JP2006307833A - Retainer for valve spring - Google Patents

Retainer for valve spring Download PDF

Info

Publication number
JP2006307833A
JP2006307833A JP2006024916A JP2006024916A JP2006307833A JP 2006307833 A JP2006307833 A JP 2006307833A JP 2006024916 A JP2006024916 A JP 2006024916A JP 2006024916 A JP2006024916 A JP 2006024916A JP 2006307833 A JP2006307833 A JP 2006307833A
Authority
JP
Japan
Prior art keywords
retainer
valve spring
central axis
total height
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006024916A
Other languages
Japanese (ja)
Other versions
JP4644133B2 (en
Inventor
Hiroyuki Horimura
弘幸 堀村
Kousuke Doi
航介 土居
Yoshikazu Kanazawa
嘉和 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Tanaka Seimitsu Kogyo Co Ltd
Original Assignee
Honda Motor Co Ltd
Tanaka Seimitsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Tanaka Seimitsu Kogyo Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006024916A priority Critical patent/JP4644133B2/en
Publication of JP2006307833A publication Critical patent/JP2006307833A/en
Application granted granted Critical
Publication of JP4644133B2 publication Critical patent/JP4644133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a retainer for a valve spring capable of restraining a jumping-out phenomenon, and capable of enhancing productivity, even if the retainer is made of a titanium alloy. <P>SOLUTION: This retainer 30B for the valve spring includes a collar part 31 contacting with the valve spring and a cylindrical part 32B inserted into the valve spring. A side surface of the cylindrical part 32B is formed as a conical surface 34 expanding toward the collar part 31. Thus, since the side surface of the cylindrical part is formed as the conical surface expanding toward the collar part, the retainer 30B can be easily thrust out from a lower die. As a result, thrust-out is facilitated, and the productivity can be enhanced. In addition, since this retainer 30B can be achieved only by changing a straight hole to a tapered hole by treatment applied to a die, there is no risk of increasing die cost. Since the jumping-out phenomenon is not caused, there is no need to take countermeasure against jumping-out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はチタン合金製のスプリングリテーナ(バルブスプリング用リテーナ)に関する。   The present invention relates to a spring retainer (valve spring retainer) made of a titanium alloy.

一般の装置にコイルスプリング(つる巻ばね)を組み込むときに、リテーナを使用することがある。このリテーナは深皿形状のばね受け部材であり、コイルスプリングの力を他の部材に伝達する、又は他の部材の力をコイルスプリングに伝達する伝達部材の機能を果たす。
スプリングとリテーナの組み合わせは、内燃機関の動弁機構にも採用される。
A retainer may be used when incorporating a coil spring into a general device. This retainer is a deep dish-shaped spring receiving member, and functions as a transmission member that transmits the force of the coil spring to another member or transmits the force of the other member to the coil spring.
A combination of a spring and a retainer is also used for a valve mechanism of an internal combustion engine.

動弁機構に配置するスプリングリテーナ及びその製造方法が提案されている(例えば、特許文献1参照。)。
特開平10−110607号公報(図5)
A spring retainer disposed in a valve operating mechanism and a manufacturing method thereof have been proposed (for example, see Patent Document 1).
Japanese Patent Laid-Open No. 10-110607 (FIG. 5)

特許文献1の図5で、28は予備成形品、32は下型、34は第1上型、35は第2上型、39は下型の孔である。予備成形品28は鉄系金属(特許文献1段落番号[0021]第4行参照)を採用し、下型32に成形途中品を載せ、上型34、35で塑性変形(鍛造処理)させることで製造することができる。   In FIG. 5 of Patent Document 1, 28 is a preform, 32 is a lower mold, 34 is a first upper mold, 35 is a second upper mold, and 39 is a lower mold hole. The preform 28 is made of an iron-based metal (see Patent Document 1, paragraph number [0021], line 4). The intermediate product is placed on the lower die 32 and plastically deformed (forged) by the upper dies 34 and 35. Can be manufactured.

塑性変形(鍛造処理)が終われば、下型32から上型34、35を分離し(型開きし)、図示せぬ突き出しピンを用いて予備成形品28を、下型32から分離する(突き出す)。   When the plastic deformation (forging process) is finished, the upper molds 34 and 35 are separated from the lower mold 32 (the mold is opened), and the preform 28 is separated from the lower mold 32 by using an unillustrated ejection pin (projecting). ).

本発明者等は、リテーナの軽量化を研究する中で、鉄系材料よりも、軽量で高強度のチタン合金材料でリテーナを製造する試みを行った。試みに、特許文献1の下型32及び上型34、35を用いてチタン合金素材を鍛造処理し、下型32から上型34、35を分離し、下型32から成形品を分離しようとしたところ簡単には分離することができないという不具合が発生した。   The inventors have made an attempt to manufacture a retainer using a titanium alloy material that is lighter and stronger than an iron-based material while studying weight reduction of the retainer. In an attempt, the titanium alloy material is forged using the lower mold 32 and the upper molds 34 and 35 of Patent Document 1, the upper molds 34 and 35 are separated from the lower mold 32, and the molded product is separated from the lower mold 32. As a result, there was a problem that it could not be easily separated.

そして、分離には大きな力が必要であると共に分離時に下型32から成形品が飛び出る現象が認められた。
この原因は、素材として採用したチタン合金が、鉄系金属に比較して金型への嵌合作用が大きい。この結果、リテーナが下型32に強く嵌合したことによると考えられる。
In addition, a large force was required for the separation, and a phenomenon in which the molded product popped out from the lower mold 32 during the separation was observed.
The cause of this is that the titanium alloy employed as the material has a larger fitting action to the mold than ferrous metals. As a result, it is considered that the retainer is strongly fitted to the lower mold 32.

しかし、チタン合金製リテーナであっても、突き出しに手間が掛かると生産性が著しく低下するため、その対策が求められる。   However, even if it is a titanium alloy retainer, if it takes time and effort to stick out, the productivity will be remarkably lowered.

本発明は、チタン合金製であっても、飛び出し現象を抑えることができ、生産性を高めることができるバルブスプリング用リテーナを提供することを課題とする。   An object of the present invention is to provide a retainer for a valve spring that can suppress a pop-out phenomenon and can improve productivity even if it is made of a titanium alloy.

請求項1に係る発明は、チタン合金素材を下型及び上型で鍛造処理することにより製造し、バルブスプリングに接触する鍔部及びバルブスプリングに挿入する円筒部を含むバルブスプリング用リテーナにおいて、前記円筒部の側面は、前記鍔部に向かって広がる円錐面にしたことを特徴とする。   The invention according to claim 1 is a retainer for a valve spring manufactured by forging a titanium alloy material with a lower die and an upper die, and including a flange portion that contacts the valve spring and a cylindrical portion that is inserted into the valve spring. The side surface of the cylindrical portion is a conical surface that widens toward the collar portion.

請求項2に係る発明は、円錐面は、リテーナの中心軸に対して2°〜4°の傾斜角で構成したことを特徴とする。   The invention according to claim 2 is characterized in that the conical surface has an inclination angle of 2 ° to 4 ° with respect to the central axis of the retainer.

