JP2006322016A - Vacuum vapor deposition method, and vacuum vapor deposition apparatus - Google Patents

Vacuum vapor deposition method, and vacuum vapor deposition apparatus Download PDF

Info

Publication number
JP2006322016A
JP2006322016A JP2005143655A JP2005143655A JP2006322016A JP 2006322016 A JP2006322016 A JP 2006322016A JP 2005143655 A JP2005143655 A JP 2005143655A JP 2005143655 A JP2005143655 A JP 2005143655A JP 2006322016 A JP2006322016 A JP 2006322016A
Authority
JP
Japan
Prior art keywords
heat medium
substrate holder
storage container
path
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005143655A
Other languages
Japanese (ja)
Inventor
Keiichi Aoki
圭一 青木
Kiyoshi Akagi
清 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005143655A priority Critical patent/JP2006322016A/en
Publication of JP2006322016A publication Critical patent/JP2006322016A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum vapor deposition method, and a vacuum vapor deposition apparatus capable of controlling the temperature of a substrate during the vapor deposition at a high temperature to a certain level, and rapidly cooling and taking out the substrate after completing the vapor deposition. <P>SOLUTION: A substrate holder has a hollow part with a liquid to be fed therethrough. During the vapor deposition, a heating medium at a predetermined temperature is fed through the hollow part of the substrate holder. After completing the vapor deposition, a cooling medium at the temperature lower than the predetermined temperature is fed through the hollow part of the substrate holder to cool the substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

真空蒸着方法および真空蒸着装置における基板温度制御に関するものである。   The present invention relates to a vacuum deposition method and substrate temperature control in a vacuum deposition apparatus.

真空中で蒸着源に置いた蒸発材を加熱し蒸発させることで基板に蒸着膜を形成する際、基板温度によって形成される膜の性能が変化することが多々あり、基板温度を制御することが重要である。例えば、蒸着源からの輻射熱や蒸発蒸気の顕熱により蒸着中の基板温度が上昇するのを上記の理由から防ぐ目的で、ある所望の基板温度に冷却する必要が生じることがある。   When a vapor deposition film is formed on a substrate by heating and evaporating the evaporation material placed in the vapor deposition source in vacuum, the performance of the formed film often changes depending on the substrate temperature, and the substrate temperature can be controlled. is important. For example, it may be necessary to cool to a certain desired substrate temperature for the purpose of preventing the substrate temperature during vapor deposition from rising due to the radiant heat from the vapor deposition source or the sensible heat of the vapor.

また、蒸着後迅速に基板を取り出すために常温近傍までに冷却する必要が生じることがある。   Moreover, in order to take out a board | substrate rapidly after vapor deposition, it may be necessary to cool to the normal temperature vicinity.

基板温度を制御する方法としては各種あるが、基板ホルダを温度制御し、それに基板を取り付け、基板温度を制御する方法がよく用いられる。   There are various methods for controlling the substrate temperature, and a method of controlling the temperature of the substrate holder, attaching the substrate to the substrate holder, and controlling the substrate temperature is often used.

その中の一例として、基板ホルダに接する容器に冷媒を通液して基板を冷却する機能と基板に近接した位置に加熱ヒーターを配置し、基板を加熱する機能を有する装置がある。この装置の断面図を図4に示す(特許文献1参照)。   As an example, there is an apparatus having a function of cooling a substrate by passing a coolant through a container in contact with the substrate holder and a function of heating a substrate by disposing a heater near the substrate. A cross-sectional view of this device is shown in FIG. 4 (see Patent Document 1).

図4において、1は真空槽、2は基板、3は基板ホルダー、4は支柱、7は基板上に形成された薄膜である。9は薄膜材料の原子またはクラスター、あるいはイオンまたはクラスターイオン、10は上記物質9を発生する蒸発源、11は支柱4を支える支持板、14は大気圧と真空を隔絶して中心軸を上下移動させる上下機構、21は冷媒(液体窒素)を収容する中空密閉容器、21a,21bは冷媒の入口と出口、22はこの容器の下部にらせんに埋め込まれかつ容器側周に巻き付けられた加熱ヒーター(抵抗発熱体)、23は容器21の下部に配置された円板、24はこの円板内に埋め込まれた熱電対線、25はこの熱電対線24の起電力を温度に換算して所定温度に一定に保つように電源26の出力を制御する制御器である。なお矢印Aは真空排気装置へ接続される。   In FIG. 4, 1 is a vacuum chamber, 2 is a substrate, 3 is a substrate holder, 4 is a support, and 7 is a thin film formed on the substrate. 9 is an atom or cluster of a thin film material, or an ion or cluster ion, 10 is an evaporation source for generating the substance 9, 11 is a support plate for supporting the support column 4, and 14 is moved up and down the central axis by isolating atmospheric pressure and vacuum. The upper and lower mechanism to be moved, 21 is a hollow sealed container for storing a refrigerant (liquid nitrogen), 21a and 21b are inlets and outlets of the refrigerant, 22 is a heater embedded in a spiral at the lower part of the container and wound around the side of the container ( Resistance heating element), 23 is a disk disposed under the container 21, 24 is a thermocouple wire embedded in the disk, and 25 is a predetermined temperature obtained by converting the electromotive force of the thermocouple wire 24 into temperature. It is a controller that controls the output of the power supply 26 so as to keep it constant. The arrow A is connected to the vacuum exhaust device.

次にその動作について説明する。基板ホルダー3に載せた基板2は、上下機構14の上方向の移動によって、支持板11、支柱4を介して容器21に押し当てられる。この容器21には、電源26によって発熱する抵抗発熱体22が巻き付けられていて、基板2を熱伝導で加熱する。このとき、基板2に近接した容器の一部に取付けられた熱電対線24で温度を測定し、制御器25によって一定温度になるように電源26の出力を制御する。一方、基板2を冷却する場合には、容器21に冷媒を循環させるものである。
特開平5−243168号公報
Next, the operation will be described. The substrate 2 placed on the substrate holder 3 is pressed against the container 21 via the support plate 11 and the column 4 by the upward movement of the vertical mechanism 14. A resistance heating element 22 that generates heat from a power source 26 is wound around the container 21 to heat the substrate 2 by heat conduction. At this time, the temperature is measured by the thermocouple wire 24 attached to a part of the container close to the substrate 2, and the output of the power source 26 is controlled by the controller 25 so that the temperature becomes constant. On the other hand, when the substrate 2 is cooled, the refrigerant is circulated through the container 21.
JP-A-5-243168

しかしながら、上記の技術では、蒸着時の加熱、蒸着後の冷却のような場合は、迅速に対応できるものの、蒸着時において、ある程度の高温でありながらも冷却方向に制御が必要な場合においては、迅速な対応が困難であることが十分予想される。   However, in the above technique, in the case of heating at the time of vapor deposition, cooling after vapor deposition, it can respond quickly, but at the time of vapor deposition, in the case where control in the cooling direction is necessary although it is a certain high temperature, It is fully expected that quick response will be difficult.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、蒸着時の基板温度をある程度の高温で制御することを可能とし、さらに蒸着終了後迅速に基板を冷却して取り出すことを可能とすることから成膜性能、及び生産性の良い真空蒸着方法及び真空蒸着装置を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to control the substrate temperature at the time of vapor deposition at a certain high temperature, and to cool and take out the substrate quickly after completion of the vapor deposition. Therefore, it is possible to provide a vacuum deposition method and a vacuum deposition apparatus with good film forming performance and high productivity.

上記の課題は、以下の構成により解決される。   Said subject is solved by the following structures.

(請求項1)
真空チャンバ内に、基板ホルダに保持される基板と蒸発源にセットされる蒸発材とを備え、前記蒸発源を用いて前記基板の表面に前記蒸発材の薄膜を形成する真空蒸着方法において、
前記基板ホルダは通液可能な中空部を有するものであって、
前記薄膜を形成する工程中は、所定温度の熱媒体を前記基板ホルダの前記中空部に通液し、
前記薄膜を形成する工程の終了後は、前記所定温度より低い温度の冷却媒体を前記基板ホルダの前記中空部に通液し前記基板を冷却することを特徴とする真空蒸着方法。
(Claim 1)
In a vacuum deposition method comprising a substrate held by a substrate holder and an evaporation material set in an evaporation source in a vacuum chamber, and forming a thin film of the evaporation material on the surface of the substrate using the evaporation source.
The substrate holder has a hollow portion through which liquid can flow,
During the step of forming the thin film, a heat medium having a predetermined temperature is passed through the hollow portion of the substrate holder,
After completion of the step of forming the thin film, a cooling medium having a temperature lower than the predetermined temperature is passed through the hollow portion of the substrate holder to cool the substrate.

(請求項2)
前記熱媒体と前記冷却媒体が同一種の液体であることを特徴とする請求項1に記載の真空蒸着方法。
(Claim 2)
The vacuum deposition method according to claim 1, wherein the heat medium and the cooling medium are the same type of liquid.

(請求項3)
真空チャンバと、前記真空チャンバ内に基板ホルダと蒸発源とを備え、前記基板ホルダに保持された基板の表面に薄膜を形成する真空蒸着装置において、
前記基板ホルダは、通液可能な中空部を有し、
熱媒体貯蔵容器、前記熱媒体貯蔵容器に貯蔵される熱媒体を所定温度に維持する温度制御手段、前記熱媒体が前記熱媒体貯蔵容器から前記基板ホルダの前記中空部を経由して前記熱媒体貯蔵容器に循環できる、前記熱媒体貯蔵容器と前記基板ホルダとを結ぶ第1往路と前記基板ホルダと前記熱媒体貯蔵容器とを結ぶ第1復路とからなる熱媒体循環流路、及び前記熱媒体を循環させる熱媒体循環手段とを有する熱媒体系と、
冷却媒体貯蔵容器、前記冷却媒体貯蔵容器に貯蔵される冷却媒体を前記所定温度より低い温度に維持する温度制御手段、前記冷却媒体が前記冷却媒体貯蔵容器から前記基板ホルダの前記中空部を経由して前記冷却媒体貯蔵容器に循環できる、前記冷却媒体貯蔵容器と前記基板ホルダを結ぶ第2往路と前記基板ホルダと前記冷却媒体貯蔵容器を結ぶ第2復路とからなる冷却媒体循環流路、及び前記冷却媒体を循環させる冷却媒体循環手段とを有する冷却媒体系とを設けることを特徴とする真空蒸着装置。
(Claim 3)
In a vacuum deposition apparatus comprising a vacuum chamber, a substrate holder and an evaporation source in the vacuum chamber, and forming a thin film on the surface of the substrate held by the substrate holder,
The substrate holder has a hollow portion through which liquid can pass,
A heat medium storage container, temperature control means for maintaining the heat medium stored in the heat medium storage container at a predetermined temperature, and the heat medium from the heat medium storage container via the hollow portion of the substrate holder. A heat medium circulation channel comprising a first forward path connecting the heat medium storage container and the substrate holder and a first return path connecting the substrate holder and the heat medium storage container, and the heat medium that can circulate to the storage container A heat medium system having a heat medium circulation means for circulating the heat medium;
A cooling medium storage container, temperature control means for maintaining the cooling medium stored in the cooling medium storage container at a temperature lower than the predetermined temperature, and the cooling medium from the cooling medium storage container via the hollow portion of the substrate holder. A cooling medium circulation flow path comprising a second forward path connecting the cooling medium storage container and the substrate holder, and a second return path connecting the substrate holder and the cooling medium storage container, which can be circulated to the cooling medium storage container; and And a cooling medium system having a cooling medium circulation means for circulating the cooling medium.

(請求項4)
前記第1往路及び前記第2往路の中途、及び前記第1復路及び前記第2復路の中途にそれぞれ分岐路を介設し、それぞれの分岐部に前記熱媒体循環流路または前記冷却媒体循環流路を形成する往路切換手段及び復路切換手段を設け、前記第1往路及び前記第2往路の前記分岐部から前記基板ホルダまでの流路を前記熱媒体系と前記冷却媒体系の共通の往路とし、前記基板ホルダから前記第1復路及び前記第2復路の前記分岐部までの流路を前記熱媒体系と前記冷却媒体系の共通の復路とすることを特徴とする請求項3に記載の真空蒸着装置。
(Claim 4)
A branch path is provided in the middle of the first forward path and the second forward path, and in the middle of the first return path and the second return path, and the heat medium circulation flow path or the cooling medium circulation flow is provided in each branch portion. A forward path switching means and a backward path switching means for forming a path are provided, and a flow path from the branch portion of the first forward path and the second forward path to the substrate holder is a common forward path of the heat medium system and the cooling medium system. 4. The vacuum according to claim 3, wherein a flow path from the substrate holder to the branch portion of the first return path and the second return path is a common return path of the heat medium system and the cooling medium system. Vapor deposition equipment.

(請求項5)
前記熱媒体循環手段及び前記冷却媒体循環手段を共通の循環手段として前記共通の往路又は復路のいずれかに配設することを特徴とする請求項4に記載の真空蒸着装置。
(Claim 5)
The vacuum deposition apparatus according to claim 4, wherein the heat medium circulation unit and the cooling medium circulation unit are disposed in either the common forward path or the return path as a common circulation means.

(請求項6)
前記熱媒体と前記冷却媒体が同一種の液体であることを特徴とする請求項3乃至5の何れか1項に記載の真空蒸着装置。
(Claim 6)
The vacuum deposition apparatus according to claim 3, wherein the heat medium and the cooling medium are the same type of liquid.

(請求項7)
真空チャンバと、前記真空チャンバ内に設けられ、基板ホルダと蒸発源とを備え、基板ホルダに保持された基板の表面に薄膜を形成する真空蒸着装置において、
前記基板ホルダは、通液可能な中空部を有し、
熱媒体貯蔵容器、前記熱媒体貯蔵容器に貯蔵される熱媒体を所定温度に維持する温度制御手段、前記熱媒体が前記熱媒体貯蔵容器から前記基板ホルダの前記中空部を経由して前記熱媒体貯蔵容器に循環できる、前記熱媒体貯蔵容器と前記基板ホルダとを結ぶ往路と、前記基板ホルダと前記熱媒体貯蔵容器とを結ぶ復路とからなる熱媒体循環流路、及び前記熱媒体を循環させる熱媒体循環手段とを有する熱媒体系と、
給水源に接続された給水口より給水源の圧力により供給される冷却水が前記基板ホルダを経由して排水される、前記給水口と前記基板ホルダとを結ぶ給水路と前記基板ホルダからの排水流路とからなる冷却水流路を有する冷却水系とを設けることを特徴とする真空蒸着装置。
(Claim 7)
In a vacuum deposition apparatus that is provided in a vacuum chamber and provided in the vacuum chamber, includes a substrate holder and an evaporation source, and forms a thin film on the surface of the substrate held by the substrate holder.
The substrate holder has a hollow portion through which liquid can pass,
A heat medium storage container, temperature control means for maintaining the heat medium stored in the heat medium storage container at a predetermined temperature, and the heat medium from the heat medium storage container via the hollow portion of the substrate holder. A heat medium circulation flow path comprising a forward path connecting the heat medium storage container and the substrate holder, and a return path connecting the substrate holder and the heat medium storage container, and circulating the heat medium that can be circulated to the storage container. A heat medium system having a heat medium circulation means;
The cooling water supplied by the pressure of the water supply source from the water supply port connected to the water supply source is drained through the substrate holder, and the drainage from the substrate holder and the water supply path connecting the water supply port and the substrate holder. And a cooling water system having a cooling water flow path comprising a flow path.

(請求項8)
前記往路及び前記給水路の中途、前記復路及び前記排水流路の中途にそれぞれ分岐路を介設し、それぞれの分岐部に前記熱媒体循環流路または前記冷却水流路を形成する往路切換手段及び復路切換手段を設け、前記往路及び前記給水路の前記分岐部から前記基板ホルダまでの流路を前記熱媒体と前記冷却水の共通の流路とし、前記基板ホルダから前記復路及び前記排水流路の前記分岐部までの流路を前記熱媒体と前記冷却水の共通の流路とすると共に、
前記熱媒体循環手段を前記往路の前記熱媒体貯蔵容器から前記分岐部までの中途又は前記復路の前記分岐部から前記熱媒体貯蔵容器までの中途のいずれかに配設することを特徴とする請求項7に記載の真空蒸着装置。
(Claim 8)
A forward path switching means for interposing a branch path in the middle of the forward path and the water supply path, in the middle of the return path and the drainage flow path, and forming the heat medium circulation path or the cooling water flow path in each branch portion; A return path switching unit is provided, and a flow path from the branch portion of the forward path and the water supply path to the substrate holder is a common flow path of the heat medium and the cooling water, and the return path and the drain flow path from the substrate holder And the flow path to the branch portion is a common flow path for the heat medium and the cooling water,
The heat medium circulation means is disposed either halfway from the heat medium storage container to the branch part in the forward path or halfway from the branch part to the heat medium storage container in the return path. Item 8. The vacuum evaporation apparatus according to Item 7.

請求項1又は3に記載の発明によれば、蒸着時は、基板を保持する基板ホルダの中空部に所定の温度の熱媒体を通液し基板の温度を所定の温度近傍に維持し、蒸着終了後は、所定の温度より低い温度の冷却媒体を通液して基板を冷却する。   According to the first or third aspect of the present invention, during vapor deposition, a heating medium having a predetermined temperature is passed through the hollow portion of the substrate holder that holds the substrate to maintain the temperature of the substrate in the vicinity of the predetermined temperature. After completion, the substrate is cooled by passing a cooling medium having a temperature lower than a predetermined temperature.

例えば、蒸着時は、基板を蒸着に適した所定の温度に設定した熱媒体を基板ホルダの中空部に通液することで蒸着に最適な基板温度を維持することが出来る。また、蒸着終了後は、蒸着終了後迅速に基板が取り出せるような温度になるように所定の温度より低い温度に設定した冷却媒体を基板ホルダの中空部に通液することで迅速に基板を冷却すること出来る。   For example, at the time of vapor deposition, the substrate temperature optimum for vapor deposition can be maintained by passing a heating medium set to a predetermined temperature suitable for vapor deposition through the hollow portion of the substrate holder. In addition, after the deposition is completed, the substrate is quickly cooled by passing a cooling medium set to a temperature lower than a predetermined temperature through the hollow portion of the substrate holder so that the substrate can be quickly removed after completion of the deposition. I can do it.

従って、成膜性能、生産性の良い真空蒸着方法又は真空蒸着装置を提供することが出来る。   Therefore, it is possible to provide a vacuum deposition method or a vacuum deposition apparatus with good film forming performance and high productivity.

請求項2又は6に記載の発明によれば、熱媒体と冷却媒体とを同一の媒体とすることで、熱媒体貯蔵容器、冷却媒体貯蔵容器、循環路等の部品や部材を共通として構成することができ、また媒体の補給が容易で、廃液時の分別が不要等の保守を容易とすることができる。従って、安定な生産に対応できる等による生産性の良い真空蒸着方法又は真空蒸着装置を提供することが出来る。   According to the second or sixth aspect of the present invention, the heat medium and the cooling medium are made the same medium, so that the heat medium storage container, the cooling medium storage container, the circulation path and other parts and members are configured in common. In addition, the medium can be easily replenished, and maintenance such as no need for separation at the time of waste liquid can be facilitated. Therefore, it is possible to provide a vacuum vapor deposition method or a vacuum vapor deposition apparatus with good productivity by being able to cope with stable production.

請求項4に記載の発明によれば、基板ホルダの中空部に通液する媒体を所定の温度の熱媒体から所定の温度より低い温度の冷却媒体への切り替えは、たとえばバルブの様な流路切替手段を用いることで容易で迅速にすることが出来る。また、基板ホルダの中空部を熱媒体系と冷却媒体系とに分離する必要がなく装置の簡素化及びコストダウンができる。   According to the fourth aspect of the present invention, the medium passing through the hollow portion of the substrate holder is switched from the heating medium having a predetermined temperature to the cooling medium having a temperature lower than the predetermined temperature, for example, a flow path such as a valve. It is easy and quick by using the switching means. Further, it is not necessary to separate the hollow portion of the substrate holder into a heat medium system and a cooling medium system, and the apparatus can be simplified and the cost can be reduced.

請求項5に記載の発明によれば、熱媒体の循環手段と冷却媒体の循環手段とを共通の循環手段とすることで、装置の簡素化及びコストダウンができる。   According to the fifth aspect of the present invention, the heat medium circulation means and the cooling medium circulation means are used as a common circulation means, whereby the apparatus can be simplified and the cost can be reduced.

請求項7に記載の発明によれば、冷却媒体に一般に使用されている水、例えば水道水を用いることで、冷却媒体の温度制御や特別な保守が軽減される。従って、安定な生産に対応できる等による生産性の良い真空蒸着方法及び真空蒸着装置を提供することが出来る。   According to the seventh aspect of the present invention, the temperature control and special maintenance of the cooling medium are reduced by using water generally used as the cooling medium, for example, tap water. Accordingly, it is possible to provide a vacuum vapor deposition method and a vacuum vapor deposition apparatus with good productivity by being able to deal with stable production.

請求項8に記載の発明によれば、基板ホルダの中空部に通液する媒体を所定の温度の熱媒体から冷却水への切り替えは、たとえばバルブの様な流路切替手段を用いることで容易で迅速にすることが出来る。また、基板ホルダの中空部を熱媒体系と冷却水系とに分離する必要がなく装置の簡素化及びコストダウンができる。   According to the eighth aspect of the present invention, the medium passing through the hollow portion of the substrate holder can be easily switched from the heat medium having a predetermined temperature to the cooling water by using a flow path switching means such as a valve. Can be quick. Further, it is not necessary to separate the hollow portion of the substrate holder into a heat medium system and a cooling water system, and the apparatus can be simplified and the cost can be reduced.

実施の形態を示す蒸着装置の一例を図を用いて説明する。   An example of a vapor deposition apparatus showing an embodiment will be described with reference to the drawings.

まず、熱媒体系と冷却媒体系とを設けている一例を真空蒸着装置を説明する。   First, an example in which a heat medium system and a cooling medium system are provided will be described.

図1において、101は真空チャンバ、102は基板、103は基板ホルダ、104は蒸着源、105は熱媒体を所定の温度にする温度制御機能を備えた熱媒体貯蔵容器、106は冷却媒体を所定の温度より低い温度にする温度制御機能を備えた冷却媒体貯蔵容器、120は熱媒体を循環させる手段となる熱媒体ポンプ、122は冷却媒体を循環させる手段となる冷却媒体ポンプ、110は大気圧と真空とを隔絶して回転力を伝達する回転導入機構である。   In FIG. 1, 101 is a vacuum chamber, 102 is a substrate, 103 is a substrate holder, 104 is a vapor deposition source, 105 is a heat medium storage container having a temperature control function for bringing the heat medium to a predetermined temperature, and 106 is a predetermined cooling medium. A cooling medium storage container having a temperature control function for lowering the temperature of the cooling medium, 120 is a heating medium pump as a means for circulating the heating medium, 122 is a cooling medium pump as a means for circulating the cooling medium, and 110 is an atmospheric pressure. It is a rotation introduction mechanism that isolates the vacuum and transmits the rotational force.

ここで、基板ホルダ103は、図示されてない動力源により回転導入機構110を介して回転出来るようになっている。   Here, the substrate holder 103 can be rotated via the rotation introducing mechanism 110 by a power source (not shown).

ここで、熱媒体及び冷却媒体の両方を示す又はどちらかに特定することが不要な場合、以後、「媒体」と呼ぶ。   Here, when it is not necessary to indicate or specify both the heat medium and the cooling medium, they are hereinafter referred to as “medium”.

基板ホルダ103の軸部には、熱媒体の入口123a及び出口123b、冷却媒体の入口123d及び出口123eが設けられており、また基板ホルダ103の内部は熱媒体及び冷却媒体をそれぞれ別の流路で通液し、媒体の温度を熱伝導で基板102に伝えることができる2系統の流路を有する中空構造となっている。従って、基板ホルダ103にその所望の温度近くの媒体を通液することで、基板ホルダ103に密着させた基板102の温度を所望の値に保つことが出来る。   The shaft portion of the substrate holder 103 is provided with an inlet 123a and an outlet 123b for the heat medium, and an inlet 123d and an outlet 123e for the cooling medium, and the inside of the substrate holder 103 has a separate flow path for the heat medium and the cooling medium, respectively. And a hollow structure having two flow paths that can transmit the temperature of the medium to the substrate 102 by heat conduction. Therefore, by passing the medium near the desired temperature through the substrate holder 103, the temperature of the substrate 102 in close contact with the substrate holder 103 can be maintained at a desired value.

また、基板ホルダ103は、基板ホルダ自体に中空部を有する構造とする、又は基板を保持する構造体と中空部をもつ構造体の2つの構造体を、熱伝導性が良い様にビス等で結合して一体化する、又は接触する様な構成としても良い。   Further, the substrate holder 103 has a structure having a hollow portion in the substrate holder itself, or two structures of a structure holding the substrate and a structure having a hollow portion are made of screws or the like so as to have good thermal conductivity. It is good also as a structure which couple | bonds and integrates or contacts.

実際の蒸着においては、基板102の温度を所望の温度にしたい場合、蒸発源104からの輻射等で基板が加熱されることを考慮する必要がある。この場合、予め実験等を行い、基板102の温度が所望の温度となる様に熱媒体貯蔵容器105、冷却媒体貯蔵容器106の各媒体の設定温度を決めても良い。尚、冷却媒体の設定温度は、基板取り出し時に取り扱いが容易な温度であれば良く、例えば手袋をして取り出すことができる温度等を目安に決めても良い。   In actual vapor deposition, when it is desired to set the temperature of the substrate 102 to a desired temperature, it is necessary to consider that the substrate is heated by radiation from the evaporation source 104 or the like. In this case, an experiment or the like may be performed in advance, and the set temperature of each medium of the heat medium storage container 105 and the cooling medium storage container 106 may be determined so that the temperature of the substrate 102 becomes a desired temperature. The set temperature of the cooling medium may be any temperature that can be easily handled when the substrate is taken out. For example, the temperature that can be taken out with gloves may be determined as a guide.

また、熱媒体ポンプ120及び冷却媒体ポンプ122を設ける位置は、この実施の形態の例では、媒体の往路上である基板ホルダ103の熱媒体入口123aと熱媒体貯蔵容器105との間、及び冷却媒体入り口123dと冷却媒体貯蔵容器106との間としている。これら両ポンプの位置は、媒体の復路上である基板ホルダ103の熱媒体出口123bと熱媒体貯蔵容器105との間、及び冷却媒体出口123eと冷却媒体貯蔵容器106との間でも良いし、また、例えば熱媒体系は往路上に、冷却媒体系は復路上にといった組み合わせでも良い。   In the example of this embodiment, the positions where the heat medium pump 120 and the cooling medium pump 122 are provided are between the heat medium inlet 123a of the substrate holder 103 and the heat medium storage container 105 on the forward path of the medium, and the cooling. It is between the medium inlet 123d and the cooling medium storage container 106. The positions of both pumps may be between the heat medium outlet 123b of the substrate holder 103 and the heat medium storage container 105 on the return path of the medium, and between the cooling medium outlet 123e and the cooling medium storage container 106. For example, a combination of the heat medium system on the forward path and the cooling medium system on the return path may be used.

ここで、蒸着時に基板102を蒸着に最適な温度に設定し、蒸着終了後迅速に基板を取り出せるような温度にする動作を図1を用いて具体的に以下に述べる。   Here, the operation of setting the substrate 102 to an optimum temperature for vapor deposition at the time of vapor deposition and setting the temperature so that the substrate can be quickly taken out after completion of vapor deposition will be specifically described below with reference to FIG.

蒸着時には、熱媒体ポンプ120を稼働させる。また、冷却媒体ポンプ122は停止させておくのが好ましい。熱媒体貯蔵容器105で所定の温度にされている熱媒体は熱媒体ポンプ120に供給され、ポンプ120により送り出され、基板ホルダ103の入口123aから入り、基板ホルダ103の熱媒媒体系の中空部を通過後、基板ホルダ103の出口123bから出て熱媒体貯蔵容器105に帰る。   At the time of vapor deposition, the heat medium pump 120 is operated. Moreover, it is preferable that the cooling medium pump 122 is stopped. The heat medium having a predetermined temperature in the heat medium storage container 105 is supplied to the heat medium pump 120, sent out by the pump 120, enters from the inlet 123 a of the substrate holder 103, and is a hollow portion of the heat medium medium system of the substrate holder 103. After passing through, exits from the outlet 123 b of the substrate holder 103 and returns to the heat medium storage container 105.

こうすることにより、蒸着時は、基板102は、熱媒体の温度により制御される温度に保つことが出来る。   By doing so, the substrate 102 can be kept at a temperature controlled by the temperature of the heat medium during vapor deposition.

次に蒸着終了時は、冷却媒体ポンプ122を稼働させる。また、熱媒体ポンプ120を停止させておくのが好ましい。冷却媒体貯蔵容器106で所定の温度より低い温度、例えば室温程度にされている冷却媒体が冷却媒体ポンプ122に供給され、ポンプ122により送り出され、基板ホルダ103の入口123dから入り、基板ホルダ103の冷却媒媒体系の中空部を通過後、基板ホルダ103の出口123eから出て冷却媒体貯蔵容器106に帰る。   Next, at the end of vapor deposition, the cooling medium pump 122 is operated. Moreover, it is preferable to stop the heat medium pump 120. A cooling medium having a temperature lower than a predetermined temperature in the cooling medium storage container 106, for example, about room temperature, is supplied to the cooling medium pump 122, sent out by the pump 122, enters from the inlet 123 d of the substrate holder 103, and enters the substrate holder 103. After passing through the hollow portion of the cooling medium medium system, it exits from the outlet 123 e of the substrate holder 103 and returns to the cooling medium storage container 106.

こうすることにより、基板ホルダ103に通液される媒体は、熱媒体から冷却媒体に容易に切り替わることから、基板102の温度を短時間で取り出せる様な温度にすることが出来る。   By doing so, the medium passed through the substrate holder 103 is easily switched from the heat medium to the cooling medium, so that the temperature of the substrate 102 can be taken out in a short time.

次に、熱媒体循環流路と冷却媒体循環流路とに流路切替手段を設け、この切替手段と中空ホルダとの間の流路を共通流路としている一例の真空蒸着装置を説明する。   Next, an example of a vacuum vapor deposition apparatus in which flow path switching means is provided in the heat medium circulation flow path and the cooling medium circulation flow path and the flow path between the switching means and the hollow holder is a common flow path will be described.

図2において、101は真空チャンバ、102は基板、103は基板ホルダ、104は蒸着源、105は熱媒体を所定の温度にする温度制御機能を備えた熱媒体貯蔵容器、106は冷却媒体を所定の温度より低い温度にする温度制御機能を備えた冷却媒体貯蔵容器、120は熱媒体を循環させる手段となる熱媒体ポンプ、122は冷却媒体を循環させる手段となる冷却媒体ポンプ、107は熱媒体又は冷却媒体の何れを基板ホルダ103に供給できる様に流路を切り替える切替手段である往路切替バルブ、108は基板ホルダ103から排出される熱媒体を熱媒体貯蔵容器105又は冷却媒体を冷却媒体貯蔵容器106に戻すことができる様に流路を切り替える復路切替バルブ、110は大気圧と真空とを隔絶して回転力を伝達する回転導入機構である。   In FIG. 2, 101 is a vacuum chamber, 102 is a substrate, 103 is a substrate holder, 104 is a vapor deposition source, 105 is a heat medium storage container having a temperature control function for bringing the heat medium to a predetermined temperature, and 106 is a predetermined cooling medium. A cooling medium storage container having a temperature control function for lowering the temperature of the cooling medium, 120 is a heat medium pump serving as a means for circulating the heat medium, 122 is a cooling medium pump serving as a means for circulating the cooling medium, and 107 is a heat medium. Or, a forward path switching valve, which is a switching means for switching the flow path so that any of the cooling medium can be supplied to the substrate holder 103, 108 is the heat medium discharged from the substrate holder 103 as the heat medium storage container 105 or the cooling medium is stored as the cooling medium. A return switching valve for switching the flow path so that it can be returned to the container 106, 110 is a rotational introduction that isolates atmospheric pressure from vacuum and transmits rotational force It is a structure.

ここで、基板ホルダ103は、図示されてない動力源により回転導入機構110を介して回転出来るようになっている。   Here, the substrate holder 103 can be rotated via the rotation introducing mechanism 110 by a power source (not shown).

基板ホルダ103の軸部には、媒体の入口103a及び出口103bが設けられており、また基板ホルダ103の内部は媒体を通液し、媒体の温度を熱伝導で基板102に伝えることができる中空構造となっている。従って、基板ホルダ103にその所望の温度近くの媒体を通液することで、基板ホルダ103に密着させた基板102の温度を所望の値に保つことが出来る。   The shaft portion of the substrate holder 103 is provided with an inlet 103a and an outlet 103b for the medium. The inside of the substrate holder 103 allows the medium to pass therethrough and can transmit the medium temperature to the substrate 102 by heat conduction. It has a structure. Therefore, by passing the medium near the desired temperature through the substrate holder 103, the temperature of the substrate 102 in close contact with the substrate holder 103 can be maintained at a desired value.

また、基板ホルダ103は、基板ホルダ自体に中空部を有する構造とする、又は基板を保持する構造体と中空部をもつ構造体の2つの構造体を、熱伝導性が良い様にビス等で結合して一体化する、又は接触する様な構成としても良い。   Further, the substrate holder 103 has a structure having a hollow portion in the substrate holder itself, or two structures of a structure holding the substrate and a structure having a hollow portion are made of screws or the like so as to have good thermal conductivity. It is good also as a structure which couple | bonds and integrates or contacts.

実際の蒸着においては、基板102の温度を所望の温度にしたい場合、蒸発源104からの輻射等で基板が加熱されることを考慮する必要がある。この場合、予め実験等を行い、基板102の温度が所望の温度となる様に熱媒体貯蔵容器105、冷却媒体貯蔵容器106の各媒体の設定温度を決めても良い。尚、冷却媒体の設定温度は、基板取り出し時に取り扱いが容易な温度であれば良く、例えば手袋をして取り出すことができる温度等を目安に決めても良い。   In actual vapor deposition, when it is desired to set the temperature of the substrate 102 to a desired temperature, it is necessary to consider that the substrate is heated by radiation from the evaporation source 104 or the like. In this case, an experiment or the like may be performed in advance, and the set temperature of each medium of the heat medium storage container 105 and the cooling medium storage container 106 may be determined so that the temperature of the substrate 102 becomes a desired temperature. The set temperature of the cooling medium may be any temperature that can be easily handled when the substrate is taken out. For example, the temperature that can be taken out with gloves may be determined as a guide.

また、熱媒体ポンプ120、及び冷却媒体ポンプ122を設ける位置は、この実施の形態の例では、それぞれ熱媒体貯蔵容器105と往路切替バルブ107との間、冷却媒体貯蔵容器106と往路切替バルブ107としているが、復路切替バルブ108と熱媒体貯蔵容器105との間及び復路切替バルブ108と冷却媒体貯蔵容器106との間でも良い。   In the example of this embodiment, the positions where the heat medium pump 120 and the cooling medium pump 122 are provided are respectively between the heat medium storage container 105 and the forward path switching valve 107 and between the cooling medium storage container 106 and the forward path switching valve 107. However, it may be provided between the return path switching valve 108 and the heat medium storage container 105 and between the return path switching valve 108 and the cooling medium storage container 106.

ここで、蒸着時に基板102を蒸着に最適な温度に設定し、蒸着終了後迅速に基板を取り出せるような温度にする動作を図2を用いて具体的に以下に述べる。   Here, an operation of setting the substrate 102 to an optimum temperature for vapor deposition at the time of vapor deposition, and setting the temperature so that the substrate can be quickly taken out after completion of vapor deposition will be specifically described below with reference to FIG.

蒸着時には、熱媒体貯蔵容器105で所定の温度にされている熱媒体が熱媒体ポンプ120に入る。熱媒体は熱媒体ポンプ120より送り出され、熱媒体が中空ホルダ103の媒体入口103aに供給されるように往路切替バルブ107の入口が切り替えられる。中空ホルダ内を通過した熱媒体は、媒体出口103bより出て復路切替バルブ108に到達する。復路切替バルブ108は、熱媒体がその送出元である熱媒体貯蔵容器105に帰ることが出来るようにバルブの出口を切り替える。   At the time of vapor deposition, the heat medium having a predetermined temperature in the heat medium storage container 105 enters the heat medium pump 120. The heat medium is sent out from the heat medium pump 120, and the inlet of the forward path switching valve 107 is switched so that the heat medium is supplied to the medium inlet 103 a of the hollow holder 103. The heat medium that has passed through the hollow holder exits from the medium outlet 103b and reaches the return path switching valve. The return path switching valve 108 switches the outlet of the valve so that the heat medium can return to the heat medium storage container 105 from which the heat medium is sent.

こうすることにより、蒸着時は、基板102は、熱媒体の温度により制御される温度に保つことが出来る。このとき、冷却媒体ポンプ122は停止させておくが好ましい。   By doing so, the substrate 102 can be kept at a temperature controlled by the temperature of the heat medium during vapor deposition. At this time, the cooling medium pump 122 is preferably stopped.

次に蒸着終了時は、冷却媒体貯蔵容器106で所定の温度より低い温度、例えば室温程度にされている冷却媒体が冷却媒体ポンプ122に入る。冷却媒体は冷却媒体ポンプ122より送り出され、冷却媒体が中空ホルダ103の媒体入口103aに供給されるように往路切替バルブ107の入口が切り替えられる。中空ホルダ内を通過した冷却媒体は、媒体出口103bより出て復路切替バルブ108に到達する。復路切替バルブ108は、冷却媒体がその送出元である冷却媒体貯蔵容器106に帰ることが出来るようにバルブの出口を切り替える。このとき、熱媒体ポンプ120は停止させておくのが好ましい。   Next, at the end of vapor deposition, a cooling medium having a temperature lower than a predetermined temperature in the cooling medium storage container 106, for example, about room temperature, enters the cooling medium pump 122. The cooling medium is sent out from the cooling medium pump 122 and the inlet of the forward path switching valve 107 is switched so that the cooling medium is supplied to the medium inlet 103 a of the hollow holder 103. The cooling medium that has passed through the hollow holder exits from the medium outlet 103b and reaches the return path switching valve 108. The return path switching valve 108 switches the outlet of the valve so that the cooling medium can return to the cooling medium storage container 106 from which the cooling medium is sent. At this time, the heat medium pump 120 is preferably stopped.

こうすることにより、基板ホルダ103に通液される媒体は、熱媒体から冷却媒体に往路切替バルブ及び復路切替バルブの切り替えで容易に切り替わることから、基板102の温度を短時間で取り出せる様な温度にすることが出来る。   By doing so, the medium passed through the substrate holder 103 is easily switched from the heat medium to the cooling medium by switching the forward path switching valve and the backward path switching valve, so that the temperature of the substrate 102 can be taken out in a short time. Can be made.

また、基板ホルダは、その中空部を熱媒体系と冷却媒体系との2系統を有する構造をとる必要がないため簡素化できることで装置の簡素化及びコストダウンができる。   Moreover, since it is not necessary for the substrate holder to have a structure having two systems of a heat medium system and a cooling medium system, the substrate holder can be simplified, whereby the apparatus can be simplified and the cost can be reduced.

次に、熱媒体循環流路と冷却媒体循環流路との流路切替手段と共通の循環手段とを設けている一例の真空蒸着装置を説明する。   Next, an example of a vacuum vapor deposition apparatus provided with a flow medium switching channel between the heat medium circulation channel and the cooling medium circulation channel and a common circulation unit will be described.

図3において、101は真空チャンバ、102は基板、103は基板ホルダ、104は蒸着源、105は熱媒体を所定の温度にする温度制御機能を備えた熱媒体貯蔵容器、106は冷却媒体を所定の温度より低い温度にする温度制御機能を備えた冷却媒体貯蔵容器、109は熱媒体及び冷却媒体を循環させる手段となる共通ポンプ、107は熱媒体又は冷却媒体の何れを共通ポンプ109に供給できる様に流路を切り替える切替手段である往路切替バルブ、108は基板ホルダ103から排出される熱媒体を熱媒体貯蔵容器105又は冷却媒体を冷却媒体貯蔵容器106に戻すことができる様に流路を切り替える復路切替バルブ、110は大気圧と真空とを隔絶して回転力を伝達する回転導入機構である。   In FIG. 3, 101 is a vacuum chamber, 102 is a substrate, 103 is a substrate holder, 104 is a vapor deposition source, 105 is a heat medium storage container having a temperature control function for bringing the heat medium to a predetermined temperature, and 106 is a predetermined cooling medium. A cooling medium storage container having a temperature control function for lowering the temperature of the cooling medium, 109 is a common pump that circulates the heat medium and the cooling medium, and 107 can supply either the heat medium or the cooling medium to the common pump 109. The forward path switching valve 108, which is a switching means for switching the flow path in the same manner, has a flow path so that the heat medium discharged from the substrate holder 103 can be returned to the heat medium storage container 105 or the cooling medium to the cooling medium storage container 106. The return path switching valve 110 for switching is a rotation introducing mechanism that isolates atmospheric pressure and vacuum and transmits rotational force.

ここで、基板ホルダ103は、図示されてない動力源により回転導入機構110を介して回転出来るようになっている。   Here, the substrate holder 103 can be rotated via the rotation introducing mechanism 110 by a power source (not shown).

基板ホルダ103の軸部には、媒体の入口103a及び出口103bが設けられており、また基板ホルダ103の内部は媒体を通液し、媒体の温度を熱伝導で基板102に伝えることができる中空構造となっている。従って、基板ホルダ103にその所望の温度近くの媒体を通液することで、基板ホルダ103に密着させた基板102の温度を所望の値に保つことが出来る。   The shaft portion of the substrate holder 103 is provided with an inlet 103a and an outlet 103b for the medium. The inside of the substrate holder 103 allows the medium to pass therethrough and can transmit the medium temperature to the substrate 102 by heat conduction. It has a structure. Therefore, by passing the medium near the desired temperature through the substrate holder 103, the temperature of the substrate 102 in close contact with the substrate holder 103 can be maintained at a desired value.

また、基板ホルダ103は、基板ホルダ自体に中空部を有する構造とする、又は基板を保持する構造体と中空部をもつ構造体の2つの構造体を、熱伝導性が良い様にビス等で結合して一体化する、又は接触する様な構成としても良い。   Further, the substrate holder 103 has a structure having a hollow portion in the substrate holder itself, or two structures of a structure holding the substrate and a structure having a hollow portion are made of screws or the like so as to have good thermal conductivity. It is good also as a structure which couple | bonds and integrates or contacts.

実際の蒸着においては、基板102の温度を所望の温度にしたい場合、蒸発源104からの輻射等で基板が加熱されることを考慮する必要がある。この場合、予め実験等を行い、基板102の温度が所望の温度となる様に熱媒体貯蔵容器105、冷却媒体貯蔵容器106の各媒体の設定温度を決めても良い。尚、冷却媒体の設定温度は、基板取り出し時に取り扱いが容易な温度であれば良く、例えば手袋をして取り出すことができる温度等を目安に決めても良い。   In actual vapor deposition, when it is desired to set the temperature of the substrate 102 to a desired temperature, it is necessary to consider that the substrate is heated by radiation from the evaporation source 104 or the like. In this case, an experiment or the like may be performed in advance, and the set temperature of each medium of the heat medium storage container 105 and the cooling medium storage container 106 may be determined so that the temperature of the substrate 102 becomes a desired temperature. The set temperature of the cooling medium may be any temperature that can be easily handled when the substrate is taken out. For example, the temperature that can be taken out with gloves may be determined as a guide.

また、共通ポンプ109を設ける位置は、この実施の形態の例では、熱媒体及び冷却媒体共用として媒体の共通の往路上である基板ホルダ103の媒体入口103aと往路切替バルブ107との間としているが、媒体の共通の復路上である基板ホルダ103の媒体出口103bと復路切替バルブ108との間でも良い。   Further, in the example of this embodiment, the position where the common pump 109 is provided is between the medium inlet 103a of the substrate holder 103 and the forward path switching valve 107, which are on the common forward path of the medium as a shared heat medium and cooling medium. However, it may be between the medium outlet 103b of the substrate holder 103 and the return path switching valve 108 on the common return path of the medium.

ここで、蒸着時に基板102を蒸着に最適な温度に設定し、蒸着終了後迅速に基板を取り出せるような温度にする動作を図3を用いて具体的に以下に述べる。   Here, the operation of setting the substrate 102 to an optimum temperature for vapor deposition at the time of vapor deposition and setting the temperature so that the substrate can be quickly taken out after completion of vapor deposition will be specifically described below with reference to FIG.

蒸着時には、熱媒体貯蔵容器105で所定の温度にされている熱媒体が共通ポンプ109に供給される様に往路切替バルブ107の入口が切り替えられ、熱媒体が共通ポンプ109に入る。熱媒体は共通ポンプ109より送り出され、基板ホルダ103の入口103aから入り、基板ホルダ103の中空部を通過後、基板ホルダ103の出口103bから出て復路切替バルブ108に到達する。復路切替バルブ108は、熱媒体がその送出元である熱媒体貯蔵容器105に帰ることが出来るようにバルブ出口を切り替える。   At the time of vapor deposition, the inlet of the forward path switching valve 107 is switched so that the heat medium having a predetermined temperature in the heat medium storage container 105 is supplied to the common pump 109, and the heat medium enters the common pump 109. The heat medium is fed from the common pump 109, enters from the inlet 103a of the substrate holder 103, passes through the hollow portion of the substrate holder 103, exits from the outlet 103b of the substrate holder 103, and reaches the return path switching valve 108. The return path switching valve 108 switches the valve outlet so that the heat medium can return to the heat medium storage container 105 from which the heat medium is sent.

こうすることにより、蒸着時は、基板102は、熱媒体の温度により制御される温度に保つことが出来る。   By doing so, the substrate 102 can be kept at a temperature controlled by the temperature of the heat medium during vapor deposition.

次に蒸着終了時は、冷却媒体貯蔵容器106で所定の温度より低い温度、例えば室温程度にされている冷却媒体が共通ポンプ109に供給される様に往路切替バルブ107の入口が切り替えられ、冷却媒体が共通ポンプ109に入る。冷却媒体は共通ポンプ109より送り出され、基板ホルダ103の入口103aから入り、基板ホルダ103の中空部を通過後、基板ホルダ103の出口103bから出て復路切替バルブ108に到達する。復路切替バルブ108は、冷却媒体が送出元の冷却媒体貯蔵容器106に帰ることが出来るようにバルブ出口を切り替える。   Next, at the end of vapor deposition, the inlet of the forward switch valve 107 is switched so that the cooling medium stored in the cooling medium storage container 106 is supplied to the common pump 109 at a temperature lower than a predetermined temperature, for example, about room temperature. Medium enters the common pump 109. The cooling medium is fed from the common pump 109, enters from the inlet 103 a of the substrate holder 103, passes through the hollow portion of the substrate holder 103, exits from the outlet 103 b of the substrate holder 103, and reaches the return path switching valve 108. The return path switching valve 108 switches the valve outlet so that the cooling medium can be returned to the cooling medium storage container 106 as a sending source.

こうすることにより、基板ホルダ103に通液される媒体は、熱媒体から冷却媒体に往路切替バルブ及び復路切替バルブの切り替えで容易に切り替わることから、基板102の温度を短時間で取り出せる様な温度にすることが出来る。   By doing so, the medium passed through the substrate holder 103 is easily switched from the heat medium to the cooling medium by switching the forward path switching valve and the backward path switching valve, so that the temperature of the substrate 102 can be taken out in a short time. Can be made.

また、基板ホルダは、その中空部を熱媒体系と冷却媒体系との2系統を有する構造をとる必要がないため簡素化でき、また、熱媒体の循環手段と冷却媒体の循環手段とでそれぞれ専用のポンプを設けていたのに対して共通の一台のポンプとすることで、装置の簡素化及びコストダウンができる。   In addition, the substrate holder can be simplified because the hollow portion does not need to have a structure having two systems of a heat medium system and a cooling medium system, and the heat medium circulation means and the cooling medium circulation means respectively. By using a common pump as opposed to providing a dedicated pump, the apparatus can be simplified and the cost can be reduced.

また、熱媒体と冷却媒体とは混合すると分離させるのは容易でないこともあり、媒体の補充や廃棄など保守等の面から同一種であることが好ましく、媒体の最高温度が100℃未満であれば水を用いるのが簡便であり好ましい。また、100℃以上の制御温度の場合はオイルを用いるのが好ましい。   In addition, it may not be easy to separate the heat medium and the cooling medium when they are mixed, and it is preferable that they are of the same type in terms of maintenance such as replenishment and disposal of the medium, and the maximum temperature of the medium is less than 100 ° C. If water is used, it is convenient and preferable. In the case of a control temperature of 100 ° C. or higher, it is preferable to use oil.

給水源の圧力で供給される、例えば水道水等を冷却媒体とする場合、特に冷却媒体貯蔵容器を設けて冷却媒体の温度制御をしたり、ポンプを設けて循環させることなく、単に基板ホルダの中空部に通液させ、そのまま排水するだけで良い。尚、熱媒体系と冷却水系とを設けている場合は、ポンプの停止に代わる冷却水の供給の停止は、給水口の次に水流を止める例えば止水栓を設け、これを介して水を供給するようにれば良い。   In the case of using, for example, tap water supplied by the pressure of the water supply source as a cooling medium, the temperature of the cooling medium is not particularly controlled by providing a cooling medium storage container, and the substrate holder is simply circulated without being circulated by providing a pump. It is only necessary to let the hollow part pass and drain as it is. If a heat medium system and a cooling water system are provided, the supply of cooling water instead of stopping the pump can be stopped by providing a stop cock, for example, to stop the water flow after the water supply port, and supplying water through this. What is necessary is just to supply.

蒸着源104の加熱方法は特に限定されず、例えば抵抗加熱方式、電子線加熱方式、誘導加熱方式などを用いても良い。いずれの方式においても蒸着時に基板に熱が加わるため、本発明は有効である。   The heating method of the vapor deposition source 104 is not particularly limited, and for example, a resistance heating method, an electron beam heating method, an induction heating method, or the like may be used. In any method, since heat is applied to the substrate during vapor deposition, the present invention is effective.

この場合、特に、例えば蒸着膜の膜厚を50μm以上の厚膜とする様な場合、蒸着時間が長くなり加熱量も増えるため、基板温度が上昇し易くなることから、基板ホルダ103により基板温度を冷却方向に容易に制御することが出来る本発明は有効である。   In this case, in particular, for example, when the thickness of the deposited film is 50 μm or more, the deposition temperature becomes longer and the amount of heating increases, so that the substrate temperature easily rises. The present invention which can be easily controlled in the cooling direction is effective.

図3に示す様な真空蒸着装置を用いた。回転機構を有する基板ホルダ103に、大きさ300mm×300mm、厚さ1mmのアルミニウム製基板をセットした。   A vacuum deposition apparatus as shown in FIG. 3 was used. An aluminum substrate having a size of 300 mm × 300 mm and a thickness of 1 mm was set on the substrate holder 103 having a rotating mechanism.

用いた熱媒体及び冷却媒体はいずれも出光興産製鉱物系熱媒油ダフニーサーミック8(商品名)である。   The heat medium and the cooling medium used are both Idemitsu Kosan's mineral heat medium oil Daphne Thermic 8 (trade name).

抵抗加熱方式の蒸着源104の容器はタンタル製で、容量200cm3の円筒形で、開口部が細長いスリット形状を有している。蒸発源104の容器は図示されてない真空チャンバ101内部の電極部材に固定されている。この電極は真空チャンバ101の外部に設けている図示されてない電源に接続され、通電出来る仕組みになっている。 The container of the resistance heating type vapor deposition source 104 is made of tantalum, has a cylindrical shape with a capacity of 200 cm 3 , and has an elongated slit shape. The container of the evaporation source 104 is fixed to an electrode member inside the vacuum chamber 101 (not shown). This electrode is connected to a power source (not shown) provided outside the vacuum chamber 101 so that it can be energized.

蒸着源104の容器内部には、図示されてない熱電対を設けており、容器内部の蒸発材温度を測定しながら蒸着をする。   A thermocouple (not shown) is provided inside the container of the vapor deposition source 104, and vapor deposition is performed while measuring the temperature of the evaporation material inside the container.

蒸発源104の容器内部に、蒸着材として臭化セシウム300gを充填した後に電極部材に固定した。蒸着時、蒸発源104の容器内部の温度が800℃となるように蒸発源104の容器に通電する電流値を調整し、蒸発源104の容器内部がほぼ一定温度で蒸着していった。   The container of the evaporation source 104 was filled with 300 g of cesium bromide as a vapor deposition material, and then fixed to the electrode member. At the time of vapor deposition, the current value applied to the container of the evaporation source 104 was adjusted so that the temperature inside the container of the evaporation source 104 became 800 ° C., and the inside of the container of the evaporation source 104 was deposited at a substantially constant temperature.

この後、ある時点で蒸着源の容器内部の温度が急激に上昇し始めるので、その時点で蒸発材を飛ばし終わったと判断し、蒸着終了とした。   After this, the temperature inside the container of the vapor deposition source began to rise rapidly at a certain point in time, so it was determined that the evaporation material had been blown off at that point, and the vapor deposition was completed.

尚、蒸着時の真空度は10-2Paとした。また、基板中央部に図示されてない熱電対を貼り付け、基板温度を測定した。 The degree of vacuum at the time of vapor deposition was set to 10 −2 Pa. A thermocouple (not shown) was attached to the center of the substrate, and the substrate temperature was measured.

(実施例1)
熱媒体貯蔵容器105の熱媒体の設定温度を150℃、冷却媒体貯蔵容器106の冷却媒体の設定温度を30℃として、熱媒体貯蔵容器105から熱媒体を基板ホルダ103の中空部に通液し循環させながら蒸着を開始した。
Example 1
The set temperature of the heat medium in the heat medium storage container 105 is 150 ° C., the set temperature of the cooling medium in the cooling medium storage container 106 is 30 ° C., and the heat medium is passed from the heat medium storage container 105 to the hollow portion of the substrate holder 103. Deposition was started while circulating.

蒸着開始当初の基板温度は、150℃であり、また蒸着終了間際の基板温度は、155℃であった。   The substrate temperature at the beginning of the deposition was 150 ° C., and the substrate temperature just before the end of the deposition was 155 ° C.

その後、蒸着終了と同時に往路切替バルブ107、復路切替バルブ108を切り替えて冷却媒体貯蔵容器106から冷却媒体を基板ホルダ103の中空部に通液して循環させた。   Then, simultaneously with the completion of the deposition, the forward path switching valve 107 and the backward path switching valve 108 were switched to pass the cooling medium from the cooling medium storage container 106 through the hollow portion of the substrate holder 103 and circulate.

蒸着終了後、基板温度が40℃以下となるまでに約20分を要した。   It took about 20 minutes for the substrate temperature to be 40 ° C. or lower after the deposition was completed.

(実施例2)
熱媒体貯蔵容器105の熱媒体の設定温度を210℃、冷却媒体貯蔵容器106の冷却媒体の設定温度を30℃として、熱媒体貯蔵容器105から熱媒体を基板ホルダ103の中空部に通液し循環させながら蒸着を開始した。
(Example 2)
The set temperature of the heat medium in the heat medium storage container 105 is 210 ° C., the set temperature of the cooling medium in the cooling medium storage container 106 is 30 ° C., and the heat medium is passed from the heat medium storage container 105 to the hollow portion of the substrate holder 103. Deposition was started while circulating.

蒸着開始当初の基板温度は、210℃であり、また蒸着終了間際の基板温度は、213℃であった。   The substrate temperature at the beginning of deposition was 210 ° C., and the substrate temperature just before the end of deposition was 213 ° C.

その後、蒸着終了と同時に往路切替バルブ107、復路切替バルブ108を切り替えて冷却媒体貯蔵容器106から冷却媒体を基板ホルダ103の中空部に通液し循環させた。   After that, simultaneously with the completion of vapor deposition, the forward path switching valve 107 and the backward path switching valve 108 were switched to pass the cooling medium from the cooling medium storage container 106 through the hollow portion of the substrate holder 103 and circulate.

蒸着終了後、基板温度が40℃以下となるまでに約25分を要した。   It took about 25 minutes for the substrate temperature to reach 40 ° C. or lower after the deposition.

(比較例1)
熱媒体貯蔵容器105の熱媒体の設定温度を150℃として熱媒体を基板ホルダ103の中空部に通液し循環させながら蒸着を開始した。その後、蒸着終了と同時に熱媒体の基板ホルダ103の中空部への通液を停止した。
(Comparative Example 1)
Vapor deposition was started while circulating the heat medium through the hollow portion of the substrate holder 103 by setting the temperature of the heat medium in the heat medium storage container 105 to 150 ° C. Thereafter, simultaneously with the completion of the vapor deposition, the flow of the heat medium through the hollow portion of the substrate holder 103 was stopped.

蒸着開始当初の基板温度は、150℃であり、また蒸着終了間際の基板温度は、155℃であった。   The substrate temperature at the beginning of the deposition was 150 ° C., and the substrate temperature just before the end of the deposition was 155 ° C.

蒸着終了後、基板温度が40℃以下となるまでに約200分を要した。   It took about 200 minutes for the substrate temperature to reach 40 ° C. or lower after the deposition.

(比較例2)
熱媒体貯蔵容器105の熱媒体の設定温度を150℃として熱媒体を基板ホルダ103の中空部に通液し循環させながら蒸着を開始した。蒸着開始当初の基板温度は、150℃であり、また蒸着終了間際の基板温度は、155℃であった。
(Comparative Example 2)
Vapor deposition was started while circulating the heat medium through the hollow portion of the substrate holder 103 by setting the temperature of the heat medium in the heat medium storage container 105 to 150 ° C. The substrate temperature at the beginning of the deposition was 150 ° C., and the substrate temperature just before the end of the deposition was 155 ° C.

その後、蒸着終了と同時に熱媒体貯蔵容器105の熱媒体の設定温度を当初の設定温度の150℃から30℃とに設定を変更して基板ホルダ103の中空部へ通液し循環を継続させた。   Thereafter, at the same time as the vapor deposition was completed, the setting temperature of the heat medium in the heat medium storage container 105 was changed from the initial setting temperature of 150 ° C. to 30 ° C., and the liquid was passed through the hollow portion of the substrate holder 103 to continue the circulation. .

蒸着終了後、基板温度が40℃以下となるまでに約60分を要した。   It took about 60 minutes for the substrate temperature to be 40 ° C. or lower after the deposition.

(比較例3)
熱媒体貯蔵容器105の熱媒体の設定温度を150℃、冷却媒体貯蔵容器106の冷却媒体の設定温度を30℃として、熱媒体貯蔵容器105から熱媒体を基板ホルダ103の中空部に通液し循環させた。次に、蒸着の開始時に熱媒体の基板ホルダ103の中空部への通液を停止した。基板温度は、蒸着開始時は150℃であったが、蒸着が進むにつれて上昇し蒸着終了間際では180℃に達した。
(Comparative Example 3)
The set temperature of the heat medium in the heat medium storage container 105 is 150 ° C., the set temperature of the cooling medium in the cooling medium storage container 106 is 30 ° C., and the heat medium is passed from the heat medium storage container 105 to the hollow portion of the substrate holder 103. It was circulated. Next, at the start of vapor deposition, the flow of the heat medium through the hollow portion of the substrate holder 103 was stopped. The substrate temperature was 150 ° C. at the start of vapor deposition, but increased as vapor deposition proceeded and reached 180 ° C. just before the end of vapor deposition.

その後、蒸着終了と同時に往路切替バルブ107、復路切替バルブ108を切り替えて冷却媒体貯蔵容器106から冷却媒体を基板ホルダ103の中空部に通液し循環させた。   After that, simultaneously with the completion of vapor deposition, the forward path switching valve 107 and the backward path switching valve 108 were switched to pass the cooling medium from the cooling medium storage container 106 through the hollow portion of the substrate holder 103 and circulate.

蒸着終了後、基板温度が40℃以下となるまでに約23分を要した。   It took about 23 minutes for the substrate temperature to reach 40 ° C. or lower after the deposition.

(評価)
蒸着終了時から基板温度が40℃以下となるまでの時間を比較する。
比較例1、比較例2、実施例1では、蒸着終了時の基板温度はほぼ同じ155℃であったが、40℃以下となるまでの時間は、それぞれ、120分、60分、20分となった。
(Evaluation)
The time until the substrate temperature becomes 40 ° C. or less after the end of the deposition is compared.
In Comparative Example 1, Comparative Example 2, and Example 1, the substrate temperature at the end of vapor deposition was almost the same 155 ° C., but the time until it became 40 ° C. or less was 120 minutes, 60 minutes, and 20 minutes, respectively. became.

従って、蒸着終了後、基板ホルダ103の中空部へ供給する媒体を150℃の熱媒体から30℃の冷却媒体に切り替えた実施例1は、媒体自体や媒体循環装置の冷却時間が必要な比較例2と比較して冷却時間が短く、また比較例1の積極的に冷却しない方法の冷却時間からは著しい短縮が出来ることが確認出来た。   Therefore, Example 1 in which the medium supplied to the hollow portion of the substrate holder 103 is switched from a heating medium at 150 ° C. to a cooling medium at 30 ° C. is a comparative example that requires cooling time for the medium itself and the medium circulation device. It was confirmed that the cooling time was shorter than that of No. 2 and that the cooling time of Comparative Example 1 which was not actively cooled could be significantly shortened.

また、蒸着時の基板温度は、比較例3が示すように、蒸着開始後、蒸発源からの輻射熱や蒸発蒸気の顕熱により基板温度が上昇する。   Further, as shown in Comparative Example 3, the substrate temperature at the time of vapor deposition rises due to radiant heat from the evaporation source and sensible heat of the vaporized vapor after the vapor deposition is started.

実施例1、2の結果から、蒸着源からの輻射熱や蒸発蒸気の顕熱により多少の基板温度の上昇は見られるものの、比較例3で蒸着終了間際に達した温度よりも低い温度及び高い温度のどちらにおいても基板温度をほぼ一定に保てることが確認できた。   From the results of Examples 1 and 2, although a slight increase in the substrate temperature is observed due to the radiant heat from the vapor deposition source and the sensible heat of the evaporated vapor, the temperature is lower and higher than the temperature just reached the end of the vapor deposition in Comparative Example 3. In both cases, it was confirmed that the substrate temperature could be kept almost constant.

本発明の実施の形態の一例を示す熱媒体系路と冷却媒体系路とを設けてある真空蒸着装置の概念図である。It is a conceptual diagram of the vacuum evaporation system provided with the heat-medium system path and cooling-medium system path which show an example of embodiment of this invention. 本発明の実施の形態の一例を示す熱媒体系と冷却媒体系とを切り替える手段を設けてある真空蒸着装置の概念図である。It is a conceptual diagram of the vacuum evaporation system provided with the means which switches the heat medium system which shows an example of embodiment of this invention, and a cooling medium system. 本発明の実施の形態の一例を示す熱媒体系と冷却媒体系とを切り替える手段と、共通の循環手段とを設けてある真空蒸着装置の概念図である。It is a conceptual diagram of the vacuum evaporation system provided with the means to switch the heat medium system which shows an example of embodiment of this invention, and a cooling medium system, and the common circulation means. 従来の基板温度制御装置を示す断面側面図である。It is a cross-sectional side view which shows the conventional board | substrate temperature control apparatus.

符号の説明Explanation of symbols

1 真空槽
2 基板
3 基板ホルダ
4 支柱
7 基板上に生成された膜
9 薄膜材料の原子又はクラスター、或いはそれらのイオン
10 蒸発源
11 支持板
14 上下機構
21 容器
21a 冷媒入り口
21b 冷媒出口
22 抵抗発熱体
23 円板
24 熱電対
25 制御器
26 電源
101 真空チャンバ
102 基板
103 基板ホルダ
103a 媒体入口
103b 媒体出口
104 蒸発源
105 熱媒体貯蔵容器
106 冷却媒体貯蔵容器
107 往路切替バルブ
108 復路切替バルブ
109 共通ポンプ
110 回転導入機構
120 熱媒体ポンプ
122 冷却媒体ポンプ
123a 熱媒体入口
123b 熱媒体出口
123d 冷却媒体入口
123e 冷却媒体出口
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Board | substrate 3 Board | substrate holder 4 Support | pillar 7 The film | membrane produced | generated on the board | substrate 9 The atom or cluster of thin film material, or those ions 10 Evaporation source 11 Support plate 14 Vertical mechanism 21 Container 21a Refrigerant inlet 21b Refrigerant outlet 22 Resistance heat generation Body 23 Disk 24 Thermocouple 25 Controller 26 Power supply 101 Vacuum chamber 102 Substrate 103 Substrate holder 103a Medium inlet 103b Medium outlet 104 Evaporation source 105 Heat medium storage container 106 Cooling medium storage container 107 Outward switching valve 108 Return path switching valve 109 Common pump DESCRIPTION OF SYMBOLS 110 Rotation introduction mechanism 120 Heat medium pump 122 Cooling medium pump 123a Heat medium inlet 123b Heat medium outlet 123d Cooling medium inlet 123e Cooling medium outlet

Claims (8)

真空チャンバ内に、基板ホルダに保持される基板と蒸発源にセットされる蒸発材とを備え、前記蒸発源を用いて前記基板の表面に前記蒸発材の薄膜を形成する真空蒸着方法において、
前記基板ホルダは通液可能な中空部を有するものであって、
前記薄膜を形成する工程中は、所定温度の熱媒体を前記基板ホルダの前記中空部に通液し、
前記薄膜を形成する工程の終了後は、前記所定温度より低い温度の冷却媒体を前記基板ホルダの前記中空部に通液し前記基板を冷却することを特徴とする真空蒸着方法。
In a vacuum deposition method comprising a substrate held by a substrate holder and an evaporation material set in an evaporation source in a vacuum chamber, and forming a thin film of the evaporation material on the surface of the substrate using the evaporation source.
The substrate holder has a hollow portion through which liquid can flow,
During the step of forming the thin film, a heat medium having a predetermined temperature is passed through the hollow portion of the substrate holder,
After completion of the step of forming the thin film, a cooling medium having a temperature lower than the predetermined temperature is passed through the hollow portion of the substrate holder to cool the substrate.
前記熱媒体と前記冷却媒体が同一種の液体であることを特徴とする請求項1に記載の真空蒸着方法。 The vacuum deposition method according to claim 1, wherein the heat medium and the cooling medium are the same type of liquid. 真空チャンバと、前記真空チャンバ内に基板ホルダと蒸発源とを備え、前記基板ホルダに保持された基板の表面に薄膜を形成する真空蒸着装置において、
前記基板ホルダは、通液可能な中空部を有し、
熱媒体貯蔵容器、前記熱媒体貯蔵容器に貯蔵される熱媒体を所定温度に維持する温度制御手段、前記熱媒体が前記熱媒体貯蔵容器から前記基板ホルダの前記中空部を経由して前記熱媒体貯蔵容器に循環できる、前記熱媒体貯蔵容器と前記基板ホルダとを結ぶ第1往路と前記基板ホルダと前記熱媒体貯蔵容器とを結ぶ第1復路とからなる熱媒体循環流路、及び前記熱媒体を循環させる熱媒体循環手段とを有する熱媒体系と、
冷却媒体貯蔵容器、前記冷却媒体貯蔵容器に貯蔵される冷却媒体を前記所定温度より低い温度に維持する温度制御手段、前記冷却媒体が前記冷却媒体貯蔵容器から前記基板ホルダの前記中空部を経由して前記冷却媒体貯蔵容器に循環できる、前記冷却媒体貯蔵容器と前記基板ホルダを結ぶ第2往路と前記基板ホルダと前記冷却媒体貯蔵容器を結ぶ第2復路とからなる冷却媒体循環流路、及び前記冷却媒体を循環させる冷却媒体循環手段とを有する冷却媒体系とを設けることを特徴とする真空蒸着装置。
In a vacuum deposition apparatus comprising a vacuum chamber, a substrate holder and an evaporation source in the vacuum chamber, and forming a thin film on the surface of the substrate held by the substrate holder,
The substrate holder has a hollow portion through which liquid can pass,
A heat medium storage container, temperature control means for maintaining the heat medium stored in the heat medium storage container at a predetermined temperature, and the heat medium from the heat medium storage container via the hollow portion of the substrate holder. A heat medium circulation channel comprising a first forward path connecting the heat medium storage container and the substrate holder and a first return path connecting the substrate holder and the heat medium storage container, and the heat medium that can circulate to the storage container A heat medium system having a heat medium circulation means for circulating the heat medium;
A cooling medium storage container, temperature control means for maintaining the cooling medium stored in the cooling medium storage container at a temperature lower than the predetermined temperature, and the cooling medium from the cooling medium storage container via the hollow portion of the substrate holder. A cooling medium circulation flow path comprising a second forward path connecting the cooling medium storage container and the substrate holder, and a second return path connecting the substrate holder and the cooling medium storage container, which can be circulated to the cooling medium storage container; and And a cooling medium system having a cooling medium circulation means for circulating the cooling medium.
前記第1往路及び前記第2往路の中途、及び前記第1復路及び前記第2復路の中途にそれぞれ分岐路を介設し、それぞれの分岐部に前記熱媒体循環流路または前記冷却媒体循環流路を形成する往路切換手段及び復路切換手段を設け、前記第1往路及び前記第2往路の前記分岐部から前記基板ホルダまでの流路を前記熱媒体系と前記冷却媒体系の共通の往路とし、前記基板ホルダから前記第1復路及び前記第2復路の前記分岐部までの流路を前記熱媒体系と前記冷却媒体系の共通の復路とすることを特徴とする請求項3に記載の真空蒸着装置。 A branch path is provided in the middle of the first forward path and the second forward path, and in the middle of the first return path and the second return path, and the heat medium circulation flow path or the cooling medium circulation flow is provided in each branch portion. A forward path switching means and a backward path switching means for forming a path are provided, and a flow path from the branch portion of the first forward path and the second forward path to the substrate holder is a common forward path of the heat medium system and the cooling medium system. The vacuum according to claim 3, wherein a flow path from the substrate holder to the branch portion of the first return path and the second return path is a common return path of the heat medium system and the cooling medium system. Vapor deposition equipment. 前記熱媒体循環手段及び前記冷却媒体循環手段を共通の循環手段として前記共通の往路又は復路のいずれかに配設することを特徴とする請求項4に記載の真空蒸着装置。 The vacuum deposition apparatus according to claim 4, wherein the heat medium circulation unit and the cooling medium circulation unit are disposed in either the common forward path or the return path as a common circulation means. 前記熱媒体と前記冷却媒体が同一種の液体であることを特徴とする請求項3乃至5の何れか1項に記載の真空蒸着装置。 The vacuum deposition apparatus according to claim 3, wherein the heat medium and the cooling medium are the same type of liquid. 真空チャンバと、前記真空チャンバ内に設けられ、基板ホルダと蒸発源とを備え、基板ホルダに保持された基板の表面に薄膜を形成する真空蒸着装置において、
前記基板ホルダは、通液可能な中空部を有し、
熱媒体貯蔵容器、前記熱媒体貯蔵容器に貯蔵される熱媒体を所定温度に維持する温度制御手段、前記熱媒体が前記熱媒体貯蔵容器から前記基板ホルダの前記中空部を経由して前記熱媒体貯蔵容器に循環できる、前記熱媒体貯蔵容器と前記基板ホルダとを結ぶ往路と、前記基板ホルダと前記熱媒体貯蔵容器とを結ぶ復路とからなる熱媒体循環流路、及び前記熱媒体を循環させる熱媒体循環手段とを有する熱媒体系と、
給水源に接続された給水口より給水源の圧力により供給される冷却水が前記基板ホルダを経由して排水される、前記給水口と前記基板ホルダとを結ぶ給水路と前記基板ホルダからの排水流路とからなる冷却水流路を有する冷却水系とを設けることを特徴とする真空蒸着装置。
In a vacuum deposition apparatus that is provided in a vacuum chamber and the vacuum chamber, includes a substrate holder and an evaporation source, and forms a thin film on the surface of the substrate held by the substrate holder.
The substrate holder has a hollow portion through which liquid can pass,
A heat medium storage container, temperature control means for maintaining the heat medium stored in the heat medium storage container at a predetermined temperature, and the heat medium from the heat medium storage container via the hollow portion of the substrate holder. A heat medium circulation flow path comprising a forward path connecting the heat medium storage container and the substrate holder, and a return path connecting the substrate holder and the heat medium storage container, and circulating the heat medium that can be circulated to the storage container. A heat medium system having a heat medium circulation means;
The cooling water supplied by the pressure of the water supply source from the water supply port connected to the water supply source is drained through the substrate holder, and the drainage from the substrate holder and the water supply path connecting the water supply port and the substrate holder. And a cooling water system having a cooling water flow path comprising a flow path.
前記往路及び前記給水路の中途、前記復路及び前記排水流路の中途にそれぞれ分岐路を介設し、それぞれの分岐部に前記熱媒体循環流路または前記冷却水流路を形成する往路切換手段及び復路切換手段を設け、前記往路及び前記給水路の前記分岐部から前記基板ホルダまでの流路を前記熱媒体と前記冷却水の共通の流路とし、前記基板ホルダから前記復路及び前記排水流路の前記分岐部までの流路を前記熱媒体と前記冷却水の共通の流路とすると共に、
前記熱媒体循環手段を前記往路の前記熱媒体貯蔵容器から前記分岐部までの中途又は前記復路の前記分岐部から前記熱媒体貯蔵容器までの中途のいずれかに配設することを特徴とする請求項7に記載の真空蒸着装置。
A forward path switching means for interposing a branch path in the middle of the forward path and the water supply path, in the middle of the return path and the drainage flow path, and forming the heat medium circulation path or the cooling water flow path in each branch portion; A return path switching unit is provided, and a flow path from the branch portion of the forward path and the water supply path to the substrate holder is a common flow path of the heat medium and the cooling water, and the return path and the drain flow path from the substrate holder And the flow path to the branch portion is a common flow path for the heat medium and the cooling water,
The heat medium circulation means is disposed either halfway from the heat medium storage container to the branch part in the forward path or halfway from the branch part to the heat medium storage container in the return path. Item 8. The vacuum evaporation apparatus according to Item 7.
JP2005143655A 2005-05-17 2005-05-17 Vacuum vapor deposition method, and vacuum vapor deposition apparatus Pending JP2006322016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143655A JP2006322016A (en) 2005-05-17 2005-05-17 Vacuum vapor deposition method, and vacuum vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143655A JP2006322016A (en) 2005-05-17 2005-05-17 Vacuum vapor deposition method, and vacuum vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JP2006322016A true JP2006322016A (en) 2006-11-30

Family

ID=37541908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143655A Pending JP2006322016A (en) 2005-05-17 2005-05-17 Vacuum vapor deposition method, and vacuum vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JP2006322016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842874B (en) * 2007-09-06 2011-12-14 分子间公司 Semiconductor processing method, semiconductor process chamber and handle
KR20210041475A (en) 2019-10-07 2021-04-15 캐논 톡키 가부시키가이샤 Film formation apparatus, film formation method, and manufacturing method of electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842874B (en) * 2007-09-06 2011-12-14 分子间公司 Semiconductor processing method, semiconductor process chamber and handle
KR20210041475A (en) 2019-10-07 2021-04-15 캐논 톡키 가부시키가이샤 Film formation apparatus, film formation method, and manufacturing method of electronic device
JP2021059755A (en) * 2019-10-07 2021-04-15 キヤノントッキ株式会社 Film deposition apparatus, film deposition method, and manufacturing method of electronic device
JP7304261B2 (en) 2019-10-07 2023-07-06 キヤノントッキ株式会社 Film forming apparatus, film forming method, and electronic device manufacturing method

Similar Documents

Publication Publication Date Title
JP4815295B2 (en) Plasma processing equipment
US10163665B2 (en) Temperature control system for semiconductor manufacturing system
JP7014908B2 (en) Temperature control for chemical mechanical polishing
JP4256031B2 (en) Processing apparatus and temperature control method thereof
TW201230165A (en) Apparatus and method for temperature control of a semiconductor substrate support
JP5061911B2 (en) Loop heat pipe and electronic equipment
TWI506680B (en) Substrate cooling means and irradiation ion beam
WO2010053173A1 (en) Apparatus and method for controlling temperature of semiconductor wafer
KR101946094B1 (en) Temperature control device, processing device, and temperature control method
US20080203925A1 (en) Plasma processing apparatus
JP2006322016A (en) Vacuum vapor deposition method, and vacuum vapor deposition apparatus
TWI756863B (en) Ironless Rotary Motors
WO2003012567A1 (en) Plasma chamber wall segment temperature control
JP5321716B2 (en) Loop heat pipe and electronic equipment
JP2002100298A (en) Feed gas vaporizer for arc chamber
US7326877B2 (en) Laser thermal processing chuck with a thermal compensating heater module
JP2004193307A (en) Thin film manufacturing device
JP2013146667A (en) Centrifuge
JP2001257253A (en) Wafer processing device and method of manufacturing wafer
JP4842787B2 (en) Steam generating apparatus, processing system, steam generating method and recording medium
EP0611052B1 (en) Apparatus for cooling semiconductor processing equipment
JP2009092307A (en) Bathroom heating and drying apparatus
JP2012111666A (en) Creeping discharge type ozonizer
JPH0612394Y2 (en) Treatment liquid temperature controller
JPH08359Y2 (en) Carbon deposition equipment