JP2006318807A - Illumination device and manufacturing method of the same - Google Patents

Illumination device and manufacturing method of the same Download PDF

Info

Publication number
JP2006318807A
JP2006318807A JP2005141369A JP2005141369A JP2006318807A JP 2006318807 A JP2006318807 A JP 2006318807A JP 2005141369 A JP2005141369 A JP 2005141369A JP 2005141369 A JP2005141369 A JP 2005141369A JP 2006318807 A JP2006318807 A JP 2006318807A
Authority
JP
Japan
Prior art keywords
point
lens
collimation
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005141369A
Other languages
Japanese (ja)
Other versions
JP4945089B2 (en
Inventor
Toshishige Shibazaki
利成 柴崎
Hideo Honma
秀男 本間
Eiji Koyama
栄二 小山
Hajime Murakami
村上  元
Masaya Adachi
昌哉 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005141369A priority Critical patent/JP4945089B2/en
Publication of JP2006318807A publication Critical patent/JP2006318807A/en
Application granted granted Critical
Publication of JP4945089B2 publication Critical patent/JP4945089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin and energy-saving type illumination device capable of enhancing brightness and display quality, and a manufacturing method of the same. <P>SOLUTION: The illumination device 1A is constituted by a micro-lens array 1 and a light-emitting member 2 integrally joined through an adhesive layer 3. A plurality of collimation lenses 12 are formed on the micro-lens array 1 in a required alignment. Point light emission sources 23a are formed on the light emission member 2 with the same alignment as that of the collimation lenses 12. Point light emission sources 23a are arranged on a focus of the collimation lenses 12, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶表示装置のバックライト等として使用される照明装置とその製造方法とに関する。   The present invention relates to a lighting device used as a backlight of a liquid crystal display device and a manufacturing method thereof.

従来より、携帯電話やPDA等の小型電子機器に備えられる液晶表示装置のバックライト部として、LEDや冷陰極管を用いる場合に比べてバックライト部の薄形化及び省電力化並びに液晶表示装置の高輝度化に有利であることから、エレクトロルミネセンス素子(以下、本明細書においてはこれを「EL素子」と略称する。)を適用することが検討されている。   Conventionally, as a backlight portion of a liquid crystal display device provided in a small electronic device such as a mobile phone or a PDA, the backlight portion is made thinner and power-saving and a liquid crystal display device as compared with the case where an LED or a cold cathode tube is used. Therefore, it is considered to apply an electroluminescence element (hereinafter, abbreviated as “EL element” in the present specification).

図6に示すように、従来より知られている一般的なEL素子100は、透明基板101の片面に透明電極102と発光層103と光反射性の下部電極104とをこの順に積層してなる構造を有し、透明電極102と下部電極104の間に所定の電圧を印加することにより発光層103を発光させ、この発光層103から出射された光を透明電極102及び透明基板101を介して素子外に取り出すようになっている。なお、透明基板101はガラスなどの扁平な透光性材料から構成され、透明電極102はITO(インジウム−スズ酸化物)などの透光性導電材料から構成される。また、発光層103はZnS(硫化亜鉛)などの無機発光材料又は有機発光材料から構成され、光反射性の下部電極104はアルミニウムの蒸着膜などをもって構成される。   As shown in FIG. 6, a general EL element 100 known in the past is formed by laminating a transparent electrode 102, a light emitting layer 103, and a light reflective lower electrode 104 in this order on one side of a transparent substrate 101. The light emitting layer 103 emits light by applying a predetermined voltage between the transparent electrode 102 and the lower electrode 104, and the light emitted from the light emitting layer 103 is transmitted through the transparent electrode 102 and the transparent substrate 101. It is designed to be taken out from the element. The transparent substrate 101 is made of a flat translucent material such as glass, and the transparent electrode 102 is made of a translucent conductive material such as ITO (indium-tin oxide). The light emitting layer 103 is made of an inorganic light emitting material such as ZnS (zinc sulfide) or an organic light emitting material, and the light reflective lower electrode 104 is made of an aluminum vapor deposition film or the like.

このように、EL素子100は、透明基板101の片面に所要の薄膜又は厚膜102〜104を順次積層してなるので、薄形に形成できるものの、光の取り出し効率及び光の指向性が低いので、このままでは液晶表示装置のバックライト部として好適に用いることができない。即ち、透明基板101としてガラス基板を用い、透明電極102をITOをもって形成した場合、ガラスの屈折率が約1.5であるのに対してITOの屈折率が約2.0であるため、発光層103から出射された光のうち法線とのなす角度が約40度以上の光は、透明基板101と透明電極102との界面で全反射されて素子内に閉じ込められ、熱エネルギーとなって消費されるので、この種のEL素子100における光の取り出し効率は約20%に過ぎず、バックライト部の省電力化の要求に対応し難い。また、この種のEL素子100から出射される光は、法線方向を中心として約±40度の範囲の広がりをもつ拡散光になるため、指向性が低く、液晶表示装置の高輝度化と表示品質の高度化の要求にも対応し難い。   As described above, the EL element 100 is formed by sequentially laminating the required thin films or thick films 102 to 104 on one surface of the transparent substrate 101. Therefore, although it can be formed in a thin shape, the light extraction efficiency and the light directivity are low. Therefore, it cannot be suitably used as a backlight part of a liquid crystal display device as it is. That is, when a glass substrate is used as the transparent substrate 101 and the transparent electrode 102 is formed of ITO, the refractive index of ITO is about 2.0 while the refractive index of glass is about 1.5. Of the light emitted from the layer 103, light having an angle of about 40 degrees or more with the normal line is totally reflected at the interface between the transparent substrate 101 and the transparent electrode 102 and confined in the element, and becomes thermal energy. Since it is consumed, the light extraction efficiency in this type of EL element 100 is only about 20%, and it is difficult to meet the demand for power saving in the backlight portion. In addition, light emitted from this type of EL element 100 becomes diffused light having a range of about ± 40 degrees centering on the normal direction, so that directivity is low, and the brightness of the liquid crystal display device is increased. It is difficult to meet the demand for higher display quality.

かかる問題点を解決するものとして、透明基板の光出射側の表面に複数個の錐状のレンズ素子が発光層と平行に配設された微小レンズアレイ素子を備え、発光層で生じた光を透明基板及び微小レンズアレイ素子の各レンズ素子を通して外部に出射させるものが従来より提案されている(例えば、特許文献1参照。)。このEL素子は、透明基板の光出射側の表面に複数個の錐状のレンズ素子が発光層と平行に配設された微小レンズアレイ素子を備えたので、発光層から出射された光の全反射を解消又は抑制することができ、光の取り出し効率を高めることができる。
特開2003−59641号公報
In order to solve such a problem, a light emitting side surface of a transparent substrate is provided with a micro lens array element in which a plurality of conical lens elements are arranged in parallel to the light emitting layer, and light generated in the light emitting layer is Conventionally proposed is one that emits light to the outside through each lens element of a transparent substrate and a micro lens array element (see, for example, Patent Document 1). This EL element includes a microlens array element in which a plurality of conical lens elements are arranged in parallel to the light emitting layer on the light emitting side surface of the transparent substrate, so that all of the light emitted from the light emitting layer can be obtained. Reflection can be eliminated or suppressed, and light extraction efficiency can be increased.
JP 2003-59641 A

しかしながら、特許文献1に記載の技術は、透明基板の光出射側の表面に円錐状又は角錐状などの錐状のレンズ素子を発光層と平行に配設する構成であるので、発光層から出射された光を発光層ひいては液晶表示装置の法線方向にコリメートする機能を有さず、液晶表示装置に照射される光の指向性を高めることができない。このため、発光層で生じた光を有効に利用することができず、要求されるバックライト部の省電力化を達成することが未だ困難である。また、指向性の高い光を液晶表示装置に均一に照射することができないことから、要求される液晶表示装置の高輝度化及び表示品質の高度化を達成することも困難である。   However, since the technique described in Patent Document 1 has a configuration in which a conical lens element such as a conical shape or a pyramid shape is disposed in parallel with the light emitting layer on the light emitting side surface of the transparent substrate, the light is emitted from the light emitting layer. It does not have a function of collimating the emitted light in the normal direction of the light emitting layer and thus the liquid crystal display device, and the directivity of the light applied to the liquid crystal display device cannot be increased. For this reason, the light generated in the light emitting layer cannot be used effectively, and it is still difficult to achieve the required power saving of the backlight unit. Further, since it is impossible to uniformly irradiate the liquid crystal display device with light having high directivity, it is difficult to achieve the required high brightness and high display quality of the liquid crystal display device.

