JP2006328519A - Method for producing steel - Google Patents

Method for producing steel Download PDF

Info

Publication number
JP2006328519A
JP2006328519A JP2005157826A JP2005157826A JP2006328519A JP 2006328519 A JP2006328519 A JP 2006328519A JP 2005157826 A JP2005157826 A JP 2005157826A JP 2005157826 A JP2005157826 A JP 2005157826A JP 2006328519 A JP2006328519 A JP 2006328519A
Authority
JP
Japan
Prior art keywords
iron oxide
steel
iron
furnace
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005157826A
Other languages
Japanese (ja)
Inventor
Ko Sato
航 佐藤
Takayuki Yano
貴之 矢野
Toshiki Watanabe
俊樹 渡辺
Yoshito Kuroda
義人 黒田
Tetsuo Okamoto
徹夫 岡本
Shizunori Hayakawa
静則 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Daido Ecomet Co Ltd
Original Assignee
Daido Steel Co Ltd
Daido Ecomet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Daido Ecomet Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005157826A priority Critical patent/JP2006328519A/en
Publication of JP2006328519A publication Critical patent/JP2006328519A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for directly producing a steel having extremely low carbon content, by reducing powdery raw material with carbon. <P>SOLUTION: Dust 12 containing iron oxide is reduced to powder and supplied into a reducing furnace 32, and the dust 12 is melted with high temperature flame from a burner 14 vertically inserted into the reducing furnace 32. Further, coke (carbon) 22 as a reducing agent is reduced to powder and jetted toward the center part in the furnace from a jetting nozzle 26. The reduction of the iron oxide is performed while controlling, by using a controller 20, the supply ratio of the dust 12 and the coke 22 so that finish concentration of the iron oxide in the molten slag 52 in the furnace exceeds 5wt%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、鉄酸化物を含む粉体原料をバーナーの高温火炎で溶融させ、これをカーボンにより還元して鉄を製造する際に、所要の制御を付与することでカーボン含有率の極めて低い鋼を製造し得る方法に関するものである。   This invention is a steel with a very low carbon content by giving the required control when melting iron powder containing iron oxide with a high-temperature flame of a burner and reducing it with carbon to produce iron. It is related with the method which can manufacture.

循環型社会に対応するため、鉄鋼業界においても、鉄系産業廃棄物や製鋼ダスト等に含まれる金属資源を回収して、これを再利用する動きが活発化している。例えば、特許文献1には、鉄酸化物を含む粉体状の鉄鋼原料を還元炉内でバーナーの高温火炎中に供給して溶融させ、これに還元剤としてのカーボン(炭素)を供給することで、鉄酸化物を還元させて鉄を製造する技術が開示されている。   In order to respond to a recycling-oriented society, the steel industry is also actively moving to collect and reuse metal resources contained in iron-based industrial waste and steelmaking dust. For example, in Patent Document 1, a powdered steel material containing iron oxide is supplied and melted in a high-temperature flame of a burner in a reduction furnace, and carbon (carbon) as a reducing agent is supplied thereto. Thus, a technique for producing iron by reducing iron oxide is disclosed.

この特許文献1に示す製造方法によれば、鉄酸化物を粉粒状にして表面積を大きくさせた状態で火炎中に供給するため、該火炎によって容易にこれを加熱溶融させることができ、還元剤と良好に反応させることが可能となる。すなわち、酸素の除去された(還元された)鉄を高効率で回収することができる。
特開平9−310126号公報
According to the manufacturing method shown in Patent Document 1, since iron oxide is powdered and supplied into the flame in a state where the surface area is increased, the flame can be easily heated and melted by the flame. It is possible to react well. That is, oxygen from which oxygen has been removed (reduced) can be recovered with high efficiency.
JP-A-9-310126

ところで、特許文献1の方法によって鉄を製造する場合、その還元反応により生成した溶鋼中に還元剤としてのカーボンが一部残留し、3wt%〜5wt%程度のカーボンを含有する銑鉄になってしまう。この銑鉄を鋼にするには、転炉や電炉内で高濃度酸素に接触させて酸化反応を進行させ、該銑鉄中のカーボンを燃焼除去させる脱炭処理が後工程として必要とされる。これにより銑鉄をカーボン含有率の低い鋼になし得るが、前記脱炭処理には多大なコストと時間を要する難点がある。   By the way, when iron is manufactured by the method of Patent Document 1, a part of carbon as a reducing agent remains in molten steel generated by the reduction reaction, resulting in pig iron containing about 3 wt% to 5 wt% carbon. . In order to turn this pig iron into steel, a decarburization process is required as a post-process in which the oxidation reaction is advanced by contacting with high-concentration oxygen in a converter or electric furnace to burn and remove carbon in the pig iron. As a result, pig iron can be made into steel with a low carbon content, but the decarburization process has the disadvantage of requiring enormous costs and time.

更に、特許文献1の方法では、粉体状の原料中に不純物、例えば燐が含まれていると、この燐が溶鋼中に溶け込み易く、従って前記脱炭処理に加えて燐を取り除く溶銑予備処理を行なう必要があり、更なるコスト増を招く原因となっていた。   Furthermore, in the method of Patent Document 1, when impurities such as phosphorus are contained in the powdery raw material, the phosphorus is likely to be dissolved in the molten steel, and therefore, the hot metal preliminary treatment for removing phosphorus in addition to the decarburization treatment. This is a cause of further cost increase.

従って、鉄を製造する過程で脱炭処理工程や不純物除去工程を経ることなく、一挙にカーボン含有率の低い鋼を製造し得るならば、工程的にもコスト的にも多大なメリットを有することは明らかである。そこで発明者は、前記課題の解決策を求めて種々検討したところ、還元の進行に伴い、溶融原料とカーボンとが混在した溶融スラグ中の鉄酸化物の濃度が低下すると、余剰分のカーボンが溶湯中に溶け込み、その結果として得られた鉄のカーボン含有率が高くなることを知見した。すなわち、溶融スラグ中における鉄酸化物の濃度が所定値より低くならないように制御することで、カーボンが溶湯中に溶け込むのを防ぎ、結果としてカーボン含有率の低い鋼を製造し得ることが判った。また、鉄酸化物の濃度を制御することで、原料中の不純物、例えば燐が溶湯中に溶け込むのを抑制し得ることも判明した。   Therefore, if steel with a low carbon content can be manufactured at a stroke without going through the decarburization process and impurity removal process in the process of manufacturing iron, it has great advantages in terms of both process and cost. Is clear. Therefore, the inventor conducted various studies in search of a solution to the above problem, and as the reduction progressed, when the concentration of iron oxide in the molten slag mixed with the molten raw material and carbon decreased, the excess carbon was reduced. It was found that the carbon content of the iron obtained as a result of melting into the molten metal was high. That is, it was found that by controlling the concentration of iron oxide in the molten slag so as not to be lower than a predetermined value, it was possible to prevent carbon from melting into the molten metal, and as a result, a steel having a low carbon content could be produced. . It has also been found that by controlling the concentration of the iron oxide, it is possible to suppress the impurities in the raw material, such as phosphorus, from being dissolved into the molten metal.

すなわち本発明の目的は、従来技術に内在する前記諸問題に鑑み、これらを好適に解決するべく提案されたものであって、鉄酸化物を含有しているダストやスケール、更には鉄鉱石等の原料を還元炉中でカーボンと還元反応させる際に、鉄酸化物の最終濃度制御を行なうことで、カーボン含有率の低い鋼をダイレクトに製造し得る方法を提供することにある。   That is, the object of the present invention has been proposed in order to suitably solve these problems inherent in the prior art, and includes dust and scale containing iron oxide, iron ore, etc. It is an object of the present invention to provide a method of directly producing a steel having a low carbon content by controlling the final concentration of iron oxide when the raw material is subjected to a reduction reaction with carbon in a reduction furnace.

前記課題を克服し、所期の目的を好適に達成するため本発明に係る鋼の製造方法は、
鉄酸化物を含有する粉体状の原料を還元炉へ供給してバーナーの高温火炎中で溶融させると共に、該還元炉へ供給したカーボンと前記溶融原料とを攪拌させて溶融スラグとし、該溶融スラグ中の鉄酸化物を還元させて鉄を製造する方法において、
前記還元を前記溶融スラグ中の鉄酸化物の最終濃度が5wt%以上になるよう制御しつつ行なうようにしたことを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended purpose suitably, the method for producing steel according to the present invention comprises:
A powdery raw material containing iron oxide is supplied to a reduction furnace and melted in a high-temperature flame of a burner, and the carbon supplied to the reduction furnace and the molten raw material are stirred to form a molten slag, which is melted In a method for producing iron by reducing iron oxide in slag,
The reduction is performed while controlling the final concentration of iron oxide in the molten slag to be 5 wt% or more.

本発明に係る鋼の製造方法によれば、還元反応時の溶融スラグ中に占める鉄酸化物の最終濃度を5wt%以上にする制御を行なうことで、カーボン含有率の極めて低い鋼を還元炉で直接製造でき、その後に脱炭処理をする必要がない。従って、脱炭処理に掛かるコスト・時間が削減されて、廉価な鉄鋼製品を提供することが可能となる。また、本発明によって得られる鋼は、不純物としての燐の含有率も低いので、これらを除去する必要も併せてなくなり、更なる精錬コストの削減を達成し得るものである。   According to the steel production method of the present invention, by controlling the final concentration of iron oxide in the molten slag during the reduction reaction to be 5 wt% or more, a steel having an extremely low carbon content can be obtained in a reduction furnace. It can be manufactured directly and does not need to be decarburized after that. Therefore, the cost and time required for the decarburization process can be reduced, and an inexpensive steel product can be provided. In addition, since the steel obtained by the present invention has a low content of phosphorus as an impurity, it is not necessary to remove these, and further reduction in refining costs can be achieved.

次に、本発明に係る鋼の製造方法について、その好適な実施例を添付図面を参照しながら説明する。なお、実施例では、粉体原料として製鋼工程の電炉等から排出されるダストを使用した場合を示すが、本発明に供し得る粉体原料はこれに限定されるものでなく、例えば鉄鋼メーカー等から廃棄物として排出される鉄酸化物分を含んだ酸洗スラッジや、スケール等を使用し得る。また、鋼の基本原料である鉄鉱石や、鉄と共に鉄より還元し易い金属を含有する鉱石(例えばニッケル鉱石)、更には鉄スクラップ等の鉄酸化物を含有した産業廃棄物についても、これらを粉体状にすることで本発明に使用することが可能である。   Next, a preferred embodiment of the steel manufacturing method according to the present invention will be described with reference to the accompanying drawings. In addition, although an Example shows the case where the dust discharged | emitted from the electric furnace of a steelmaking process, etc. is used as a powder raw material, the powder raw material which can be provided to this invention is not limited to this, For example, a steel maker etc. Pickling sludge containing iron oxide components discharged as waste, scales and the like can be used. In addition, iron ore, which is the basic raw material of steel, ores containing iron and metals that are easier to reduce than iron (for example, nickel ore), and industrial waste containing iron oxides such as iron scrap are also used. It can be used for this invention by making it into powder form.

図1は、実施例に係る鋼の製造方法に供される還元システムの概略説明図であって、還元炉32に隣接して設けたサイロ状の粉体貯留部10には、製鋼工程の転炉や電気炉等から排出される鉄酸化物を主成分とする粉体状のダスト(粉体状の原料)12が貯留されている。粉体貯留部10の下方には開閉弁18が設けられ、該開閉弁18を開放することで、ダスト12を粉体供給管16を介して後述のバーナー14へ空気圧送し得るようになっている。また、前記粉体貯留部10から還元炉32へのダスト12の放出量は、後述の制御部20によって制御可能になっている。   FIG. 1 is a schematic explanatory view of a reduction system provided for a steel manufacturing method according to an embodiment. A silo-shaped powder storage unit 10 provided adjacent to a reduction furnace 32 includes a steelmaking process. A powdery dust (powdered raw material) 12 mainly containing iron oxide discharged from a furnace or an electric furnace is stored. An opening / closing valve 18 is provided below the powder reservoir 10, and by opening the opening / closing valve 18, the dust 12 can be pneumatically fed to a burner 14 described later via the powder supply pipe 16. Yes. The amount of dust 12 released from the powder storage unit 10 to the reduction furnace 32 can be controlled by the control unit 20 described later.

還元剤としてのカーボン22は、コークスを粉体状に破砕したものが使用され、これは還元剤貯留部24に貯留されている。この還元剤貯留部24に貯留された粉体状のコークス22は還元剤供給管28を空気輸送され、噴射ノズル26を介して還元炉32へ噴射供給される。また、還元剤貯留部24と還元剤供給管28との間には、前記制御部20により開閉制御される開閉弁30が設けられている。なお還元材としてのカーボン22は、コークス以外のものでも良い。例えば粉体化した石炭でも良く、或いは炭化汚泥、その他産業廃棄物として排出される粉粒状カーボンも使用可能である。   Carbon 22 as a reducing agent is obtained by pulverizing coke into powder and is stored in a reducing agent reservoir 24. The powdery coke 22 stored in the reducing agent storage unit 24 is pneumatically transported through the reducing agent supply pipe 28 and is supplied by injection to the reduction furnace 32 through the injection nozzle 26. An on-off valve 30 that is controlled to be opened and closed by the control unit 20 is provided between the reducing agent storage unit 24 and the reducing agent supply pipe 28. The carbon 22 as the reducing material may be other than coke. For example, pulverized coal may be used, or carbonized sludge or other granular carbon discharged as industrial waste can be used.

前記還元炉32の、炉頂上部には、その開口部34を介してバーナー14が垂直に挿入されている。このバーナー14のバーナーヘッド36は、図2に示すように、その中心部に燃料の噴射孔38を有し、その外側に環状の1次酸素噴射孔40を、更にその外側を取り巻くように複数のダスト噴射孔42を、その外側を所要間隔で複数の2次酸素噴射孔44を同心状に配設した構成になっている。また、還元炉32の側部には、コークス22を炉内へ供給する噴射ノズル26が斜めに設けられ、該ノズル26の先端を炉内中心へ指向させている。更に、還元炉32の炉底46には、窒素等の不活性ガスの供給管50が開口している。このガス供給管50は、例えば窒素ガス供給源(図示せず)に接続して、炉底46から窒素ガスを吹込み供給し得るようになっている。そして、後述する鋼の製造時に炉底46に溜まったダスト12とコークス22との混合物中を窒素ガスで攪拌することで、ダスト12中の鉄酸化物とコークス22との還元反応を促進させる。これにより、還元炉32の炉底46には、還元反応によって生成された溶鋼48が次第に堆積して行く。なお、還元炉32における噴射ノズル26の配設個所と反対側の下方には、溶鋼48を排出するための出鋼口35が設けられ、更にその上側に溶融スラグ52の排出やサンプリングを行なうための出滓口37が設けられ、夫々の口部は扇により開閉可能になっている。   A burner 14 is vertically inserted through the opening 34 at the top of the furnace of the reduction furnace 32. As shown in FIG. 2, the burner head 36 of the burner 14 has a fuel injection hole 38 at its center, an annular primary oxygen injection hole 40 on the outer side, and a plurality of so as to surround the outer side. A plurality of secondary oxygen injection holes 44 are arranged concentrically on the outer side of the dust injection holes 42 at required intervals. Further, an injection nozzle 26 for supplying the coke 22 into the furnace is obliquely provided at the side of the reduction furnace 32, and the tip of the nozzle 26 is directed toward the center of the furnace. Further, an inert gas supply pipe 50 such as nitrogen is opened at the furnace bottom 46 of the reduction furnace 32. The gas supply pipe 50 is connected to, for example, a nitrogen gas supply source (not shown) so that nitrogen gas can be blown and supplied from the furnace bottom 46. And the reduction reaction of the iron oxide in the dust 12 and the coke 22 is accelerated | stimulated by stirring the mixture of the dust 12 and the coke 22 which collected on the furnace bottom 46 at the time of manufacture of the steel mentioned later with nitrogen gas. Thereby, the molten steel 48 produced | generated by the reduction reaction accumulates gradually in the furnace bottom 46 of the reduction furnace 32. FIG. In addition, a steel outlet 35 for discharging the molten steel 48 is provided below the portion of the reduction furnace 32 opposite to the location where the injection nozzle 26 is disposed, and the molten slag 52 is discharged and sampled on the upper side. No. 37 is provided, and each mouth can be opened and closed by a fan.

前記噴射孔38から噴射供給される液体燃料(例えば重油)は、図示しない燃料供給源からポンプ圧送されるようになっている。但し、本発明でバーナー14により燃焼されるのは重油等の液体燃料に限られるものでなく、都市ガス等の気体燃料や微粉炭等の固体燃料も広汎に含むものである。また、図示しない酸素供給源からの酸素が、支燃ガスとして前記バーナー14の両噴射孔40,44へ供給される。   The liquid fuel (for example, heavy oil) injected and supplied from the injection hole 38 is pumped from a fuel supply source (not shown). However, the burner 14 in the present invention is not limited to liquid fuel such as heavy oil, but also includes gas fuel such as city gas and solid fuel such as pulverized coal. Further, oxygen from an oxygen supply source (not shown) is supplied to both injection holes 40 and 44 of the burner 14 as a combustion support gas.

すなわち前記バーナー14は、重油および酸素を各対応の噴射孔38,40,44から炉内へ噴射させ、これに点火することで炉内に高温の火炎を生じさせる。また、前記噴射孔42からダスト12が高温火炎中に放出され、該ダスト12は火炎中で溶融して炉底46へ滴下し滞留して行く。また、噴射ノズル26からはコークス22が供給され、前記溶融したダスト12とコークス22とが窒素ガスにより攪拌されて溶融スラグ52となり、該溶融スラグ52中の鉄酸化物がコークス22により還元される。なお、本発明において溶融スラグ52とは、前記バーナー14によって溶融された原料とコークス22とが攪拌されて混在した還元反応中の状態、若しくは還元反応前の状態にあるものを指称する。   That is, the burner 14 injects heavy oil and oxygen into the furnace from the corresponding injection holes 38, 40 and 44, and ignites them to generate a high-temperature flame in the furnace. Further, the dust 12 is discharged from the injection holes 42 into the high-temperature flame, and the dust 12 melts in the flame and drops and stays in the furnace bottom 46. Further, coke 22 is supplied from the injection nozzle 26, the molten dust 12 and the coke 22 are stirred by nitrogen gas to form a molten slag 52, and iron oxide in the molten slag 52 is reduced by the coke 22. . In the present invention, the molten slag 52 refers to a state in which the raw material melted by the burner 14 and the coke 22 are stirred and mixed, or in a state before the reduction reaction.

前記制御部20は、粉体貯留部10および還元剤貯留部24の開閉弁18,30の開放・閉成動作を電気的に制御し、前記還元炉32内へ供給されるダスト12およびコークス22の割合を調整するものである。例えば、一定量のダスト12とコークス22とを還元炉32内に供給すると、還元反応の進行により前記溶融スラグ52中の鉄酸化物の濃度は次第に低下する。そこで、前記制御部20でダスト12およびコークス22の供給割合をコントロールすることで、溶融スラグ52中の鉄酸化物の濃度を5wt%以上の一定値(例えば15%)に保った状態で還元させる。   The control unit 20 electrically controls the opening / closing operation of the on-off valves 18 and 30 of the powder storage unit 10 and the reducing agent storage unit 24, and the dust 12 and coke 22 supplied into the reduction furnace 32. The ratio is adjusted. For example, when a certain amount of dust 12 and coke 22 are supplied into the reduction furnace 32, the concentration of iron oxide in the molten slag 52 gradually decreases as the reduction reaction proceeds. Therefore, the control unit 20 controls the supply ratio of the dust 12 and the coke 22 to reduce the iron oxide concentration in the molten slag 52 while maintaining a constant value (for example, 15%) of 5 wt% or more. .

そして還元炉32内の溶鋼48および溶融スラグ52の量が満杯になり、溶鋼を外に取り出す状態に近づいた時点で、溶融スラグ52を出滓口37よりサンプル抽出し、これに含まれる鉄酸化物濃度を測定する。このときの鉄酸化物濃度は、5%以上の一定値(例えば15%)になっているが、操業状況により若干の誤差がある。この測定した正確な鉄酸化物濃度を基に、下記の最終還元を実施する。すなわちコークス22の供給量を増加させるか、またはダスト12の供給量を減少させて、溶鋼スラグ52中の最終的な鉄酸化物濃度を5%を下回らない程度まで降下させるか、の何れかを実施する。この最終還元時のダスト12およびコークス22の供給量と所要時間は、所定の計算により決定される。上記の最終還元を実施した後、還元炉32を出鋼口35の方向へ傾動させ、該出鋼口35より溶鋼48を外部へ取り出す。このような条件下に還元処理を行なうことで、生成された溶鋼48中に溶け込むカーボンの量が抑制される。またダスト12中の不純物である燐も、溶鋼48中のカーボン濃度が低いことから該溶鋼48に溶け込む量が少なくなる。従って、前記条件下において還元された溶鋼48は、カーボンの含有率が低く(約1.0%以下)、かつ不純物としての燐の含有率も低いものになる。   When the amount of the molten steel 48 and molten slag 52 in the reduction furnace 32 is full and the molten steel is close to being taken out, the molten slag 52 is sampled from the outlet 37 and the iron oxide contained therein is extracted. Measure the object concentration. The iron oxide concentration at this time is a constant value of 5% or more (for example, 15%), but there is a slight error depending on the operation status. Based on the measured accurate iron oxide concentration, the following final reduction is performed. That is, either increasing the supply amount of the coke 22 or decreasing the supply amount of the dust 12 to lower the final iron oxide concentration in the molten steel slag 52 to a level not lower than 5%. carry out. The supply amount and required time of the dust 12 and the coke 22 at the time of the final reduction are determined by a predetermined calculation. After performing the above final reduction, the reduction furnace 32 is tilted toward the steel outlet 35 and the molten steel 48 is taken out from the steel outlet 35. By performing the reduction treatment under such conditions, the amount of carbon that dissolves into the produced molten steel 48 is suppressed. Further, phosphorus, which is an impurity in the dust 12, has a low carbon concentration in the molten steel 48, so that the amount of the phosphorus dissolved in the molten steel 48 is reduced. Therefore, the molten steel 48 reduced under the above conditions has a low carbon content (about 1.0% or less) and a low content of phosphorus as an impurity.

なお、還元炉32内での鉄酸化物の最終濃度は5wt%以上であればよく、その上限値は規定されないが、製造効率等を鑑みて、その最終濃度は10wt%程度を確保することが好ましい。この場合のカーボン含有率は極めて低く(0.15%以下)、かつ燐等の不純物の含有率も極めて低くなる。   Note that the final concentration of the iron oxide in the reduction furnace 32 may be 5 wt% or more, and the upper limit is not specified. However, in view of manufacturing efficiency and the like, the final concentration may be about 10 wt%. preferable. In this case, the carbon content is extremely low (0.15% or less), and the content of impurities such as phosphorus is extremely low.

また、実施例に係る方法によって製造された溶鋼48は、還元炉32から溶融状態のまま1チャージ毎にバッチ式に外部へ取り出してもよいし、また連続的に取り出すようにしてもよい。取り出された後の溶鋼48は、ビレットやスラブ等を製造する次の工程へ向けて搬出される。   Moreover, the molten steel 48 manufactured by the method according to the embodiment may be taken out from the reducing furnace 32 in a batch manner for each charge while being molten, or may be continuously taken out. The molten steel 48 after being taken out is carried out for the next process for manufacturing billets, slabs and the like.

溶鋼48を取り出した後における5%以上の酸化鉄を含む溶融スラグ52は、別途炉外へ取り出し、冷却後破砕して例えば路盤材として再利用するが、下記のような処理方法も可能である。すなわち、溶鋼48を取り出した後、更にコークス22の供給およびバーナ加熱を続け、溶融スラグ中の酸化鉄濃度が1%以下になるまで還元を続行する。このときに得られる鉄は少量であると共に炭素を多量に含むので、脱炭工程および精錬工程を経て鋼にしなければならないが、鉄資源を最大限利用する意味では有効である。どちらの方法を選ぶかは、立地条件および経済性から決まる。   The molten slag 52 containing 5% or more iron oxide after the molten steel 48 is taken out is taken out of the furnace separately, cooled and crushed and reused as, for example, a roadbed material, but the following processing method is also possible. . That is, after the molten steel 48 is taken out, the supply of the coke 22 and the burner heating are continued, and the reduction is continued until the iron oxide concentration in the molten slag becomes 1% or less. Since the iron obtained at this time is a small amount and contains a large amount of carbon, it must be made into steel through a decarburization process and a refining process, but it is effective in terms of making maximum use of iron resources. Which method to choose depends on location and economics.

(実験例1)
次に、本発明に係る鋼の製造方法で得られた鋼を比較・検討する実験を行なった。実験例1では、表1に示す組成のダスト12を約3.0t/Hの投入速度で空気をキャリアガスとしてバーナー14に供給した。このダストの粒度は1μ以下が48%、1〜5μが35%の微粉であった。また、併せて粒の大きさが1mm以下の粉状のコークス22を、同じく空気をキャリアガスとして噴射ノズル26へ供給した。

Figure 2006328519
(Experiment 1)
Next, an experiment was conducted to compare and examine the steel obtained by the steel manufacturing method according to the present invention. In Experimental Example 1, dust 12 having the composition shown in Table 1 was supplied to the burner 14 using air as a carrier gas at a charging speed of about 3.0 t / H. The particle size of this dust was a fine powder of 48% for 1 μm or less and 35% for 1-5 μm. In addition, powdery coke 22 having a grain size of 1 mm or less was also supplied to the injection nozzle 26 using air as a carrier gas.
Figure 2006328519

並行して、前記バーナー14に重油および酸素を供給し、これに点火することで還元炉32内に高温の火炎を生成させた。そして、その火炎中に粉体状のダスト12を噴射すると共に、還元炉32中にコークス22を噴射し、これらを溶融滴下させて溶融スラグ52とした。溶融スラグ52中の鉄酸化物の濃度を約15%に維持するため、ダスト12およびコークス22の供給割合を前記制御部20で調整しながら還元を行なった。なお、重油および酸素の供給量は、夫々、900l/H, 1550Nm3/Hである。また溶融スラグ52の成分調整のため、塊状の石灰と還元スラグ(製鋼排出物)をダスト対比各々7%づつ、炉上投入ホッパー33よりロータリーバルブ34を経て間欠的に投入した。 In parallel, heavy oil and oxygen were supplied to the burner 14 and ignited to generate a high-temperature flame in the reduction furnace 32. Then, powdery dust 12 was injected into the flame, and coke 22 was injected into the reduction furnace 32, and these were melted and dropped into a molten slag 52. In order to maintain the iron oxide concentration in the molten slag 52 at about 15%, reduction was performed while adjusting the supply ratio of the dust 12 and the coke 22 by the control unit 20. The supply amounts of heavy oil and oxygen are 900 l / H and 1550 Nm 3 / H, respectively. Further, in order to adjust the components of the molten slag 52, massive lime and reduced slag (steel-making waste) were intermittently charged through the rotary valve 34 from the furnace charging hopper 33 by 7% each of the dust.

更に、ダスト12のキャリアガスとしての空気は250Nm3/Hの量で流し、またコークス22の搬送用のキャリアガスとしての空気は80Nm3/Hの量で流した。また、還元反応に際し炉底46から、攪拌ガスとしてN2ガスを150Nm3/Hの量で吹き出させた。 Further, air as the carrier gas of the dust 12 was flowed in an amount of 250 Nm 3 / H, and air as a carrier gas for transporting the coke 22 was flowed in an amount of 80 Nm 3 / H. In the reduction reaction, N 2 gas was blown out from the furnace bottom 46 in an amount of 150 Nm 3 / H as a stirring gas.

上記操作を所定時間行なった後、溶融スラグ52をサンプリングし、鉄酸化物濃度を測定した。このときの値はFeO=16.2%であった。また、同時に測温した溶融スラグ52の温度は1565℃であった。これらの値に基づき、コークス22の増量、ダスト12の減量および所要時間を計算し、最終還元を実施した。重油その他の諸必要量は前回と同じとした。最終還元を実施した後、溶融スラグ52のFeO濃度を測定すると共に出鋼口35から溶鋼48を出鋼し、その鋼の組成を調べたところ、表2の通りであった。

Figure 2006328519
After performing the said operation for the predetermined time, the molten slag 52 was sampled and the iron oxide density | concentration was measured. The value at this time was FeO = 16.2%. Moreover, the temperature of the molten slag 52 measured simultaneously was 1565 degreeC. Based on these values, the amount of coke 22 increased, the amount of dust 12 decreased and the required time were calculated, and final reduction was performed. Heavy oil and other required quantities were the same as the previous time. After the final reduction, the FeO concentration of the molten slag 52 was measured, and the molten steel 48 was removed from the outlet 35 and the composition of the steel was examined.
Figure 2006328519

また、比較のため、他は上記と同じ条件で最終還元の所要時間のみを延長し、鉄酸化物の最終濃度を2wt%台まで下げた還元処理を行なった。この条件下で得られた鋼の組成を表3に示す。

Figure 2006328519
For comparison, the rest of the time was reduced by reducing the final concentration of iron oxide to about 2 wt% by extending only the time required for final reduction under the same conditions as described above. Table 3 shows the composition of the steel obtained under these conditions.
Figure 2006328519

更に、還元炉32内での鉄酸化物の最終濃度を0〜25%の間で変化させた場合につき上記実験を行ない、各鉄酸化物濃度下で還元された鋼のカーボン含有率を検出した。図3は、還元された鋼のカーボン含有率に対する鉄酸化物濃度特性を示すグラフである。   Further, the above experiment was performed when the final concentration of iron oxide in the reduction furnace 32 was changed between 0 and 25%, and the carbon content of steel reduced under each iron oxide concentration was detected. . FIG. 3 is a graph showing the iron oxide concentration characteristics with respect to the carbon content of the reduced steel.

この実験例1の結果から明らかなように、溶融スラグ52中に占める鉄酸化物の最終濃度を5wt%以上で製造した鋼は、最終濃度を2wt%台で製造した鋼に比較して、カーボンの含有率が極めて低く、また、燐の不純物の含有率も低くなっている。更に図3から、鉄酸化物の濃度を5wt%未満にした場合には、カーボン含有率が急激に増大し、鉄酸化物の最終濃度を5wt%より大きくした場合には、カーボン含有率はさほど低下しないことが分かる。   As is clear from the results of Experimental Example 1, the steel manufactured with the final concentration of iron oxide in the molten slag 52 having a final concentration of 5 wt% or more is carbon compared with the steel manufactured with the final concentration of about 2 wt%. The content of is extremely low, and the content of phosphorus impurities is also low. Further, from FIG. 3, when the concentration of iron oxide is less than 5 wt%, the carbon content increases rapidly, and when the final concentration of iron oxide is greater than 5 wt%, the carbon content is much lower. It turns out that it does not fall.

(実験例2)
次に、実験例1と同様な方法で、粉体原料を鉄鉱石とした場合の実験を行なった。ここでの鉄鉱石の組成は、表4に示す通りである。表4の鉄鉱石を予め、150メッシュ以下が90%以上を占める微粉に粉砕し、バーナー14に供給した。併せて、実験例1と同じ紛状のコークス22を噴射ノズル26に供給した。このときの鉄鉱石の供給速度は2.4t/Hであり、鉄鉱石に対するコークス22の供給割合は原料中の酸化鉄の割合を考慮して実験例1より増加した。重油、酸素、キャリアとしての空気の諸必要量は実験例1と同じとした。

Figure 2006328519
(Experimental example 2)
Next, an experiment was conducted in the same manner as in Experimental Example 1 when the powder raw material was iron ore. The composition of the iron ore here is as shown in Table 4. The iron ore shown in Table 4 was pulverized in advance to a fine powder in which 150 mesh or less occupies 90% or more and supplied to the burner 14. In addition, the same coke 22 in the form of powder as in Experimental Example 1 was supplied to the injection nozzle 26. At this time, the supply rate of iron ore was 2.4 t / H, and the supply rate of coke 22 to iron ore increased from that of Experimental Example 1 in consideration of the ratio of iron oxide in the raw material. Various required amounts of heavy oil, oxygen, and air as a carrier were the same as in Experimental Example 1.
Figure 2006328519

所定時間還元を行なった後、溶融スラグ52の測温およびサンプリングを行なった。温度は1570℃であり、鉄酸化物濃度はFeO=20.5%であった。これらの値を基に、コークス22、ダスト12の供給速度および所要時間を計算し、最終の鉄酸化物濃度5%を目標に最終還元を実施した。最終還元終了後の溶融スラグ52のFeO濃度および溶鋼成分を表5に示す。

Figure 2006328519
After reducing for a predetermined time, temperature measurement and sampling of the molten slag 52 were performed. The temperature was 1570 ° C. and the iron oxide concentration was FeO = 20.5%. Based on these values, the supply rate and required time of the coke 22 and dust 12 were calculated, and final reduction was performed with a final iron oxide concentration of 5% as a target. Table 5 shows the FeO concentration and molten steel components of the molten slag 52 after the final reduction.
Figure 2006328519

また比較例として、最終の鉄酸化物濃度2%を目標とした最終還元処理を実施した。このときの溶融スラグ52のFeO濃度および溶鋼成分を表6に示す。

Figure 2006328519
As a comparative example, a final reduction treatment was performed with a final iron oxide concentration of 2% as a target. Table 6 shows the FeO concentration and molten steel components of the molten slag 52 at this time.
Figure 2006328519

実験例2で得られた結果から分かるように、鉄酸化物の最終濃度を5wt%目標として得られた鋼中に占めるカーボンの含有率は、最終濃度を2wt%目標として得られた鋼と比較して、極めて低い値になっている。また、不純物としての燐の含有率も低くなっている。   As can be seen from the results obtained in Experimental Example 2, the carbon content in the steel obtained with the final concentration of iron oxide as a target of 5 wt% is compared with the steel obtained with the final concentration as a target of 2 wt%. Thus, the value is extremely low. In addition, the content of phosphorus as an impurity is low.

以上に説明したように、本発明に係る鋼の製造方法によれば、製造された鋼はカーボン含有率が極めて低いので、その後に脱炭処理をする必要がない。従って、脱炭処理に掛かるコスト・時間が削減されて、廉価な鋼を提供することが可能となる。また、本発明によって得られる鋼は、燐等の不純物の含有率も低いので、これらを除去する必要がなくなって、更なる低コストを達成し得る。   As explained above, according to the method for producing steel according to the present invention, the produced steel has an extremely low carbon content, so that it is not necessary to decarburize after that. Therefore, the cost and time required for the decarburization process can be reduced, and inexpensive steel can be provided. Further, since the steel obtained by the present invention has a low content of impurities such as phosphorus, it is not necessary to remove these, and a further low cost can be achieved.

本発明に係る鋼の製造方法を実施する還元システムを示す概略説明図である。It is a schematic explanatory drawing which shows the reduction system which implements the manufacturing method of the steel which concerns on this invention. 還元炉において使用されるバーナーヘッドの正面図である。It is a front view of the burner head used in a reduction furnace. 実験例1より得られたカーボン含有率に対する鉄酸化物濃度特性を示すグラフである。3 is a graph showing iron oxide concentration characteristics with respect to carbon content obtained from Experimental Example 1. FIG.

符号の説明Explanation of symbols

12 ダスト(粉体状の原料)
14 バーナー
22 コークス(カーボン)
32 還元炉
52 溶融スラグ
12 Dust (powdered raw material)
14 Burner 22 Coke (Carbon)
32 Reduction furnace 52 Molten slag

Claims (7)

鉄酸化物を含有する粉体状の原料(12)を還元炉(32)へ供給してバーナー(14)の高温火炎中で溶融させると共に、該還元炉(32)へ供給したカーボン(22)と前記溶融原料(12)とを攪拌させて溶融スラグ(52)とし、該溶融スラグ(52)中の鉄酸化物を還元させて鉄を製造する方法において、
前記還元を前記溶融スラグ(52)中の最終鉄酸化物の濃度が5wt%以上になるよう制御しつつ行なうようにした
ことを特徴とする鋼の製造方法。
The powdery raw material (12) containing iron oxide is supplied to the reduction furnace (32) and melted in the high-temperature flame of the burner (14), and the carbon (22) supplied to the reduction furnace (32) In the method of producing iron by reducing the iron oxide in the molten slag (52) by stirring the molten raw material (12) and the molten slag (52),
A method for producing steel, characterized in that the reduction is performed while controlling the concentration of the final iron oxide in the molten slag (52) to be 5 wt% or more.
前記還元炉(32)への粉体状の原料(12)およびカーボン(22)の供給割合を制御することで、前記溶融スラグ(52)中の最終鉄酸化物の濃度を5wt%以上とする請求項1記載の鋼の製造方法。   By controlling the supply ratio of the powdery raw material (12) and carbon (22) to the reduction furnace (32), the concentration of the final iron oxide in the molten slag (52) is 5 wt% or more. The manufacturing method of the steel of Claim 1. 前記粉体状の原料(12)は鉄鉱石である請求項1記載の鋼の製造方法。   The method for producing steel according to claim 1, wherein the powdery raw material (12) is iron ore. 前記粉体状の原料(12)は、鉄を含みかつ鉄より還元し易い金属を含有する鉱石である請求項1記載の鋼の製造方法。   The method for producing steel according to claim 1, wherein the powdery raw material (12) is an ore containing a metal that contains iron and is more easily reduced than iron. 前記鉄より還元し易い金属を含有する鉱石はニッケル鉱石である請求項4記載の鋼の製造方法。   The method for producing steel according to claim 4, wherein the ore containing a metal that is more easily reduced than iron is nickel ore. 前記粉体状の原料(12)は鉄系産業廃棄物である請求項1記載の鋼の製造方法。   The method for producing steel according to claim 1, wherein the powdery raw material (12) is an iron-based industrial waste. 前記粉体状の原料(12)は製鋼過程で排出されるダストである請求項1記載の鋼の製造方法。
The method for producing steel according to claim 1, wherein the powdery raw material (12) is dust discharged in a steelmaking process.
JP2005157826A 2005-05-30 2005-05-30 Method for producing steel Pending JP2006328519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157826A JP2006328519A (en) 2005-05-30 2005-05-30 Method for producing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157826A JP2006328519A (en) 2005-05-30 2005-05-30 Method for producing steel

Publications (1)

Publication Number Publication Date
JP2006328519A true JP2006328519A (en) 2006-12-07

Family

ID=37550513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157826A Pending JP2006328519A (en) 2005-05-30 2005-05-30 Method for producing steel

Country Status (1)

Country Link
JP (1) JP2006328519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081285A1 (en) * 2011-11-29 2013-06-06 현대제철 주식회사 Method for recovering valuable metals from slag and apparatus for manufacturing multifunctional aggregate
CN103298959A (en) * 2010-11-04 2013-09-11 现代制铁株式会社 Apparatus for atomizing molten slag and recovering valuable metal
CN109609725A (en) * 2019-01-28 2019-04-12 中南大学 A method of improving electric-arc furnace steelmaking fire door stream slag magnetic separation iron yield

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457416A (en) * 1977-10-17 1979-05-09 Nippon Steel Corp Melting and reducing method for iron oxide
JPH01208410A (en) * 1988-02-13 1989-08-22 Kobe Steel Ltd Smelting reduction method for iron oxide raw material
JPH09310126A (en) * 1996-05-16 1997-12-02 Daido Steel Co Ltd Production for obtaining metal from metallic oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457416A (en) * 1977-10-17 1979-05-09 Nippon Steel Corp Melting and reducing method for iron oxide
JPH01208410A (en) * 1988-02-13 1989-08-22 Kobe Steel Ltd Smelting reduction method for iron oxide raw material
JPH09310126A (en) * 1996-05-16 1997-12-02 Daido Steel Co Ltd Production for obtaining metal from metallic oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298959A (en) * 2010-11-04 2013-09-11 现代制铁株式会社 Apparatus for atomizing molten slag and recovering valuable metal
US9139889B2 (en) 2010-11-04 2015-09-22 Hyundai Steel Company Apparatus for atomizing molten slag and recovering valuable metal
WO2013081285A1 (en) * 2011-11-29 2013-06-06 현대제철 주식회사 Method for recovering valuable metals from slag and apparatus for manufacturing multifunctional aggregate
CN103608473A (en) * 2011-11-29 2014-02-26 现代制铁株式会社 Method for recovering valuable metals from slag and apparatus for manufacturing multifunctional aggregate
US9469885B2 (en) 2011-11-29 2016-10-18 Hyundai Steel Company Method for recovering valuable metals from slag and apparatus for manufacturing multifunctional aggregate
CN109609725A (en) * 2019-01-28 2019-04-12 中南大学 A method of improving electric-arc furnace steelmaking fire door stream slag magnetic separation iron yield

Similar Documents

Publication Publication Date Title
US8845779B2 (en) Process for producing molten iron
KR101140056B1 (en) Method for utilizing slag
JP5408369B2 (en) Hot metal pretreatment method
JP5552754B2 (en) Arc furnace operation method
JP6070844B2 (en) Exhaust gas treatment method and exhaust gas treatment equipment
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP5236926B2 (en) Manufacturing method of molten steel
WO2003062474A1 (en) Process for producing molten iron
JP2006328519A (en) Method for producing steel
JP4711735B2 (en) Method of melting fly ash mixed powder into molten slag
JP5408379B2 (en) Hot metal pretreatment method
KR19980041966A (en) Electric steelworks dust reduction method and apparatus
JP5892103B2 (en) Method for smelting reduction of chromium ore
JP2006249569A (en) Method for producing molten iron having low phosphorus
JP2020180322A (en) Production method of molten steel using converter
JPS6250544B2 (en)
KR20210079354A (en) Gatan materials and methods using the same
KR100257213B1 (en) Process for smelting reduction of chromium ore
JPH03183719A (en) Method for accelerating reduction of manganese ore in steel making stage
WO2023204071A1 (en) Production method for grained iron, and grained iron
JP4767611B2 (en) Reduction method of iron oxide
JPS59113131A (en) Treatment of slag formed in smelting of ferrochromium
JP2912834B2 (en) Steelmaking method using electric furnace
JP4466145B2 (en) Hot metal desiliconization method
CN116949236A (en) Method and system for producing steel by reducing non-blast furnace step by step

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116