請求項3に係る発明は、チタン合金素材を下型及び上型で鍛造処理することにより製造し、バルブスプリングに接触する鍔部及びバルブスプリングに挿入する円筒部を含むバルブスプリング用リテーナにおいて、前記円筒部の側面は、リテーナの中心軸に対する角度が異なる複数の面であって、少なくとも1つの面が前記鍔部に向かって広がる円錐面で構成したことを特徴とする。   The invention according to claim 3 is a retainer for a valve spring manufactured by forging a titanium alloy material with a lower die and an upper die, and including a flange portion that contacts the valve spring and a cylindrical portion that is inserted into the valve spring. The side surface of the cylindrical portion is a plurality of surfaces having different angles with respect to the central axis of the retainer, and at least one surface is constituted by a conical surface extending toward the flange portion.

請求項4に係る発明では、複数の面は、リテーナの中心軸に対する角度が4°を超える急な面及びリテーナの中心軸に対する角度が4°を超えない緩い面で構成し、前記急な面の合計高さは、前記緩い面の合計高さより小さく設定したことを特徴とする。   In the invention according to claim 4, the plurality of surfaces are constituted by a steep surface whose angle with respect to the central axis of the retainer exceeds 4 ° and a loose surface whose angle with respect to the central axis of the retainer does not exceed 4 °, and the steep surface The total height is set smaller than the total height of the loose surfaces.

請求項5に係る発明では、複数の面は、リテーナの中心軸に対する角度が2°を下回る緩い面及びリテーナの中心軸に対する角度が2°を下回らない急な面で構成し、前記緩い面の合計高さは、前記急な面の合計高さより小さく設定したことを特徴とする。   In the invention according to claim 5, the plurality of surfaces are constituted by a loose surface whose angle with respect to the central axis of the retainer is less than 2 ° and a steep surface whose angle with respect to the central axis of the retainer is not less than 2 °, The total height is set smaller than the total height of the steep surface.

請求項6に係る発明では、リテーナの中心軸に対する角度が4°を超えない面の合計高さが、円筒部の合計高さのうちの少なくとも半分で且つリテーナの中心軸に対する角度が2°を下回る面の合計高さが、円筒部の合計高さのうちの半分を下回ることを特徴とする。   In the invention according to claim 6, the total height of the surfaces whose angle with respect to the central axis of the retainer does not exceed 4 ° is at least half of the total height of the cylindrical portion, and the angle with respect to the central axis of the retainer is 2 °. The total height of the lower surface is less than half of the total height of the cylindrical portion.

請求項7に係る発明では、円筒部から径外方へ膨出する鍔部は、径外方ほど厚さが薄くなるような不均等厚さ構造にしたことを特徴とする。   The invention according to claim 7 is characterized in that the flange portion bulging radially outward from the cylindrical portion has a non-uniform thickness structure such that the thickness decreases toward the radially outer side.

請求項8に係る発明では、チタン合金素材はTi−Fe−O系合金とし、鍛造処理は冷間鍛造処理としたことを特徴とする。   The invention according to claim 8 is characterized in that the titanium alloy material is a Ti—Fe—O alloy, and the forging process is a cold forging process.

請求項1に係る発明では、円筒部の側面を鍔部に向かって広がる円錐面にしたので、リテーナを下型から簡単に突き出すことができる。この結果、突き出しが容易になり、生産性を高めることができる。加えて、金型へ施す処置はストレート穴をテーパー穴に変更するだけで、本発明が実現できるため、金型費用の増加を招く心配はない。そして、本発明によれば飛び出し現象が起こらないため、飛び出し対策を講じる必要もない。
従って、請求項1によれば、生産性の向上及び金型費用の高騰化抑制を図ることができる。
In the invention according to claim 1, since the side surface of the cylindrical portion is a conical surface that extends toward the flange portion, the retainer can be easily protruded from the lower mold. As a result, the protrusion becomes easy and the productivity can be improved. In addition, since the present invention can be realized simply by changing the straight hole to the tapered hole as the treatment applied to the mold, there is no fear of increasing the mold cost. According to the present invention, since the pop-out phenomenon does not occur, it is not necessary to take measures against the pop-out.
Therefore, according to the first aspect, it is possible to improve productivity and suppress increase in mold cost.

請求項2に係る発明では、円錐面はリテーナの中心軸に対して2°〜4°の傾斜角で構成した。傾斜角が2°未満であると、下型に対する嵌合作用が顕著になって、飛び出し現象が発生する。飛び出し現象を防止するには、傾斜角は2°以上にする必要がある。
また、傾斜角が4°を超えると、円錐面とバルブスプリングとの間の隙間が顕著になってバルブスプリングの中心にリテーナの中心を合わせることが難しくなり、リテーナの機能が低下する虞がある。リテーナの機能を十分に発揮させるには、傾斜角は4°以下にする必要がある。
In the invention according to claim 2, the conical surface is configured with an inclination angle of 2 ° to 4 ° with respect to the central axis of the retainer. When the inclination angle is less than 2 °, the fitting action with respect to the lower mold becomes remarkable, and a popping phenomenon occurs. In order to prevent the pop-out phenomenon, the inclination angle needs to be 2 ° or more.
Further, if the inclination angle exceeds 4 °, the gap between the conical surface and the valve spring becomes conspicuous, and it becomes difficult to align the center of the retainer with the center of the valve spring, which may reduce the function of the retainer. . In order to fully perform the function of the retainer, the inclination angle needs to be 4 ° or less.

請求項3に係る発明では、円筒部の側面は、リテーナの中心軸に対する角度が異なる複数の面であって、少なくとも1つの面が鍔部に向かって広がる円錐面で構成した。鍔部に向かって広がる円錐面は、リテーナを下型から突き出す作用を発揮する。この作用の結果、突き出しが容易になり、生産性を高めることができる。加えて、金型へ施す処置はストレート穴をテーパー穴に変更するだけで、本発明が実現できるため、金型費用の増加を招く心配はない。そして、本発明によれば飛び出し現象が起こらないため、飛び出し対策を講じる必要もない。   In the invention according to claim 3, the side surface of the cylindrical portion is a plurality of surfaces having different angles with respect to the central axis of the retainer, and at least one surface is constituted by a conical surface extending toward the flange portion. The conical surface extending toward the buttock exerts the action of protruding the retainer from the lower mold. As a result of this action, the protrusion becomes easy and the productivity can be increased. In addition, since the present invention can be realized simply by changing the straight hole to the tapered hole as the treatment applied to the mold, there is no fear of increasing the mold cost. According to the present invention, since the pop-out phenomenon does not occur, it is not necessary to take measures against the pop-out.

加えて請求項3に係る発明では、円筒部をリテーナの中心軸に対する角度が異なる複数の円錐面で構成した。リテーナの中心軸に対する角度を大きく設定するとリテーナを下型から簡単に突き出すことができる。逆に、リテーナの中心軸に対する角度を小さく設定するとリテーナが金型に嵌合するためリテーナを下型へ残すことができる。
このように、複数の円錐面を備えることで、突き出し性と嵌合性とのバランスをとることができる。
In addition, in the invention according to claim 3, the cylindrical portion is constituted by a plurality of conical surfaces having different angles with respect to the central axis of the retainer. If the angle with respect to the central axis of the retainer is set large, the retainer can be easily protruded from the lower mold. On the contrary, if the angle with respect to the central axis of the retainer is set small, the retainer is fitted to the mold, so that the retainer can be left in the lower mold.
Thus, by providing a plurality of conical surfaces, it is possible to balance the projecting property and the fitting property.

請求項4に係る発明では、緩い面は、バルブスプリングの保持性を確保する面であり、緩い面の高さを十分に確保することで、バルブスプリングの保持性を確保することができる。   In the invention according to claim 4, the loose surface is a surface that ensures the retention of the valve spring, and the retention of the valve spring can be ensured by sufficiently ensuring the height of the loose surface.

請求項5に係る発明では、緩い面の合計高さを小さく設定することで、嵌合力を抑制し、突き出し作用を円滑にするようにした。   In the invention according to claim 5, the total height of the loose surfaces is set to be small, so that the fitting force is suppressed and the protruding action is made smooth.

請求項6に係る発明では、リテーナの中心軸に対する角度が4°を超えない面の合計高さを、円筒部の合計高さのうちの少なくとも半分に設定したので、バルブスプリングの保持性を確保することができる。また、リテーナの中心軸に対する角度が2°を下回る面の合計高さが、円筒部の合計高さのうちの半分を下回るため、金型への嵌合力を抑制することができ、飛び出し現象を防止することができる。   In the invention according to claim 6, the total height of the surfaces whose angle with respect to the central axis of the retainer does not exceed 4 ° is set to at least half of the total height of the cylindrical portion, so that the retention of the valve spring is ensured. can do. In addition, since the total height of the surfaces where the angle with respect to the central axis of the retainer is less than 2 ° is less than half of the total height of the cylindrical portion, the fitting force to the mold can be suppressed, and the popping phenomenon can be prevented. Can be prevented.

請求項7に係る発明では、鍔部は、径外方ほど厚さが薄くなるような不均等厚さ構造にした。一般に、鍛造による成形では、鍔部下面外周部に、材料を十分に流動させることが難しくなるため、この部分に欠肉が生じやすい。
そこで、本発明は、鍔部を不均等厚さに成形することにより、塑性流れをコーナー部へ向けるようにした。この結果、鍔部下面外周部に欠肉のない、品質の良いリテーナを得ることができる。
In the invention which concerns on Claim 7, the collar part was made into the non-uniform thickness structure that thickness becomes so thin that a diameter outward. In general, in forming by forging, it is difficult to sufficiently flow the material to the outer peripheral portion of the lower surface of the collar portion, and therefore, this portion is likely to be thin.
Therefore, in the present invention, the plastic flow is directed to the corner portion by forming the flange portion to have an uneven thickness. As a result, it is possible to obtain a high-quality retainer that does not have a lack of thickness in the outer peripheral portion of the lower surface of the collar portion.

請求項8に係る発明では、チタン合金素材はTi−Fe−O系合金とすることで、鍛造処理を冷間鍛造処理にすることができた。一般に塑性加工上の理由から、チタン合金素材は熱間鍛造法で処理する。熱間鍛造は加工性が高まる反面、熱エネルギーが必要であり、また、熱間の成形品寸法と常温の成形品寸法が異なるため、後加工として大規模な機械加工が必要になり、加工コストが嵩む。   In the invention which concerns on Claim 8, the forging process could be made into the cold forging process by making a titanium alloy raw material into a Ti-Fe-O type alloy. Generally, titanium alloy materials are processed by hot forging for reasons of plastic working. While hot forging increases workability, it requires heat energy, and because the dimensions of hot molded products differ from those of room temperature, large-scale machining is required as post-processing, resulting in processing costs. Is bulky.

この点、本発明では、Ti−Fe−O系合金を採用することで冷間鍛造が可能となり、熱エネルギーは不要であり、後加工としての機械加工を小規模に止めることができ、加工コストを大幅に下げることができる。   In this regard, in the present invention, cold forging is possible by adopting a Ti-Fe-O-based alloy, heat energy is unnecessary, machining as post-processing can be stopped on a small scale, and processing costs are reduced. Can be greatly reduced.

本発明は図面を参照することで理解を促すことができる。すなわち、請求項1、2には図5を参照し、請求項3には図3を参照し、請求項4には図3及び図6(a)を参照し、請求項5には図6(b)及び(c)を参照し、請求項6には図6(d)を参照することができる。   The present invention can be understood with reference to the drawings. That is, Claims 1 and 2 refer to FIG. 5, Claim 3 refers to FIG. 3, Claim 4 refers to FIG. 3 and FIG. Reference is made to (b) and (c), and FIG. 6 (d) can be referred to in claim 6.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図1は本発明に係るバルブスプリング用リテーナを含む動弁機構の要部断面図であり、動弁機構10は、排気バルブ(又は吸気バルブ)11の傘部12を受けるバルブシート13と、傘部12から延ばしたバルブ軸14と、このバルブ軸14をガイドするバルブガイド15と、排気バルブ11を閉じ側へ付勢する外側バルブスプリング16及び内側バルブスプリング17と、これらの外側バルブスプリング16及び内側バルブスプリング17の一端(図では上端)を受けるバルブスプリング用リテーナ30と、このリテーナ30を着脱可能にバルブ軸14の端部に接続するコッタ18と、バルブ軸14の先端に配置するインナーシム19と、このインナーシム19に当てるようにしてリテーナ30を覆うカップ状のリフタ21と、このリフタ21を押し下げるカム軸22とを備える。23はピストン、24はシリンダヘッド、25はヘッドカバーである。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of an essential part of a valve mechanism including a valve spring retainer according to the present invention. The valve mechanism 10 includes a valve seat 13 that receives an umbrella portion 12 of an exhaust valve (or intake valve) 11, and an umbrella. A valve shaft 14 extending from the portion 12, a valve guide 15 for guiding the valve shaft 14, an outer valve spring 16 and an inner valve spring 17 for biasing the exhaust valve 11 to the closing side, and the outer valve spring 16 and A valve spring retainer 30 that receives one end (upper end in the figure) of the inner valve spring 17, a cotter 18 that removably connects the retainer 30 to the end of the valve shaft 14, and an inner shim that is disposed at the tip of the valve shaft 14. 19, a cup-shaped lifter 21 that covers the retainer 30 so as to contact the inner shim 19, and the lifter And a cam shaft 22 push down the 1. Reference numeral 23 is a piston, 24 is a cylinder head, and 25 is a head cover.

図2は本発明に係るバルブスプリング用リテーナの断面図であり、バルブスプリング用リテーナ30は、外側バルブスプリング(図1の符号16)に接触する鍔部31、外側バルブスプリングに挿入する外側円筒部32及び内側バルブスプリング(図1の符号17)に挿入する内側円筒部33を含み、外側円筒部32の側面は、鍔部31に向かって広がる円錐面34及び円錐面35とし、内側円筒部33の側面も鍔部31に向かって広がる円錐面36としたことを特徴とする。37はリテーナの中心軸、38は中心テーパー穴である。   FIG. 2 is a cross-sectional view of the valve spring retainer according to the present invention. The valve spring retainer 30 includes a flange 31 that contacts the outer valve spring (reference numeral 16 in FIG. 1) and an outer cylindrical portion that is inserted into the outer valve spring. 32 and an inner cylindrical portion 33 inserted into the inner valve spring (reference numeral 17 in FIG. 1). The side surfaces of the outer cylindrical portion 32 are a conical surface 34 and a conical surface 35 that extend toward the flange portion 31, and the inner cylindrical portion 33. The side surface is also a conical surface 36 that extends toward the flange 31. Reference numeral 37 denotes a central axis of the retainer, and 38 denotes a central tapered hole.

なお、円錐面34から径外方へ膨出する鍔部31は、先端の厚さT1が基部の厚さT2より小さくなるように、すなわち径外方ほど厚さが薄くなるような不均等厚さ構造にした。   The flange 31 bulging radially outward from the conical surface 34 has an unequal thickness so that the thickness T1 of the tip is smaller than the thickness T2 of the base, that is, the thickness becomes thinner toward the outer diameter. It was a structure.

図3は図2の3部拡大図であり、外側円筒部32を構成する円錐面34、35のうちで鍔部31に連続する方の円錐面34の傾斜角(リテーナの中心軸37に対する傾斜角。以下同様)をθ1、長さ(リテーナの中心軸37に沿った高さ。以下同様)をL1、鍔部31に連続しない方の円錐面35の傾斜角をθ2と定義する。
また、外側円筒部32の長さをL2と定義する。そして、内側円筒部33の側面を構成する円錐面36の傾斜角をθ3と呼ぶことにする。
FIG. 3 is an enlarged view of a part 3 in FIG. 2. Of the conical surfaces 34 and 35 constituting the outer cylindrical portion 32, the inclination angle of the conical surface 34 continuous to the flange portion 31 (inclination with respect to the central axis 37 of the retainer) The angle (same below) is defined as θ1, the length (height along the central axis 37 of the retainer. The same applies hereinafter) is defined as L1, and the inclination angle of the conical surface 35 not continuous with the flange 31 is defined as θ2.
Further, the length of the outer cylindrical portion 32 is defined as L2. The inclination angle of the conical surface 36 constituting the side surface of the inner cylindrical portion 33 is referred to as θ3.

そして、傾斜角θ1は、リテーナの中心軸37に対して2°〜4°の傾斜角で構成する。
傾斜角θ2は、傾斜角θ1より大きく設定する。傾斜角θ2は、傾斜角θ1より大きければ突き出しの問題となることはないので自由に設定できる。例えば、θ2は5°〜30°に設定する。
傾斜角θ3は、傾斜角θ1と同様に、2°〜4°に設定する。
And inclination-angle (theta) 1 is comprised with the inclination-angle of 2 degrees-4 degrees with respect to the central axis 37 of a retainer.
The inclination angle θ2 is set larger than the inclination angle θ1. If the inclination angle θ2 is larger than the inclination angle θ1, it does not become a problem of protrusion, and can be freely set. For example, θ2 is set to 5 ° to 30 °.
The inclination angle θ3 is set to 2 ° to 4 ° similarly to the inclination angle θ1.

傾斜角θ1、θ3を2°〜4°に設定する理由は次の通りである。
円錐面34は外側バルブスプリング(図1の符号16)の内面に臨ませる。傾斜角θ1が2°〜4°であれば、外側バルブスプリングと円錐面34との間の隙間は小さく、リテーナ30が、がたつく心配はない。
円錐面36は内側バルブスプリング(図1の符号17)の内面に臨ませる。傾斜角θ3が2°〜4°であれば、内側バルブスプリングと円錐面36との間の隙間は小さく、リテーナ30が、がたつく心配はない。
The reason for setting the inclination angles θ1 and θ3 to 2 ° to 4 ° is as follows.
The conical surface 34 faces the inner surface of the outer valve spring (reference numeral 16 in FIG. 1). If the inclination angle θ1 is 2 ° to 4 °, the gap between the outer valve spring and the conical surface 34 is small, and there is no concern that the retainer 30 will rattle.
The conical surface 36 faces the inner surface of the inner valve spring (reference numeral 17 in FIG. 1). If the inclination angle θ3 is 2 ° to 4 °, the gap between the inner valve spring and the conical surface 36 is small, and there is no concern that the retainer 30 will rattle.

傾斜角θ1、θ3は小さければ突き出し作用が乏しくなり、大きすぎればバルブスプリングの保持性が低下する。この両方の問題を改善する角度が2°〜4°である。さらに、リテーナの形状、大きさによっては、円錐面の全面にわたって2°〜4°にする必要はなく、この角度はバルブスプリングの保持に十分な長さが確保されれば良い。また、その他の円錐面の傾斜角を4°超にすることで、突き出しをさらに容易にすることができる。   If the inclination angles θ1 and θ3 are small, the projecting action is poor. If the inclination angles θ1 and θ3 are too large, the retention of the valve spring is deteriorated. The angle that improves both of these problems is between 2 ° and 4 °. Furthermore, depending on the shape and size of the retainer, it is not necessary to set the angle to 2 ° to 4 ° over the entire surface of the conical surface, and this angle only needs to be long enough to hold the valve spring. Further, by making the inclination angle of the other conical surface more than 4 °, the protrusion can be further facilitated.

ただし、傾斜角θ2の円錐面35は、外側バルブスプリング(図1の符号16)に対する保持作用(リテーナ作用)は期待できない。
そこで、本発明ではリテーナ作用を発揮する円錐面34の長さを大きくすることにした。具体的には、円錐面34の長さL1は外側円筒部32の長さL2の50%(半分)以上にすることで、リテーナ作用を確保する。
However, the conical surface 35 with the inclination angle θ2 cannot be expected to hold (retainer) the outer valve spring (reference numeral 16 in FIG. 1).
Therefore, in the present invention, the length of the conical surface 34 that exhibits the retainer action is increased. Specifically, the length L1 of the conical surface 34 is set to 50% (half) or more of the length L2 of the outer cylindrical portion 32 to ensure the retainer action.

次に、バルブスプリング用リテーナ30の材質について説明する。
図1において排気バルブ11は高頻度で開閉を繰り返し、これに伴ってバルブスプリング用リテーナ30には繰り返し外力が作用するため、リテーナ30には高強度が求められる。また、バルブスプリング用リテーナ30を高速で上下させるには運動エネルギーが必要であり、このエネルギーはエンジン効率を低下させる要素の一つとなる。
運動エネルギーは質量に比例するためバルブスプリング用リテーナ30を軽量化することが求められる。
Next, the material of the valve spring retainer 30 will be described.
In FIG. 1, the exhaust valve 11 repeatedly opens and closes frequently, and accordingly, an external force is repeatedly applied to the valve spring retainer 30, so that the retainer 30 is required to have high strength. Further, kinetic energy is required to move the valve spring retainer 30 up and down at high speed, and this energy is one of the factors that reduce engine efficiency.
Since the kinetic energy is proportional to the mass, it is required to reduce the weight of the valve spring retainer 30.

高強度化と軽量化の2つの条件を満足させるには、鉄系材料よりもチタン系材料が適している。チタン材料には、純チタン、α型チタン合金、α+β型チタン合金、β型チタン合金、その他の合金がある。
ただし、純チタンは低強度であるため、バルブスプリング用リテーナには不向きであるため除外する。従って、本発明ではバルブスプリング用リテーナの材料は、チタン合金を採用する。
In order to satisfy the two conditions of high strength and light weight, titanium-based materials are more suitable than iron-based materials. Titanium materials include pure titanium, α-type titanium alloys, α + β-type titanium alloys, β-type titanium alloys, and other alloys.
However, pure titanium is excluded because it has low strength and is not suitable for a valve spring retainer. Therefore, in the present invention, a titanium alloy is adopted as the material of the retainer for the valve spring.

代表的なα型チタン合金にはTi−5Al−2.5Snがあり、α型チタン合金はチタンにα安定化元素としてのアルミニウムを添加して固溶強化させた合金であるため、高強度が得られる。
また、代表的なα+β型チタン合金にはTi−6Al−4Vがあり、α+β型合金はチタンにα安定化元素とβ安定化元素とを添加してなる合金であり、高強度が得られる。
ただし、α型チタン合金及びα+β型合金は延性に難があり、成形は熱間で行う必要がある。
A typical α-type titanium alloy is Ti-5Al-2.5Sn, and an α-type titanium alloy is an alloy obtained by solid solution strengthening by adding aluminum as an α-stabilizing element to titanium. can get.
A typical α + β type titanium alloy is Ti-6Al-4V, and the α + β type alloy is an alloy obtained by adding an α stabilizing element and a β stabilizing element to titanium, and high strength is obtained.
However, α-type titanium alloys and α + β-type alloys have difficulty in ductility, and forming must be performed hot.

代表的なβ型チタン合金にはTi−13V−11Cr−3Alがあり、β型チタン合金はα+β型チタン合金よりさらに多量のβ安定元素を添加してなる合金であり、高強度が得られるとともに、冷間加工性に優れ、冷間成形が可能である。ただし、高価な合金を多量に添加するため、リテーナは高価になる。   A typical β-type titanium alloy is Ti-13V-11Cr-3Al, and a β-type titanium alloy is an alloy formed by adding a larger amount of β-stable elements than an α + β-type titanium alloy, and can provide high strength. It has excellent cold workability and can be cold formed. However, since a large amount of expensive alloy is added, the retainer becomes expensive.

その他のチタン合金はβ型チタン合金並の冷間加工性を維持しつつ、低コスト化が可能な材料で、本発明ではTi−Fe−O系合金を提案する。なお、Ti−Fe−O系合金はα型合金の一種と考えられるが、冷間加工が可能であるため便宜上、その他のチタン合金と呼ぶことにする。   Other titanium alloys are materials that can reduce the cost while maintaining the cold workability comparable to β-type titanium alloys. In the present invention, a Ti—Fe—O alloy is proposed. Note that a Ti—Fe—O-based alloy is considered to be a kind of α-type alloy, but since cold working is possible, it will be referred to as another titanium alloy for convenience.

Ti−Fe−O系合金は、不純物が比較的多くて安価なスポンジチタンを使用することが可能であり、不純物元素であるFe(鉄)、O(酸素)及び/又はN(窒素)の添加量を最適に制御することで必要な強度を確保し、しかもごく限られた組成に管理することで良好な冷間加工性を得ることができる。
限られた組成とは、Feが0.6〜1.4質量%、Oが0.24〜0.44質量%、Nが0.05質量%以下に管理することを意味する。
Ti-Fe-O-based alloys can use sponge titanium, which has a relatively large amount of impurities and is inexpensive, and the addition of impurity elements Fe (iron), O (oxygen) and / or N (nitrogen) By controlling the amount optimally, the required strength can be ensured, and good cold workability can be obtained by managing the amount to a very limited composition.
The limited composition means that Fe is controlled to 0.6 to 1.4% by mass, O is controlled to 0.24 to 0.44% by mass, and N is controlled to 0.05% by mass or less.

Feが0.6質量%未満で、Oが0.24質量%未満であると、強度不足や冷間加工性の不足が起こる。また、Feが1.4質量%を超え、Oが0.44質量%を超えると、冷間加工時に割れが発生しやすくなる。また、Nを0.05質量%以下に管理すると冷間加工時の先端割れを防止することができる。   When Fe is less than 0.6% by mass and O is less than 0.24% by mass, insufficient strength and insufficient cold workability occur. Moreover, when Fe exceeds 1.4 mass% and O exceeds 0.44 mass%, it becomes easy to generate | occur | produce a crack at the time of cold work. Further, when N is controlled to 0.05% by mass or less, it is possible to prevent cracking at the tip during cold working.

以上に述べたチタン合金、すなわちα型チタン合金、α+β型チタン合金、β型チタン合金、その他のチタン合金は、鉄系材料に比較して高強度及び軽量であるという利点がある反面、鉄系材料に比較して金型への嵌合力が格段に大きく、成形品が金型に嵌合して金型からの突き出しが困難になるという欠点がある。   The titanium alloys described above, that is, α-type titanium alloys, α + β-type titanium alloys, β-type titanium alloys, and other titanium alloys have the advantages of higher strength and lighter weight than iron-based materials, but are iron-based. There is a drawback that the fitting force to the mold is remarkably large compared to the material, and the molded product is fitted to the mold and it is difficult to protrude from the mold.

そこで、本発明では図2、図3で述べたようにバルブスプリング用リテーナ30の構造を改良した。
この構造的改良による作用を次図で説明する。
図4は本発明に係るバルブスプリング用リテーナの製造原理図である。
(a)において、鍛造金型としての第1下型41と第1上型42とを準備し、第1下型41に、チタン合金からなる円筒材料43を載せる。そして、第1上型42を下げることで、円筒材料43に熱間又は冷間で鍛造処理を施す。
Therefore, in the present invention, the structure of the valve spring retainer 30 is improved as described in FIGS.
The effect of this structural improvement will be described in the next figure.
FIG. 4 is a manufacturing principle view of the valve spring retainer according to the present invention.
In (a), a first lower die 41 and a first upper die 42 are prepared as forging dies, and a cylindrical material 43 made of a titanium alloy is placed on the first lower die 41. Then, the cylindrical material 43 is hot or cold forged by lowering the first upper mold 42.

(b)において、成形途中品44((a)で成形した成形体)を、別の鍛造型としての第2下型45に載せ、第2上型46を矢印(1)のごとく下げることで成形途中品44に鍛造処理を施す。このときに、第2上型46に設けてあるテーパー面47が、成形途中品44の上面に有効に作用するとともに、第2下型45に設けてある緩い傾斜面48、きつい傾斜面49及び緩い傾斜面50が、成形途中品44の下部に有効に作用する。この作用は次に説明する。   In (b), the intermediate product 44 (molded body molded in (a)) is placed on a second lower mold 45 as another forging mold, and the second upper mold 46 is lowered as shown by arrow (1). A forging process is applied to the intermediate product 44. At this time, the tapered surface 47 provided on the second upper mold 46 effectively acts on the upper surface of the intermediate product 44, and the loosely inclined surface 48, the tight inclined surface 49 provided on the second lower mold 45, and The loose inclined surface 50 effectively acts on the lower part of the intermediate product 44. This operation will be described next.

(c)において、リテーナ30((b)で成形した成形体)の鍔部31は、第2上型46のテーパー面47で矢印(2)のごとく圧縮成形された。
一般に、鍛造による成形では、鍔部31下面外周部に、材料を十分に流動させることが難しくなるため、この部分に欠肉が生じやすい。
そこで、矢印(2)の圧縮により、塑性流れをコーナー部へ向けるようにした。この結果、鍔部31下面外周部に欠肉のない、品質の良いリテーナを得ることができる。
In (c), the collar portion 31 of the retainer 30 (the molded body molded in (b)) was compression molded as indicated by the arrow (2) on the tapered surface 47 of the second upper mold 46.
In general, in forming by forging, it is difficult to sufficiently flow the material to the outer peripheral portion of the lower surface of the flange portion 31, and therefore a lack of thickness tends to occur in this portion.
Therefore, the plastic flow is directed to the corner by compression of the arrow (2). As a result, it is possible to obtain a high-quality retainer in which the outer peripheral portion of the bottom surface of the collar portion 31 is not thin.

また、(c)は、第2上型46を矢印(3)のごとく上昇させる型開き工程を示し、リテーナ30の円錐面34、36が第2下型45の緩い傾斜面48、50に嵌合して保持作用を発揮する。この結果、リテーナ30は、第2上型46とともに上昇する心配はなく、第2下型45に残る。
次の突き出し工程で、第2下型45からリテーナ30を、突き出しピン51により図上方向へ突き出すが、リテーナの円錐面35と傾斜面49との嵌合力が弱いため、リテーナ30を第2下型45から極めて容易に分離することができる。
(C) shows a mold opening process in which the second upper mold 46 is raised as shown by the arrow (3), and the conical surfaces 34 and 36 of the retainer 30 are fitted to the loose inclined surfaces 48 and 50 of the second lower mold 45. Together, it exhibits a holding action. As a result, the retainer 30 does not have to be raised together with the second upper mold 46 and remains in the second lower mold 45.
In the next protrusion step, the retainer 30 is protruded upward from the second lower mold 45 by the protrusion pin 51. However, since the fitting force between the conical surface 35 and the inclined surface 49 of the retainer is weak, the retainer 30 is moved to the second lower mold 45. Separation from the mold 45 is very easy.

次に本発明の別実施例を説明する。
図5は図2の別実施例に係る断面図であり、バルブスプリング用リテーナ30Bは、バルブスプリング(図1の符号16)に接触する鍔部31、バルブスプリングに挿入する円筒部32Bを含み、円筒部32Bの側面は、鍔部31に向かって広がる円錐面34としたことを特徴とする。37はリテーナの中心軸、38は中心テーパー穴である。
Next, another embodiment of the present invention will be described.
FIG. 5 is a cross-sectional view according to another embodiment of FIG. 2, and the valve spring retainer 30B includes a flange portion 31 that contacts the valve spring (reference numeral 16 in FIG. 1), and a cylindrical portion 32B that is inserted into the valve spring. The side surface of the cylindrical portion 32 </ b> B is a conical surface 34 that extends toward the flange portion 31. Reference numeral 37 denotes a central axis of the retainer, and 38 denotes a central tapered hole.

さらに、構造的に円錐面34は、リテーナの中心軸37に対して2°〜4°の傾斜角θで構成したことを特徴とする。
また、円錐面34から径外方へ膨出する鍔部31は、先端の厚さT1が基部の厚さT2より小さくなるように、すなわち径外方ほど厚さが薄くなるような不均等厚さ構造にしたことを特徴とする。
円錐面34による飛び出し防止作用は、上述したのでここでは説明を省略する。
Further, the conical surface 34 is structurally characterized by an inclination angle θ of 2 ° to 4 ° with respect to the central axis 37 of the retainer.
In addition, the flange 31 that bulges outward from the conical surface 34 has a non-uniform thickness so that the thickness T1 of the tip is smaller than the thickness T2 of the base, that is, the thickness becomes thinner toward the outer diameter. It is characterized by the structure.
Since the pop-out preventing action by the conical surface 34 has been described above, the description thereof is omitted here.

図6は図3の変更実施例を示す図である。
(a)において、円筒部32は、リテーナの中心軸に対する角度θ11が、4°を超えない緩い面61、角度(傾斜角度)θ12が4°を超える急な面62及び角度(傾斜角度)θ13が4°を超えない緩い面63で構成する。
そして、急な面62の合計高さL12は、緩い面61、63の合計高さ(L11+L13)より小さく設定した。すなわち、合計高さ(L11+L13)は円筒部32の高さL10の半分より大きく設定した。
緩い面61は、バルブスプリングの保持性を確保する面であり、緩い面61の高さを十分に確保することで、バルブスプリングの保持性を確保することができる。
FIG. 6 is a diagram showing a modified embodiment of FIG.
In (a), the cylindrical portion 32 includes a loose surface 61 whose angle θ11 with respect to the central axis of the retainer does not exceed 4 °, a steep surface 62 whose angle (tilt angle) θ12 exceeds 4 °, and an angle (tilt angle) θ13. Is constituted by a loose surface 63 not exceeding 4 °.
The total height L12 of the steep surface 62 is set smaller than the total height (L11 + L13) of the loose surfaces 61 and 63. That is, the total height (L11 + L13) was set to be larger than half of the height L10 of the cylindrical portion 32.
The loose surface 61 is a surface that ensures the retention of the valve spring, and the sufficient retention of the height of the loose surface 61 can ensure the retention of the valve spring.

(b)において、円筒部32は、角度(傾斜角度)θ21が2°を下回る緩い面64及び角度(傾斜角度)θ22が2°を下回らない急な面65で構成する。
緩い面64の合計高さL21は、急な面65の合計高さL22より小さく設定した。
傾斜角度が2°を下回る緩い面64は金型との嵌合力が大きい。この嵌合力が大きすぎると突き出しに影響がでる。そこで、緩い面64の高さを小さく設定することで、嵌合力を抑制し、突き出し作用を円滑にするようにした。
In (b), the cylindrical portion 32 is constituted by a loose surface 64 having an angle (tilt angle) θ21 of less than 2 ° and a steep surface 65 having an angle (tilt angle) θ22 of less than 2 °.
The total height L21 of the loose surface 64 was set smaller than the total height L22 of the steep surface 65.
The loose surface 64 having an inclination angle of less than 2 ° has a large fitting force with the mold. If this fitting force is too large, the protrusion will be affected. Therefore, by setting the height of the loose surface 64 to be small, the fitting force is suppressed and the protruding action is made smooth.