本発明は、かかる従来技術の不備を解決するためになされたものであり、その目的は、薄形かつ省電力にして液晶表示装置の高輝度化及び表示品質の高度化が可能な照明装置を提供すること、及び、かかる照明装置を容易かつ高精度に製造可能な製造方法を提供するにある。   The present invention has been made to solve such deficiencies of the prior art, and an object of the present invention is to provide a lighting device that is thin and power-saving and capable of increasing the brightness of a liquid crystal display device and improving the display quality. An object of the present invention is to provide a manufacturing method capable of easily and accurately manufacturing such a lighting device.

本発明は、上記課題を解決するため、照明装置に関しては、平面状に配列された複数の点状発光源と、当該複数の点状発光源のそれぞれに対向して配置された複数のコリメーションレンズとを備え、前記点状発光源より出射された発散光を前記コリメーションレンズを通して平行光に変換し、外部に導出するという構成にした。   In order to solve the above-described problem, the present invention relates to a lighting device, in which a plurality of point light sources arranged in a plane and a plurality of collimation lenses disposed to face each of the plurality of point light sources. The divergent light emitted from the point light source is converted into parallel light through the collimation lens and led to the outside.

このように、点状発光源に対向してコリメーションレンズを配置し、点状発光源より出射された光を平行光に変換して外部に導出すると、点状発光源より出射された光がコリメーションレンズによって集光されるので、点状発光源より出射された光の無駄が軽減され、光の取り出し効率が高められる。また、このことから、液晶表示装置に照射される光量が増加されると共にその表示面方向の強度分布が均一化される。   In this way, when a collimation lens is arranged facing the point light source, and the light emitted from the point light source is converted into parallel light and derived to the outside, the light emitted from the point light source is collimated. Since the light is collected by the lens, waste of light emitted from the point light source is reduced, and light extraction efficiency is increased. This also increases the amount of light applied to the liquid crystal display device and makes the intensity distribution in the display surface direction uniform.

また、本発明は、前記構成の照明装置において、前記複数の点状発光源が、それぞれ面状に形成されかつ対向に配置された下部電極及び透明電極と、これら下部電極と透明電極との間に介在された複数の点状開口部を有する絶縁膜と、少なくとも前記点状開口部内に充填されかつ当該点状開口部内への充填部分において前記下部電極及び前記透明電極の双方に接する発光層とからなるという構成にした。   According to the present invention, in the illumination device having the above-described configuration, the plurality of point light sources are each formed in a planar shape and disposed opposite to each other, and between the lower electrode and the transparent electrode. An insulating film having a plurality of point-like openings interposed therebetween, and a light-emitting layer that fills at least the point-like openings and is in contact with both the lower electrode and the transparent electrode at the filling portion into the point-like openings. It consisted of consisting of.

このように、照明装置を下部電極、透明電極、絶縁膜及び発光層の積層体をもって構成すると、LEDや冷陰極管を用いた照明装置のように拡散板や導光板を備える必要がないので、照明装置の薄形化を図れる。また、絶縁膜に開設された点状開口部と当該点状開口部内に充填された発光層とによって点状発光源を構成すると、慣用的な技術を応用して絶縁膜に微小かつ高精度の点状開口部を開設することができるので、微小な点状発光源を高精度かつ高能率に形成することができる。   In this way, when the lighting device is configured with a laminate of a lower electrode, a transparent electrode, an insulating film, and a light emitting layer, it is not necessary to have a diffusion plate or a light guide plate like a lighting device using an LED or a cold cathode tube. Thinning of the lighting device can be achieved. In addition, when a point light emission source is configured by a point opening formed in an insulating film and a light emitting layer filled in the point opening, a conventional technique is applied to form a minute and high accuracy in the insulating film. Since the point-like opening can be opened, a minute point-like light source can be formed with high accuracy and high efficiency.

また、本発明は、前記構成の照明装置において、前記複数のコリメーションレンズとして、透明材料にて形成された基板上に複数のコリメーションレンズが一体に形成されたマイクロレンズアレイを用いるという構成にした。   In the illumination device having the above-described configuration, the microlens array in which a plurality of collimation lenses are integrally formed on a substrate formed of a transparent material is used as the plurality of collimation lenses.

基板上に複数のコリメーションレンズが一体形成されたマイクロレンズアレイは、2P法、射出成型法、ゾルゲル法又はホットエンボス法などによって形成できる。そして、コリメーションレンズとしてマイクロレンズアレイを用いると、複数の点状発光源と複数のコリメーションレンズとのアライメントを1度の作業で行うことができるので、各点状発光源ごとにコリメーションレンズを位置決めして設定する場合に比べて、照明装置の製造を容易化することができ、その低コスト化を図ることができる。   A microlens array in which a plurality of collimation lenses are integrally formed on a substrate can be formed by a 2P method, an injection molding method, a sol-gel method, a hot embossing method, or the like. If a microlens array is used as a collimation lens, alignment between a plurality of point light emission sources and a plurality of collimation lenses can be performed in one operation. Therefore, the collimation lens is positioned for each point light emission source. Compared with the case where it sets, it can make manufacture of an illuminating device easy and can aim at the cost reduction.

また、本発明は、前記構成の照明装置において、前記コリメーションレンズのレンズ径を20μm〜200μm、レンズ高さをレンズ径の1/20〜1/2の範囲とし、かつ前記点状発光源の直径を前記コリメーションレンズのレンズ径の1/10〜1/2の範囲に形成するという構成にした。   Further, according to the present invention, in the illumination device having the above configuration, the collimation lens has a lens diameter of 20 μm to 200 μm, a lens height in the range of 1/20 to 1/2 of the lens diameter, and the diameter of the point light source. Is formed in a range of 1/10 to 1/2 of the lens diameter of the collimation lens.

実験によると、コリメーションレンズのレンズ径、レンズ高さ及び点状発光源の直径と液晶表示装置の輝度及び表示品質との間には相関があり、コリメーションレンズのレンズ径、レンズ高さ及び点状発光源の直径を前記の値に規制したときに液晶表示装置の輝度が高くなり、かつその表示品質も良好なものになった。   According to experiments, there is a correlation between the diameter and height of the collimation lens and the brightness and display quality of the liquid crystal display device, and the diameter and height of the collimation lens. When the diameter of the light emitting source was regulated to the above value, the luminance of the liquid crystal display device was increased, and the display quality was also good.

また、本発明は、前記構成の照明装置において、前記マイクロレンズアレイにおけるコリメーションレンズの配列ピッチに対するレンズ径の比を80%〜95%にするという構成にした。   Further, according to the present invention, in the illumination device having the above configuration, the ratio of the lens diameter to the arrangement pitch of the collimation lenses in the microlens array is set to 80% to 95%.

隣接して配置されるコリメーションレンズ間の隙間を大きくすると、電極間で全反射される光量が増加するため、照明装置からの光の取り出し効率が低下する。しかし、マイクロレンズアレイ上にコリメーションレンズを最密配置し、各コリメーションレンズの外縁が接するようにすると、光の回折等が生じ、却って液晶表示装置の輝度が低下する。実験によると、コリメーションレンズの配列ピッチに対するレンズ径の比を前記の値に規制したときに液晶表示装置の輝度が高くなり、かつその表示品質も良好なものになった。   Increasing the gap between adjacent collimation lenses increases the amount of light that is totally reflected between the electrodes, thus reducing the light extraction efficiency from the illumination device. However, if the collimation lenses are arranged in a close-packed manner on the microlens array so that the outer edges of the collimation lenses are in contact with each other, light diffraction or the like occurs, and the brightness of the liquid crystal display device decreases. According to experiments, when the ratio of the lens diameter to the arrangement pitch of the collimation lenses is restricted to the above value, the brightness of the liquid crystal display device is increased and the display quality is also improved.

一方、本発明は、照明装置の製造方法に関して、第1に、複数の点状発光源が平面状に配列されかつ所要の位置にアライメントマークが形成された発光部材を作製する工程と、複数のコリメーションレンズが一体に形成されかつ前記発光部材に形成されたアライメントマークと対応する位置にこれと位置合わせされるアライメントマークが形成されたマイクロレンズアレイを作製する工程と、前記各アライメントマークを利用して前記各点状発光源と前記各コリメーションレンズを対向に配置する工程と、前記各点状発光源と前記各コリメーションレンズとの位置関係を保持した状態で前記発光部材と前記マイクロレンズアレイを接着により一体化する工程とを含む構成にした。   On the other hand, the present invention relates to a method of manufacturing a lighting device. First, a step of producing a light emitting member in which a plurality of point light sources are arranged in a plane and an alignment mark is formed at a required position; A step of producing a microlens array in which a collimation lens is integrally formed and an alignment mark is formed at a position corresponding to the alignment mark formed on the light emitting member; and using each of the alignment marks The step of arranging the point light sources and the collimation lenses facing each other, and bonding the light emitting member and the microlens array in a state where the positional relationship between the point light sources and the collimation lenses is maintained. And a step of integrating them.

このように、別個に作製される発光部材とマイクロレンズアレイの双方にアライメントマークを形成しておき、これらの各アライメントマークを利用して各点状発光源と各コリメーションレンズとの位置決めを行うと、1回のアライメント作業で全ての点状発光源と各コリメーションレンズとを対向に配置することができるので、この種の照明装置の生産性を高めることができる。また、個々の良品を組み合わせて照明装置を完成できるので、トータルでの製造歩留まりを向上することができる。   As described above, when the alignment marks are formed on both the light emitting member and the microlens array that are separately manufactured, and each of the point light emitting sources and the collimation lenses are positioned using these alignment marks. Since all the point light emission sources and the collimation lenses can be arranged to face each other in one alignment operation, the productivity of this type of illumination device can be increased. In addition, since the lighting device can be completed by combining individual non-defective products, the total manufacturing yield can be improved.

また、本発明は、照明装置の製造方法に関して、第2に、複数のコリメーションレンズが一体に形成されたマイクロレンズアレイを作製する工程と、前記マイクロレンズアレイの裏面に透明電極を形成する工程と、該透明電極の露出面に感光性樹脂からなる絶縁膜を均一に形成する工程と、前記マイクロレンズアレイの外側から光を照射して前記コリメーションレンズの焦点位置に相当する部分の前記絶縁膜を選択的に露光する工程と、露光後の前記絶縁膜を現像処理して露光部分に点状開口部を開設する工程と、前記点状開口部内を含む前記絶縁膜の露出面に発光層を形成する工程と、該発光層の露出面に下部電極を形成する工程とを含む構成にした。   The present invention also relates to a method for manufacturing a lighting device. Secondly, a step of producing a microlens array in which a plurality of collimation lenses are integrally formed, and a step of forming a transparent electrode on the back surface of the microlens array. A step of uniformly forming an insulating film made of a photosensitive resin on the exposed surface of the transparent electrode, and irradiating light from the outside of the microlens array to form a portion of the insulating film corresponding to the focal position of the collimation lens. A step of selectively exposing, a step of developing the exposed insulating film to open a dotted opening in the exposed portion, and a light emitting layer is formed on the exposed surface of the insulating film including the inside of the dotted opening And a step of forming a lower electrode on the exposed surface of the light emitting layer.

このように、所要のマイクロレンズアレイを作製した後、当該マイクロレンズアレイの裏面に発光部材を作製するに際し、マイクロレンズアレイに一体形成されたコリメーションレンズを利用して絶縁膜に点状発光源の基になる点状開口部を形成すると、コリメーションレンズと点状発光源との位置決めを自己整合的に行うことができるので、各コリメーションレンズと各点状発光源との位置決め精度が高い照明装置を容易に作製することができる。   As described above, after the required microlens array is manufactured, when the light emitting member is manufactured on the back surface of the microlens array, the point-like light source is formed on the insulating film using the collimation lens integrally formed with the microlens array. By forming a point-like opening as a base, positioning of the collimation lens and the point light source can be performed in a self-aligned manner, so an illumination device with high positioning accuracy between each collimation lens and each point light source can be obtained. It can be easily manufactured.

本発明の照明装置は、点状発光源に対向してコリメーションレンズを配置し、点状発光源より出射された光を平行光に変換して外部に導出するので、点状発光源より出射された光の無駄を低減できて光の取り出し効率を高めることができ、照明装置の省電力化を図ることができる。また、液晶表示装置に照射可能な光量が増加されると共にその強度分布が均一化されるので、液晶表示装置の高輝度化及び表示品質の高度化を図ることができる。   In the illumination device of the present invention, a collimation lens is disposed opposite to the point light source, and the light emitted from the point light source is converted into parallel light and led to the outside, so that the light is emitted from the point light source. Therefore, the waste of light can be reduced, the light extraction efficiency can be increased, and the power consumption of the lighting device can be reduced. In addition, the amount of light that can be applied to the liquid crystal display device is increased and the intensity distribution is made uniform, so that the brightness of the liquid crystal display device and the display quality can be enhanced.

本発明の照明装置の製造方法のうち、別個に作製される発光部材とマイクロレンズアレイの双方にアライメントマークを形成しておき、これらの各アライメントマークを利用して各点状発光源と各コリメーションレンズとの位置決めを行う方法は、1回のアライメント作業で全ての点状発光源と各コリメーションレンズとを対向に配置することができるので、この種の照明装置の生産性を高めることができと共に、個々の良品を組み合わせて照明装置を完成できるので、トータルでの製造歩留まりを向上することができる。また、所要のマイクロレンズアレイを作製した後、当該マイクロレンズアレイの裏面に発光部材を作製するに際し、マイクロレンズアレイに一体形成されたコリメーションレンズを利用して絶縁膜に点状発光源の基になる点状開口部を形成する方法は、コリメーションレンズと点状発光源との位置決めを自己整合的に行うことができるので、各点状発光源と各コリメーションレンズとの位置決め精度を飛躍的に高めることができる。   In the manufacturing method of the illumination device according to the present invention, alignment marks are formed on both the light emitting member and the microlens array which are separately manufactured, and each point light source and each collimation are made using these alignment marks. The method of positioning with the lens can increase the productivity of this type of lighting device because all the point light emitting sources and each collimation lens can be arranged to face each other in one alignment operation. Since the lighting device can be completed by combining the individual non-defective products, the total manufacturing yield can be improved. In addition, after producing a required microlens array, when producing a light emitting member on the back surface of the microlens array, a collimation lens integrally formed with the microlens array is used to provide a base of a point light source on the insulating film. In this method of forming the point-like opening, since the positioning of the collimation lens and the point light source can be performed in a self-aligning manner, the positioning accuracy of each point light source and each collimation lens is greatly improved. be able to.

〈第1の実施の形態〉
以下、本発明に係る照明装置の第1例を、図1乃至図3に基づいて説明する。図1は第1実施形態に係る照明装置の断面図、図2は第1実施形態に係る照明装置の製造手順を示すフロー図、図3は第1実施形態に係る照明装置の効果を示すグラフ図である。
<First Embodiment>
Hereinafter, the 1st example of the illuminating device which concerns on this invention is demonstrated based on FIG. 1 thru | or FIG. FIG. 1 is a cross-sectional view of the lighting device according to the first embodiment, FIG. 2 is a flowchart showing the manufacturing procedure of the lighting device according to the first embodiment, and FIG. 3 is a graph showing the effect of the lighting device according to the first embodiment. FIG.

図1に示すように、本例の照明装置1Aは、マイクロレンズアレイ1と、発光部材2と、これらの各部材1,2を接合する接着剤層3とから主に構成されている。   As shown in FIG. 1, the illumination device 1 </ b> A of this example is mainly configured by a microlens array 1, a light emitting member 2, and an adhesive layer 3 that joins these members 1 and 2.

マイクロレンズアレイ1は、透光性材料にて形成された基板11上に同じく透光性材料からなる複数のコリメーションレンズ12を一体に形成したもので、使用する透光性材料の種類に応じて、例えば2P法、射出成型法、注型法、ゾルゲル法又はホットエンボス法などによって形成される。基板11は、発光部材2を保護するため、外部雰囲気に対するバリア性を有していることが好ましく、大気中の酸素や水蒸気を透過しない材料にて作製するか、このような材料からなる保護膜をその表面にコーティングすることが好ましい。コリメーションレンズ12は、球面或いはそれに近似した凸状の曲面をもって形成され、細密充填配置又は正方格子状配置などの任意の配置で基板11上に配列される。コリメーションレンズ12のレンズ形状及び基板11上の配列は、点状発光源との関係で適宜設計することができるが、レンズ径(基板11の表面上におけるコリメーションレンズ12の直径)Dを20μm〜200μm、レンズ高さ(基板11の表面からコリメーションレンズ12の頂点までの高さ)Hをレンズ径Dの1/20〜1/2の範囲、コリメーションレンズ12の配列ピッチpに対するレンズ径Dの比D/pを80%〜95%としたときに、高い輝度と良好な液晶表示装置の表示品質が得られた。このマイクロレンズアレイ1の所要の部分には、コリメーションレンズ12と発光部材2に形成される点状発光源とを位置合わせするための例えば十文字状のアライメントマークが印刷やレーザカッティング等の所要の手段で形成される。   The microlens array 1 is formed by integrally forming a plurality of collimation lenses 12 made of a translucent material on a substrate 11 formed of a translucent material, depending on the type of translucent material used. For example, a 2P method, an injection molding method, a casting method, a sol-gel method, or a hot embossing method is used. The substrate 11 preferably has a barrier property against the external atmosphere in order to protect the light emitting member 2, and is made of a material that does not transmit oxygen or water vapor in the atmosphere, or a protective film made of such a material. Is preferably coated on the surface. The collimation lens 12 is formed with a spherical surface or a convex curved surface similar to the spherical surface, and is arranged on the substrate 11 in an arbitrary arrangement such as a finely packed arrangement or a square lattice arrangement. The lens shape of the collimation lens 12 and the arrangement on the substrate 11 can be appropriately designed in relation to the point light source, but the lens diameter (diameter of the collimation lens 12 on the surface of the substrate 11) D is 20 μm to 200 μm. The lens height (height from the surface of the substrate 11 to the top of the collimation lens 12) H is in the range of 1/20 to 1/2 of the lens diameter D, and the ratio D of the lens diameter D to the arrangement pitch p of the collimation lenses 12 When / p was 80% to 95%, high luminance and good display quality of the liquid crystal display device were obtained. For example, a cross-shaped alignment mark for aligning the collimation lens 12 and the point light source formed on the light emitting member 2 is provided on a required portion of the microlens array 1 by a required means such as printing or laser cutting. Formed with.

発光部材2は、EL素子を応用したものであって、基板21と、当該基板21上に形成された面状の下部電極22と、当該下部電極22上に形成された複数の点状開口部23aを有する絶縁膜23と、点状開口部23aの内部を含む前記絶縁膜23上に形成された発光層24と、当該発光層24上に形成された面状の透明電極25とからなる。この発光部材2にも、マイクロレンズアレイ1のアライメントマーク形成位置と対応する位置に、例えば十文字状のアライメントマークが印刷やレーザカッティング等の所要の手段で形成される。   The light emitting member 2 uses an EL element, and includes a substrate 21, a planar lower electrode 22 formed on the substrate 21, and a plurality of dot-like openings formed on the lower electrode 22. The insulating film 23 includes a light emitting layer 24 formed on the insulating film 23 including the inside of the point-like opening 23 a, and a planar transparent electrode 25 formed on the light emitting layer 24. For example, a cross-shaped alignment mark is formed on the light emitting member 2 at a position corresponding to the alignment mark forming position of the microlens array 1 by a necessary means such as printing or laser cutting.

基板21は、下部電極22、絶縁膜23、発光層24及び透明電極25の保護部材として機能するもので、所要の剛性を有する板材をもって形成される。基板材料としては、所要の剛性を有するものであれば公知に属する任意の材料をもって形成することができるが、放熱性に優れることから、アルミニウム板などの金属板が特に好適に用いられる。   The substrate 21 functions as a protective member for the lower electrode 22, the insulating film 23, the light emitting layer 24, and the transparent electrode 25, and is formed of a plate material having a required rigidity. As the substrate material, any material having a required rigidity can be used. However, a metal plate such as an aluminum plate is particularly preferably used because of excellent heat dissipation.

下部電極22は、公知に属する任意の導電材料をもって形成することができるが、光の反射率が高く光の取り出し効率を高められることから、アルミニウムが特に好適に用いられる。なお、基板21がアルミニウム板などの金属板にて形成される場合には、基板21を下部電極22として兼用し、下部電極22の形成を省略することもできる。また、アルミニウム基板上にアルミニウム電極を形成する場合には、これらの間に絶縁膜を介設することもできる。   The lower electrode 22 can be formed of any known conductive material, but aluminum is particularly preferably used because of its high light reflectance and high light extraction efficiency. When the substrate 21 is formed of a metal plate such as an aluminum plate, the substrate 21 can also be used as the lower electrode 22 and the formation of the lower electrode 22 can be omitted. Moreover, when forming an aluminum electrode on an aluminum substrate, an insulating film can be interposed between them.

絶縁膜23は、公知に属する任意の絶縁材料をもって形成することができるが、点状開口部23aの開設を容易に行えることから、感光性樹脂をもって形成することが特に好ましい。例えば、ポジ型の感光性樹脂をもって絶縁膜23を形成した場合、点状開口部23aの開設部分を選択的に露光した後、これを現像処理することにより、点状開口部23aを有する絶縁膜23を形成することができる。この点状開口部23aは、マイクロレンズアレイ1に形成された複数のコリメーションレンズ12と同一の配列で形成される。また、その直径は、全反射による光の無駄を抑制して光の取り出し効率を高めるため、コリメーションレンズ12のレンズ径Dの1/10〜1/2の範囲に形成することが好ましい。   The insulating film 23 can be formed with any known insulating material, but it is particularly preferable that the insulating film 23 be formed with a photosensitive resin because the opening 23a can be easily opened. For example, in the case where the insulating film 23 is formed with a positive photosensitive resin, after selectively exposing the opening portion of the point-like opening 23a, the insulating film having the point-like opening 23a is developed by subjecting it to development processing. 23 can be formed. The dotted openings 23 a are formed in the same arrangement as the plurality of collimation lenses 12 formed in the microlens array 1. Further, the diameter is preferably formed in a range of 1/10 to 1/2 of the lens diameter D of the collimation lens 12 in order to suppress the waste of light due to total reflection and increase the light extraction efficiency.

発光層24は、例えばZnSなどの無機又は有機のエレクトロルミネセンス発光体からなり、前記点状開口部23a内を含む絶縁膜23上に形成される。なお、発光層24は、正孔輸送層や電子輸送層、正孔注入層、電子注入層などからなる多層構造とすることもできる。   The light emitting layer 24 is made of, for example, an inorganic or organic electroluminescent light emitter such as ZnS, and is formed on the insulating film 23 including the inside of the point-like opening 23a. The light emitting layer 24 may have a multilayer structure including a hole transport layer, an electron transport layer, a hole injection layer, an electron injection layer, and the like.

透明電極25は、ITOをもって発光層24の表面に面状に形成される。このように、点状開口部23aを有する絶縁膜23及び発光層24を介してその表裏両面に下部電極22と透明電極25とを形成すると、点状開口部23a内に充填された発光層24の表裏でのみ発光層24が下部電極22と透明電極25とに接するので、当該点状開口部23a内に充填された発光層24が点状発光源として機能する。したがって、以下の記述においては、点状発光源についても便宜的に符号23aを付与して説明する。   The transparent electrode 25 is formed in a planar shape on the surface of the light emitting layer 24 with ITO. Thus, when the lower electrode 22 and the transparent electrode 25 are formed on both the front and back surfaces of the insulating film 23 having the dotted openings 23a and the light emitting layer 24, the light emitting layer 24 filled in the dotted openings 23a. Since the light emitting layer 24 is in contact with the lower electrode 22 and the transparent electrode 25 only on the front and back surfaces, the light emitting layer 24 filled in the point-like opening 23a functions as a point light source. Therefore, in the following description, the point light emission source will also be described with reference numeral 23a for convenience.

接着剤層3に用いる接着剤としては、公知に属する任意の透明接着剤を用いることができるが、各部材に与える熱の影響を小さくできることから、常温接着型の接着剤又はホットメルト接着剤等を用いることが特に好ましい。   As the adhesive used for the adhesive layer 3, any known transparent adhesive can be used. However, since the influence of heat on each member can be reduced, a room temperature adhesive or hot melt adhesive, etc. It is particularly preferable to use

前記マイクロレンズアレイ1と前記発光部材2とは、これらの各部材1,2に形成されたアライメントマークを利用して相互に位置合わせされ、接着剤層3を介して一体に組み立てられる。   The microlens array 1 and the light emitting member 2 are aligned with each other by using alignment marks formed on these members 1 and 2 and are assembled together through the adhesive layer 3.

以下に本実施形態のより具体的な実施例を例示し、本発明の効果を明らかにする。なお、文中の符号は、実施例に係る照明装置1Aを構成する各部材に対応する図1に表示した各部材の符号を示している。   Hereinafter, more specific examples of the present embodiment will be illustrated to clarify the effects of the present invention. In addition, the code | symbol in a sentence has shown the code | symbol of each member displayed in FIG. 1 corresponding to each member which comprises 1 A of illuminating devices which concern on an Example.

ガラス基板11の片面に透光性樹脂からなる微小な複数のコリメーションレンズ12が2P法により形成されたマイクロレンズアレイ1を作製した。コリメーションレンズ12のレンズ形状は、レンズ径Dが75μmで、レンズ高さHが16μmとし、細密充填配置で隣接するレンズ間のピッチpは80μmとした。レンズ形状と基板厚の設計により、コリメーションレンズ12の集光領域はガラス基板11の裏面側で約20μmの範囲になっている。   A microlens array 1 was produced in which a plurality of minute collimation lenses 12 made of a translucent resin were formed on one side of a glass substrate 11 by the 2P method. The lens shape of the collimation lens 12 was such that the lens diameter D was 75 μm, the lens height H was 16 μm, and the pitch p between adjacent lenses in a close-packed arrangement was 80 μm. Due to the design of the lens shape and the substrate thickness, the condensing region of the collimation lens 12 is in the range of about 20 μm on the back side of the glass substrate 11.

マイクロレンズアレイ1の作製は、以下の手順で行った。即ち、まず、Si基板上にフォトレジストを塗布した後、フォトリソグラフィ法を用いて円柱状のレジストパターンを形成した。次いで、レジストパターンを有するSi基板を加熱してレジストパターンをリフローさせ、球面状のコリメーションレンズ12を作製した。次いで、これを母型として電鋳によりニッケル金型を作製した。次いで、この金型と鏡面研磨されたガラス基板11との間で透光性樹脂を展伸した後、金型と透光性樹脂との界面を剥離して、コリメーションレンズ12が転写された透光性樹脂層をガラス基板11上に形成した。最後に、ガラス基板11の裏面にマイクロレンズアレイ1側のアライメントマークを印刷により形成した。   The microlens array 1 was produced according to the following procedure. That is, first, after applying a photoresist on a Si substrate, a cylindrical resist pattern was formed by using a photolithography method. Next, the Si substrate having the resist pattern was heated to reflow the resist pattern, and a spherical collimation lens 12 was produced. Next, a nickel mold was produced by electroforming using this as a mother mold. Next, after spreading the translucent resin between the mold and the mirror-polished glass substrate 11, the interface between the mold and the translucent resin is peeled off, and the collimation lens 12 is transferred. A light-sensitive resin layer was formed on the glass substrate 11. Finally, an alignment mark on the microlens array 1 side was formed on the back surface of the glass substrate 11 by printing.

また、発光部材2の作製は、以下の手順で行った。即ち、まず、図2(a)に示すように、厚さが0.2mmの金属基板21上にAl電極22を真空蒸着法により形成した後、当該Al電極22上にポジ型フォトレジストをスピンコート法により均一に塗布して絶縁膜23を形成した。次いで、当該ポジ型フォトレジストからなる絶縁膜23の表面をフォトマスクにて覆い、フォトマスクの外方から紫外線を照射して、絶縁膜23上のコリメーションレンズ12の焦点位置に相当する部分にドットパターンを露光した。ドットの形状は円形でその直径を20μmとし、ドットパターンの配置及び間隔は、マイクロレンズアレイ1に形成されたコリメーションレンズ12の配置及び間隔と同一にした。次いで、露光済みの絶縁膜23を現像処理し、ドットパターンの露光部を除去して、図2(b)に示すように、絶縁膜23に前記Al電極22に達する点状開口部23aを開設した。次いで、図2(c)に示すように、前記点状開口部23aを有する絶縁膜23上に厚さ100μmの有機発光層24を真空蒸着法により形成し、更に当該有機発光層24上に厚さ50nmのITO層25を真空蒸着法により形成した。最後に、ITO層25の表面に発光部材2側のアライメントマークを印刷により形成した。   The light emitting member 2 was produced according to the following procedure. That is, first, as shown in FIG. 2A, an Al electrode 22 is formed on a metal substrate 21 having a thickness of 0.2 mm by a vacuum deposition method, and then a positive photoresist is spun on the Al electrode 22. An insulating film 23 was formed by uniformly coating by a coating method. Next, the surface of the insulating film 23 made of the positive photoresist is covered with a photomask, irradiated with ultraviolet rays from the outside of the photomask, and dots are formed on the portion corresponding to the focal position of the collimation lens 12 on the insulating film 23. The pattern was exposed. The shape of the dots was circular and the diameter was 20 μm, and the arrangement and intervals of the dot patterns were the same as the arrangement and intervals of the collimation lenses 12 formed in the microlens array 1. Next, the exposed insulating film 23 is developed, and the exposed portion of the dot pattern is removed. As shown in FIG. 2B, a dotted opening 23a reaching the Al electrode 22 is opened in the insulating film 23. did. Next, as shown in FIG. 2C, an organic light emitting layer 24 having a thickness of 100 μm is formed on the insulating film 23 having the point-like openings 23 a by a vacuum deposition method, and further on the organic light emitting layer 24, the thickness is increased. A 50 nm thick ITO layer 25 was formed by vacuum deposition. Finally, an alignment mark on the light emitting member 2 side was formed on the surface of the ITO layer 25 by printing.

しかる後に、図2(d)に示すように、マイクロレンズアレイ1側及び発光部材2側のアライメントマークを利用して、コリメーションレンズ12の中心と点状開口部23aの中心部とを合致せしめ、この状態を保持したままマイクロレンズアレイ1と発光部材2とを接着により一体化した。   Thereafter, as shown in FIG. 2 (d), using the alignment marks on the microlens array 1 side and the light emitting member 2 side, the center of the collimation lens 12 and the center of the point-like opening 23a are matched, While maintaining this state, the microlens array 1 and the light emitting member 2 were integrated by adhesion.

本実施例に係る照明装置は、マイクロレンズアレイを備えないEL素子と比べて約40倍の輝度が得られた。また、特許文献1に記載の照明装置と比べても約10倍の輝度が得られた。さらに、これらの従来装置に比べ適度分布も均一になっており、液晶表示装置のバックライトとして適用した場合、モアレ縞などの表示品質の不良を生じなかった。   The illuminating device according to this example has a luminance of about 40 times that of an EL element that does not include a microlens array. In addition, the brightness about 10 times that of the illumination device described in Patent Document 1 was obtained. Furthermore, the appropriate distribution is uniform compared to these conventional devices, and when applied as a backlight of a liquid crystal display device, display quality defects such as moire fringes did not occur.

このように、本実施例に係る照明装置において飛躍的に輝度が向上した理由は、まず第1に、照明装置の発光源をコリメーションレンズ12の集光領域程度の微細な点状発光源23aとし、点状発光源23aから発散してゆく光をコリメーションレンズ12にて収束して指向性の高い光としたことにある。実施例と類似の構造であっても、発光部分の大部分がコリメーションレンズ12の集光領域外にある場合や、発光部分がコリメーションレンズ12の集光領域よりも大きい場合には、特許文献1に記載の照明装置と比べて顕著な効果は得られない。例えば、前記実施例に係るマイクロレンズアレイ1を全面発光のEL素子と組み合わせた場合、特許文献1に記載の照明装置に比べて1.2倍の輝度が得られたに過ぎなかった。   As described above, the reason why the luminance is dramatically improved in the illumination device according to the present embodiment is as follows. First, the light source of the illumination device is a fine point light source 23 a that is about the condensing region of the collimation lens 12. In other words, the light emitted from the point light source 23a is converged by the collimation lens 12 to be light having high directivity. Even if the structure is similar to that of the embodiment, if most of the light emitting portion is outside the light condensing region of the collimation lens 12, or if the light emitting portion is larger than the light condensing region of the collimation lens 12, Patent Document 1 No significant effect can be obtained as compared with the illumination device described in 1). For example, when the microlens array 1 according to the above example is combined with an EL element that emits light from the entire surface, the brightness is only 1.2 times that of the illumination device described in Patent Document 1.

理由の第2は、コリメーションレンズ12のレンズ径Dを隣接する2つのコリメーションレンズ12の配列ピッチpよりも小さくし、各コリメーションレンズ12の間にある程度の隙間を設けたことにある。即ち、隣接するレンズ間の隙間の大きさには最適値が存在し、隙間が全くない場合よりもある程度の隙間があった方が高い輝度が得られる。これは、隣接するレンズ間にある程度の隙間がある場合、点状発光源23aから輝度に関与しない浅い角度で出射した光の一部が前記隙間部分からコリメーションレンズ12の側面を介して発光部材2内に侵入し、光反射性の下部電極22で反射した後、再度コリメーションレンズ12により集光されて輝度に有効な角度で出射されるためと推定される。図3は、点状発光源23aの中心軸とコリメーションレンズ12の中心軸とが合致しており、両者の配置、ピッチ及びコリメーションレンズ12の曲率が同一、電極22,25間に印加される直流電圧が同一という条件のもとで、隣接する2つのコリメーションレンズ12の配列ピッチpに対するコリメーションレンズ12のレンズ径Dの比を種々変更したときの輝度の変化を示すグラフであって、この図から明らかなように、D/pが約87%のときに最大の輝度を示す。この試験結果より、D/pは80%〜95%に設定することが特に好ましい。   The second reason is that the lens diameter D of the collimation lens 12 is made smaller than the arrangement pitch p of the two adjacent collimation lenses 12, and a certain gap is provided between the collimation lenses 12. That is, there is an optimum value for the size of the gap between adjacent lenses, and higher brightness is obtained when there is a certain gap than when there is no gap. This is because, when there is a certain gap between adjacent lenses, a part of the light emitted from the point light source 23a at a shallow angle not related to the luminance from the gap portion through the side surface of the collimation lens 12 is emitted from the light emitting member 2. It is presumed that the light enters the light source and is reflected by the light-reflecting lower electrode 22 and is then collected again by the collimation lens 12 and emitted at an angle effective for luminance. In FIG. 3, the central axis of the point light source 23 a coincides with the central axis of the collimation lens 12, the arrangement, pitch, and curvature of the collimation lens 12 are the same, and the direct current applied between the electrodes 22 and 25. FIG. 6 is a graph showing changes in luminance when various ratios of the lens diameter D of the collimation lens 12 to the arrangement pitch p of two adjacent collimation lenses 12 under the condition that the voltages are the same are shown in FIG. As is apparent, the maximum luminance is exhibited when D / p is about 87%. From this test result, D / p is particularly preferably set to 80% to 95%.

〈第2の実施の形態〉
次に、本発明に係る照明装置の第2例を、図4及び図5に基づいて説明する。図4は第2実施形態に係る照明装置の断面図、図5は第2実施形態に係る照明装置の製造手順を示すフロー図である。
<Second Embodiment>
Next, the 2nd example of the illuminating device which concerns on this invention is demonstrated based on FIG.4 and FIG.5. FIG. 4 is a cross-sectional view of the lighting device according to the second embodiment, and FIG. 5 is a flowchart showing a manufacturing procedure of the lighting device according to the second embodiment.

図4に示すように、本例の照明装置1Bは、マイクロレンズアレイ1と発光部材2とからなり、発光部材2が、マイクロレンズアレイ1の裏面に形成された透明電極25と、透明電極25の露出面に形成された複数の点状開口部23aを有する絶縁膜23と、点状開口部23aの内部を含む前記絶縁膜23の露出面に形成された発光層24と、発光層24の露出面に形成された下部電極22とからなる。この図から明らかなように、第2実施形態に係る照明装置1Bは、第1実施形態に係る照明装置1Aより接着剤層3と発光部材2の基板21とを省略した構成になっている。その他、各部の構成については、第1実施形態に係る照明装置1Aと同じであるので、重複を避けるために説明を省略する。   As shown in FIG. 4, the illumination device 1 </ b> B of this example includes a microlens array 1 and a light emitting member 2, and the light emitting member 2 is formed on the back surface of the microlens array 1, and the transparent electrode 25. An insulating film 23 having a plurality of point-like openings 23a formed on the exposed surface, a light-emitting layer 24 formed on the exposed surface of the insulating film 23 including the inside of the point-like openings 23a, The lower electrode 22 is formed on the exposed surface. As is clear from this figure, the lighting device 1B according to the second embodiment has a configuration in which the adhesive layer 3 and the substrate 21 of the light emitting member 2 are omitted from the lighting device 1A according to the first embodiment. In addition, since the configuration of each part is the same as that of the lighting device 1A according to the first embodiment, the description thereof is omitted to avoid duplication.

以下に本実施形態のより具体的な実施例を例示し、本発明の効果を明らかにする。なお、文中の符号は、実施例に係る照明装置1Bを構成する各部材に対応する図4に表示した各部材の符号を示している。   Hereinafter, more specific examples of the present embodiment will be illustrated to clarify the effects of the present invention. In addition, the code | symbol in a sentence has shown the code | symbol of each member displayed in FIG. 4 corresponding to each member which comprises the illuminating device 1B which concerns on an Example.

ガラス基板11の片面に透光性樹脂からなる微小な複数のコリメーションレンズ12が2P法により形成されたマイクロレンズアレイ1を作製した。コリメーションレンズ12のレンズ形状は、レンズ径Dが75μmで、レンズ高さHが16μmとし、細密充填配置で隣接するレンズ間のピッチpは80μmとした。レンズ形状と基板厚の設計により、コリメーションレンズ12の集光領域はガラス基板11の裏面側で約20μmの範囲になっている。   A microlens array 1 was produced in which a plurality of minute collimation lenses 12 made of a translucent resin were formed on one side of a glass substrate 11 by the 2P method. The lens shape of the collimation lens 12 was such that the lens diameter D was 75 μm, the lens height H was 16 μm, and the pitch p between adjacent lenses in a close-packed arrangement was 80 μm. Due to the design of the lens shape and the substrate thickness, the condensing region of the collimation lens 12 is in the range of about 20 μm on the back side of the glass substrate 11.

マイクロレンズアレイ1については、アライメントマークを省略する点を除き、第1実施形態に係る照明装置1Aの場合と同じ製造方法で作製した。   The microlens array 1 was manufactured by the same manufacturing method as that of the illumination device 1A according to the first embodiment except that the alignment mark was omitted.

一方、発光部材2の作製は、以下の手順で行った。即ち、まず、図5(a)に示すように、マイクロレンズアレイ1の裏面に厚さ30nmのITO層25を真空蒸着法により形成した後、当該ITO層25の裏面にポジ型フォトレジストをスピンコート法により均一に塗布して絶縁膜23を形成した。次いで、図5(b)に示すように、マイクロレンズアレイ1の外側から紫外線を照射して、絶縁膜23上のコリメーションレンズ12の焦点位置にドットパターンを露光した。次いで、露光済みの絶縁膜23を現像処理してドットパターンの露光部を除去し、ITO層25に貫通する点状開口部23aを開設した。最後に、図5(c)に示すように、点状開口部23aを有する絶縁膜23の裏面に厚さ100μmの有機発光層24を真空蒸着法により形成し、更に当該有機発光層24の裏面に厚さ50nmのAl電極22を真空蒸着法により形成した。   On the other hand, the light emitting member 2 was produced according to the following procedure. That is, first, as shown in FIG. 5A, an ITO layer 25 having a thickness of 30 nm is formed on the back surface of the microlens array 1 by vacuum deposition, and then a positive photoresist is spun on the back surface of the ITO layer 25. An insulating film 23 was formed by uniformly coating by a coating method. Next, as shown in FIG. 5B, the dot pattern was exposed at the focal position of the collimation lens 12 on the insulating film 23 by irradiating ultraviolet rays from the outside of the microlens array 1. Next, the exposed insulating film 23 was developed to remove the exposed portion of the dot pattern, and a dotted opening 23 a penetrating the ITO layer 25 was opened. Finally, as shown in FIG. 5C, an organic light emitting layer 24 having a thickness of 100 μm is formed on the back surface of the insulating film 23 having the point-like openings 23a by the vacuum deposition method, and the back surface of the organic light emitting layer 24 is further formed. An Al electrode 22 having a thickness of 50 nm was formed by vacuum deposition.

本実施例に係る照明装置1Bは、第1実施例に係る照明装置1Aと同等の効果を有するほか、コリメーションレンズ12と点状発光源23aとの位置決めが自己整合的に行われるので、各コリメーションレンズ12と各点状発光源との位置決め精度が高い照明装置を容易に作製できるという効果を有する。   The illuminating device 1B according to the present embodiment has the same effect as the illuminating device 1A according to the first embodiment, and the collimation lens 12 and the point light source 23a are positioned in a self-aligning manner. There is an effect that it is possible to easily manufacture an illumination device with high positioning accuracy between the lens 12 and each point light source.

第1実施形態に係る照明装置の断面図である。It is sectional drawing of the illuminating device which concerns on 1st Embodiment. 第1実施形態に係る照明装置の製造手順を示すフロー図である。It is a flowchart which shows the manufacture procedure of the illuminating device which concerns on 1st Embodiment. 第1実施形態に係る照明装置の効果を示すグラフ図である。It is a graph which shows the effect of the illuminating device which concerns on 1st Embodiment. 第2実施形態に係る照明装置の断面図である。It is sectional drawing of the illuminating device which concerns on 2nd Embodiment. 第2実施形態に係る照明装置の製造手順を示すフロー図である。It is a flowchart which shows the manufacture procedure of the illuminating device which concerns on 2nd Embodiment. 一般的なEL素子の構成を示す断面図である。It is sectional drawing which shows the structure of a general EL element.

符号の説明Explanation of symbols

1A,1B 照明装置
1 マイクロレンズアレイ
2 発光部材
3 接着剤層
11 基板
12 コリメーションレンズ
21 基板
22 下部電極
23 絶縁膜
23a 点状開口部(点状発光源)
24 発光層
25 透明電極
DESCRIPTION OF SYMBOLS 1A, 1B Illuminating device 1 Microlens array 2 Light emitting member 3 Adhesive layer 11 Substrate 12 Collimation lens 21 Substrate 22 Lower electrode 23 Insulating film 23a Point-like opening (point-like light emission source)
24 Light emitting layer 25 Transparent electrode

Claims (7)

平面状に配列された複数の点状発光源と、当該複数の点状発光源のそれぞれに対向して配置された複数のコリメーションレンズとを備え、
前記点状発光源より出射された発散光を前記コリメーションレンズを通して概平行光に変換し、外部に導出することを特徴とする照明装置。
A plurality of point light emission sources arranged in a plane, and a plurality of collimation lenses disposed to face each of the plurality of point light emission sources,
An illuminating device characterized in that divergent light emitted from the point light source is converted into substantially parallel light through the collimation lens and is led out to the outside.
前記複数の点状発光源が、それぞれ面状に形成されかつ対向に配置された下部電極及び透明電極と、これら下部電極と透明電極との間に介在された複数の点状開口部を有する絶縁膜と、少なくとも前記点状開口部内に充填されかつ当該点状開口部内への充填部分において前記下部電極及び前記透明電極の双方に接する発光層とからなることを特徴とする請求項1に記載の照明装置。   The plurality of point light emission sources each have a lower electrode and a transparent electrode that are formed in a planar shape and are opposed to each other, and an insulation having a plurality of point-like openings interposed between the lower electrode and the transparent electrode. 2. The film according to claim 1, comprising: a film; and a light emitting layer that is filled in at least the point-like opening and is in contact with both the lower electrode and the transparent electrode in a portion filled in the point-like opening. Lighting device. 前記複数のコリメーションレンズとして、透明材料にて形成された基板上に複数のコリメーションレンズが一体に形成されたマイクロレンズアレイを用いたことを特徴とする請求項1に記載の照明装置。   The illumination device according to claim 1, wherein a microlens array in which a plurality of collimation lenses are integrally formed on a substrate formed of a transparent material is used as the plurality of collimation lenses. 前記コリメーションレンズのレンズ径を20μm〜200μm、レンズ高さをレンズ径の1/20〜1/2の範囲とし、かつ前記点状発光源の直径を前記コリメーションレンズのレンズ径の1/10〜1/2の範囲に形成したことを特徴とする請求項1に記載の照明装置。   The lens diameter of the collimation lens is 20 μm to 200 μm, the lens height is in the range of 1/20 to 1/2 of the lens diameter, and the diameter of the point light source is 1/10 to 1 of the lens diameter of the collimation lens. The illumination device according to claim 1, wherein the illumination device is formed within a range of / 2. 前記マイクロレンズアレイにおけるコリメーションレンズの配列ピッチに対するレンズ径の比を80%〜95%にしたことを特徴とする請求項3又は請求項4に記載の照明装置。   The illumination device according to claim 3 or 4, wherein a ratio of a lens diameter to an arrangement pitch of collimation lenses in the microlens array is 80% to 95%. 複数の点状発光源が平面状に配列されかつ所要の位置にアライメントマークが形成された発光部材を作製する工程と、複数のコリメーションレンズが一体に形成されかつ前記発光部材に形成されたアライメントマークと対応する位置にこれと位置合わせされるアライメントマークが形成されたマイクロレンズアレイを作製する工程と、前記各アライメントマークを利用して前記各点状発光源と前記各コリメーションレンズを対向に配置する工程と、前記各点状発光源と前記各コリメーションレンズとの位置関係を保持した状態で前記発光部材と前記マイクロレンズアレイを接着により一体化する工程とを含むことを特徴とする照明装置の製造方法。   A step of producing a light emitting member in which a plurality of point light emitting sources are arranged in a plane and an alignment mark is formed at a required position, and an alignment mark in which a plurality of collimation lenses are integrally formed and formed on the light emitting member And a step of producing a microlens array in which alignment marks to be aligned with the corresponding positions are formed, and the respective point light emission sources and the respective collimation lenses are arranged to face each other using the alignment marks. And a step of integrating the light emitting member and the microlens array by bonding in a state where the positional relationship between each point light source and each collimation lens is maintained. Method. 複数のコリメーションレンズが一体に形成されたマイクロレンズアレイを作製する工程と、前記マイクロレンズアレイの裏面に透明電極を形成する工程と、該透明電極の露出面に感光性樹脂からなる絶縁膜を均一に形成する工程と、前記マイクロレンズアレイの外側から光を照射して前記コリメーションレンズの焦点位置に相当する部分の前記絶縁膜を選択的に露光する工程と、露光後の前記絶縁膜を現像処理して露光部分に点状開口部を開設する工程と、前記点状開口部内を含む前記絶縁膜の露出面に発光層を形成する工程と、該発光層の露出面に下部電極を形成する工程とを含むことを特徴とする照明装置の製造方法。   A step of producing a microlens array in which a plurality of collimation lenses are integrally formed, a step of forming a transparent electrode on the back surface of the microlens array, and an insulating film made of a photosensitive resin on the exposed surface of the transparent electrode A step of selectively exposing the portion of the insulating film corresponding to the focal position of the collimation lens by irradiating light from outside the microlens array, and developing the insulating film after exposure Opening a spot-like opening in the exposed portion, forming a light-emitting layer on the exposed surface of the insulating film including the inside of the point-like opening, and forming a lower electrode on the exposed surface of the light-emitting layer The manufacturing method of the illuminating device characterized by including these.
JP2005141369A 2005-05-13 2005-05-13 LIGHTING DEVICE AND MANUFACTURING METHOD THEREOF Expired - Fee Related JP4945089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141369A JP4945089B2 (en) 2005-05-13 2005-05-13 LIGHTING DEVICE AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141369A JP4945089B2 (en) 2005-05-13 2005-05-13 LIGHTING DEVICE AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2006318807A true JP2006318807A (en) 2006-11-24
JP4945089B2 JP4945089B2 (en) 2012-06-06

Family

ID=37539286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141369A Expired - Fee Related JP4945089B2 (en) 2005-05-13 2005-05-13 LIGHTING DEVICE AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP4945089B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218263A (en) * 2007-03-06 2008-09-18 Kuraray Co Ltd Surface light source element, and manufacturing method of the surface light source element
JP2009070683A (en) * 2007-09-13 2009-04-02 Hitachi Ltd Lighting system and liquid crystal display apparatus
JP2009122654A (en) * 2007-10-26 2009-06-04 Nippon Seiki Co Ltd Display
JP2009272066A (en) * 2008-04-30 2009-11-19 Toppan Printing Co Ltd El element manufacturing method, the el element, backlight device for liquid-crystal display using the el element, lighting device using the el element, electronic advertising display device using the el element, and display device using the el element
WO2010044326A1 (en) * 2008-10-16 2010-04-22 日本精機株式会社 Display device
WO2010113737A1 (en) * 2009-03-31 2010-10-07 凸版印刷株式会社 El element, and illuminating device and display device using el element
JP2011071012A (en) * 2009-09-28 2011-04-07 Fujifilm Corp Organic electroluminescent display device
WO2011052006A1 (en) * 2009-10-28 2011-05-05 パナソニック株式会社 Lens sheet, display panel device, and display device
WO2011080951A1 (en) * 2009-12-28 2011-07-07 シャープ株式会社 Lighting device, and display device
KR20120036267A (en) * 2010-10-07 2012-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lighting device
JP2012109230A (en) * 2010-10-22 2012-06-07 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and illumination device
WO2012111361A1 (en) * 2011-02-17 2012-08-23 日東電工株式会社 Surface light-emitting object
JP2012243495A (en) * 2011-05-18 2012-12-10 Konica Minolta Holdings Inc Light emitting element
JP2013214531A (en) * 2008-05-23 2013-10-17 Lg Chem Ltd Organic light-emitting element and method for manufacturing the same
US9464782B2 (en) 2013-03-15 2016-10-11 Morgan Solar Inc. Light panel, optical assembly with improved interface and light panel with improved manufacturing tolerances
WO2017025158A1 (en) * 2015-08-07 2017-02-16 Karlsruher Institut für Technologie Method for producing optoelectronic active components
US9595627B2 (en) 2013-03-15 2017-03-14 John Paul Morgan Photovoltaic panel
US9714756B2 (en) 2013-03-15 2017-07-25 Morgan Solar Inc. Illumination device
US9960303B2 (en) 2013-03-15 2018-05-01 Morgan Solar Inc. Sunlight concentrating and harvesting device
JP2019029125A (en) * 2017-07-27 2019-02-21 大日本印刷株式会社 Light source device
EP3993081A1 (en) * 2020-10-28 2022-05-04 Canon Kabushiki Kaisha Light-emitting device, display device, imaging device, and electronic device
WO2023103008A1 (en) * 2021-12-09 2023-06-15 厦门市芯颖显示科技有限公司 Display apparatus and display

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344602A (en) * 1998-03-30 1999-12-14 Seiko Epson Corp Production of microlens substrate with black matrix, counter substrate for liquid crystal panel, liquid crystal panel and projection type display device
JP2000077188A (en) * 1998-08-31 2000-03-14 Canon Inc Exposure device and image forming device
JP2000275732A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and display device
JP2002049326A (en) * 2000-08-02 2002-02-15 Fuji Photo Film Co Ltd Plane light source and display element using the same
JP2003260812A (en) * 2002-03-11 2003-09-16 Seiko Epson Corp Optical print head and image forming apparatus using the same
JP2003291406A (en) * 2002-04-02 2003-10-14 Seiko Epson Corp Organic el array exposure head and imaging apparatus using the same
JP2004127662A (en) * 2002-10-01 2004-04-22 Sony Corp Display device
JP2004195676A (en) * 2002-12-16 2004-07-15 Seiko Epson Corp Organic el array exposure head and image formation device using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344602A (en) * 1998-03-30 1999-12-14 Seiko Epson Corp Production of microlens substrate with black matrix, counter substrate for liquid crystal panel, liquid crystal panel and projection type display device
JP2000077188A (en) * 1998-08-31 2000-03-14 Canon Inc Exposure device and image forming device
JP2000275732A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and display device
JP2002049326A (en) * 2000-08-02 2002-02-15 Fuji Photo Film Co Ltd Plane light source and display element using the same
JP2003260812A (en) * 2002-03-11 2003-09-16 Seiko Epson Corp Optical print head and image forming apparatus using the same
JP2003291406A (en) * 2002-04-02 2003-10-14 Seiko Epson Corp Organic el array exposure head and imaging apparatus using the same
JP2004127662A (en) * 2002-10-01 2004-04-22 Sony Corp Display device
JP2004195676A (en) * 2002-12-16 2004-07-15 Seiko Epson Corp Organic el array exposure head and image formation device using it

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218263A (en) * 2007-03-06 2008-09-18 Kuraray Co Ltd Surface light source element, and manufacturing method of the surface light source element
JP2009070683A (en) * 2007-09-13 2009-04-02 Hitachi Ltd Lighting system and liquid crystal display apparatus
US7878670B2 (en) 2007-09-13 2011-02-01 Hitachi, Ltd. Illumination apparatus and liquid crystal display apparatus
JP4642823B2 (en) * 2007-09-13 2011-03-02 株式会社日立製作所 Illumination device and liquid crystal display device
TWI396463B (en) * 2007-09-13 2013-05-11 Hitachi Ltd Illumination apparatus and liquid crystal display apparatus
JP2009122654A (en) * 2007-10-26 2009-06-04 Nippon Seiki Co Ltd Display
JP2009272066A (en) * 2008-04-30 2009-11-19 Toppan Printing Co Ltd El element manufacturing method, the el element, backlight device for liquid-crystal display using the el element, lighting device using the el element, electronic advertising display device using the el element, and display device using the el element
JP2013214531A (en) * 2008-05-23 2013-10-17 Lg Chem Ltd Organic light-emitting element and method for manufacturing the same
WO2010044326A1 (en) * 2008-10-16 2010-04-22 日本精機株式会社 Display device
JPWO2010113737A1 (en) * 2009-03-31 2012-10-11 凸版印刷株式会社 EL element, and illumination device and display device using the same
WO2010113737A1 (en) * 2009-03-31 2010-10-07 凸版印刷株式会社 El element, and illuminating device and display device using el element
JP2011071012A (en) * 2009-09-28 2011-04-07 Fujifilm Corp Organic electroluminescent display device
JP4819204B2 (en) * 2009-10-28 2011-11-24 パナソニック株式会社 Lens sheet, display panel device, and display device
CN102265192A (en) * 2009-10-28 2011-11-30 松下电器产业株式会社 Lens sheet, display panel device, and display device
US8500302B2 (en) 2009-10-28 2013-08-06 Panasonic Corporation Display panel apparatus, display apparatus, and method of manufacturing display panel apparatus
WO2011052006A1 (en) * 2009-10-28 2011-05-05 パナソニック株式会社 Lens sheet, display panel device, and display device
WO2011080951A1 (en) * 2009-12-28 2011-07-07 シャープ株式会社 Lighting device, and display device
KR101879270B1 (en) * 2010-10-07 2018-07-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lighting device
KR20120036267A (en) * 2010-10-07 2012-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lighting device
JP2012109230A (en) * 2010-10-22 2012-06-07 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and illumination device
US9349991B2 (en) 2010-10-22 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and lighting device
WO2012111361A1 (en) * 2011-02-17 2012-08-23 日東電工株式会社 Surface light-emitting object
US9147861B2 (en) 2011-02-17 2015-09-29 Nitto Denko Corporation Surface light-emitting object
JP2012243495A (en) * 2011-05-18 2012-12-10 Konica Minolta Holdings Inc Light emitting element
US9464783B2 (en) 2013-03-15 2016-10-11 John Paul Morgan Concentrated photovoltaic panel
US9595627B2 (en) 2013-03-15 2017-03-14 John Paul Morgan Photovoltaic panel
US9714756B2 (en) 2013-03-15 2017-07-25 Morgan Solar Inc. Illumination device
US9732938B2 (en) 2013-03-15 2017-08-15 Morgan Solar Inc. Illumination panel
US9960303B2 (en) 2013-03-15 2018-05-01 Morgan Solar Inc. Sunlight concentrating and harvesting device
US9464782B2 (en) 2013-03-15 2016-10-11 Morgan Solar Inc. Light panel, optical assembly with improved interface and light panel with improved manufacturing tolerances
WO2017025158A1 (en) * 2015-08-07 2017-02-16 Karlsruher Institut für Technologie Method for producing optoelectronic active components
JP2019029125A (en) * 2017-07-27 2019-02-21 大日本印刷株式会社 Light source device
JP7056026B2 (en) 2017-07-27 2022-04-19 大日本印刷株式会社 Light source device
EP3993081A1 (en) * 2020-10-28 2022-05-04 Canon Kabushiki Kaisha Light-emitting device, display device, imaging device, and electronic device
WO2023103008A1 (en) * 2021-12-09 2023-06-15 厦门市芯颖显示科技有限公司 Display apparatus and display

Also Published As

Publication number Publication date
JP4945089B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4945089B2 (en) LIGHTING DEVICE AND MANUFACTURING METHOD THEREOF
TWI390297B (en) Illuminating device
KR100981337B1 (en) Illumination apparatus and liquid crystal display apparatus
US8921841B2 (en) Porous glass substrate for displays and method of manufacturing the same
JP5550505B2 (en) Planar illumination device and liquid crystal display device including the same
US10693103B2 (en) Light-emitting device and manufacturing method thereof, electronic apparatus
TW200412187A (en) Luminaire for light extraction from a flat light source
JPH10172756A (en) Organic el light emitting device
TW201503443A (en) Organic light-emitting structure and method for manufacturing thereof, and organic light-emitting device
US11088354B2 (en) Light-emitting panel and manufacturing method thereof
US20050117347A1 (en) Optical lighting device and method to produce lighting devices adopting said optical device
WO2022247180A1 (en) Display panel and display device
Kwon et al. A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes
TW201502665A (en) Display, backlight module and flip-chip type light-emitting element
JP7460937B2 (en) Planar light source and its manufacturing method
WO2017118214A1 (en) Optical modulator, backlight module, and display device
CN109166903B (en) OLED display panel, manufacturing method thereof and display device
JP2006337845A (en) Member for improving contrast in bright place
CN113035913B (en) Preparation method of display panel, display panel and display device
TW201411905A (en) Organic light-emitting diode package structure and method of manufacturing concavity on substrate
JP4125198B2 (en) Liquid crystal display element
JP2004241214A (en) El element
TW200832746A (en) Light-emitting diode device and manufacturing method thereof
TWI384181B (en) Back light module, its manufacture method and electrical device having the back light module
CN110350103B (en) OLED device structure and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees