JP2006318755A - Film-electrode assembly for solid polymer fuel cell - Google Patents

Film-electrode assembly for solid polymer fuel cell Download PDF

Info

Publication number
JP2006318755A
JP2006318755A JP2005139876A JP2005139876A JP2006318755A JP 2006318755 A JP2006318755 A JP 2006318755A JP 2005139876 A JP2005139876 A JP 2005139876A JP 2005139876 A JP2005139876 A JP 2005139876A JP 2006318755 A JP2006318755 A JP 2006318755A
Authority
JP
Japan
Prior art keywords
catalyst layer
membrane
anode
polymer electrolyte
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005139876A
Other languages
Japanese (ja)
Inventor
Shinji Terasono
真二 寺園
Niro Kawazoe
仁郎 川添
Eiji Endo
栄治 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005139876A priority Critical patent/JP2006318755A/en
Publication of JP2006318755A publication Critical patent/JP2006318755A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film-electrode assembly for solid polymer fuel cell capable of generating electric power with high energy efficiency, having high power generating performance irrespective of dew point of supplied gas, capable of stably generating power for long period. <P>SOLUTION: The film-electrode assembly for solid polymer fuel cell has an anode and a cathode having a catalyst layer containing a catalyst and a polymeric electrolyte, and the solid polymer electrolyte film arranged between the anode and the cathode. At least the catalyst layer of either the anode or the cathode contains cerium phosphate by 1 to 30% against total mass of the catalyst layer. Preferably cerium phosphate is contained in the anode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、初期の出力電圧が高く、長期に渡って高い出力電圧を得られる固体高分子形燃料電池用膜電極接合体に関する。   The present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell, which has a high initial output voltage and can obtain a high output voltage over a long period of time.

燃料電池は、原料となるガスの反応エネルギーを直接電気エネルギーに変換する電池であり、水素・酸素燃料電池は、その反応生成物が原理的に水のみであり地球環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体高分子形燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常温でも作動でき高出力密度が得られるため、近年のエネルギー、地球環境問題への社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージェネレーションシステムの電源として大きな期待が寄せられている。   A fuel cell is a cell that directly converts the reaction energy of a gas that is a raw material into electric energy. In a hydrogen / oxygen fuel cell, the reaction product is only water in principle and has little influence on the global environment. In particular, polymer electrolyte fuel cells that use solid polymer membranes as electrolytes have been developed for polymer electrolyte membranes with high ionic conductivity, and can operate at room temperature to obtain high output density. With increasing social demand for environmental problems, there is great expectation as a power source for mobile vehicles for electric vehicles and small cogeneration systems.

固体高分子形燃料電池では、通常、固体高分子電解質膜としてプロトン伝導性のイオン交換膜が使用され、特にスルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が基本特性に優れている。固体高分子形燃料電池では、イオン交換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸化剤となる酸素を含むガス(空気等)を、それぞれアノード及びカソードに供給することにより発電を行う。   In a polymer electrolyte fuel cell, a proton conductive ion exchange membrane is usually used as a solid polymer electrolyte membrane, and an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is particularly excellent in basic characteristics. In a polymer electrolyte fuel cell, gas diffusible electrode layers are arranged on both surfaces of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (such as air) as an oxidant are respectively supplied to an anode and a cathode. To generate electricity.

固体高分子形燃料電池のカソードにおける酸素の還元反応は過酸化水素(H)を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物ラジカルによって、高分子電解質膜の劣化を引き起こす可能性が懸念されている。また、アノードには、カソードから酸素分子が膜内を透過してくるため、同様に過酸化水素又は過酸化物ラジカルを生成することも懸念される。特に炭化水素系膜を高分子電解質膜とする場合は、ラジカルに対する安定性に乏しく、長期間にわたる運転においては大きな問題となっていた。 Since the reduction reaction of oxygen at the cathode of the polymer electrolyte fuel cell proceeds via hydrogen peroxide (H 2 O 2 ), hydrogen peroxide or peroxide radicals generated in the catalyst layer There is concern about the possibility of causing deterioration of the polymer electrolyte membrane. Moreover, since oxygen molecules permeate through the membrane from the cathode to the anode, there is a concern that hydrogen peroxide or peroxide radicals may be similarly generated. In particular, when a hydrocarbon-based membrane is used as a polymer electrolyte membrane, the stability against radicals is poor, which has been a major problem in long-term operation.

例えば、固体高分子形燃料電池が初めて実用化されたのは、米国のジェミニ宇宙船の電源として採用された時であり、この時にはスチレン−ジビニルベンゼン重合体をスルホン化した膜が高分子電解質膜として使用されたが、長期間にわたる耐久性には問題があった。このような問題を改善する技術としては、高分子電解質膜中に過酸化水素を接触分解できる遷移金属酸化物又はフェノール性水酸基を有する化合物を添加する方法(特許文献1参照)や、高分子電解質膜内に触媒金属粒子を担持し、過酸化水素を分解する方法(特許文献2参照)が知られている。しかし、これらの技術は、初期的には改善の効果があるものの、長期間にわたる耐久性には大きな問題が生じる可能性があった。またコスト的にも高くなるという問題があった。   For example, the solid polymer fuel cell was first put into practical use when it was adopted as a power source for a Gemini spacecraft in the United States. At this time, a membrane obtained by sulfonating a styrene-divinylbenzene polymer was a polymer electrolyte membrane. However, there was a problem in durability over a long period of time. As a technique for improving such a problem, a method of adding a transition metal oxide or a compound having a phenolic hydroxyl group capable of catalytic decomposition of hydrogen peroxide into a polymer electrolyte membrane (see Patent Document 1), a polymer electrolyte, A method is known in which catalytic metal particles are supported in a membrane and hydrogen peroxide is decomposed (see Patent Document 2). However, although these techniques have an improvement effect in the initial stage, there is a possibility that a serious problem may arise in durability over a long period of time. There is also a problem that the cost becomes high.

一方、上記のような炭化水素系の重合体からなる電解質膜に対し、ラジカルに対する安定性が格段に優れる重合体として、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が知られている。近年、これらのパーフルオロカーボン重合体からなるイオン交換膜を用いた固体高分子形燃料電池は、自動車用、住宅用市場等の電源として期待され、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効率での運転が要求されるため、より高い電圧での運転が望まれると同時に低コスト化が望まれている。また、燃料電池システム全体の効率の点から低加湿又は無加湿での運転が要求されることも多い。   On the other hand, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is known as a polymer that is remarkably excellent in radical stability compared to the electrolyte membrane made of a hydrocarbon-based polymer as described above. . In recent years, polymer electrolyte fuel cells using ion-exchange membranes made of these perfluorocarbon polymers are expected to be used as power sources for automobiles and residential markets, etc. . In these applications, since operation with particularly high efficiency is required, operation at a higher voltage is desired and at the same time cost reduction is desired. In addition, from the viewpoint of the efficiency of the entire fuel cell system, operation with low or no humidification is often required.

しかし、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜を用いた燃料電池においても、高加湿下での運転では安定性が非常に高いものの、低加湿又は無加湿での運転条件においては、電圧低下が大きいことが報告されている(非特許文献1参照)。すなわち、低加湿又は無加湿での運転条件においては、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜においても過酸化水素又は過酸化物ラジカルにより電解質膜の劣化が進行するものと考えられる。   However, even in a fuel cell using an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group, the stability is very high when operated under high humidification, but in operating conditions under low or no humidification. It has been reported that the voltage drop is large (see Non-Patent Document 1). That is, under operating conditions with low or no humidification, it is considered that deterioration of the electrolyte membrane proceeds due to hydrogen peroxide or peroxide radicals even in an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group. .

過酸化物ラジカルによる電解質膜の劣化を抑制する目的で、リン酸セリウムをカソード触媒層に添加した例が開示されている(特許文献3)。しかし、開示されたリン酸セリウムの含有量では、触媒層中で生成する過酸化水素又は過酸化物ラジカルによって引き起こされる電解質膜の劣化を抑制する効果は充分に期待できないので、長期間に渡る発電においては問題があると考えられる。   An example in which cerium phosphate is added to the cathode catalyst layer for the purpose of suppressing deterioration of the electrolyte membrane due to peroxide radicals is disclosed (Patent Document 3). However, the disclosed content of cerium phosphate cannot be expected to sufficiently suppress the deterioration of the electrolyte membrane caused by hydrogen peroxide or peroxide radicals generated in the catalyst layer. There seems to be a problem.

特開2001−118591号公報(請求項1、2頁2〜9行)Japanese Patent Laid-Open No. 2001-118591 (Claims 1, 2 to 9 lines) 特開平6−103992号公報(問題を解決するための手段、2頁33〜37行)Japanese Patent Laid-Open No. 6-103992 (means for solving the problem, page 2, lines 33-37) 特開2005−71760号公報(請求項2、実施例11)Japanese Patent Laying-Open No. 2005-71760 (Claim 2, Example 11) 新エネルギー・産業技術総合開発機構主催 平成12年度固体高分子形燃料電池研究開発成果報告会要旨集、56頁16〜24行Summary of the 2000 report on research and development results on polymer electrolyte fuel cells sponsored by the New Energy and Industrial Technology Development Organization, page 56, lines 16-24

そこで本発明は、車載用、住宅用市場等への固体高分子形燃料電池の実用化において、十分に高いエネルギー効率での発電が可能であり、供給ガスの加湿温度(露点)がセル温度よりも低い低加湿又は無加湿での運転、セル温度に近い温度で加湿する高加湿での運転のどちらにおいても、高い発電性能を有し、かつ長期間にわたって安定した発電が可能な固体高分子形燃料電池用膜電極接合体を提供することを目的とする。   Therefore, the present invention enables power generation with sufficiently high energy efficiency in the practical application of polymer electrolyte fuel cells for in-vehicle and residential markets, and the humidification temperature (dew point) of the supply gas is higher than the cell temperature. Solid polymer type that has high power generation performance and stable power generation over a long period of time, whether it is operated with low or no humidification, or with high humidification where the temperature is close to the cell temperature. It aims at providing the membrane electrode assembly for fuel cells.

本発明は、触媒と高分子電解質とを含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される固体高分子電解質膜とを備える固体高分子形燃料電池用膜電極接合体であって、前記アノード及び前記カソードの少なくとも一方の触媒層は、固形分の1〜30%のリン酸セリウムを含むことを特徴とする固体高分子形燃料電池用膜電極接合体を提供する。   The present invention relates to a membrane electrode for a polymer electrolyte fuel cell comprising an anode and a cathode having a catalyst layer containing a catalyst and a polymer electrolyte, and a solid polymer electrolyte membrane disposed between the anode and the cathode. Provided is a membrane electrode assembly for a polymer electrolyte fuel cell, wherein the catalyst layer of at least one of the anode and the cathode contains cerium phosphate having a solid content of 1 to 30%. To do.

本発明の膜電極接合体が、過酸化水素又は過酸化物ラジカルに対して優れた耐性を有し、耐久性に優れる理由は明確ではないが、以下の機構を考えている。触媒層にリン酸セリウムが1%以上含まれていることにより、運転中に触媒層で生成する過酸化水素を、その生成した近傍で速やかにかつ効果的に分解することができ、過酸化水素が触媒層から高分子電解質膜中に拡散するのを防ぐと考えられる。カソードで生成する過酸化水素はカソード触媒上での酸素還元反応によって生成する中間体である。また、車載用の燃料電池においては運転の途中で無負荷の状態が起こり得るが、この状態では発電により酸素が消費されない。よって、酸素がカソード側から膜内をクロスリークしてアノードまで到達し、アノード触媒層中で容易に過酸化水素が形成される。したがって、アノード触媒層にリン酸セリウムが含まれることは特に有効であると考えられる。   The reason why the membrane electrode assembly of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals and excellent durability is not clear, but the following mechanism is considered. By containing 1% or more of cerium phosphate in the catalyst layer, hydrogen peroxide generated in the catalyst layer during operation can be quickly and effectively decomposed in the vicinity of the generated hydrogen peroxide. Is considered to prevent diffusion from the catalyst layer into the polymer electrolyte membrane. Hydrogen peroxide produced at the cathode is an intermediate produced by an oxygen reduction reaction on the cathode catalyst. In addition, in an in-vehicle fuel cell, a no-load state may occur during operation. In this state, oxygen is not consumed by power generation. Therefore, oxygen cross leaks from the cathode side through the membrane and reaches the anode, and hydrogen peroxide is easily formed in the anode catalyst layer. Therefore, it is considered particularly effective that cerium phosphate is contained in the anode catalyst layer.

本発明の膜電極接合体は過酸化水素又は過酸化物ラジカルに対して優れた耐性を有するため、本発明の膜電極接合体を備える固体高分子形燃料電池は、耐久性に優れ、長期にわたって安定な発電が可能である。   Since the membrane / electrode assembly of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals, the polymer electrolyte fuel cell provided with the membrane / electrode assembly of the present invention has excellent durability and can be used for a long time. Stable power generation is possible.

本発明におけるリン酸セリウムとしては、リン酸第一セリウム(リン酸セリウム(III)、CePO)、リン酸第二セリウム(リン酸セリウム(IV)、Ce(PO)が挙げられる。これらは無水物でもよく、結晶水又は水和水を有していてもよい。本発明では、リン酸セリウムの形態が無水物であっても、結晶水又は水和水を有してもいてもよく、十分にその効果を得ることが可能である。 Examples of the cerium phosphate in the present invention include cerium phosphate (cerium (III) phosphate, CePO 4 ), cerium phosphate (cerium (IV) phosphate, Ce 3 (PO 4 ) 4 ). . These may be anhydrous and may have water of crystallization or water of hydration. In the present invention, the form of cerium phosphate may be anhydrous or may have water of crystallization or water of hydration, and the effect can be sufficiently obtained.

リン酸第一セリウム(3価)を用いた場合には、リン酸第二セリウム(4価)よりも水の保水性に優れるので、低加湿又は無加湿状態においてより良好な発電特性を有する。特に、より乾燥しやすいアノード側に添加されることが好ましい。   When ceric phosphate (trivalent) is used, it has better water retention than ceric phosphate (tetravalent), and therefore has better power generation characteristics in a low or non-humidified state. In particular, it is preferable to add to the anode side which is easier to dry.

本発明において、アノード及びカソードの少なくとも一方の触媒層は、触媒層全質量に対し1〜30%のリン酸セリウムを含む。リン酸セリウムの含有率が1%未満では過酸化水素又は過酸化物ラジカルに対する耐性が得られない。一方、30%超であると膜電極接合体の抵抗の上昇につながる。リン酸セリウムの含有率は2〜20%であることが好ましく、5〜15%であることがより好ましい。   In the present invention, at least one of the anode and cathode catalyst layers contains 1 to 30% of cerium phosphate with respect to the total mass of the catalyst layer. When the content of cerium phosphate is less than 1%, resistance to hydrogen peroxide or peroxide radicals cannot be obtained. On the other hand, if it exceeds 30%, the resistance of the membrane electrode assembly is increased. The content of cerium phosphate is preferably 2 to 20%, and more preferably 5 to 15%.

本発明における触媒層に含まれる高分子電解質はスルホン酸基を有する高分子化合物であることが好ましい。スルホン酸基を有する高分子化合物としては特に限定されないが、イオン交換容量は0.5〜3.0ミリ当量/g乾燥樹脂であることが好ましく、特に0.7〜2.5ミリ当量/g乾燥樹脂であることが好ましい。また、耐久性の観点から当該高分子化合物は含フッ素重合体であることが好ましく、特にスルホン酸基を有するパーフルオロカーボン重合体(エーテル結合性の酸素原子を含んでいてもよい)が好ましい。上記パーフルオロカーボン重合体としては特に限定されないが、CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロ化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示し、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく重合単位と、テトラフルオロエチレンに基づく重合単位とを含む共重合体であることが好ましい。 The polymer electrolyte contained in the catalyst layer in the present invention is preferably a polymer compound having a sulfonic acid group. The polymer compound having a sulfonic acid group is not particularly limited, but the ion exchange capacity is preferably 0.5 to 3.0 meq / g dry resin, particularly 0.7 to 2.5 meq / g. A dry resin is preferred. From the viewpoint of durability, the polymer compound is preferably a fluorine-containing polymer, and more preferably a perfluorocarbon polymer having a sulfonic acid group (which may contain an etheric oxygen atom). Is not particularly restricted but includes perfluorocarbon polymer but, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) perfluoro compound represented by n -SO 3 H (m is 0-3 N represents an integer of 1 to 12, p represents 0 or 1, X represents a fluorine atom or a trifluoromethyl group, and a polymer unit based on tetrafluoroethylene. It is preferable that it is a copolymer containing.

上記パーフルオロ化合物の好ましい例をより具体的に示すと、下記式(i)〜(iii)で表される化合物が挙げられる。ただし、下記式中、qは1〜8の整数、rは1〜8の整数、tは1〜3の整数を示す。   When the preferable example of the said perfluoro compound is shown more concretely, the compound represented by following formula (i)-(iii) will be mentioned. However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is an integer of 1 to 3.

Figure 2006318755
Figure 2006318755

スルホン酸基を有するパーフルオロカーボン重合体を用いる場合、重合後にフッ素化することにより重合体の末端がフッ素化処理されたものを用いてもよい。重合体の末端がフッ素化されていると、より過酸化水素や過酸化物ラジカルに対する安定性が優れるため耐久性が向上する。   When using the perfluorocarbon polymer which has a sulfonic acid group, you may use what the terminal of the polymer was fluorinated by fluorination after superposition | polymerization. When the terminal of the polymer is fluorinated, the durability against hydrogen peroxide and peroxide radicals is further improved, so that the durability is improved.

本発明における固体高分子電解質膜としては、特に限定されないが、イオン交換容量が0.5〜3.0ミリ当量/g乾燥樹脂のイオン交換膜であることが好ましく、0.7〜2.5ミリ当量/乾燥樹脂のイオン交換膜であることがより好ましい。   The solid polymer electrolyte membrane in the present invention is not particularly limited, but is preferably an ion exchange membrane having an ion exchange capacity of 0.5 to 3.0 meq / g dry resin, and 0.7 to 2.5. It is more preferably an ion exchange membrane of milliequivalent / dry resin.

イオン交換膜としては、触媒層に含まれるスルホン酸基を有するパーフルオロカーボン重合体と同様のイオン交換樹脂からなる膜を好ましく使用することができる。このようなイオン交換樹脂からなる膜としては、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜(例えば、ナフィオン(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)等)、部分フッ素化された炭化水素系のスルホン酸型イオン交換膜(例えば、エチレンテトラフルオロエチレン共重合体のグラフト重合膜でスルホン酸基が導入されたもの)等を好ましく使用することができる。   As the ion exchange membrane, a membrane made of an ion exchange resin similar to the perfluorocarbon polymer having a sulfonic acid group contained in the catalyst layer can be preferably used. Examples of the membrane made of such an ion exchange resin include an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group (for example, Nafion (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass), etc.) A partially fluorinated hydrocarbon-based sulfonic acid ion exchange membrane (for example, a graft polymerized membrane of an ethylene tetrafluoroethylene copolymer into which a sulfonic acid group is introduced) can be preferably used.

また、イオン交換膜としては、スルホン酸基を有するパーフルオロカーボン重合体以外のものも使用でき、例えば高分子の主鎖に、又は主鎖と側鎖に芳香環を有しており、該芳香環にスルホン酸基が導入された構造を有する高分子化合物であって、イオン交換容量が0.8〜3.0ミリ当量/g乾燥樹脂である高分子化合物が好ましく使用できる。具体的には、例えば下記の高分子化合物が使用できる。   In addition, as the ion exchange membrane, those other than the perfluorocarbon polymer having a sulfonic acid group can be used. For example, the ion exchange membrane has an aromatic ring in the main chain of the polymer or in the main chain and the side chain. A polymer compound having a structure in which a sulfonic acid group is introduced into the polymer and having an ion exchange capacity of 0.8 to 3.0 meq / g dry resin can be preferably used. Specifically, for example, the following polymer compounds can be used.

スルホン化ポリアリーレン、スルホン化ポリベンゾオキサゾール、スルホン化ポリベンゾチアゾール、スルホン化ポリベンゾイミダゾール、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリフェニレンスルホン、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンスルフィドスルホン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルエーテルケトン、スルホン化ポリイミド等。   Sulfonated polyarylene, sulfonated polybenzoxazole, sulfonated polybenzothiazole, sulfonated polybenzimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polyphenylenesulfone, sulfonated polyphenyleneoxide, Sulfonated polyphenylene sulfide sulfone, sulfonated polyether ketone, sulfonated polyether ether ketone, sulfonated polyimide, etc.

本発明の膜電極接合体を有する固体高分子形燃料電池は、例えば以下のような構成である。すなわち、固体高分子電解質膜の両面に、触媒と高分子電解質とを含む触媒層を有するアノード及びカソードが配置された膜電極接合体を備える。膜電極接合体のアノード及びカソードは、好ましくは触媒層の外側(膜と反対側)にカーボンクロスやカーボンペーパー等からなるガス拡散層が配置される。膜電極接合体の両面には、燃料ガス又は酸化剤ガスの通路となる溝が形成されセパレータが配置され、セパレータを介して膜電極接合体が複数積層されたスタックを構成し、アノード側には水素ガスが供給され、カソード側には酸素又は空気が供給される構成である。アノードにおいてはH→2H+2eの反応が起こり、カソードにおいては1/2O+2H+2e→HOの反応が起こり、化学エネルギーが電気エネルギーに変換される。
また、本発明の膜電極接合体は、アノード側に燃料ガスではなくメタノールを供給する直接メタノール燃料電池にも使用できる。
The polymer electrolyte fuel cell having the membrane electrode assembly of the present invention has the following configuration, for example. That is, a membrane / electrode assembly in which an anode and a cathode having a catalyst layer containing a catalyst and a polymer electrolyte are disposed on both sides of a solid polymer electrolyte membrane. The anode and cathode of the membrane electrode assembly are preferably provided with a gas diffusion layer made of carbon cloth, carbon paper or the like outside the catalyst layer (opposite the membrane). Grooves serving as fuel gas or oxidant gas passages are formed on both surfaces of the membrane electrode assembly to form a stack in which a plurality of membrane electrode assemblies are stacked via the separator. Hydrogen gas is supplied, and oxygen or air is supplied to the cathode side. A reaction of H 2 → 2H + + 2e occurs at the anode, and a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs at the cathode, and chemical energy is converted into electric energy.
The membrane electrode assembly of the present invention can also be used in a direct methanol fuel cell that supplies methanol instead of fuel gas to the anode side.

膜電極接合体は通常の手法に従い、例えば以下のようにして得られる。まず、白金触媒又は白金合金触媒の微粒子を担持させた導電性のカーボンブラック粉末と高分子電解質の溶液を混合した後、リン酸セリウムを混合し、分散液(触媒層形成用塗工液)を得て、例えば以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。   The membrane / electrode assembly is obtained in the following manner, for example, according to a normal method. First, after mixing a conductive carbon black powder carrying platinum catalyst or platinum alloy catalyst fine particles and a polymer electrolyte solution, cerium phosphate is mixed, and a dispersion (catalyst layer forming coating solution) is prepared. Then, for example, a gas diffusion electrode is formed by any of the following methods to obtain a membrane electrode assembly.

第1の方法は、固体高分子電解質膜の両面に上記分散液を塗布し乾燥後、両面を2枚のカーボンクロス又はカーボンペーパーで密着する方法である。第2の方法は、上記分散液を2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布された面が固体高分子電解質膜と密着するように、固体高分子電解質膜の両面から挟みこむ方法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有するものである。また、別途用意した基材に上記分散液を塗工して触媒層を作製し、転写等の方法により固体高分子電解質膜と接合させた後に基材をはく離し、上記ガス拡散層で挟み込む方法も使用できる。   The first method is a method in which the above dispersion is applied to both surfaces of a solid polymer electrolyte membrane, dried, and then both surfaces are adhered to each other with two carbon cloths or carbon paper. The second method is to apply the above dispersion onto two carbon cloths or carbon paper, and then dry the both sides of the solid polymer electrolyte membrane so that the surface on which the dispersion is applied is in close contact with the solid polymer electrolyte membrane. It is the method of pinching from. Here, the carbon cloth or the carbon paper has a function as a gas diffusion layer and a function as a current collector for uniformly diffusing the gas by the layer containing the catalyst. Also, a method in which the above dispersion is applied to a separately prepared substrate to prepare a catalyst layer, bonded to the solid polymer electrolyte membrane by a method such as transfer, and then peeled off and sandwiched between the gas diffusion layers Can also be used.

以下、本発明を具体的に実施例(例1〜7)及び比較例(例8〜10)を用いて説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be specifically described using Examples (Examples 1 to 7) and Comparative Examples (Examples 8 to 10), but the present invention is not limited to these.

[例1]
硝酸セリウム(Ce(NO・6HO)10.0gを500mLの蒸留水に溶解し、この中に1モル/Lのリン酸水溶液を100g滴下し、白色の沈殿を得た。これを水洗し、pHが7になるまで水洗・濾過を繰り返し、80℃で乾燥した。この結晶を、X線回折により同定した結果、リン酸第一セリウムであることが確認された。
[Example 1]
Cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 10.0g was dissolved in distilled water of 500 mL, the aqueous solution of phosphoric acid 1 mol / L therein and 100g added dropwise to give a white precipitate. This was washed with water, repeatedly washed with water and filtered until the pH reached 7, and dried at 80 ° C. As a result of identifying this crystal by X-ray diffraction, it was confirmed that it was ceric phosphate.

白金がカーボン担体(比表面積800m/g)に触媒全質量の46.5%含まれるように担持された触媒(商品名TEC10E50E、田中貴金属工業社製)7gに蒸留水60.6gとエタノール45.5gを混合した。次に、この混合液にCF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂、以下「共重合体A」という。)をエタノールに分散させた固形分濃度9.8質量%の液26.4gを混合した。次にリン酸第一セリウム0.96gを加えた後、この混合液をホモジナイザー(商品名:ポリトロン、キネマチカ社製)を使用して混合、粉砕させ、これを触媒層形成用塗工液aとした。この塗工液aを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層aを作製した。なお、触媒層形成前の基材フィルムのみと触媒層形成後の基材フィルムの質量を測定することにより、触媒層aに含まれる単位面積あたりの白金の量を算出したところ、0.4mg/cmであった。触媒層a中にリン酸第一セリウムは、触媒層全質量の9.1%含まれていた。 A catalyst (trade name TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) on which platinum is supported on a carbon support (specific surface area 800 m 2 / g) so as to contain 46.5% of the total mass of the catalyst, 60.6 g of distilled water and 45 ethanol .5 g was mixed. Next, CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin, 26.4 g of a liquid having a solid content concentration of 9.8% by mass in which “copolymer A”) was dispersed in ethanol was mixed. Next, after adding 0.96 g of cerous phosphate, this mixed solution was mixed and pulverized using a homogenizer (trade name: Polytron, manufactured by Kinematica Co., Ltd.), and this was mixed with catalyst layer forming coating solution a. did. The coating liquid a was applied onto a polypropylene substrate film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to prepare a catalyst layer a. In addition, when the amount of platinum per unit area contained in the catalyst layer a was calculated by measuring the mass of only the base film before forming the catalyst layer and the base film after forming the catalyst layer, 0.4 mg / cm 2 . The catalyst layer a contained 9.1% of cerium phosphate in the total mass of the catalyst layer.

次に、白金がカーボン担体(比表面積800m/g)に触媒全質量の46.5%含まれるように担持された触媒(商品名TEC10E50E、田中貴金属工業社製)7gに蒸留水63.7gとエタノール38.8gを混合した。次に、この混合液に共重合体Aのエタノール分散液(固形分濃度9.8質量%)26.4gを混合した。この混合液をホモジナイザーを使用して混合、粉砕し、これを触媒層形成用塗工液bとした。この塗工液bを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層bを作製した。なお、触媒層bに含まれる単位面積あたりの白金の量を算出したところ、0.4mg/cmであった。 Next, 73.7 g of distilled water supported on 7 g of a catalyst (trade name TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) on which platinum is supported on a carbon support (specific surface area 800 m 2 / g) so as to be 46.5% of the total mass of the catalyst. And 38.8 g of ethanol were mixed. Next, 26.4 g of an ethanol dispersion of the copolymer A (solid content concentration: 9.8% by mass) was mixed with this mixed solution. This mixed solution was mixed and pulverized using a homogenizer, and this was used as a catalyst layer forming coating solution b. The coating liquid b was coated on a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to prepare a catalyst layer b. In addition, it was 0.4 mg / cm < 2 > when the quantity of platinum per unit area contained in the catalyst layer b was calculated.

次に、固体高分子電解質膜として、スルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜(商品名:フレミオン、旭硝子社製、イオン交換容量1.1ミリ当量/g乾燥樹脂)を使用し、この膜の両面に基材フィルム上に形成された触媒層aをアノードとし、触媒層bをカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、基材を剥離して、膜触媒層接合体を得た。なお、電極面積は25cmであった。 Next, as a solid polymer electrolyte membrane, an ion exchange membrane having a thickness of 30 μm made of a perfluorocarbon polymer having a sulfonic acid group (trade name: Flemion, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.1 meq / g dry resin) ), The catalyst layer a formed on the base film on both sides of the membrane is used as an anode, and the catalyst layer b is used as a cathode, and the anode catalyst layer and the cathode catalyst layer are transferred by hot pressing. Then, the substrate was peeled off to obtain a membrane / catalyst layer assembly. The electrode area was 25 cm 2 .

この膜触媒層接合体を厚さ350μmのカーボンクロスからなるガス拡散層2枚の間に挟んで膜電極接合体を作製し、これを発電用セルに組み込み、低加湿での運転条件における耐久試験を行った。試験条件は、常圧にて水素(利用率70%)/空気(利用率40%)を供給し、セル温度70℃において電流密度0.2A/cmにおける固体高分子型燃料電池の初期特性評価及び耐久性評価を実施した。アノード側に供給するガスの露点を50℃、カソード側に供給するガスの露点を50℃として、それぞれ水素及び空気を加湿してセル内に供給し、運転初期の出力電圧を測定した結果を表1に示す。また、500時間運転した後の出力電圧、1000時間運転した後の出力電圧を測定すると表1に示す結果のとおりとなる。
また、上記の評価条件において、カソード側に供給するガスの露点を70℃に変更した以外は同様にして、運転初期の出力電圧を測定した結果を表2に示す。また、500時間運転した後の出力電圧、1000時間運転した後の出力電圧を測定すると表2に示す結果のとおりとなる。
A membrane / electrode assembly is produced by sandwiching this membrane / catalyst layer assembly between two gas diffusion layers made of carbon cloth having a thickness of 350 μm, and this is assembled in a power generation cell and subjected to durability tests under operating conditions with low humidification. Went. The test conditions were: hydrogen (utilization rate 70%) / air (utilization rate 40%) at normal pressure, initial characteristics of a polymer electrolyte fuel cell at a cell temperature of 70 ° C. and a current density of 0.2 A / cm 2 . Evaluation and durability evaluation were carried out. The dew point of the gas supplied to the anode side is 50 ° C., the dew point of the gas supplied to the cathode side is 50 ° C., hydrogen and air are each humidified and supplied into the cell, and the results of measuring the output voltage at the initial stage of operation are shown. It is shown in 1. Further, when the output voltage after 500 hours of operation and the output voltage after 1000 hours of operation are measured, the results shown in Table 1 are obtained.
Table 2 shows the results of measuring the output voltage in the initial operation in the same manner except that the dew point of the gas supplied to the cathode was changed to 70 ° C. under the above evaluation conditions. Further, when the output voltage after 500 hours of operation and the output voltage after 1000 hours of operation are measured, the results shown in Table 2 are obtained.

[例2]
例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に、例1で作製した基材フィルム上に形成された触媒層bをアノードとし、例1で作製した基材フィルム上に形成された触媒層aをカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製する。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなる。
[Example 2]
An ion exchange membrane having a thickness of 30 μm made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1 was used, and a catalyst layer b formed on the base film prepared in Example 1 was formed on both sides of this membrane. As an anode, the catalyst layer a formed on the base film prepared in Example 1 was placed as a cathode, and transferred by a hot press method to form an anode catalyst layer and a cathode catalyst layer. The electrode area was 25 cm 2 . A membrane / catalyst layer assembly is produced. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

[例3]
例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に例1で作製した基材フィルム上に形成された触媒層aをアノード及びカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製する。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなる。
[Example 3]
Using a 30 μm-thick ion-exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1, the catalyst layer a formed on the base film prepared in Example 1 was formed on both sides of the membrane as an anode. And an anode catalyst layer and a cathode catalyst layer are formed by transferring by a hot press method, and a membrane catalyst layer assembly having an electrode area of 25 cm 2 is produced. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

[例4]
例1において触媒層形成用塗工液aの調製で使用したリン酸第一セリウム0.96gをリン酸第一セリウム0.19gとした以外は例1と同様の手法により触媒層形成用塗工液cを調製する。この塗工液cを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層cを作製する。なお、触媒層cに含まれる単位面積あたりの白金の量を算出したところ、0.4mg/cmとなる。触媒層c中にリン酸第一セリウムは、触媒層全質量の2.0%含まれる。
[Example 4]
Coating for forming a catalyst layer in the same manner as in Example 1 except that 0.96 g of cerous phosphate used in the preparation of the coating solution a for forming a catalyst layer in Example 1 was changed to 0.19 g of cerium phosphate. Prepare liquid c. The coating liquid c is applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to produce a catalyst layer c. In addition, when the amount of platinum per unit area contained in the catalyst layer c was calculated, it was 0.4 mg / cm 2 . The catalyst layer c contains 2.0% of cerium phosphate by the total mass of the catalyst layer.

例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に基材フィルム上に形成された触媒層cをアノードとし、例1で作製した基材フィルム上に形成された触媒層bをカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製する。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなる。 Using an ion exchange membrane having a thickness of 30 μm made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1, the catalyst layer c formed on the base film on both sides of this membrane was used as an anode. The catalyst layer b formed on the prepared base film is arranged as a cathode, and is transferred by a hot press method to form an anode catalyst layer and a cathode catalyst layer. The membrane catalyst layer assembly having an electrode area of 25 cm 2 Is made. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

[例5]
例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に、例1で作製した基材フィルム上に形成された触媒層bをアノードとし、例4で作製した基材フィルム上に形成された触媒層cをカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製する。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなる。
[Example 5]
An ion exchange membrane having a thickness of 30 μm made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1 was used, and a catalyst layer b formed on the base film prepared in Example 1 was formed on both sides of this membrane. As an anode, the catalyst layer c formed on the base film produced in Example 4 was respectively arranged as a cathode, and transferred by a hot press method to form an anode catalyst layer and a cathode catalyst layer. The electrode area was 25 cm 2 . A membrane / catalyst layer assembly is produced. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

[例6]
例1において触媒層形成用塗工液aの調製で使用したリン酸第一セリウム0.96gをリン酸第一セリウム3.9gとした以外は例1と同様の手法により触媒層形成用塗工液dを調製する。この塗工液dを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層dを作製する。なお、触媒層dに含まれる単位面積あたりの白金の量を算出したところ、0.4mg/cmである。触媒層d中にリン酸第一セリウムは、触媒層全質量の29%含まれる。
[Example 6]
Coating for forming a catalyst layer in the same manner as in Example 1 except that 0.96 g of cerium phosphate used in the preparation of the coating solution a for forming a catalyst layer in Example 1 was changed to 3.9 g of cerium phosphate. Prepare liquid d. The coating liquid d is applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to produce a catalyst layer d. In addition, it was 0.4 mg / cm < 2 > when the quantity of platinum per unit area contained in the catalyst layer d was calculated. The catalyst layer d contains 29% of the total mass of the catalyst layer d.

例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に基材フィルム上に形成された触媒層dをアノードとし、例1で作製した基材フィルム上に形成された触媒層bをカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製する。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなる。 Using an ion exchange membrane having a thickness of 30 μm made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1, the catalyst layer d formed on the base film on both sides of this membrane was used as an anode. The catalyst layer b formed on the prepared base film is arranged as a cathode, and is transferred by a hot press method to form an anode catalyst layer and a cathode catalyst layer. The membrane catalyst layer assembly having an electrode area of 25 cm 2 Is made. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

[例7]
90℃に加温した0.2モル/Lのリン酸溶液1Lに、硫酸セリウム(Ce(SO・2HO)10%水溶液80gを、撹拌しながら毎分3mLの速度で添加した。そのままの状態で半日熟成後、濾別、水洗、室温で風乾して、黄色結晶を得た。この結晶を、X線回折により同定した結果、リン酸第二セリウムであることが確認された。
[Example 7]
To 1 L of a 0.2 mol / L phosphoric acid solution heated to 90 ° C., 80 g of a 10% aqueous solution of cerium sulfate (Ce (SO 4 ) 2 .2H 2 O) was added at a rate of 3 mL per minute while stirring. . After aging for half a day as it was, it was filtered, washed with water, and air-dried at room temperature to obtain yellow crystals. As a result of identifying this crystal by X-ray diffraction, it was confirmed to be ceric phosphate.

例1で用いた触媒(田中貴金属工業社製:TEC10E50E)7gに蒸留水60.6gとエタノール45.5gを混合した。次に、この混合液にCF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)をエタノールに分散させた固形分濃度9.8質量%の液26.4gを混合した。次にリン酸第二セリウム1.03gを加えた後、この混合液をホモジナイザー(商品名:ポリトロン、キネマチカ社製)を使用して混合、粉砕させ、これを触媒層形成用塗工液eとした。この塗工液eを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層eを作製した。なお、触媒層eに含まれる単位面積あたりの白金の量を算出したところ、0.4mg/cmであった。触媒層e中にリン酸第二セリウムは、触媒層全質量の9.7%含まれていた。 60.6 g of distilled water and 45.5 g of ethanol were mixed with 7 g of the catalyst used in Example 1 (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd .: TEC10E50E). Next, CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin) is added to this mixed solution. 26.4 g of a liquid having a solid content concentration of 9.8% by mass dispersed in ethanol was mixed. Next, after adding 1.03 g of ceric phosphate, this mixed solution was mixed and pulverized using a homogenizer (trade name: Polytron, manufactured by Kinematica), and this was mixed with a coating solution e for forming a catalyst layer. did. The coating solution e was applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to prepare a catalyst layer e. The amount of platinum per unit area contained in the catalyst layer e was calculated to be 0.4 mg / cm 2 . The catalyst layer e contained 9.7% of ceric phosphate in the total mass of the catalyst layer.

例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に基材フィルム上に形成された触媒層eをアノードとし、例1で作成した基材フィルム上に形成された触媒層bをカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製した。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなった。 Using an ion exchange membrane having a thickness of 30 μm made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1, the catalyst layer e formed on the base film on both sides of this membrane was used as an anode. The catalyst layer b formed on the prepared base film is arranged as a cathode, and is transferred by a hot press method to form an anode catalyst layer and a cathode catalyst layer. The membrane catalyst layer assembly having an electrode area of 25 cm 2 Was made. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

[例8]
例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に、例1で作製した基材フィルム上に形成された触媒層bをアノード及びカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製した。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなる。
[Example 8]
An ion exchange membrane having a thickness of 30 μm made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1 was used, and a catalyst layer b formed on the base film prepared in Example 1 was formed on both sides of this membrane. The anode catalyst layer and the cathode catalyst layer were formed by arranging them as an anode and a cathode, respectively, and transferred by a hot press method, and a membrane catalyst layer assembly having an electrode area of 25 cm 2 was produced. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

[例9]
例1において触媒層形成用塗工液aの調製で使用したリン酸第一セリウム0.96gをリン酸第一セリウム0.035gとした以外は例1と同様の手法により触媒層形成用塗工液fを調製する。この塗工液fを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層fを作製する。なお、触媒層fに含まれる単位面積あたりの白金の量を算出したところ、0.4mg/cmとなる。触媒層f中にリン酸第一セリウムは、触媒層全質量の0.36%含まれる。
[Example 9]
Coating for forming a catalyst layer in the same manner as in Example 1 except that 0.96 g of cerium phosphate used in the preparation of the coating liquid a for forming a catalyst layer in Example 1 was changed to 0.035 g of cerium phosphate. Liquid f is prepared. The coating liquid f is applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to produce a catalyst layer f. In addition, when the amount of platinum per unit area contained in the catalyst layer f was calculated, it was 0.4 mg / cm 2 . The catalyst layer f contains 0.36% of cerium phosphate in the total mass of the catalyst layer.

例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に例1で作製した基材フィルム上に形成された触媒層bをアノードとし、触媒層fをカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製する。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなる。 Using a 30 μm-thick ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1, the catalyst layer b formed on the base film prepared in Example 1 was formed on both sides of the membrane as an anode. Then, the catalyst layer f is arranged as a cathode, and is transferred by a hot press method to form an anode catalyst layer and a cathode catalyst layer, and a membrane catalyst layer assembly having an electrode area of 25 cm 2 is produced. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

[例10]
例1において触媒層形成用塗工液aの調製で使用したリン酸第一セリウム0.96gをリン酸第一セリウム5.2gとした以外は例1と同様の手法により触媒層形成用塗工液gを調製する。この塗工液gを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層gを作製する。なお、触媒層gに含まれる単位面積あたりの白金の量を算出したところ、0.4mg/cmとなる。触媒層g中にリン酸第一セリウムは、触媒層全質量の35%含まれる。
[Example 10]
Coating for forming a catalyst layer in the same manner as in Example 1 except that 0.96 g of cerium phosphate used in the preparation of the coating solution a for forming a catalyst layer in Example 1 was changed to 5.2 g of cerium phosphate. Prepare liquid g. The coating liquid g is applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to produce a catalyst layer g. In addition, when the amount of platinum per unit area contained in the catalyst layer g was calculated, it was 0.4 mg / cm 2 . 35% of the total mass of the catalyst layer is contained in the catalyst layer g.

例1で用いたスルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜を使用し、この膜の両面に基材フィルム上に形成された触媒層gをアノードとし、例1で作製した基材フィルム上に形成された触媒層bをカソードとしてそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである膜触媒層接合体を作製した。例1と同様にして膜電極接合体を作製し、例1と同様の評価を行うと、表1、2に示す結果のとおりとなる。 Using an ion exchange membrane having a thickness of 30 μm made of a perfluorocarbon polymer having a sulfonic acid group used in Example 1, the catalyst layer g formed on the base film on both sides of this membrane was used as an anode. The catalyst layer b formed on the prepared base film is arranged as a cathode, and is transferred by a hot press method to form an anode catalyst layer and a cathode catalyst layer. The membrane catalyst layer assembly having an electrode area of 25 cm 2 Was made. When a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1, the results shown in Tables 1 and 2 were obtained.

Figure 2006318755
Figure 2006318755

Figure 2006318755
Figure 2006318755

上記実施例及び比較例の結果より、本発明の膜電極接合体は格段に優れた耐久性を示すことが認められる。特にアノードにリン酸セリウムが含まれる場合、低加湿での運転においてより良好な発電特性を有することが分かる。   From the results of the above Examples and Comparative Examples, it can be seen that the membrane / electrode assembly of the present invention exhibits remarkably excellent durability. In particular, it can be seen that when the anode contains cerium phosphate, it has better power generation characteristics in operation with low humidification.

本発明の膜電極接合体は、燃料電池の発電により生成される過酸化水素又は過酸化物ラジカルに対する耐久性が極めて優れている。したがって、本発明の膜電極接合体を備える固体高分子形燃料電池は、低加湿発電、高加湿発電のいずれにおいても長期の耐久性を有する。
The membrane electrode assembly of the present invention is extremely excellent in durability against hydrogen peroxide or peroxide radicals generated by power generation of a fuel cell. Therefore, the polymer electrolyte fuel cell provided with the membrane electrode assembly of the present invention has long-term durability in both low humidification power generation and high humidification power generation.

Claims (4)

触媒と高分子電解質とを含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される固体高分子電解質膜とを備える固体高分子形燃料電池用膜電極接合体であって、
前記アノード及び前記カソードの少なくとも一方の触媒層は、触媒層全質量に対し1〜30%のリン酸セリウムを含むことを特徴とする固体高分子形燃料電池用膜電極接合体。
A membrane electrode assembly for a polymer electrolyte fuel cell, comprising: an anode and a cathode having a catalyst layer containing a catalyst and a polymer electrolyte; and a solid polymer electrolyte membrane disposed between the anode and the cathode. And
The membrane electrode assembly for a polymer electrolyte fuel cell, wherein the catalyst layer of at least one of the anode and the cathode contains 1 to 30% of cerium phosphate with respect to the total mass of the catalyst layer.
触媒と高分子電解質とを含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される固体高分子電解質膜とを備える固体高分子形燃料電池用膜電極接合体であって、
前記アノードの触媒層は、触媒層全質量に対し1〜30%のリン酸セリウムを含むことを特徴とする固体高分子形燃料電池用膜電極接合体。
A membrane electrode assembly for a polymer electrolyte fuel cell, comprising: an anode and a cathode having a catalyst layer containing a catalyst and a polymer electrolyte; and a solid polymer electrolyte membrane disposed between the anode and the cathode. And
A membrane electrode assembly for a polymer electrolyte fuel cell, wherein the catalyst layer of the anode contains 1 to 30% of cerium phosphate with respect to the total mass of the catalyst layer.
前記触媒層中の高分子電解質は、スルホン酸基を有するパーフルオロカーボン重合体である請求項1又は2に記載の固体高分子形燃料電池用膜電極接合体。   3. The membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the polymer electrolyte in the catalyst layer is a perfluorocarbon polymer having a sulfonic acid group. 前記パーフルオロカーボン重合体は、CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロ化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示し、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく重合単位と、テトラフルオロエチレンに基づく重合単位とを含む共重合体である請求項3に記載の固体高分子形燃料電池用膜電極接合体。
The perfluorocarbon polymer, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) perfluoro compound represented by n -SO 3 H (m is an integer of 0 to 3, n Represents an integer of 1 to 12, p represents 0 or 1, and X represents a fluorine atom or a trifluoromethyl group.) And a copolymer comprising a polymer unit based on tetrafluoroethylene. The membrane electrode assembly for a polymer electrolyte fuel cell according to claim 3.
JP2005139876A 2005-05-12 2005-05-12 Film-electrode assembly for solid polymer fuel cell Withdrawn JP2006318755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139876A JP2006318755A (en) 2005-05-12 2005-05-12 Film-electrode assembly for solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139876A JP2006318755A (en) 2005-05-12 2005-05-12 Film-electrode assembly for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2006318755A true JP2006318755A (en) 2006-11-24

Family

ID=37539243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139876A Withdrawn JP2006318755A (en) 2005-05-12 2005-05-12 Film-electrode assembly for solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2006318755A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288140A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
JP2009043544A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Solid polymer fuel cell manufacturing method and solid polymer fuel cell
JP2012076013A (en) * 2010-09-30 2012-04-19 Toshiba Corp Catalyst, catalyst composition, cathode catalyst layer, membrane electrode assembly, and fuel cell
CN106876754A (en) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 A kind of fuel cell catalyst Rotating fields and its preparation
CN109671965A (en) * 2018-12-21 2019-04-23 清华大学 A kind of high-durability fuel cell membrane electrode and preparation method thereof
CN112670520A (en) * 2020-12-23 2021-04-16 新源动力股份有限公司 High-performance proton exchange membrane fuel cell membrane electrode structure with improved durability and preparation method thereof
CN113745611A (en) * 2020-05-27 2021-12-03 丰田自动车株式会社 Membrane electrode assembly and solid polymer fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327074A (en) * 2003-04-21 2004-11-18 Toyota Central Res & Dev Lab Inc Electrolyte membrane-electrode junction for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
JP2005093234A (en) * 2003-09-17 2005-04-07 Toyota Central Res & Dev Lab Inc Electrolyte membrane electrode assembly for solid polymer fuel cell and the solid polymer fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327074A (en) * 2003-04-21 2004-11-18 Toyota Central Res & Dev Lab Inc Electrolyte membrane-electrode junction for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
JP2005093234A (en) * 2003-09-17 2005-04-07 Toyota Central Res & Dev Lab Inc Electrolyte membrane electrode assembly for solid polymer fuel cell and the solid polymer fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288140A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
JP2009043544A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Solid polymer fuel cell manufacturing method and solid polymer fuel cell
JP2012076013A (en) * 2010-09-30 2012-04-19 Toshiba Corp Catalyst, catalyst composition, cathode catalyst layer, membrane electrode assembly, and fuel cell
CN106876754A (en) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 A kind of fuel cell catalyst Rotating fields and its preparation
CN106876754B (en) * 2015-12-12 2019-05-07 中国科学院大连化学物理研究所 A kind of fuel cell catalyst layer structure and its preparation
CN109671965A (en) * 2018-12-21 2019-04-23 清华大学 A kind of high-durability fuel cell membrane electrode and preparation method thereof
CN113745611A (en) * 2020-05-27 2021-12-03 丰田自动车株式会社 Membrane electrode assembly and solid polymer fuel cell
CN113745611B (en) * 2020-05-27 2024-04-23 丰田自动车株式会社 Membrane electrode assembly and solid polymer fuel cell
CN112670520A (en) * 2020-12-23 2021-04-16 新源动力股份有限公司 High-performance proton exchange membrane fuel cell membrane electrode structure with improved durability and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5287969B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP3915846B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof, and membrane electrode assembly for polymer electrolyte fuel cell
CN101432921B (en) Fuel cells
JP4810868B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME
JP5247974B2 (en) Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell
JP5151074B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly, and fuel cell using the same
JP4997971B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JPWO2007007767A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP2006099999A (en) Electrolyte membrane for solid polymer fuel cell, its manufacturing method, and membrane electrode assembly for solid polymer fuel cell
JP4972867B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP2006318755A (en) Film-electrode assembly for solid polymer fuel cell
JP4765908B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP2007109599A (en) Film electrode assembly for solid polymer fuel cell
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2007031718A5 (en)
Song et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane
JP4682629B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and membrane / electrode assembly for polymer electrolyte fuel cell
JP4765401B2 (en) Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2008098179A (en) Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP2009238754A (en) Solid polymer electrolyte and its membrane, membrane/electrode junction using the membrane, and fuel cell
JP2006286478A (en) Membrane electrode assembly
JP2004247155A (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP2018502053A (en) Compound containing aromatic ring and polymer electrolyte membrane using the same
JP2004152635A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110531