用いて封止し、電池を構成した。
(Production of battery)
An Al lead is attached to the produced thin film electrode plate, and a metal Li to which the lead is attached is used as a counter electrode with a PP separator interposed therebetween, and 1M LiClO 4 ethylene carbonate / propylene carbonate (volume ratio 1/1) is used as the electrolyte. ) A battery was constructed by sealing with an Al laminate using the solution.

(電池の評価)
これらの電池を室温にて100μA/cm2の電流密度で2.5から4.0Vの範囲で充放電を行った。なお、利用率は、各薄膜極板を全溶解させてICP分析によりLi量を算出し、Liが全てLiFePO4であったと仮定して算出した。表1に各電極の1サイクル目の放電利用率と10サイクル目の放電利用率を示す。
(Battery evaluation)
These batteries were charged and discharged at a current density of 100 μA / cm 2 at room temperature in the range of 2.5 to 4.0 V. The utilization rate was calculated on the assumption that all the thin-film electrode plates were dissolved, the amount of Li was calculated by ICP analysis, and that all Li was LiFePO 4 . Table 1 shows the discharge utilization rate at the first cycle and the discharge utilization rate at the 10th cycle of each electrode.

Figure 2006331908
Figure 2006331908

LiFePO4の理論容量170mAh/gに対し、本発明による実施例1は145〜158mAh/gの初期利用率を示し、10サイクル目においてもほぼ同程度の利用率が維持された。また、550℃の熱処理を行った実施例2では130mAh/gを越える利用率、750℃の熱処理を行った実施例3では150mAh/gを越える利用率をそれぞれ示し、10サイクル後も同程度の利用率が維持されていた。 In contrast to the theoretical capacity of 170 mAh / g of LiFePO 4 , Example 1 according to the present invention showed an initial utilization rate of 145 to 158 mAh / g, and the utilization rate was almost the same even at the 10th cycle. In Example 2 where the heat treatment at 550 ° C. was performed, the utilization rate exceeded 130 mAh / g, and in Example 3 where the heat treatment at 750 ° C. was performed, the utilization rate exceeded 150 mAh / g. The utilization rate was maintained.

一方、熱処理時に水蒸気を添加しなかった比較例1においては初期容量は144mAh/gと良好であったが10サイクル目には13mAh/gにまで利用率が低下した。これは副成したカーボンによりLiFePO4層が緻密化するのが妨げられ、充放電サイクルを重ねるに従って活物質層の崩壊が起こり活物質同士及び活物質/SUS集電体間の電子電導パスが切断されたためであると考えられる。 On the other hand, in Comparative Example 1 in which water vapor was not added during the heat treatment, the initial capacity was as good as 144 mAh / g, but the utilization rate decreased to 13 mAh / g at the 10th cycle. This prevents the LiFePO 4 layer from being densified by the by-produced carbon, and the active material layer collapses as the charge / discharge cycle is repeated, and the electronic conductive path between the active materials and the active material / SUS current collector is disconnected. It is thought that it was because it was done.

また、熱処理温度を850℃とした比較例2では初期利用率が35mAh/gと低くなった。これは熱処理により活物質の粒成長が進行し、LiFePO4の粒径が大きくなったため、活物質表面から活物質内部へのLiの拡散距離及び電子電導の距離が長くなったために利用率が低下したものと考えられる。また、熱処理温度を450℃とした比較例3では充放電が行われなかった。これは450℃の熱処理では活物質であるLiFePO4が生成しなかったためであると考えられる。 In Comparative Example 2 in which the heat treatment temperature was 850 ° C., the initial utilization rate was as low as 35 mAh / g. This is because the grain growth of the active material has progressed due to the heat treatment, and the particle size of LiFePO 4 has increased, so the diffusion rate of Li from the active material surface to the inside of the active material and the distance of electronic conduction have increased, and the utilization rate has decreased. It is thought that. Moreover, charging / discharging was not performed in the comparative example 3 which made heat processing temperature 450 degreeC. This is considered to be because LiFePO 4 which is an active material was not generated by the heat treatment at 450 ° C.

低酸素分圧ガスに替えて空気を用いた比較例4においては充放電は全く不可能であった。これは空気によりFe(II)が酸化されたためLiFePO4が生成しなかったためであると考えられる。
以上の結果から、本発明により製造されるリン酸鉄リチウム薄膜極板は初期の活物質利用率及び充放電サイクル寿命特性に優れることが示された。
In Comparative Example 4 in which air was used instead of the low oxygen partial pressure gas, charging / discharging was not possible at all. This is considered to be because LiFePO 4 was not generated because Fe (II) was oxidized by air.
From the above results, it was shown that the lithium iron phosphate thin-film electrode plate produced according to the present invention is excellent in the initial active material utilization and charge / discharge cycle life characteristics.

水蒸気添加量を30体積%とし、CO2/H2/N2 = 4.99/0.01/95の組成の低酸素分圧ガスに替えて、純度4Nの高純度アルゴンガスを用いたこと以外は実施例1と同様に薄膜極板を作製した。これを実施例4とする。 A high purity argon gas having a purity of 4N was used instead of the low oxygen partial pressure gas having a composition of CO 2 / H 2 / N 2 = 4.99 / 0.01 / 95, with the amount of steam added being 30% by volume. A thin film electrode plate was produced in the same manner as in Example 1 except for the above. This is Example 4.

水蒸気添加量を30体積%とし、CO2/H2/N2 = 4.99/0.01/95の組成の低酸素分圧ガスに替えて、純度4Nの高純度CO2ガスを用いたこと以外は実施例1と同様に薄膜極板を作製した。これを実施例5とする。 A high-purity CO 2 gas having a purity of 4N was used instead of the low oxygen partial pressure gas having a composition of CO 2 / H 2 / N 2 = 4.99 / 0.01 / 95 with the amount of steam added being 30% by volume. A thin film electrode plate was prepared in the same manner as in Example 1 except that. This is Example 5.

水蒸気添加量を30体積%とし、CO2/H2/N2 = 4.99/0.01/95の組成の低酸素分圧ガスに替えて、純度4Nの高純度H2ガスを用いたこと以外は実施例1と同様に薄膜極板を作製した。これを実施例6とする。 A high-purity H 2 gas having a purity of 4N was used instead of the low oxygen partial pressure gas having a composition of CO 2 / H 2 / N 2 = 4.99 / 0.01 / 95 with the amount of steam added being 30% by volume. A thin film electrode plate was prepared in the same manner as in Example 1 except that. This is Example 6.

実施例4から6についても先述の方法で電池を構成し、評価を行った。結果を表2に示す。   Also in Examples 4 to 6, batteries were configured by the above-described method and evaluated. The results are shown in Table 2.

Figure 2006331908
Figure 2006331908

実施例4、5においては120mAh/gを越える1サイクル目利用率が得られた。10サイクル目利用率は実施例1と比較して若干、低下する傾向が見られた。これは実施例1で用いたCO2/H2/N2 = 4.99/0.01/95の組成の低酸素分圧ガスが、 In Examples 4 and 5, the first cycle utilization rate exceeding 120 mAh / g was obtained. The 10th cycle utilization rate tended to decrease slightly compared to Example 1. This is because the low oxygen partial pressure gas having the composition of CO 2 / H 2 / N 2 = 4.99 / 0.01 / 95 used in Example 1 is used.

Figure 2006331908
Figure 2006331908

Figure 2006331908
Figure 2006331908

のような平衡反応により酸素分圧の緩衝作用があるため一定の酸素分圧が維持され、極板中に副成するカーボン類がこの酸素により除去されると考えられる。実施例1における700℃における平衡酸素分圧は10-16気圧程度と見積もられる。一方、実施例4の場合、高純度アルゴンにおいてはそのような緩衝作用はなく、また、700℃においては式(4)の反応の平衡定数が約10-11のオーダーであり、酸素分圧が10-7気圧程度であると見積もられる。このため、Fe(II)の一部がFe(III)へと酸化されたために利用率が低くなったものと考えられる。 It is considered that the oxygen partial pressure is buffered by the equilibrium reaction as described above, so that a constant oxygen partial pressure is maintained, and carbons by-produced in the electrode plate are removed by this oxygen. The equilibrium oxygen partial pressure at 700 ° C. in Example 1 is estimated to be about 10 −16 atm. On the other hand, in the case of Example 4, such a buffering action is not obtained in high-purity argon, and the equilibrium constant of the reaction of the formula (4) is on the order of about 10 −11 at 700 ° C., and the oxygen partial pressure is It is estimated to be about 10 −7 atm. For this reason, it is considered that the utilization rate was lowered because part of Fe (II) was oxidized to Fe (III).

Figure 2006331908
Figure 2006331908

実施例6においては、700℃における平衡酸素分圧は10-22気圧程度の極微量と見積もられるため、極板中に含まれるカーボン量が若干、実施例1よりも多く、LiFePO4薄膜の緻密化が進行し難かったためであると考えられる。 In Example 6, since the equilibrium oxygen partial pressure at 700 ° C. is estimated to be a very small amount of about 10 −22 atm, the amount of carbon contained in the electrode plate is slightly larger than in Example 1 and the LiFePO 4 thin film is dense. This is thought to be because it was difficult to proceed.

一般式(1)から算出される700℃における好ましい酸素分圧の値は10-17.1気圧から10-11.8気圧の範囲である。以上のように、低酸素分圧ガス雰囲気として、一般式(1)の範囲を満たすガスを用いることが好ましく、さらに低酸素分圧ガス雰囲気が、CO2などの酸素を放出可能なガスと、H2のように酸素と反応するガスの混合物から調整されることがより望ましいことが明らかとなった。 The preferred value of the oxygen partial pressure at 700 ° C. as calculated from the formula (1) is in the range of from 10 -17.1 atm 10 -11.8 atm. As described above, it is preferable to use a gas that satisfies the range of the general formula (1) as the low oxygen partial pressure gas atmosphere, and the low oxygen partial pressure gas atmosphere includes a gas capable of releasing oxygen such as CO 2 ; it was revealed that more desirable to be adjusted from a mixture of gases which react with oxygen as H 2.

水蒸気添加量を30体積%に固定し、基板にそれぞれAl、Ti、Niを用いたこと以外は実施例1と同様にして薄膜極板を作製した。ただし、Al基板を用いた場合のみ、熱処理温度を600℃とした。これを実施例7とする。   A thin-film electrode plate was produced in the same manner as in Example 1 except that the amount of water vapor was fixed at 30% by volume and Al, Ti, and Ni were used for the substrate, respectively. However, the heat treatment temperature was set to 600 ° C. only when an Al substrate was used. This is Example 7.

水蒸気添加量を30体積%に固定し、基板にそれぞれCuを用いたこと以外は実施例1と同様にして薄膜極板を作製した。これを実施例8とする。   A thin film electrode plate was prepared in the same manner as in Example 1 except that the amount of water vapor was fixed at 30% by volume and Cu was used for each substrate. This is Example 8.

水蒸気添加量を30体積%に固定し、基板にそれぞれAgを用いたこと以外は実施例1と同様にして薄膜極板を作製した。これを実施例9とする。   A thin-film electrode plate was produced in the same manner as in Example 1 except that the amount of water vapor was fixed at 30% by volume and Ag was used for each substrate. This is Example 9.

実施例5及び比較例4、5についても先述の方法で電池を構成し、評価を行った。結果を表3に示す。   Regarding Example 5 and Comparative Examples 4 and 5, batteries were constructed by the above-described method and evaluated. The results are shown in Table 3.

Figure 2006331908
Figure 2006331908

Al基板を用いた場合、実施例1のSUS基板を用いた場合に比べて利用率低下が見られた。これは熱処理温度が低かったこと、及び熱力学的には本熱処理雰囲気においてAlが不安定な領域であるため、Al表面の酸化被膜とLiFePO4とが副反応を起こした可能性が考えられるが詳細は不明である。一方、TiやNiを基板に用いた場合、良好な初期利用率及びサイクル寿命特性が得られた。 When the Al substrate was used, the utilization rate was reduced as compared with the case where the SUS substrate of Example 1 was used. This is because the heat treatment temperature was low, and thermodynamically, Al is an unstable region in this heat treatment atmosphere, so there is a possibility that a side reaction occurred between the oxide film on the Al surface and LiFePO 4. Details are unknown. On the other hand, when Ti or Ni was used for the substrate, good initial utilization and cycle life characteristics were obtained.

一方、Cu、Agを基板として用いた実施例8及び実施例9においては、最初の充電において4.0Vまで電圧が上昇せず、電池が内部短絡を起こしていることが分かった。これはCu、Agが初充電時に溶解し、負極へと析出してセパレータを貫通したものと考えられる。   On the other hand, in Example 8 and Example 9 which used Cu and Ag as a board | substrate, it turned out that a voltage does not rise to 4.0V in the first charge, but has caused the internal short circuit. This is presumably because Cu and Ag were dissolved during the initial charge, deposited on the negative electrode, and penetrated the separator.

以上のように、本発明によればSUSの他、Al、Ti及びNiを基板として用いることが可能であることが明らかとなった。   As described above, according to the present invention, it has become clear that Al, Ti and Ni can be used as a substrate in addition to SUS.

次に、種々の前駆体溶液を作製し、検討を行った。   Next, various precursor solutions were prepared and examined.

LiOi−Pr220mg、フェロセン620mg、PO(OEt)3607mgをそれぞれ秤量し、エルレンマイヤーフラスコに投入した後、THF10mLへと溶解させて前駆体溶液を調整した。本前駆体溶液を直径15mm、厚さ1mmのNi基板上に3000rpmにてスピンコートし、真空中100℃で乾燥させた。この後、実施例7と同様に、水蒸気添加量を30体積%として最高温度700℃で熱処理を行い薄膜極板を作製した。これを実施例10とする。 LiOi-Pr 220 mg, ferrocene 620 mg, and PO (OEt) 3 607 mg were weighed and put into an Erlenmeyer flask, and then dissolved in 10 mL of THF to prepare a precursor solution. This precursor solution was spin-coated at 3000 rpm on a Ni substrate having a diameter of 15 mm and a thickness of 1 mm, and dried at 100 ° C. in a vacuum. Thereafter, in the same manner as in Example 7, a heat treatment was performed at a maximum temperature of 700 ° C. with a water vapor addition amount of 30% by volume to produce a thin film electrode plate. This is Example 10.

LiOi−Pr220mg、Fe(II)(SO42・7H2O1251mg、H3PO4327mgをそれぞれ秤量し、Ar置換したSchlenkチューブへ投入し、脱酸素した酢酸10mLを加えて溶解させて前駆体溶液を調整した。本前駆体溶液を直径15mm、厚さ1mmのNi基板上に3000rpmにてスピンコートし、真空中100℃で乾燥させた。なお、本系においてはスピンコートをArグローブボックス中で行い、前駆体溶液塗布後のNi基板を出来るだけ空気に触れさせないように操作した。この後、実施例7と同様に、水蒸気添加量を30体積%として最高温度700℃で熱処理を行い薄膜極板を作製した。これを実施例11とする。 LiOi-Pr 220 mg, Fe (II) (SO 4 ) 2 · 7H 2 O 1251 mg, H 3 PO 4 327 mg were weighed, put into an Ar-substituted Schlenk tube, dissolved in 10 mL of deoxygenated acetic acid, and precursor. The solution was adjusted. This precursor solution was spin-coated at 3000 rpm on a Ni substrate having a diameter of 15 mm and a thickness of 1 mm, and dried at 100 ° C. in a vacuum. In this system, spin coating was performed in an Ar glove box, and the Ni substrate after applying the precursor solution was operated so as not to be exposed to air as much as possible. Thereafter, in the same manner as in Example 7, a heat treatment was performed at a maximum temperature of 700 ° C. with a water vapor addition amount of 30% by volume to produce a thin film electrode plate. This is Example 11.

Fe(OCOCH32 870mg、LiOCOCH3・2H2O 510mg、H3PO4 490 mgをそれぞれ秤量し、エルレンマイヤーフラスコへ投入し、エチレングリコール15mLへ溶解させて前駆体溶液を調整した。本前駆体溶液を直径15mm、厚さ1mmのNi基板上に3000rpmにてスピンコートし、真空中100℃で乾燥させた。この後、実施例7と同様に、水蒸気添加量を30体積%として最高温度700℃で熱処理を行い薄膜極板を作製した。これを実施例12とする。 Fe (OCOCH 3 ) 2 870 mg, LiOCOCH 3 .2H 2 O 510 mg, and H 3 PO 4 490 mg were weighed, put into an Erlenmeyer flask, and dissolved in 15 mL of ethylene glycol to prepare a precursor solution. This precursor solution was spin-coated at 3000 rpm on a Ni substrate having a diameter of 15 mm and a thickness of 1 mm, and dried at 100 ° C. in a vacuum. Thereafter, in the same manner as in Example 7, a heat treatment was performed at a maximum temperature of 700 ° C. with a water vapor addition amount of 30% by volume to produce a thin film electrode plate. This is Example 12.

実施例10から12についても先述の方法で電池を構成し、評価を行った。結果を表4に示す。   Regarding Examples 10 to 12, batteries were constructed by the above-described method and evaluated. The results are shown in Table 4.

Figure 2006331908
Figure 2006331908

実施例10〜12についても実施例1と同様に、比較的良好な1サイクル目利用率及び良好な充放電サイクル寿命特性が得られた。以上のように、本発明によれば、種々のLi、Fe、P源の化合物を用いることが可能であり、種々の溶媒が適用可能であることが明らかとなった。中でも、Li源としては酢酸リチウム二水和物、リチウムアルコキシドの使用が好ましく、Fe源としては酢酸塩、硫酸塩7水和物、フェロセン及びその誘導体の使用が好ましく、P源としてはリン酸、リン酸エステル(アルコキシドの炭素数は1〜6)の使用が好ましい。   In Examples 10 to 12, as in Example 1, comparatively good first cycle utilization and good charge / discharge cycle life characteristics were obtained. As described above, according to the present invention, it has become clear that various Li, Fe, and P source compounds can be used, and various solvents can be applied. Among them, the lithium source is preferably lithium acetate dihydrate and lithium alkoxide, the Fe source is preferably acetate, sulfate heptahydrate, ferrocene and derivatives thereof, and the P source is phosphoric acid, Use of phosphoric acid esters (alkoxides having 1 to 6 carbon atoms) is preferred.

また、前駆体溶液の溶媒としてはTHF、酢酸、エチレングリコール、N−メチルピロリドンが適用可能であり、他にもエタノール、イソプロパノール、アセトン、水などが適用可能である。
次に、前駆体溶液の粘度を上昇させて薄膜極板の活物質層厚みを厚くする検討を行った。
Moreover, THF, acetic acid, ethylene glycol, and N-methylpyrrolidone are applicable as the solvent for the precursor solution, and ethanol, isopropanol, acetone, water, and the like are also applicable.
Next, studies were made to increase the thickness of the active material layer of the thin film electrode plate by increasing the viscosity of the precursor solution.

実施例10で調整した前駆体溶液にポリビニルピロリドン100mgを添加したほかは実施例10と同様に薄膜極板を作製した。これを実施例13とする。   A thin film electrode plate was prepared in the same manner as in Example 10 except that 100 mg of polyvinylpyrrolidone was added to the precursor solution prepared in Example 10. This is Example 13.

実施例10で調整した前駆体溶液にポリビニルブチラール100mgを添加したほかは実施例10と同様に薄膜極板を作製した。これを実施例14とする。   A thin-film electrode plate was prepared in the same manner as in Example 10 except that 100 mg of polyvinyl butyral was added to the precursor solution prepared in Example 10. This is Example 14.

実施例10で調整した前駆体溶液にポリエチレンオキシド100mgを添加したほかは
実施例10と同様に薄膜極板を作製した。これを実施例15とする。
A thin film electrode plate was prepared in the same manner as in Example 10 except that 100 mg of polyethylene oxide was added to the precursor solution prepared in Example 10. This is Example 15.

実施例13から15についても先述の方法で電池を構成し、評価を行った。ただし、本系では活物質利用率ではなく、極板容量を評価した。結果を実施例10と合わせて表5に示す。   For Examples 13 to 15, batteries were constructed by the above-described method and evaluated. However, in this system, not the active material utilization rate but the electrode plate capacity was evaluated. The results are shown in Table 5 together with Example 10.

Figure 2006331908
Figure 2006331908

実施例13〜15は実施例10と比べて電極容量が約1.5倍程度であり、10サイクル目容量もほぼ同程度であり、充放電サイクル寿命特性にも優れていることが分かった。容量が増加した要因は、前駆体溶液に種々の添加剤を加えることで溶液の粘度が増加し、スピンコート時の前駆体塗膜の厚みが増し、活物質層が厚くなったためと考えられる。   In Examples 13 to 15, the electrode capacity was about 1.5 times that in Example 10, the capacity at the 10th cycle was almost the same, and it was found that the charge / discharge cycle life characteristics were also excellent. The reason for the increased capacity is thought to be that the viscosity of the solution increased by adding various additives to the precursor solution, the thickness of the precursor coating film during spin coating increased, and the active material layer became thicker.

このように、本発明によれば、前駆体溶液中にポリビニルピロリドン、ポリビニルブチラール、ポリエチレンオキシドを添加して粘度を上昇させることで、極板厚みが制御できることが明らかとなった。   Thus, according to the present invention, it has been clarified that the electrode plate thickness can be controlled by increasing the viscosity by adding polyvinyl pyrrolidone, polyvinyl butyral, or polyethylene oxide to the precursor solution.

本発明によれば、安価にリン酸鉄リチウムの薄膜電極を提供することが可能となる。   According to the present invention, a lithium iron phosphate thin film electrode can be provided at low cost.

Claims (9)

リン酸鉄リチウム薄膜電極の製造方法において、少なくともLi、FeおよびPを含む溶液を金属基板上へ塗布する塗布工程と、熱処理を施して薄膜電極を作製する熱処理工程を有し、前記熱処理工程を水蒸気を5〜90体積%含む低酸素分圧ガス雰囲気中、500℃以上800℃以下で行うことを特徴とするリン酸鉄リチウム薄膜電極の製造方法。 The method for producing a lithium iron phosphate thin film electrode includes a coating step of applying a solution containing at least Li, Fe and P onto a metal substrate, and a heat treatment step of producing a thin film electrode by performing a heat treatment, the heat treatment step comprising: A method for producing a lithium iron phosphate thin film electrode, which is performed at 500 ° C. or higher and 800 ° C. or lower in a low oxygen partial pressure gas atmosphere containing 5 to 90% by volume of water vapor. 低酸素分圧ガス雰囲気において、熱処理温度をT℃とし、熱処理を行う雰囲気の平衡酸素分圧をPO2気圧とした場合、下記一般式(1)で表される範囲の条件で熱処理することを特徴とする請求項1記載のリン酸鉄リチウム薄膜電極の製造方法。
Figure 2006331908
In a low oxygen partial pressure gas atmosphere, when the heat treatment temperature is T ° C. and the equilibrium oxygen partial pressure of the atmosphere in which the heat treatment is performed is PO 2 atmospheric pressure, the heat treatment is performed under the conditions represented by the following general formula (1). The method for producing a lithium iron phosphate thin film electrode according to claim 1.
Figure 2006331908
前記金属基板がAl、Ti、NiおよびSUSのいずれかから構成されることを特徴とする請求項1記載のリン酸鉄リチウム薄膜電極の製造方法。 2. The method of manufacturing a lithium iron phosphate thin film electrode according to claim 1, wherein the metal substrate is made of any one of Al, Ti, Ni, and SUS. 前記低酸素分圧ガス雰囲気が酸素を放出可能なガスと酸素と反応するガスの混合物から調整されることを特徴とする請求項1記載のリン酸鉄リチウム薄膜電極の製造方法。 2. The method for producing a lithium iron phosphate thin film electrode according to claim 1, wherein the low oxygen partial pressure gas atmosphere is adjusted from a mixture of a gas capable of releasing oxygen and a gas that reacts with oxygen. Liを含む溶液が、酢酸リチウム二水和物およびリチウムアルコキシドからなる群より選ばれる少なくとも1つであることを特徴とする請求項1記載のリン酸鉄リチウム薄膜電極の製造方法。 The method for producing a lithium iron phosphate thin film electrode according to claim 1, wherein the solution containing Li is at least one selected from the group consisting of lithium acetate dihydrate and lithium alkoxide. Feを含む溶液が、Fe(II)の酢酸塩、硫酸塩7水和物、フェロセン及びその誘導体からなる群より選ばれる少なくとも1つであることをことを特徴とする請求項1記載のリン酸鉄リチウム薄膜電極の製造方法。 2. The phosphoric acid according to claim 1, wherein the Fe-containing solution is at least one selected from the group consisting of Fe (II) acetate, sulfate heptahydrate, ferrocene and derivatives thereof. Manufacturing method of an iron lithium thin film electrode. Pを含む溶液が、リン酸およびリン酸エステル(PO(OR)3-n(OH)n:Rは炭素数1〜6の脂肪族炭化水素、nは0〜2の整数)からなる群より選ばれる少なくとも1つであることを特徴とする請求項1記載のリン酸鉄リチウム薄膜電極の製造方法。 The solution containing P is selected from the group consisting of phosphoric acid and phosphoric acid ester (PO (OR) 3-n (OH) n : R is an aliphatic hydrocarbon having 1 to 6 carbon atoms, and n is an integer of 0 to 2). The method for producing a lithium iron phosphate thin film electrode according to claim 1, wherein at least one selected. 少なくともLi、FeおよびPを含む溶液が、エタノール、イソプロパノール、酢酸、水、N−メチルピロリドン、エチレングリコール、アセトンおよびTHFからなる群より選ばれる少なくとも1つであることを特徴とする請求項1記載のリン酸鉄リチウム薄膜電極の製造方法。 The solution containing at least Li, Fe and P is at least one selected from the group consisting of ethanol, isopropanol, acetic acid, water, N-methylpyrrolidone, ethylene glycol, acetone and THF. Manufacturing method of lithium iron phosphate thin film electrode. 少なくともLi、FeおよびPを含む溶液中にポリビニルピロリドン、ポリビニルブチラールおよびポリエチレンオキシドからなる群より選ばれる少なくとも1つが添加されていることを特徴とする請求項1記載のリン酸鉄リチウム薄膜電極の製造方法。 2. The production of a lithium iron phosphate thin film electrode according to claim 1, wherein at least one selected from the group consisting of polyvinyl pyrrolidone, polyvinyl butyral and polyethylene oxide is added to a solution containing at least Li, Fe and P. Method.
JP2005155250A 2005-05-27 2005-05-27 Method for producing lithium iron phosphate thin film electrode Expired - Fee Related JP5092205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155250A JP5092205B2 (en) 2005-05-27 2005-05-27 Method for producing lithium iron phosphate thin film electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155250A JP5092205B2 (en) 2005-05-27 2005-05-27 Method for producing lithium iron phosphate thin film electrode

Publications (2)

Publication Number Publication Date
JP2006331908A true JP2006331908A (en) 2006-12-07
JP5092205B2 JP5092205B2 (en) 2012-12-05

Family

ID=37553381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155250A Expired - Fee Related JP5092205B2 (en) 2005-05-27 2005-05-27 Method for producing lithium iron phosphate thin film electrode

Country Status (1)

Country Link
JP (1) JP5092205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300190A (en) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd Manufacturing method of electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045430A (en) * 2001-07-31 2003-02-14 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of positive electrode material for secondary battery and secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045430A (en) * 2001-07-31 2003-02-14 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of positive electrode material for secondary battery and secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300190A (en) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd Manufacturing method of electrode

Also Published As

Publication number Publication date
JP5092205B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP6543726B2 (en) Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP4679112B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6756279B2 (en) Manufacturing method of positive electrode active material
JP2014239030A (en) Positive electrode active material powder, and method for manufacturing the same
JP2012243443A (en) Positive electrode active material particles, and method for manufacturing the same
WO2015050031A1 (en) Covered cathode active material and lithium battery
JP2021077655A (en) Electrode material
KR20120056674A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2015084026A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
JP2012186054A (en) Mixture slurry, and method for manufacturing the same
JP2009277485A (en) METHOD OF MANUFACTURING Si/C COMPLEX TYPE NEGATIVE ELECTRODE ACTIVE MATERIAL
JP2009245917A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2022081638A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP5556844B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP2012529741A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4639634B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2019121605A (en) Positive electrode active substance material, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method for manufacturing positive electrode active substance material
JP4707950B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
WO2013038948A1 (en) Unsintered laminate for all-solid-state battery, all-solid-state battery, and production method therefor
JP2011124233A (en) Cathode active material for lithium battery, its manufacturing method, and lithium battery using the same
JP4522682B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
JP5092205B2 (en) Method for producing lithium iron phosphate thin film electrode
JP5447576B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP2008027833A (en) Nonaqueous electrolyte secondary battery
CN113363577A (en) Multifunctional lithium air battery electrolyte additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees