JP2006328456A - スパッタリング装置及びスパッタリング方法、プラズマディスプレイパネルの製造装置及び製造方法 - Google Patents

スパッタリング装置及びスパッタリング方法、プラズマディスプレイパネルの製造装置及び製造方法 Download PDF

Info

Publication number
JP2006328456A
JP2006328456A JP2005151605A JP2005151605A JP2006328456A JP 2006328456 A JP2006328456 A JP 2006328456A JP 2005151605 A JP2005151605 A JP 2005151605A JP 2005151605 A JP2005151605 A JP 2005151605A JP 2006328456 A JP2006328456 A JP 2006328456A
Authority
JP
Japan
Prior art keywords
target
collimator
substrate
opening
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005151605A
Other languages
English (en)
Inventor
Takehiro Taketomi
雄大 武富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Pioneer Plasma Display Corp
Original Assignee
Pioneer Plasma Display Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Plasma Display Corp, Pioneer Electronic Corp filed Critical Pioneer Plasma Display Corp
Priority to JP2005151605A priority Critical patent/JP2006328456A/ja
Publication of JP2006328456A publication Critical patent/JP2006328456A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gas-Filled Discharge Tubes (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】 ターゲットを継続して使用しても、成膜速度が低下することがないスパッタリング装置、このスパッタリング装置を利用したPDPの製造装置、スパッタリング方法及びPDPの製造方法を提供する。
【解決手段】 スパッタリング装置11に真空チャンバー12及び金属板収納室13を設ける。真空チャンバー12内に、ターゲット15及び基板17を装着し、ターゲット15と基板17との間に、コリメーター18を配置する。コリメーター18は3枚の金属板19を着脱可能に積層して構成し、この3枚の金属板19を貫通するように、複数の円錐台形状のホール20を形成する。ターゲット15がある程度消耗したら、最もターゲット15側に配置された金属板19をコリメーター18から取り外して、金属板収納室13に移動させる。そして、残りの2枚の金属板19を使用して、スパッタリングを続行する。
【選択図】 図3

Description

本発明は、ターゲットにイオンを衝突させることによりターゲットを構成する原子をターゲットから離脱させて基板上に堆積させるスパッタリング装置、このスパッタリング装置を利用したプラズマディスプレイパネル(Plasma Display Panel:以下、PDPともいう)の製造装置、スパッタリング方法及びPDPの製造方法に関する。
図1は、従来のスパッタリング装置を示す断面図である。図1に示すように、従来のスパッタリング装置101においては、真空チャンバー102が設けられており、真空チャンバー102の内部には、ターゲットホルダー103が設けられている。ターゲットホルダー103にはターゲット111が保持されるようになっている。また、ターゲットホルダー103から見てターゲット111の反対側には、磁石104が配置されている。一方、真空チャンバー102内におけるターゲット111に対向する位置には、基板112が配置されるようになっている。
次に、図1に示すスパッタリング装置101を使用した従来のスパッタリング方法について説明する。図1に示すように、チャンバー102内にターゲット111及び基板112を装着し、チャンバー102内にアルゴン(Ar)ガスを注入する。Arガスをプラズマ化すると、磁石104がターゲット111の表面近傍に形成する磁界によって電子が捕獲され、より多くのArイオンが生成する。そして、このArイオンがターゲット111に衝突することにより、ターゲット111の表面が削られてターゲット111を形成する原子113がターゲット111から離脱する。そして、この原子113の一部が真空チャンバー102内を飛来して基板112に到達し、基板112上に堆積される。これにより、基板112上に原子113からなる薄膜114が成膜される。
しかしながら、この従来のスパッタリング装置及びスパッタリング方法には、以下に示すような問題点がある。即ち、ターゲット111における原子113の放出位置は、磁石104が形成する磁界分布によって偏る。また、ターゲット111からの原子113の放出角度も、磁界の方向に依存して偏る。このため、薄膜114の膜厚分布は、ターゲット111における原子113の放出位置及び放出角度の偏りを反映して不均一になってしまう。
これに対して、特許文献1には、成膜される薄膜の膜厚分布を均一化するために、コリメーターを使用する技術が開示されている。特許文献1には、コリメーターとして複数のホールが形成された板材を使用し、ホールの直径に対する高さの比(段差比)を、コリメーターの各部位で異ならせる技術が記載されている。即ち、ターゲットからの原子の放出量が多い位置では段差比を高くしてホールを通過する原子の割合を少なくし、ターゲットからの原子の放出量が少ない位置では段差比を低くしてホールを通過する原子の割合を多くする。特許文献1には、これにより、基板上に形成される膜の膜厚分布を均一化できると記載されている。
特開平7−307288号公報
しかしながら、上述の従来の技術には、以下に示すような問題点がある。即ち、ターゲットを継続して使用すると、ターゲットの厚さが薄くなり、ターゲットと基板との間の距離が大きくなる。これにより、ターゲットから放出される原子のうち、広角、即ち、ターゲットの表面に垂直な方向に対して大きな傾斜角度で放出される原子が基板外に付着するようになり、ターゲットから放出された原子のうち基板に到達する原子の割合が低下する。この結果、ターゲットを継続して使用すると、使用に伴って成膜速度が低下してしまう。
本発明が解決しようとする課題には、上述した問題が一例として挙げられる。
請求項1に記載の発明に係るスパッタリング装置は、ターゲットにイオンを衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させて基板上に堆積させるスパッタリング装置において、前記ターゲット及び前記基板を収納すると共にその内部を真空にする真空チャンバーと、前記ターゲットと前記基板との間に配置され複数の開口部が形成されており前記原子にこの開口部内を通過させることにより前記原子の飛来方向を規制するコリメーターと、を有し、前記開口部の形状が変更可能であることを特徴とする。
請求項5に記載の発明に係るプラズマディスプレイパネルの製造装置は、ターゲットにイオンを衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させて基板上に堆積させるプラズマディスプレイパネルの製造装置において、前記ターゲット及び前記基板を収納すると共にその内部を真空にする真空チャンバーと、前記ターゲットと前記基板との間に配置され複数の開口部が形成されており前記原子にこの開口部内を通過させることにより前記原子の飛来方向を規制するコリメーターと、を有し、前記開口部の形状が変更可能であることを特徴とする。
請求項10に記載の発明に係るスパッタリング方法は、複数の開口部が形成された第1のコリメーターをターゲットと基板との間に配置する第1の配置工程と、真空中においてイオンを前記ターゲットに衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させ、前記原子を前記第1のコリメーターの開口部内を通過させることによりその飛来方向を規制し、前記基板上に堆積させる第1の堆積工程と、その形状が前記第1のコリメーターの開口部とは異なる複数の開口部が形成された第2のコリメーターを前記ターゲットと前記基板との間に配置する第2の配置工程と、真空中においてイオンをターゲットに衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させ、前記原子を前記第2のコリメーターの開口部内を通過させることによりその飛来方向を規制し、基板上に堆積させる第2の堆積工程と、を有することを特徴とする。
請求項14に記載の発明に係るプラズマディスプレイパネルの製造方法は、複数の開口部が形成された第1のコリメーターをターゲットと基板との間に配置する第1の配置工程と、真空中においてイオンを前記ターゲットに衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させ、前記原子を前記第1のコリメーターの開口部内を通過させることによりその飛来方向を規制し、前記基板上に堆積させる第1の堆積工程と、その形状が前記第1のコリメーターの開口部とは異なる複数の開口部が形成された第2のコリメーターを前記ターゲットと前記基板との間に配置する第2の配置工程と、真空中においてイオンをターゲットに衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させ、前記原子を前記第2のコリメーターの開口部内を通過させることによりその飛来方向を規制し、基板上に堆積させる第2の堆積工程と、を有することを特徴とする。
以下、本発明の実施形態について添付の図面を参照して具体的に説明する。図2(a)及び(b)は、本実施形態に係るスパッタリング装置を示す断面図であり、(a)はターゲット使用開始直後の状態を示し、(b)はターゲットを継続して使用した後の状態を示す。図2(a)に示すように、本実施形態に係るスパッタリング装置1においては、その内部を真空雰囲気とする真空チャンバー2が設けられている。そして、真空チャンバー2の内部には、ターゲット3及び基板4が収納されるようになっている。
また、ターゲット3と基板4との間には、コリメーター5が配置されている。コリメーター5には複数の開口部6が形成されている。コリメーター5は、ターゲット3から放出された原子にこの開口部6内を通過させることにより、原子の飛来方向を規制するものである。この開口部6の形状は、真空チャンバー2内の真空を破ることなく変更可能である。本実施形態に係るスパッタリング装置1は、例えば、PDPの製造装置であり、例えば、PDPの製造ライン(図示せず)上に配置され、製造ラインの上流側から搬送されてくる基板4上に保護膜を形成することにより、PDPの前面基板を作製するものである。
次に、上述の如く構成された本実施形態に係るスパッタリング装置の動作、即ち、本実施形態に係るスパッタリング方法について説明する。本実施形態に係るスパッタリング方法は、例えばPDPの製造方法の一部であり、例えばPDPの製造工程において前面基板に保護膜を成膜する方法である。
先ず、透明基板上に夫々複数の走査電極及び共通電極を交互に且つ平行に形成する。次に、この走査電極及び共通電極を覆うように透明誘電体層を形成する。これにより、透明基板上に走査電極及び共通電極並びに透明誘電体層が形成された基板4(図2(a)参照)が作製される。
次に、この基板4上に、例えばMgOからなる保護膜を形成する。以下、この保護膜の形成方法について詳細に説明する。図2(a)に示すように、スパッタリング装置1の真空チャンバー2内に、ターゲット3を装着する。ターゲット3は例えばMgOからなるターゲットである。また、ターゲット3と基板4が配置される予定の部分との間にコリメーター5を配置する。そして、真空チャンバー2内を真空雰囲気とする。
この状態で、製造ラインの上流側から基板4をスパッタリング装置1内に供給する。このとき、基板4を、ターゲット3との間でコリメーター5を挟む位置(成膜位置)に位置させ、基板4における走査電極及び共通電極並びに透明誘電体層が形成された面が、ターゲット3に対向するようにする。そして、例えばArイオン等のイオン(図示せず)をターゲット3に衝突させることにより、ターゲット3を構成する原子(図示せず)をターゲット3から離脱させ、この原子をコリメーター5の開口部6内を通過させることによりその飛来方向を規制し、基板4上に堆積させる。これにより、基板4上に例えばMgO膜(図示せず)を成膜する。そして、成膜が終了した基板4は製造ラインの下流側に搬送し、次工程に送る。一方、スパッタリング装置1は、上流側から新たに供給されてきた基板4に対して、続けてMgO膜を形成する。これにより、複数枚の基板4に連続して成膜を行う。
そして、図2(b)に示すように、ターゲット3がある程度消耗した時点で、コリメーター5の替わりにコリメーター5aをターゲット3と基板4との間に配置する。コリメーター5aには複数の開口部6aが形成されている。開口部6aの形状は、コリメーター5の開口部6の形状とは異なっている。例えば、開口部6aの直径は開口部6の直径よりも大きくなっており、従って、開口部6aの直径に対する高さの比(段差比)は、開口部6の段差比よりも小さくなっている。コリメーター5aの配置は、真空チャンバー2の真空を破らずに真空中で行う。
次に、再びイオンをターゲット3に衝突させることにより、ターゲット3を構成する原子をターゲット3から離脱させ、この原子をコリメーター5aの開口部6a内を通過させることによりその飛来方向を規制し、基板4上に堆積させる。これにより、複数枚の基板4上に順次MgO膜を成膜する。このように、基板4上に例えばMgOからなる保護膜を形成することにより、PDPの前面基板を作製する。
一方、絶縁基板(図示せず)上に複数のデータ電極を相互に平行に形成し、このデータ電極を覆うように白色誘電体層を形成し、この白色誘電体層上に隔壁を形成してマトリクス状又はストライプ状にセルを区画する。そして、隔壁の内部に蛍光体層を形成して、背面基板を作製する。
そして、上述の如く作製した前面基板と背面基板とを重ね合わせる。このとき、前面基板における走査電極及び共通電極が延びる方向と、背面基板におけるデータ電極が延びる方向とが、相互に直交するようにする。次に、両基板を封着し、セル内を排気した後、セル内に放電ガスを封入する。これにより、PDPを製造することができる。
次に、本実施形態の効果について説明する。本実施形態においては、コリメーター5をコリメーター5aに置き換えることにより、開口部の形状を変更することができる。即ち、ターゲット3がある程度消耗した時点で、コリメーター5をコリメーター5aに置き換えることにより、開口部6をより大きな開口部6aとして、より多くの原子が通過できるようにすることができる。この結果、ターゲット3の消耗によってターゲット3と基板4との間の距離が増大することによる成膜速度の低下を、開口部の大きくすることによって開口部を通過する原子の割合を高くして補うことができ、ターゲットを継続して使用しても、成膜速度の低下を防止することができる。これにより、スパッタリングの成膜速度を略一定に保つことができる。
なお、本実施形態においては、スパッタリング装置1が連続式のスパッタリング装置である例を示したが、本発明はこれに限定されず、バッチ式のスパッタリング装置であってもよい。この場合は、基板4を交換する際に、コリメーター5をコリメーター5aに交換してもよい。また、本実施形態においては、コリメーターとしてコリメーター5及び5aの2つのコリメーターを用意して順次使用する例を示したが、3つ以上のコリメーターを順次使用してもよい。更に、本実施形態においては、コリメーターの開口部の直径を変更する例を示したが、本発明はこれに限定されず、例えば、コリメーターの厚さを薄くしてもよい。
更に、本実施形態においては、スパッタリング装置1がPDPの前面基板に保護膜を形成する装置である例を示したが、本発明はこれに限定されず、PDPの前面基板に走査電極及び共通電極を形成するものであってもよく、透明誘電体層を形成するものであってもよく、PDPの背面基板にデータ電極を形成するものであってもよく、白色誘電体層を形成するものであってもよく、PDPの製造以外の用途に使用されるものであってもよい。例えば、液晶ディスプレイパネル等のフラットパネルディスプレイパネルの製造に使用することができる。
次に、本発明の実施例について説明する。先ず、本発明の第1の実施例について説明する。図3は本実施例に係るスパッタリング装置を示す断面図である。本実施例に係るスパッタリング装置は、PDPの製造装置の一部であり、PDPの前面基板に例えばMgOからなる保護膜を成膜するものである。このスパッタリング装置は、PDPの製造ライン上に配置されている。また、本実施例に係るスパッタリング装置は、例えばマグネトロンスパッタリング装置である。
図3に示すように、本実施例に係るスパッタリング装置11においては、真空チャンバー12及び金属板収納室13が設けられている。真空チャンバー12の内部と金属板収納室13の内部とは相互に連通している。また、真空チャンバー12には、真空チャンバー12の内部を排気して真空にする排気手段(図示せず)が取り付けられている。
更に、真空チャンバー12の内部には、ターゲットホルダー14が設けられており、このターゲットホルダー14には、例えばMgOからなるターゲット15が装着されるようになっている。また、ターゲットホルダー14から見てターゲット15が装着される側の反対側には、磁石16が取り付けられている。磁石16はターゲット15の表面近傍に磁界を形成するものである。更に、真空チャンバー12内におけるターゲット15に対向する位置に、基板17の成膜位置が設定されている。
そして、真空チャンバー12には、製造ラインの上流側から基板17が供給される供給口(図示せず)、及び成膜処理後の基板17を製造ラインの下流側に排出する排出口(図示せず)が設けられている。供給口及び排出口は、真空チャンバー12内を気密状態に保ったまま、基板17を供給及び排出することができるようになっている。更にまた、真空チャンバー12内には、供給口から成膜位置まで基板17を搬送すると共に、成膜位置から排出口まで基板17を搬送する搬送手段(図示せず)が設けられている。搬送手段は例えば複数のローラ(図示せず)を回転させて基板17を搬送するものである。
そして、ターゲット15と基板17の成膜位置との間には、コリメーター18が配置されている。コリメーター18は、複数枚、例えば3枚の金属板19が着脱可能に積層されたものであり、この3枚の金属板19を貫通するように、複数のホール20が形成されている。ホール20の形状は円錐台形状となっており、コリメーター18の基板17側の表面におけるホール20の直径が、ターゲット15側の表面におけるホール20の直径よりも大きくなっている。
また、ホール20の直径は、コリメーター18の主面内において不均一となっている。即ち、ターゲット15における相対的にイオンが多く衝突して多くの原子を放出する位置に相当する位置では、ホール20の直径が相対的に小さくなっており、ターゲット15における相対的にイオンが少なく衝突して少ない原子を放出する位置に相当する位置では、ホール20の直径が相対的に大きくなっている。
更に、スパッタリング装置11には、コリメーター18から金属板19を取り外して金属板収納室13に移動させる移動手段(図示せず)が設けられている。
次に、上述の如く構成された本実施例に係るスパッタリング装置の動作、即ち、本実施例に係るスパッタリング方法について説明する。図4は、本実施例に係るスパッタリング方法を示す断面図である。本実施例に係るスパッタリング方法は、例えば、PDPの製造方法の一部であり、例えば、PDPの製造工程において前面基板に保護膜を成膜する方法である。
先ず、透明基板上に夫々複数の走査電極及び共通電極を交互に且つ平行に形成する。次に、この走査電極及び共通電極を覆うように透明誘電体層を形成する。これにより、透明基板上に走査電極及び共通電極並びに透明誘電体層が形成された基板17(図3参照)が作製される。
次に、スパッタリング装置11を使用して、この基板17上に例えばMgOからなる保護膜を形成する。以下、この保護膜形成工程について詳細に説明する。先ず、図3に示すように、ターゲットホルダー14における磁石16が配置されていない側の面に、MgOからなるターゲット15を装着する。また、ターゲット15と基板17の成膜位置との間に、コリメーター18を配置する。次に、排気手段により真空チャンバー12内及び金属板収納室13内を排気して真空雰囲気とする。その後、真空チャンバー12内及び金属板収納室13内にArガスを注入する。
この状態で、基板17を、製造ラインの上流側から供給口を介してスパッタリング装置11内に供給する。そして、搬送手段が基板17を成膜位置、即ち、ターゲット15との間でコリメーター18を挟む位置に搬送し、基板17における走査電極及び共通電極並びに透明誘電体層が形成された面が、ターゲット15に対向するようにする。
そして、Arガスをプラズマ化することにより、磁石16がターゲット15の表面近傍に形成する磁界により電子が捕獲されてより多くのArイオンが生成され、このArイオンがターゲット15に衝突することによりターゲット15を削り、ターゲット15を構成する原子(図示せず)をターゲット15から離脱させる。
この原子が、真空チャンバー12内を飛来してコリメーター18に到達すると、コリメーター18の表面のうちホール20が形成されている領域に到達した原子はホール20内に進入するが、ホール20以外の領域に到達した原子はこの領域に被着する。また、ホール20内に進入した原子のうち、ターゲット15からの放出方向がターゲット15の表面に垂直な方向に対して一定の傾斜角度以下の方向である原子は、ホール20を通過して基板17に向かうが、放出方向が前記垂直な方向に対して一定の傾斜角度より大きい角度で傾斜している原子は、ホール20の側壁に被着する。このように、ターゲット15から放出された原子は、ホール20を通過することによりその飛来方向が規制される。そして、ホール20を通過した原子が基板17に到達し、基板17上に堆積される。これにより、基板17上にMgOからなる保護膜21が形成される。
そして、1枚の基板17について保護膜21の形成が終了すると、搬送手段がこの基板17を排出口まで搬送し、排出口を介してスパッタリング装置11の外部に排出する。この基板17は、製造ラインの下流側に搬送され、次工程に送られる。一方、スパッタリング装置11は、上流側から新たに供給されてきた基板17に対して、上述の方法と同様な方法により保護膜21を成膜する。これにより、複数枚の基板17に対して連続して成膜を施す。
このとき、ターゲット15を継続して使用すると、図4に示すように、ターゲット15が消耗して薄くなる。これにより、ターゲット15と基板17との間の距離が増大する。また、ホール20のターゲット15側の端縁に原子が付着して付着層22を形成し、ホール20の実効的な直径が小さくなる。この結果、基板17に到達する原子の割合が低下し、保護膜21の成膜速度が低下する。
そこで、ターゲット15がある程度消耗したら、移動手段がコリメーター18を構成する3枚の金属板19のうち、最もターゲット15側に配置された金属板19を取り外して、金属板収納室13に移動させる。これにより、ターゲット15と基板17との間には、2枚の金属板19からなるコリメーター18aが配置される。この工程は、真空チャンバー12内及び金属板収納室13内の真空を破らずに行う。
前述の如く、ホール20の形状は基板17側に広がった円錐台形状であるため、コリメーター18aに形成されるホール20aの直径は、コリメーター18に形成されていたホール20の直径よりも大きくなる。また、最もターゲット15側の金属板19を取り外すことにより、この金属板19に付着された付着層22も除去される。これにより、ターゲット15から放出された原子のうち、ホール20a内に進入する原子の割合が増加する。更に、コリメーター18は3枚の金属板19が積層されたものであるのに対し、コリメーター18aは2枚の金属板19が積層されたものであるため、コリメーター18aはコリメーター18よりも薄くなる。これにより、原子がホール20aを通過できる放出角度範囲が広くなる。これらの結果、ターゲット15の消耗及び付着層22の形成に伴う成膜速度の低下を補償することができる。
次に、再びArイオンをターゲット15に衝突させることにより、ターゲット15を構成する原子をターゲット15から離脱させ、この原子をコリメーター18aのホール20a内を通過させることによりその飛来方向を規制し、基板17上に堆積させる。これにより、複数枚の基板17上に順次MgO膜を成膜する。
そして、ターゲット15が更に消耗すると共にホール20aの端縁に付着層が形成されて成膜速度が再び低下した場合には、コリメーター18aからターゲット15側の金属板19を取り外し、金属板収納室13に移動させる。これにより、1枚の金属板19からなるコリメーターが形成される。この結果、コリメーターが更に薄くなり、ホールが更に大きくなり、付着物が除去されるため、成膜速度の低下を補うことができる。このようにして、基板17上に例えばMgOからなる保護膜21を形成することにより、PDPの前面基板を作製する。
一方、絶縁基板(図示せず)上に複数のデータ電極を相互に平行に形成し、このデータ電極を覆うように白色誘電体層を形成し、この白色誘電体層上に隔壁を形成してマトリクス状又はストライプ状にセルを区画する。そして、隔壁の内部に蛍光体層を形成して、背面基板を作製する。
そして、上述の如く作製した前面基板と背面基板とを重ね合わせる。このとき、前面基板における走査電極及び共通電極が延びる方向と、背面基板におけるデータ電極が延びる方向とが、相互に直交するようにする。次に、両基板を封着し、セル内を排気した後、セル内に放電ガスを封入する。これにより、PDPを製造することができる。
次に、本実施例の効果について説明する。本実施例においては、コリメーター18からターゲット15側の金属板19を取り外すことにより、コリメーターを薄くし、ホールの直径を大きくし、ホールの端縁に付着した付着層を除去することができる。これにより、ターゲット15を継続して使用することによる成膜速度の低下を補うことができ、成膜速度を略一定に保つことができる。
また、真空チャンバー12に金属板収納室13を連結することにより、真空チャンバー12内を真空雰囲気に保ったまま、コリメーター18から金属板19を取り外すことができる。これにより、コリメーター18から金属板19を取り外す度に真空チャンバー12内の真空を破りその後再排気する必要がないため、保護膜21の成膜効率が高い。
更に、本実施例においては、コリメーターの面内でホールの大きさが不均一となっており、ターゲット15における相対的にイオンが多く衝突して多くの原子を放出する位置に相当する位置ではホール20の直径が相対的に小さくなっている。このため、基板17上に形成される保護膜21の膜厚を均一にすることができる。
なお、本実施例においては、スパッタリング装置11が連続式のスパッタリング装置である例を示したが、本発明はこれに限定されず、バッチ式のスパッタリング装置であってもよい。また、本実施例においては、コリメーター18を3枚の金属板19から構成する例を示したが、コリメーターは2枚又は4枚以上の金属板により構成してもよい。更に、コリメーター18を構成する部材は金属板に限定されない。
次に、本発明の第2の実施例について説明する。図5は本実施例に係るスパッタリング装置を示す断面図である。図5に示すように、本実施例に係るスパッタリング装置31においては、前述の第1の実施例におけるコリメーター18(図3参照)の替わりに、コリメーター32が設けられている。コリメーター32は一体的に成形された板状の部材であり、その形状は前述の第1の実施例におけるコリメーター18と同様である。即ち、コリメーター32を貫通するように、複数のホール20が形成されている。また、金属板収納室13には、コリメーター33が収納されている。コリメーター33も一体的に成形された板状の部材であり、その形状は前述の第1の実施例におけるコリメーター18aと同様である。即ち、コリメーター33はコリメーター32よりも薄く、コリメーター33のホール20aは、コリメーター32のホール20よりも大きい。更に、スパッタリング装置31に設けられた移動手段(図示せず)は、コリメーター32をコリメーター33に置き換えるものである。本実施例における上記以外の構成は、前述の第1の実施例と同様である。
次に、本実施例に係るスパッタリング装置の動作、即ち、本実施例に係るスパッタリング方法について説明する。図6は本実施例に係るスパッタリング方法を示す断面図である。図5に示すように、ターゲット15が新しいうちは、コリメーター32を使用して保護膜21を形成する。ターゲット15が消耗してきたら、コリメーター32をコリメーター33に置き換える。即ち、移動手段がコリメーター32を真空チャンバー12内から金属板収納室13内に移動させて金属板収納室13内に収納すると共に、コリメーター33を金属板収納室13内から真空チャンバー12内に移動させてターゲット15と基板17の成膜位置との間に配置する。そして、コリメーター33を使用して保護膜21の成膜を続ける。本実施例における上記以外の動作は、前述の第1の実施例と同様である。
本実施例においては、ターゲット15が消耗してきたときに、コリメーター32をコリメーター33に置き換えることにより、コリメーターを薄くし、ホールを大きくし、コリメーターに付着した付着層を除去する。これにより、ターゲット15の消耗に伴う成膜速度の低下を補うことができる。本実施例における上記以外の効果は、前述の第1の実施例と同様である。
なお、本実施例においては、予め、金属板収納室13内に複数枚のコリメーターを収納しておき、この複数枚のコリメーターを順次使用してもよい。又は、金属板収納室13と真空チャンバー12との間に内部気密扉を設け、金属板収納室13に外部と連通する外部気密扉を設け、金属板収納室13内に外気を導入するリークバルブを設け、金属板収納室13内を排気する他の排気手段を設けてもよい。これにより、コリメーター32をコリメーター33に置き換えた後、内部気密扉を閉めてからリークバルブを開き、その後、外部気密扉を開けることにより、コリメーター32を回収し、新たなコリメーターを金属板収納室13内にセットすることができる。そして、外部気密扉を閉めてから他の排気手段により金属板収納室13内を排気した後、内部気密扉を開けることにより、金属板収納室13を真空チャンバー12に再び連通させることができる。これにより、ターゲットが更に消耗したときに、コリメーター33をこの新たなコリメーターに置き換えることが可能となる。この結果、金属板収納室を大きくすることなく、また移動手段を複雑化することなく、真空チャンバー12内を真空雰囲気に保ったまま、3枚以上のコリメーターを順次真空チャンバー12内に投入して使用することができる。
上述の各実施例においては、ターゲットの消耗に伴う成膜速度の変化を、コリメーターの開口部の形状を変更することによって補うことができる。これにより、ターゲットを継続して使用しても、スパッタリングの成膜速度を略一定に保つことができる。
従来のスパッタリング装置を示す断面図である。 (a)及び(b)は、本実施形態に係るスパッタリング装置を示す断面図であり、(a)はターゲット使用開始直後の状態を示し、(b)はターゲットを継続して使用した後の状態を示す。 本発明の第1の実施例に係るスパッタリング装置を示す断面図である。 本実施例に係るスパッタリング方法を示す断面図である。 本発明の第2の実施例に係るスパッタリング装置を示す断面図である。 本実施例に係るスパッタリング方法を示す断面図である。
符号の説明
1、11、31;スパッタリング装置
2、12;真空チャンバー
3、15;ターゲット
4、17;基板
5、5a、18、18a、32、33;コリメーター
6、6a;開口部
13;金属板収納室
14;ターゲットホルダー
16;磁石
19;金属板
20、20a;ホール

Claims (17)

  1. ターゲットにイオンを衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させて基板上に堆積させるスパッタリング装置において、前記ターゲット及び前記基板を収納すると共にその内部を真空にする真空チャンバーと、前記ターゲットと前記基板との間に配置され複数の開口部が形成されており前記原子にこの開口部内を通過させることにより前記原子の飛来方向を規制するコリメーターと、を有し、前記開口部の形状が変更可能であることを特徴とするスパッタリング装置。
  2. 前記真空チャンバー内の真空を破らずに、前記開口部の形状が変更可能であることを特徴とする請求項1に記載のスパッタリング装置。
  3. 前記コリメーターは前記基板側から前記ターゲット側に向かって複数の部材が着脱可能に積層されたものであり、前記開口部は前記複数の部材を貫通するように形成されており、前記開口部は、前記基板側表面における大きさが前記ターゲット側表面における大きさよりも大きくなっており、前記開口部の形状の変更は、前記部材の着脱により行うことを特徴とする請求項1又は2に記載のスパッタリング装置。
  4. 前記コリメーターは夫々に前記複数の開口部が形成された複数のコリメート板を有し、前記コリメート板間で前記開口部の形状が相互に異なっており、前記複数のコリメート板のうち一のコリメート板のみが前記ターゲットと前記基板との間に配置されており、前記開口部の形状の変更は、前記一のコリメート板を他の前記コリメート板に置き換えることにより行うことを特徴とする請求項1又は2に記載のスパッタリング装置。
  5. ターゲットにイオンを衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させて基板上に堆積させるプラズマディスプレイパネルの製造装置において、前記ターゲット及び前記基板を収納すると共にその内部を真空にする真空チャンバーと、前記ターゲットと前記基板との間に配置され複数の開口部が形成されており前記原子にこの開口部内を通過させることにより前記原子の飛来方向を規制するコリメーターと、を有し、前記開口部の形状が変更可能であることを特徴とするプラズマディスプレイパネルの製造装置。
  6. 前記真空チャンバー内の真空を破らずに、前記開口部の形状が変更可能であることを特徴とする請求項5に記載のプラズマディスプレイパネルの製造装置。
  7. 前記コリメーターは前記基板側から前記ターゲット側に向かって複数の部材が着脱可能に積層されたものであり、前記開口部は前記複数の部材を貫通するように形成されており、前記開口部は、前記基板側表面における大きさが前記ターゲット側表面における大きさよりも大きくなっており、前記開口部の形状の変更は、前記部材の着脱により行うことを特徴とする請求項5又は6に記載のプラズマディスプレイパネルの製造装置。
  8. 前記コリメーターは夫々に前記複数の開口部が形成された複数のコリメート板を有し、前記コリメート板間で前記開口部の形状が相互に異なっており、前記複数のコリメート板のうち一のコリメート板のみが前記ターゲットと前記基板との間に配置されており、前記開口部の形状の変更は、前記一のコリメート板を他の前記コリメート板に置き換えることにより行うことを特徴とする請求項5又は6に記載のプラズマディスプレイパネルの製造装置。
  9. プラズマディスプレイパネルの前面基板の保護膜を形成するものであることを特徴とする請求項5乃至8のいずれか1項に記載のプラズマディスプレイパネルの製造装置。
  10. 複数の開口部が形成された第1のコリメーターをターゲットと基板との間に配置する第1の配置工程と、真空中においてイオンを前記ターゲットに衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させ、前記原子を前記第1のコリメーターの開口部内を通過させることによりその飛来方向を規制し、前記基板上に堆積させる第1の堆積工程と、その形状が前記第1のコリメーターの開口部とは異なる複数の開口部が形成された第2のコリメーターを前記ターゲットと前記基板との間に配置する第2の配置工程と、真空中においてイオンをターゲットに衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させ、前記原子を前記第2のコリメーターの開口部内を通過させることによりその飛来方向を規制し、基板上に堆積させる第2の堆積工程と、を有することを特徴とするスパッタリング方法。
  11. 前記第2の配置工程を真空中で行うことを特徴とする請求項10に記載のスパッタリング方法。
  12. 前記第1のコリメーターは前記基板側から前記ターゲット側に向かって複数の部材が着脱可能に積層されたものであり、前記開口部は前記複数の部材を貫通するように形成されており、前記第1のコリメーターの開口部は、前記基板側表面における大きさが前記ターゲット側表面における大きさよりも大きくなっており、前記第2の配置工程は、前記第1のコリメーターから最も前記ターゲット側に配置された部材を取り外して前記第2のコリメーターとする工程であることを特徴とする請求項10又は11に記載のスパッタリング方法。
  13. 前記第2の配置工程は、前記第1のコリメーターを前記第2のコリメーターに置き換える工程であることを特徴とする請求項10又は11に記載のスパッタリング方法。
  14. 複数の開口部が形成された第1のコリメーターをターゲットと基板との間に配置する第1の配置工程と、真空中においてイオンを前記ターゲットに衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させ、前記原子を前記第1のコリメーターの開口部内を通過させることによりその飛来方向を規制し、前記基板上に堆積させる第1の堆積工程と、その形状が前記第1のコリメーターの開口部とは異なる複数の開口部が形成された第2のコリメーターを前記ターゲットと前記基板との間に配置する第2の配置工程と、真空中においてイオンをターゲットに衝突させることにより前記ターゲットを構成する原子を前記ターゲットから離脱させ、前記原子を前記第2のコリメーターの開口部内を通過させることによりその飛来方向を規制し、基板上に堆積させる第2の堆積工程と、を有することを特徴とするプラズマディスプレイパネルの製造方法。
  15. 前記第2の配置工程を真空中で行うことを特徴とする請求項14に記載のプラズマディスプレイパネルの製造方法。
  16. 前記第1のコリメーターは前記基板側から前記ターゲット側に向かって複数の部材が着脱可能に積層されたものであり、前記開口部は前記複数の部材を貫通するように形成されており、前記第1のコリメーターの開口部は、前記基板側表面における大きさが前記ターゲット側表面における大きさよりも大きくなっており、前記第2の配置工程は、前記第1のコリメーターから最も前記ターゲット側に配置された部材を取り外して前記第2のコリメーターとする工程であることを特徴とする請求項14又は15に記載のプラズマディスプレイパネルの製造方法。
  17. 前記第2の配置工程は、前記第1のコリメーターを前記第2のコリメーターに置き換える工程であることを特徴とする請求項14又は15に記載のプラズマディスプレイパネルの製造方法。
JP2005151605A 2005-05-24 2005-05-24 スパッタリング装置及びスパッタリング方法、プラズマディスプレイパネルの製造装置及び製造方法 Pending JP2006328456A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151605A JP2006328456A (ja) 2005-05-24 2005-05-24 スパッタリング装置及びスパッタリング方法、プラズマディスプレイパネルの製造装置及び製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151605A JP2006328456A (ja) 2005-05-24 2005-05-24 スパッタリング装置及びスパッタリング方法、プラズマディスプレイパネルの製造装置及び製造方法

Publications (1)

Publication Number Publication Date
JP2006328456A true JP2006328456A (ja) 2006-12-07

Family

ID=37550455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151605A Pending JP2006328456A (ja) 2005-05-24 2005-05-24 スパッタリング装置及びスパッタリング方法、プラズマディスプレイパネルの製造装置及び製造方法

Country Status (1)

Country Link
JP (1) JP2006328456A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088083B1 (ja) * 2016-03-14 2017-03-01 株式会社東芝 処理装置及びコリメータ
JP6122169B1 (ja) * 2016-03-15 2017-04-26 株式会社東芝 処理装置およびコリメータ
JP2017166056A (ja) * 2016-12-20 2017-09-21 株式会社東芝 スパッタ装置及びスパッタリング用コリメータ
WO2017158978A1 (ja) * 2016-03-14 2017-09-21 株式会社東芝 処理装置及びコリメータ
KR20180033580A (ko) 2016-03-14 2018-04-03 가부시끼가이샤 도시바 처리 장치 및 콜리메이터
CN115161594A (zh) * 2022-08-02 2022-10-11 上海陛通半导体能源科技股份有限公司 可改善深孔填充的镀膜设备及方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088083B1 (ja) * 2016-03-14 2017-03-01 株式会社東芝 処理装置及びコリメータ
WO2017158978A1 (ja) * 2016-03-14 2017-09-21 株式会社東芝 処理装置及びコリメータ
WO2017158977A1 (ja) * 2016-03-14 2017-09-21 株式会社東芝 処理装置及びコリメータ
KR20180033580A (ko) 2016-03-14 2018-04-03 가부시끼가이샤 도시바 처리 장치 및 콜리메이터
CN107923036A (zh) * 2016-03-14 2018-04-17 株式会社东芝 处理装置和准直器
CN107923036B (zh) * 2016-03-14 2020-01-17 株式会社东芝 处理装置和准直器
US10777395B2 (en) 2016-03-14 2020-09-15 Kabushiki Kaisha Toshiba Processing apparatus and collimator
JP6122169B1 (ja) * 2016-03-15 2017-04-26 株式会社東芝 処理装置およびコリメータ
JP2017166014A (ja) * 2016-03-15 2017-09-21 株式会社東芝 処理装置およびコリメータ
JP2017166056A (ja) * 2016-12-20 2017-09-21 株式会社東芝 スパッタ装置及びスパッタリング用コリメータ
CN115161594A (zh) * 2022-08-02 2022-10-11 上海陛通半导体能源科技股份有限公司 可改善深孔填充的镀膜设备及方法

Similar Documents

Publication Publication Date Title
TWI427168B (zh) 濺鍍裝置、透明導電膜之製造方法
US11094513B2 (en) Sputtering apparatus including cathode with rotatable targets, and related methods
JP2006328456A (ja) スパッタリング装置及びスパッタリング方法、プラズマディスプレイパネルの製造装置及び製造方法
US8168049B2 (en) Sputtering apparatus and method of manufacturing solar battery and image display device by using the same
WO2013132794A1 (ja) 蒸着装置
JP5040217B2 (ja) 保護膜形成方法および保護膜形成装置
CN113728123B (zh) 溅射装置
WO2007055304A1 (ja) プラズマディスプレイパネルの製造方法
JP2010272229A (ja) 有機電界発光素子の透明電極の製造方法
WO2004090928A1 (ja) プラズマディスプレイパネルの製造方法
JP5032358B2 (ja) スパッタ装置及び成膜方法
JP4381649B2 (ja) プラズマディスプレイパネルの製造方法および誘電体保護膜製造装置
JP5478324B2 (ja) クリーニング装置、成膜装置、成膜方法
KR100762683B1 (ko) 유기 증발 증착원 및 이를 포함한 유기 증발 증착장치
JP2009024195A (ja) マスキング用トレイ及びそれを用いた成膜装置と成膜方法
KR100721807B1 (ko) 플라즈마 디스플레이 패널의 기판 지지구
KR100632854B1 (ko) 플라즈마 디스플레이 패널의 제조방법 및 기판 지지구
JP4706203B2 (ja) プラズマディスプレイパネルの製造方法
JP4691896B2 (ja) プラズマディスプレイパネルの製造方法
JP2004319474A (ja) プラズマディスプレイパネルの製造方法
TW202347557A (zh) 用於減少靜電放電的腔室電離器
JP2007317414A (ja) プラズマディスプレイパネルの製造方法
JP2010037609A (ja) 成膜材料
JP2010037610A (ja) 成膜材料
JPH03226570A (ja) スパッタリング装置