(c)において、円筒部32は、角度(傾斜角度)θ31が2°を下回る緩い面66、角度(傾斜角度)θ32が2°を下回らない急な面67及び角度(傾斜角度)θ33が2°を下回る緩い面68で構成する。
緩い面66、68の合計高さ(L31+L33)は、急な面67の合計高さL32より小さく設定した。
傾斜角度が2°を下回る緩い面66、68は金型との嵌合力が大きい。この嵌合力が大きすぎると突き出しに影響がでる。そこで、緩い面66、68の合計高さ(L31+L33)を小さく設定することで、嵌合力を抑制し、突き出し作用を円滑にするようにした。
In (c), the cylindrical portion 32 has a loose surface 66 in which the angle (tilt angle) θ31 is less than 2 °, a steep surface 67 in which the angle (tilt angle) θ32 is not less than 2 °, and an angle (tilt angle) θ33 of 2. Consists of a loose surface 68 below °.
The total height (L31 + L33) of the loose surfaces 66 and 68 was set smaller than the total height L32 of the steep surface 67.
The loose surfaces 66 and 68 whose inclination angle is less than 2 ° have a large fitting force with the mold. If this fitting force is too large, the protrusion will be affected. Therefore, by setting the total height (L31 + L33) of the loose surfaces 66 and 68 to be small, the fitting force is suppressed and the protruding action is made smooth.

(d)において、リテーナの中心軸に対する角度θ41、θ42が4°を超えない面69、71の合計高さ(L41+L42)が、円筒部32の高さL40のうちの少なくとも半分で且つリテーナの中心軸に対する角度θ41が2°を下回る面69の合計高さL41が、円筒部32の高さL40のうちの半分を下回ることを特徴とする。傾斜角θ43が4°を超える面72の高さL43は円筒部32の高さL40の半分未満であればよく、ゼロであっても良い。   In (d), the total height (L41 + L42) of the surfaces 69 and 71 whose angles θ41 and θ42 with respect to the central axis of the retainer do not exceed 4 ° is at least half of the height L40 of the cylindrical portion 32 and the center of the retainer. The total height L41 of the surface 69 in which the angle θ41 with respect to the axis is less than 2 ° is less than half of the height L40 of the cylindrical portion 32. The height L43 of the surface 72 where the inclination angle θ43 exceeds 4 ° may be less than half the height L40 of the cylindrical portion 32, and may be zero.

リテーナの中心軸に対する角度が4°を超えない面の合計高さを、円筒部の合計高さのうちの少なくとも半分に設定したので、バルブスプリングの保持性を確保することができる。また、リテーナの中心軸に対する角度が2°を下回る面の合計高さが、円筒部の合計高さのうちの半分を下回るため、金型への嵌合力を抑制することができ、飛び出し現象を防止することができる。   Since the total height of the surfaces whose angle with respect to the central axis of the retainer does not exceed 4 ° is set to at least half of the total height of the cylindrical portion, the retaining property of the valve spring can be ensured. In addition, since the total height of the surfaces whose angle with respect to the central axis of the retainer is less than 2 ° is less than half of the total height of the cylindrical portion, the fitting force to the mold can be suppressed, and the pop-out phenomenon can be prevented. Can be prevented.

尚、本発明では面と面とを繋ぐアール面(円弧面)も、面の一部とみなすことができる。さらに、平坦面ではなく、アール面(円弧面)であっても、鍔部に向かって広がる形状となっていれば、本発明でいう円錐面に含まれるものとする。
また、本発明は、車両用エンジンの動弁機構に備えるバルブスプリング用リテーナに好適であるが、コイルスプリングの一端を支えるリテーナであれば、用途、設置場所は格別に限定しない。
In the present invention, the rounded surface (arc surface) connecting the surfaces can also be regarded as a part of the surface. Furthermore, even if it is not a flat surface but a rounded surface (arc surface), it is included in the conical surface referred to in the present invention as long as it has a shape spreading toward the collar.
Moreover, although this invention is suitable for the retainer for valve springs with which the valve operating mechanism of a vehicle engine is equipped, if it is a retainer which supports the end of a coil spring, an application and an installation place will not be specifically limited.

本発明は、車両用エンジンの動弁機構に備えるバルブスプリング用リテーナに好適である。   The present invention is suitable for a valve spring retainer provided in a valve operating mechanism of a vehicle engine.

本発明に係るバルブスプリング用リテーナを含む動弁機構の要部断面図である。It is principal part sectional drawing of the valve operating mechanism containing the retainer for valve springs which concerns on this invention. 本発明に係るバルブスプリング用リテーナの断面図である。It is sectional drawing of the retainer for valve springs which concerns on this invention. 図2の3部拡大図である。FIG. 3 is a three-part enlarged view of FIG. 2. 本発明に係るバルブスプリング用リテーナの製造原理図である。It is a manufacturing principle figure of the retainer for valve springs concerning the present invention. 図2の別実施例に係る断面図である。It is sectional drawing which concerns on another Example of FIG. 図3の変更実施例を示す図である。It is a figure which shows the modified Example of FIG.

符号の説明Explanation of symbols

16…外側バルブスプリング、17…内側バルブスプリング、30、30B…バルブスプリング用リテーナ、31…鍔部、32…外側円筒部、32B…円筒部、33…内側円筒部、34〜36…円錐面、37…リテーナの中心軸、41、45…下型、42、46…上型、61、63、64、66、68…緩い面、62、65、67…急な面、69…傾斜角が4°を超えない面で且つ傾斜角が2°を下回る面、71…傾斜角が4°を超えない面、72…傾斜角が4°を超える面、L1…円錐面34の高さ、L2…外側円筒部32の高さ、T1、T2…鍔部の厚さ、θ、θ1、θ2、θ3…円錐面の傾斜角。   DESCRIPTION OF SYMBOLS 16 ... Outer valve spring, 17 ... Inner valve spring, 30, 30B ... Retainer for valve springs, 31 ... Gutter part, 32 ... Outer cylindrical part, 32B ... Cylindrical part, 33 ... Inner cylindrical part, 34-36 ... Conical surface, 37: Center axis of the retainer, 41, 45 ... Lower mold, 42, 46 ... Upper mold, 61, 63, 64, 66, 68 ... Loose surface, 62, 65, 67 ... Steep surface, 69 ... Inclination angle of 4 A surface that does not exceed ° and has an inclination angle of less than 2 °, 71 ... a surface that does not exceed 4 °, 72 ... a surface that has an inclination angle that exceeds 4 °, L1 ... a height of the conical surface 34, L2 ... Height of the outer cylindrical portion 32, T1, T2,... Thickness of the collar portion, .theta., .Theta.1, .theta.2, .theta.3.

Claims (8)

チタン合金素材を下型及び上型で鍛造処理することにより製造し、バルブスプリングに接触する鍔部及びバルブスプリングに挿入する円筒部を含むバルブスプリング用リテーナにおいて、
前記円筒部の側面は、前記鍔部に向かって広がる円錐面にしたことを特徴とするバルブスプリング用リテーナ。
In a retainer for a valve spring that is manufactured by forging a titanium alloy material with a lower die and an upper die, and includes a flange portion that contacts the valve spring and a cylindrical portion that is inserted into the valve spring,
A retainer for a valve spring, wherein a side surface of the cylindrical portion is a conical surface extending toward the flange portion.
前記円錐面は、リテーナの中心軸に対して2°〜4°の傾斜角で構成したことを特徴とする請求項1記載のバルブスプリング用リテーナ。   The retainer for a valve spring according to claim 1, wherein the conical surface is configured with an inclination angle of 2 ° to 4 ° with respect to a central axis of the retainer. チタン合金素材を下型及び上型で鍛造処理することにより製造し、バルブスプリングに接触する鍔部及びバルブスプリングに挿入する円筒部を含むバルブスプリング用リテーナにおいて、
前記円筒部の側面は、リテーナの中心軸に対する角度が異なる複数の面であって、少なくとも1つの面が前記鍔部に向かって広がる円錐面で構成したことを特徴とするバルブスプリング用リテーナ。
In a retainer for a valve spring that is manufactured by forging a titanium alloy material with a lower die and an upper die, and includes a flange portion that contacts the valve spring and a cylindrical portion that is inserted into the valve spring,
The retainer for a valve spring is characterized in that the side surface of the cylindrical portion is a plurality of surfaces having different angles with respect to the central axis of the retainer, and at least one surface is a conical surface extending toward the flange portion.
前記複数の面は、リテーナの中心軸に対する角度が4°を超える急な面及びリテーナの中心軸に対する角度が4°を超えない緩い面で構成し、前記急な面の合計高さは、前記緩い面の合計高さより小さく設定したことを特徴とする請求項3記載のバルブスプリング用リテーナ。   The plurality of surfaces include a steep surface whose angle with respect to the central axis of the retainer exceeds 4 ° and a loose surface whose angle with respect to the central axis of the retainer does not exceed 4 °, and the total height of the steep surfaces is 4. The valve spring retainer according to claim 3, wherein the retainer is set smaller than the total height of the loose surfaces. 前記複数の面は、リテーナの中心軸に対する角度が2°を下回る緩い面及びリテーナの中心軸に対する角度が2°を下回らない急な面で構成し、前記緩い面の合計高さは、前記急な面の合計高さより小さく設定したことを特徴とする請求項3記載のバルブスプリング用リテーナ。   The plurality of surfaces include a loose surface whose angle with respect to the central axis of the retainer is less than 2 ° and a steep surface whose angle with respect to the central axis of the retainer is not less than 2 °, and the total height of the loose surfaces is The retainer for a valve spring according to claim 3, wherein the retainer is set to be smaller than the total height of the flat surfaces. 前記リテーナの中心軸に対する角度が4°を超えない面の合計高さが、前記円筒部の合計高さのうちの少なくとも半分で且つリテーナの中心軸に対する角度が2°を下回る面の合計高さが、前記円筒部の合計高さのうちの半分を下回ることを特徴とする請求項3記載のバルブスプリング用リテーナ。   The total height of the surfaces whose angle to the central axis of the retainer does not exceed 4 ° is at least half of the total height of the cylindrical portion, and the total height of the surfaces whose angle to the central axis of the retainer is less than 2 ° The retainer for a valve spring according to claim 3, wherein is less than half of the total height of the cylindrical portion. 前記円筒部から径外方へ膨出する前記鍔部は、径外方ほど厚さが薄くなるような不均等厚さ構造にしたことを特徴とする請求項1〜6のいずれか1項記載のバルブスプリング用リテーナ。   The said flange part which bulges from the said cylindrical part to radial outward is made into the non-uniform thickness structure that thickness becomes so thin that it is radial outward. Retainer for valve springs. 前記チタン合金素材はTi−Fe−O系合金とし、前記鍛造処理は冷間鍛造処理としたことを特徴とする請求項1〜7のいずれか1項記載のバルブスプリング用リテーナ。   The retainer for a valve spring according to any one of claims 1 to 7, wherein the titanium alloy material is a Ti-Fe-O alloy, and the forging process is a cold forging process.
JP2006024916A 2005-03-30 2006-02-01 Retainer for valve spring Expired - Fee Related JP4644133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024916A JP4644133B2 (en) 2005-03-30 2006-02-01 Retainer for valve spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005098823 2005-03-30
JP2006024916A JP4644133B2 (en) 2005-03-30 2006-02-01 Retainer for valve spring

Publications (2)

Publication Number Publication Date
JP2006307833A true JP2006307833A (en) 2006-11-09
JP4644133B2 JP4644133B2 (en) 2011-03-02

Family

ID=37474986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024916A Expired - Fee Related JP4644133B2 (en) 2005-03-30 2006-02-01 Retainer for valve spring

Country Status (1)

Country Link
JP (1) JP4644133B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146731A (en) * 2005-11-25 2007-06-14 Yamaha Motor Co Ltd Engine and vehicle
JP2009052511A (en) * 2007-08-29 2009-03-12 Fuji Oozx Inc Spring retainer for internal combustion engine and its manufacturing method
EP2034140A3 (en) * 2007-09-04 2010-04-14 Aichi Machine Industry Co. Ltd. Valve train for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240639A (en) * 1988-03-22 1989-09-26 Mitsubishi Motors Corp Valve, spring and retainer
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240639A (en) * 1988-03-22 1989-09-26 Mitsubishi Motors Corp Valve, spring and retainer
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146731A (en) * 2005-11-25 2007-06-14 Yamaha Motor Co Ltd Engine and vehicle
JP2009052511A (en) * 2007-08-29 2009-03-12 Fuji Oozx Inc Spring retainer for internal combustion engine and its manufacturing method
JP4594970B2 (en) * 2007-08-29 2010-12-08 フジオーゼックス株式会社 Manufacturing method of spring retainer for internal combustion engine
EP2034140A3 (en) * 2007-09-04 2010-04-14 Aichi Machine Industry Co. Ltd. Valve train for internal combustion engine

Also Published As

Publication number Publication date
JP4644133B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US5054195A (en) Process for the production of a valve
JP6316588B2 (en) Combining valve and valve seat for internal combustion engine
CN1944994A (en) Welded forged steel integrated piston and its producing method
JP2004181534A (en) Method for producing piston for internal combustion engine and engine obtained from this producing method
US5084113A (en) Method of producing a buildup valve for use in internal combustion engines
EP2083182B1 (en) Fracture split-type connecting rod, internal combustion engine, transportation apparatus, and production method for fracture split-type connecting rod
US8297603B2 (en) Spring retainer and spring system
JP4644133B2 (en) Retainer for valve spring
US20050102834A1 (en) Single piece cam method for the production thereof and assembly of a camshaft
JPH06179037A (en) Method for forming internal combustion engine tappet body
CN201269146Y (en) Piston ring
JP4116983B2 (en) Titanium valve spring retainer
JP2016215234A (en) Manufacturing method of forged crank shaft
CN2851607Y (en) Welding type forged steel single-piece piston
US7308760B2 (en) Method of making a valve lifter
EP3351338A1 (en) Bonded member and method of manufacturing the same
JP5150406B2 (en) Piston material manufacturing method
JPH05196030A (en) Connecting rod
US10843254B2 (en) Hot forming of cooling galleries in steel pistons
EP3871800B1 (en) Method of manufacturing intermediate product with engine valve boss portion
JPS62253908A (en) Valve lifter for overhead valve type internal combustion engine
JPH06246387A (en) Production of valve lifter made of aluminum
JPH09329008A (en) Valve spring retainer for internal combustion engine and working method therefor
CN112626395A (en) Method for producing a component
JPS6350615A (en) Valve spring retainer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101203

R150 Certificate of patent or registration of utility model

Ref document number: 4644133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees