JP2006303547A - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP2006303547A
JP2006303547A JP2006220903A JP2006220903A JP2006303547A JP 2006303547 A JP2006303547 A JP 2006303547A JP 2006220903 A JP2006220903 A JP 2006220903A JP 2006220903 A JP2006220903 A JP 2006220903A JP 2006303547 A JP2006303547 A JP 2006303547A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
emitting element
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006220903A
Other languages
English (en)
Other versions
JP4165592B2 (ja
Inventor
Ryoma Suenaga
良馬 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2006220903A priority Critical patent/JP4165592B2/ja
Publication of JP2006303547A publication Critical patent/JP2006303547A/ja
Application granted granted Critical
Publication of JP4165592B2 publication Critical patent/JP4165592B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4823Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a pin of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】高い信頼性を有し且つ高輝度に発光することが可能である薄型の表面実装型発光装置を提供する。
【解決手段】発光素子と、発光素子を収容された凹部と少なくとも1つの貫通孔を有するベース部とからなる金属パッケージと、絶縁部材によって前記金属パッケージと電気的に分離されかつその先端部がベース部の底面から突出するように貫通孔内に挿入されたリード電極とを有する発光装置であって、発光素子が載置された面に対向する外表面である凹部底面には、金属パッケージを構成する金属の表面が露出されており、実装基板に実装されたときに、露出された金属の表面が前記実装基板に接している。
【選択図】図1B

Description

本発明はバックライト光源、ディスプレイ、照明など各種光源や光センサに利用される発光装置に係わり、特に、信頼性に優れた発光装置に関するものである。
今日、高輝度、高出力な半導体発光素子や小型且つ高感度な発光装置が開発され種々の分野に利用されている。このような発光装置は、低消費電力、小型、及び軽量などの特徴を生かして、例えば、光プリンターヘッドの光源、液晶バックライト光源、各種メータの光源や各種読み取りセンサーなどに利用されている。
このような発光装置の一例として、図13に示す如き発光装置が挙げられる。
凹部を有し且つリード電極2が挿入されて一体成形されたプラスチック・パッケージ5を用い、前記凹部内底面から露出されたリード電極2上に発光素子としてLEDチップ1をダイボンドすると共にLEDチップの各電極とパッケージに設けられたリード電極2とを金線4などにより電気的に接続させる。このようにして凹部内に配置されたLEDチップは透光性のモールド樹脂9等によって封止される。これにより、パッケージ内部に配置されたLEDチップやワイヤなどを、水分、外力など外部環境から保護することができ、極めて高い信頼性を有する発光装置が得られる。
しかしながら、このような発光装置は、利用分野の広がりからより厳しい環境条件で使用され始めている。航空機や車載用に利用される発光装置では、例えば外気温により−20℃以下+80℃以上にまで変化する場合もある。また、外気圧、熱衝撃などと同時に振動もある。このような場合、モールド樹脂等の膨張や収縮によりLEDチップはダイボンド樹脂から剥離され、放出される光の強度や指向特性が変化する。ひどい場合にはワイヤの断線などを生じ全く発光しない場合がある。
また発光素子は、電力消費により熱を発する。上記の構成を有する発光装置は、発光素子から発生する熱をリード電極を介して基板側に逃すことができる。
しかしながら、その放熱効果は十分に満足できるものではなく、発光素子の出力を向上させようと上記のような発光装置に大電流を投下すると、パッケージによる放熱効果が十分でないため発光素子の温度は上昇し、素子の動作速度や周囲に存在する樹脂の劣化等を引き起こしてしまう。
これに対して、従来、高い信頼性を有するパッケージとしてキャンタイプ・パッケージが用いられている。
例えば、図12に示す如き、凸形状の金属ベース10と、該金属ベース10の厚さ方向に形成された貫通孔にガラス等の絶縁体3を介して気密絶縁的に封着されたリード電極2とを有する半導体装置用ステムが用いられる。このようなステムの上面に発光素子1を電気的に接続させる。これを底部側に鍔部を有する窓付き缶11にて気密封止する。
上記の如く構成された発光装置は、パッケージが金属にて構成され且つ内部が中空であるため、構成材料に樹脂を用いた場合と比べ非常に高い信頼性を有し、ワイヤ断線防止、耐湿性、耐熱性、及び放熱性に優れている。このため、発光装置に流す電流量を増加させ出力向上を図ることが可能である。
実開平4−25257号公報 特開2000−58924号公報 特開2000−252524号公報
しかしながら、近年、高密度実装に対応するために発光装置の小型化・薄型化が望まれており、これに応じて表面実装タイプの発光装置がリードタイプの発光装置に代えて要求されている。
本発明は、高い信頼性を有し且つ高輝度に発光することが可能である薄型の表面実装型発光装置を提供することを目的とする。
そこで本発明は、発光素子と、前記発光素子を収納する凹部と少なくとも1つの貫通孔を有するベース部とからなる金属パッケージと、前記貫通孔内に絶縁部材を介して挿入されたリード電極とを有する発光装置であって、前記リード電極の少なくとも底面は、前記ベース部の底面から突出しており、且つ前記凹部の底面とほぼ同一平面上にあることを特徴とする。これにより、実装性が良好で且つ信頼性の高い発光装置が得られる。
また更に、前記リード電極の上面側は、前記ベース部の主面から突出していると、ワイヤーボンディングの精度が向上され好ましい。
また、前記ベース部の膜厚は、前記凹部の底面厚より厚いことを特徴とする。
これにより、高い放熱性と強い強度を共有することができ、歩留まりの優れた発光装置が得られる。
また、前記凹部の内壁は、テーパー形状であることが好ましく、これにより発光素子からの光取り出し効率が更に向上される。
また、前記凹部内に前記発光素子を被覆する透光性封止部材を有し、且つ前記封止部材中に前記発光素子からの光の一部を吸収して異なる波長を発光することが可能な蛍光物質が含有されていることを特徴とする。
本発明で用いられる金属パッケージの一部に設けられた凹部は、発光素子を収納することが可能な最小限の容積であり且つ優れた放熱性を有するため、前記透光性部材に有機物を用いても大電流を投下することが可能である。前記透光性部材を発光素子の周囲に配置させることにより、光が集光され、高輝度に発光することが可能で且つ信頼性の高い色変換型発光装置が得られる。
また、金属パッケージの主面側に、透光性窓部と金属部とからなるリッドを有し、前記透光性窓部は前記凹部と対向しており且つ前記凹部の内壁の延長線と交わることを特徴とする。これにより、発光素子から発光され前記凹部の内壁で反射散乱された光を効率よく外部に取り出すことができる。
また、前記金属パッケージは、熱伝導率が10W/m・K以上100W/m・K以下で且つ熱膨張率が0.05×10−4/deg以上0.20×10−4/deg以下であることを特徴とする。これにより、信頼性を損なうことなく大電流を投下することが可能な発光装置が得られる。
また、前記凹部は、隣接するベース部より突出した縁部を有することを特徴とする。これにより、パッケージの主面側領域を有効利用し、更に光取り出し効率を高めることができる。
また、前記透光性窓部は、前記発光素子の一側面と対向する前記凹部内壁の立ち上がり地点である屈曲点と、該屈曲点と前記発光素子を介して向かい合う前記凹部内壁の最上端点とを結ぶ直線の延長線と交わることを特徴とする。これにより、前記内壁にて反射散乱され大きく方向転換された光をも前記透光性窓部から外部へ取り出すことができる。
また本願発明の発光装置は、発光素子と、前記発光素子が載置される薄肉部と該薄肉部から外部へ延在した厚肉部とを有する金属パッケージと、前記厚肉部に絶縁部材を介して一体的に設けられたリード電極とを有する発光装置であって、前記リード電極の底面は、前記厚肉部の底面より下方に位置し、且つ前記薄肉部の底面とほぼ同一平面上に位置していることを特徴とする。これにより、発光素子から生じる熱を熱抵抗の小さい前記薄肉部から効率よく外部へ放熱することができる。
また、前記薄肉部主面は前記厚肉部主面とほぼ平行をなし、これらの境界部主面は屈曲していることを特徴とする。これにより、前記薄肉部と前記厚肉部との熱抵抗差が大きくなり、さらに放熱性が向上される。
本発明によれば、高い信頼性を有し且つ高輝度に発光することが可能である薄型の表面実装型発光装置を提供することができる。
以下、図面を参照にして、本発明に係る実施の形態について説明する。
図5に、本発明の実施の形態に係る発光装置を示す。
パッケージ5は金属からなり、中央部に発光素子を収納するための凹部aを有する。また、前記凹部の周辺部であるベース部bは、厚さ方向に貫通された貫通孔を2つ有し、それぞれの貫通孔は前記凹部を挟んで対向している。該貫通孔内には、絶縁部材3である硬質ガラスを介して正及び負のリード電極2がそれぞれ挿入されている。
尚、前記リード電極2の両端部は前記ベース部表面から突出しており、且つ前記リード電極の底面は前記凹部の底面と略同一平面上に位置している。本明細書では、前記パッケージの凹部開口方向の各部材表面を主面とし、該主面と対向する反対側の表面を背面または底面と表現する。
このように構成された金属パッケージの主面側において、前記凹部内に発光素子1であるLEDチップを配置し、前記LEDチップの各電極をワイヤ4にて各リード電極2と電気的に接続する。このようにして導電可能とされたパッケージの主面側を、透光性窓部7を有するリッド6にて気密封止している。
ここで、前記透光性窓部7には、無機蛍光体や有機蛍光体等の種々の蛍光物質8を含有させることが出来る。このような蛍光物質8の一例として、無機蛍光体である希土類元素を含有する蛍光体がある。希土類元素含有蛍光体として、具体的には、Y、Lu、Sc、La、Gd及びSmの群から選択される少なくとも1つの元素と、Al、Ga、及びInの群から選択される少なくとも1つの元素とを有するざくろ石型蛍光体が挙げられる。特に、セリウムで付活されたイットリウム・アルミニウム酸化物系蛍光体が好ましく、所望に応じてCeに加えTb、Cu、Ag、Au、Fe、Cr、Nd、Dy、Ni、Ti、Eu、およびPr等を含有させることも可能である。ここでは、前記LEDチップからの光の少なくとも一部を吸収して異なる波長を発光することが可能な蛍光物質8が含有されている。このように、パッケージの構成材料及び蛍光物質のバインダー等に有機物を用いることなく無機物のみで構成された発光装置は、熱や光による構成部材の劣化を回避することができ、飛躍的に高い信頼性を有することができる。
以下、本発明の実施形態における各構成について詳述する。
<発光素子1>
本発明において発光素子1は特に限定されないが、蛍光物質を用いた場合、該蛍光物質を励起可能な発光波長を発光できる発光層を有する半導体発光素子が好ましい。このような半導体発光素子としてZnSeやGaNなど種々の半導体を挙げることができるが、蛍光物質を効率良く励起できる短波長が発光可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。また所望に応じて、前記窒化物半導体にボロンやリンを含有させることも可能である。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。
窒化物半導体を使用した場合、半導体用基板にはサファイヤ、スピネル、SiC、Si、ZnO、およびGaN等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイヤ基板を用いることが好ましい。このサファイヤ基板上にMOCVD法などを用いて窒化物半導体を形成させることができる。サファイア基板上にGaN、AlN、GaAIN等のバッファー層を形成しその上にpn接合を有する窒化物半導体を形成させる。
窒化物半導体を使用したpn接合を有する発光素子例として、バッファ層上に、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタクト層を順に積層させたダブルへテロ構成などが挙げられる。
窒化物半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱やプラズマ照射等により低抵抗化させることが好ましい。電極形成後、半導体ウエハーからチップ状にカットさせることで窒化物半導体からなる発光素子を形成させることができる。
本発明の発光ダイオードにおいて、白色系を発光させるには、蛍光物質からの発光波長との補色関係や透光性樹脂の劣化等を考慮して、発光素子の発光波長は400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。発光素子と蛍光物質との励起、発光効率をそれぞれより向上させるためには、450nm以上475nm以下がさらに好ましい。
なお本発明では、パッケージ本体は金属のみにて構成されているため紫外線による構成部材の劣化を抑制することができる。よって、本発明の発光装置に近紫外または紫外線領域を主発光波長とする発光素子を用い、前記発光素子からの光の一部を吸収して他の波長を発光することが可能な蛍光物質とを組み合わせることで、色ムラの少ない色変換型発光装置が得られる。ここで、前記蛍光物質を発光装置にバインダーする際には、比較的紫外線に強い樹脂や無機物であるガラス等を用いることが好ましい。
<金属パッケージ5>
本実施の形態の発光装置に用いられる金属パッケージ5は、発光素子を収納する凹部aと、リード電極が配置されたベース部bとからなる。前記凹部の底面と前記リード電極の底面はほぼ同一面上に位置している。
発光装置において、発光素子から発せられる熱の放熱性及びパッケージの小型化を考慮すると、金属パッケージは薄肉で形成されることが好ましい。一方、パッケージ材料の金属と該金属と隣接する絶縁部材との熱膨張率等の差を緩和させ信頼性を向上させるためには、それぞれの接触面を大きくする必要があり、金属パッケージは厚肉で形成されることが好ましい。そこで本発明者は、金属パッケージにおいて、発光素子が配置される部分とリード電極を固定する部分とを分別し、それぞれの領域において目的に合わせて形状及び肉厚を設定することにより、信頼性の向上を図る。
以下、それぞれの構成部材について詳述する。
<凹部a>
本実施の形態の発光装置に用いられるパッケージは、中央部に、発光素子を収納し前記発光素子からの発熱を良好に放熱することが可能な凹部を有する。前記凹部底面は、発光装置の実装面、つまりリード電極の底面とほぼ同一平面上に位置しており、実装用基板27の表面と接するように構成されている。このように構成することにより、実装用基板27の表面に配線29とは別途高熱伝導性領域28を設け、該高熱伝導性領域28と前記凹部底面とを導電性部材にて固着することにより、発光素子からの発熱を直接実装基板へと放熱することができ、発光素子への電流投下量を増大させ出力向上を図ることができる。また、金属パッケージの背面に導電性を有する支持体を設ける場合は、前記支持体も前記凹部底面と同様に前記高熱伝導性領域28と導電性部材にて固着することが好ましい。
また前記凹部底面の膜厚は、良好な放熱性を有するように外周部に相当するベース部より薄肉に形成されている。これにより、前記薄肉部と前記ベース部である厚肉部とに熱抵抗差を設けることができ、効率よく前記薄肉部より放熱することができる。前記凹部底面である薄肉部の膜厚は、0.05mm〜0.2mmが好ましく、より好ましくは0.05mm〜0.1mmである。このように設定された凹部底面は熱抵抗が低く好ましい。このように、本発明の発光装置は、発光素子からの発熱を外部より熱抵抗が低く設定された領域より短い放熱経路にて直接実装基板に放熱することを可能とし、低熱抵抗化を実現している。 また、前記凹部底面である薄肉部主面は前記ベース部である厚肉部主面とほぼ平行をなし、これらの境界部主面である凹部の内壁は屈曲している。これにより、前記薄肉部と前記厚肉部との熱抵抗差が大きくなり、さらに放熱性を向上させることができる。
前記凹部は、発光装置の中央部に位置することが好ましく、これにより良好な指向特性が得られる。
また凹部は、前記発光素子全体を収納することが可能な容積を有することが好ましい。これにより、発光素子の四方側面から発光される光を前記凹部内壁にて良好に正面方向へ取り出すことができる。これにより、特に窒化物半導体からなる発光素子にみられる発光ムラや色むらを改善することができ好ましい。また、色変換層を用いて発光素子の波長を変換させる場合、前記凹部内に配置された前記発光素子全体を色変換層で容易に被覆することが可能となる。また、前記凹部内に前記発光素子を被覆する透光性部材を設けると、光の取り出し効率が向上され好ましい。本実施の形態では、前記透光性部材に前記発光素子から発光される光の一部を吸収し他の波長を発光することが可能な蛍光物質を含有されてなる色変換層にて前記発光素子を被覆している。本発明に用いられる金属パッケージは、特に発光素子が配置される凹部の放熱性が優れているため、前記色変換層の各部材は無機物に限らず有機物を用いることも可能であり、大電流投下による前記有機物の劣化はほとんどおこらず、良好な光学特性が得られる。また、前記凹部の内壁は、容積が開口側へいくほど大きくなるようにがテーパー形状であることが好ましく、これにより更に高輝度に発光することが可能な発光装置が得られる。
一方、外壁側である前記凹部の背面は、逆凸形状となっており、凹部底面とリード電極の底面との間に溝を有することが好ましく、これにより、実装基板に実装する際、各リード電極間で短絡が生じることを防止することができ、信頼性高く良好に実装することが可能となる。前記溝がない場合、前記リード底面に付着される半田が隣接するベース部等に付着し各電極間の絶縁が取れなくなりショートしてしまう恐れがある。
前記凹部は、例えば金属平板に絞り加工を施すことにより構成される。本実施の形態では、金属平板の主面方向から絞り加工を施して金属を背面方向に流し凹部を形成する。この流れた金属が凹部底面の一部となるように構成することで、実装面の面積を大きくすることができるとともに、凹部側面の底面側の膜厚を厚くすることができる。具体的には、実装面を構成する凹部の膜厚は、主面側が平坦である発光素子載置部は薄く、主面側が凹部の側壁の一部である前記発光素子載置部の外周部は厚く構成されている。これにより、放熱性が向上される他、パッケージの機械的強度が増し、好ましい。また、精度良く実装することが可能となり、好ましい指向特性が得られる。
<ベース部b>
本明細書では、金属パッケージにおいて前記凹部aを囲む平板部分をベース部bとする。前記ベース部は、厚さ方向に貫通された貫通孔を少なくとも1つ有する。前記貫通孔はリード電極を固定するためのものであり、本実施の形態の発光装置は、前記貫通孔を2つ有する。それぞれの貫通孔は、凹部aを挟んで対向して設けられ、各内部に絶縁体を介して正又は負のリード電極がそれぞれ挿入されている。このように構成することにより、各リード電極間の中心に発光素子を配置させることができ、良好な指向特性が得られる。
ここで、本発明の発光装置の正及び負のリード電極は、少なくとも一方がベース部の貫通孔内に絶縁体を介して挿入されていれば良く、図2の如く他方のリード電極は金属パッケージと一体成形されていてもよい。このように構成すると、熱発生源であるパッケージ凹部の発光素子配置面から前記他方のリード電極まで絶縁体を有さず連続した材料にて構成されているため、熱が良好に分散され、前記凹部底面、前記他方のリード電極底面、及びそれらの間の背面から良好に熱を放熱することができる。
また、本発明の発光装置において、金属パッケージのベース部の膜厚は前記凹部の底面厚より厚いことを特徴とする。ベース部の厚みは0.3mm〜1.0mmが好ましく、より好ましくは0.5mm〜1.0mmである。0.3mmより薄い場合、パッケージ全体の強度が低下してしまう。またリッドとの溶接時に起こる応力歪により溶接界面にクラックが生じる恐れがあり、このように気密性が不完全になると、水分が内部に侵入しワイヤや発光素子が腐食され信頼性が低下してしまう。また1.0mm以上の膜厚にすると、前記溶接界面にパルス電流が伝わりにくくなり、シールが不完全になる恐れがある。また発光装置が厚型化するとともにコストが高くなる。
また、前記ベース部の外側縁部は、ベース部底面に沿って鍔部を有することが好ましい。このように構成することにより、前記鍔部を設けることにより露出されるパッケージ端面と発光面側に配置されるリッドの内壁、及び前記鍔部の上面と前記リッド上面とが合わさり、これらの位置決めを容易に行うことができ、量産性が向上され好ましい。
また、前記ベース部の背面側に支持体を設けても良い。前記背面側から突出している各リード電極の間に、前記支持体がそれぞれ均等間隔で配置されると、発光装置の実装安定性が向上され好ましい。前記支持体は、前記ベース部と同様の材料にて構成されることが好ましく、これにより発光装置の放熱性が向上される。このような支持体は、例えば前記ベース部の主面側からプレス加工を施して背面側へ金属の一部を流すことにより容易に形成することができる。
前記リード電極及び金属パッケージの熱伝導率はそれぞれ、10W/m・K以上100W/m・K以下の範囲であることが好ましく、より好ましくは15W/m・K以上80W/m・K以下、更に好ましくは15W/m・K以上50W/m・K以下である。、信頼性を維持しながら大電流を長時間投下することが可能な発光装置が得られる。
またそれぞれの熱膨張率は、0.05×10−4/deg以上0.20×10−4/deg以下の範囲であることが好ましい。
金属パッケージの熱膨張率は、前記絶縁部材の熱膨張率と同様の値か、若しくは大きい値であることが好ましい。前者の場合、互いの部材が破損されることなく熱密着させることができる。また後者の場合、これらの熱膨張率の差が0.01×10−4/deg以下であれば、互いの接触面積を出来るだけ大きくすることで熱膨張率の差による破損を回避しつつ前記熱膨張率の差の効果によりほどよく金属パッケージが貫通孔の内部方向に収縮され、前記貫通孔の内壁に基材の酸化膜を設けなくても、前記金属パッケージと前記絶縁部材とを密着させることができる。これにより、作業工程が簡略化され生産性が良好な発光措置が得られる。
また、金属パッケージの基材は、強い強度を有することが好ましく、これにより薄型のパッケージを信頼性高く形成することができる。金属パッケージの好ましい基材として、コバール、鉄などが挙げられる。コバールとはFe−Ni−Co合金であり、絶縁部材に用いられる低融点ガラスと近似の熱膨張率を有するので良好に気密封止を行うことができる。これら基材の最表面にはAgメッキを施すことが好ましい。このように構成すると、パッケージ表面の光反射散乱率が向上される他、Ag層が溶接用ろう材となり、発光素子、ワイヤ、及びリッドと、金属パッケージ本体との密着性が向上され好ましい。更に、発光素子からの光が照射されるパッケージの主面側はAg層を光沢にメッキし、他の部材との密着性を高めたい部分のみのAg層を無光沢にメッキすると、これらの効果は増殖される。
本発明で用いられる金属パッケージは、上記のように構成され、これにより高い信頼性を有する発光装置を安価に得ることができる。
<リード電極>
本発明の発光装置は、正及び負のリード電極を有し、そのうちの少なくとも一方は、金属パッケージのベース部と絶縁部材を介して一体的に設けられる。例えば、前記ベース部に貫通孔を設け、該貫通孔内に絶縁部材を介して挿入されている。前記リード電極の先端部は、前記ベース部の表面から突出しており、且つ前記リード電極の底面は前記凹部の実装面側底面と略同一平面上に位置している。
リード電極2のワイヤ接続面である上面は、0.02mm〜0.2mmの範囲の面積を有することが好ましく、より好ましくは0.05mm〜0.15mmである。このように構成されることにより、ワイヤボンディングの精度が良好で且つ小型化の発光装置が得られる。
また、リード電極の実装面側である底面が前記ベース部背面から突出している場合、前記底面は前記上面より広い面積を有するように構成することができる。このように構成すると、前記リード電極が発光装置の支持体の役割を兼ね合わせ、安定して表面実装することが可能となると共に、実装基板との接触面積が広くなるため放熱性が向上される。このような形状のリード電極は、例えば柱状に形成されたリード電極の底面側をプレス加工することにより得ることができる。リード電極の底面側の好ましい形状として、逆T字型、末広がり型、逆テーパ型等が挙げられる。
<リッド6>
本実施の形態の発光装置は、金属パッケージの主面側に、透光性窓部7と金属部とからなるリッド6を有する。前記窓部7は、発光装置の発光面であり中央部に配置されることが好ましい。
本実施の形態において、前記窓部は、前記金属パッケージの凹部に配置された発光素子の上面に位置しており、前記凹部の内壁の延長線と交点を有する。前記発光素子の端部からから発光される光は、前記凹部の側面にて反射散乱され正面方向に取り出される。これらの反射散乱光の存在範囲は、ほぼ前記凹部の側面の延長線内であると考えられる。そこで、上記のように発光面である窓部の面積を調整することにより、前記反射散乱光は効率よく前記窓部に集光され、高輝度な光を発光することが可能な発光装置が得られる。
リッドの基材は、パッケージ本体及び窓部の透光性部材と熱膨張係数が近似していることが好ましい。また、リッドの材質の表面は基材の保護膜としてNiメッキ層を有することが好ましい。
上記リッドは、例えば、カーボン製の封着治具を用いて、リッド本体に形成された開口部内にタブレット状のガラスを配置し通炉させることによりガラスとリッド本体とを気密絶縁的に封着させることができる。
リッドの形状は、パッケージの溶接部と密接可能な滑らかな平面を有し且つパッケージを気密封止できれば特に限定されるものではない。中央部が凸形状のリッドを用いると、前記リッドの窓部の背面に色変換部材を良好にバインダーさせることができ、歩留まり良く発光装置を形成することができる。また、凸形状のリッドに柔軟性を有する部材を注入し、金属パッケージに電気的に接続された発光素子を挿入して一体化させると、耐熱応力に優れた発光装置が得られる。
更に、前記窓部表面を図7の如く曲線を帯びたレンズ形状とすると、光の収束が良好となり、正面方向の光度が高い発光装置が得られる。例えば、青色LEDチップが載置された金属パッケージに、指向角が45度程度に設定され且つ背面に前記青色の光の一部を吸収し黄色の光を発光する蛍光物質を固着されてなる砲弾側レンズを載置すると、これらの混色により高輝度に白色ビームを発光することが可能な小型化発光装置が得られる。このような発光装置は、携帯電話等の小型機械に備えられた描写機能に必要とされるフラッシュの用途に用いることができる。
<蛍光物質8>
本発明の発光装置は、発光素子と該発光素子から発光される光の少なくとも一部を吸収し他の光を発光することが可能な蛍光物質とを組み合わせることにより、所望の色調を有する光を得ることができる。また、蛍光物質は、拡散剤や顔料等他の部材と互換性を有しており、またこれらを組み合わせて用いることも可能である。これらの配置例として、前記リッドの窓部の部材に、蛍光物質8等の他物質を含有させてもよいし、前記窓部の内部表面にバインダーを用いて前記他物質層を塗布してもよい。また金属パッケージの凹部内に樹脂等に含有させて配置させてもよい。
ここで、本実施例で用いられている蛍光物質について詳述する。
本実施例の発光装置では、窒化物系半導体を発光層とする半導体発光素子から発光された光を励起させて発光できるセリウムで付活されたイットリウム・アルミニウム酸化物系蛍光物質をベースとした蛍光物質を用いている。
具体的なイットリウム・アルミニウム酸化物系蛍光物質としては、YAlO:Ce、YAl12:Ce(YAG:Ce)やYAl:Ce、更にはこれらの混合物などが挙げられる。イットリウム・アルミニウム酸化物系蛍光物質にBa、Sr、Mg、Ca、Znの少なくとも一種が含有されていてもよい。また、Siを含有させることによって、結晶成長の反応を抑制し蛍光物質の粒子を揃えることができる。
本明細書において、Ceで付活されたイットリウム・アルミニウム酸化物系蛍光物質は特に広義に解釈するものとし、イットリウムの一部あるいは全体を、Lu、Sc、La、Gd及びSmからなる群から選ばれる少なくとも1つの元素に置換され、あるいは、アルミニウムの一部あるいは全体をBa、Tl、Ga、Inの何れが又は両方で置換され蛍光作用を有する蛍光体を含む広い意味に使用する。
更に詳しくは、一般式(YzGd1-z3Al512:Ce(但し、0<z≦1)で示されるフォトルミネッセンス蛍光体や一般式(Re1-aSma3Re‘512:Ce(但し、0≦a<1、0≦b≦1、Reは、Y、Gd、La、Scから選択される少なくとも一種、Re’は、Al、Ga、Inから選択される少なくとも一種である。)で示されるフォトルミネッセンス蛍光体である。
この蛍光物質は、ガーネット構造(ざくろ石型構造)のため、熱、光及び水分に強く、励起スペクトルのピークを450nm付近にさせることができる。また、発光ピークも、580nm付近にあり700nmまですそを引くブロードな発光スペクトルを持つ。
またフォトルミネセンス蛍光体は、結晶中にGd(ガドリニウム)を含有することにより、460nm以上の長波長域の励起発光効率を高くすることができる。Gdの含有量の増加により、発光ピーク波長が長波長に移動し全体の発光波長も長波長側にシフトする。すなわち、赤みの強い発光色が必要な場合、Gdの置換量を多くすることで達成できる。一方、Gdが増加すると共に、青色光によるフォトルミネセンスの発光輝度は低下する傾向にある。さらに、所望に応じてCeに加えTb、Cu、Ag、Au、Fe、Cr、Nd、Dy、Co、Ni、Ti、Euらを含有させることもできる。
しかも、ガーネット構造を持ったイットリウム・アルミニウム・ガーネット(ざくろ石型)系蛍光体の組成のうち、Alの一部をGaで置換することで発光波長が短波長側にシフトする。また、組成のYの一部をGdで置換することで、発光波長が長波長側にシフトする。
Yの一部をGdで置換する場合、Gdへの置換を1割未満にし、且つCeの含有(置換)を0.03から1.0にすることが好ましい。Gdへの置換が2割未満では緑色成分が大きく赤色成分が少なくなるが、Ceの含有量を増やすことで赤色成分を補え、輝度を低下させることなく所望の色調を得ることができる。このような組成にすると温度特性が良好となり発光ダイオードの信頼性を向上させることができる。また、赤色成分を多く有するように調整されたフォトルミネセンス蛍光体を使用すると、ピンク等の中間色を発光することが可能な発光装置を形成することができる。
このようなフォトルミネセンス蛍光体は、Y、Gd、Al、及びCeの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウムとを混合して混合原料を得る。これにフラックスとしてフッ化バリウムやフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350〜1450°Cの温度範囲で2〜5時間焼成して焼成品を得、つぎに焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。
本願発明の発光装置において、このようなフォトルミネセンス蛍光体は、2種類以上のセリウムで付活されたイットリウム・アルミニウム・ガーネット(ざくろ石型)蛍光体や他の蛍光体を混合させてもよい。
また、本発明で用いられる蛍光物質の粒径は10μm〜50μmの範囲が好ましく、より好ましくは15μm〜30μmである。15μmより小さい粒径を有する蛍光物質は、比較的凝集体を形成しやすく、液状樹脂中において密になって沈降されるため、光の透過効率を減少させてしまう。本発明では、このような蛍光物質を有しない蛍光物質を用いることにより蛍光物質による光の隠蔽を抑制し発光装置の出力を向上させる。また本発明の粒径範囲である蛍光物質は光の吸収率及び変換効率が高く且つ励起波長の幅が広い。このように、光学的に優れた特徴を有する大粒径蛍光物質を含有させることにより、発光素子の主波長周辺の光をも良好に変換し発光することができ、発光装置の量産性が向上される。
ここで本発明において、粒径とは、体積基準粒度分布曲線により得られる値である。前記体積基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、気温25℃、湿度70%の環境下において、濃度が0.05%であるヘキサメタリン酸ナトリウム水溶液に各物質を分散させ、レーザ回折式粒度分布測定装置(SALD−2000A)により、粒径範囲0.03μm〜700μmにて測定し得られたものである。この体積基準粒度分布曲線において積算値が50%のときの粒径値であり、本発明で用いられる蛍光物質の中心粒径は15μm〜50μmの範囲であることが好ましい。また、この中心粒径値を有する蛍光物質が頻度高く含有されていることが好ましく、頻度値は20%〜50%が好ましい。このように粒径のバラツキが小さい蛍光物質を用いることにより色ムラが抑制され良好な色調を有する発光装置が得られる。
蛍光物質の配置場所は特に限定されず、リッドの窓部の背面にバインダーしても良いし、リッドの窓部の材料に直接含有させても良い。また、比較的熱による劣化の少ない樹脂やガラス等の無機物に蛍光物質を含有させ発光素子を覆うようにパッケージ凹部内に充填させてもよい。本発明のパッケージは金属からなり放熱性に優れているため、凹部内に配置された発光素子の周囲に樹脂等を用いて蛍光物質を充填させても構成部材はほとんど熱に劣化されることなく、樹脂及び蛍光物質の本来の作用を最大限に利用することができる。
リッドの窓部に直接蛍光物質を含有させるには、例えば、リッド本体に開口部を設け、該開口部にガラスのパウダー状若しくはペレット状のものと粉末の蛍光物質との混合物を配置させ、プレス加工により一括成型させる。これにより蛍光物質含有の窓部が形成される。また、ガラスペーストに蛍光物質を混合したものを配置して焼成しても良い。
また、リッドの窓部の背面や発光素子の表面にバインダーにて蛍光物質を付着させる場合、前記バインダーの材質は特に限定されず、有機物及び無機物のいずれをも用いることができる。
バインダーとして有機物を使用する場合、具体的材料として、エポキシ樹脂、アクリル樹脂、シリコーン樹脂などの耐候性に優れた透明樹脂が好適に用いられる。特にシリコーン樹脂を用いると信頼性に優れ且つ蛍光物質の分散性を向上させることができ好ましい。またエラストマー状またはゲル状の部材を用いると、耐熱応力に優れた発光装置が得られる。
また、バインダーとして窓部の熱膨張率と近似である無機物を使用すると、蛍光物質を良好に前記窓部に密着させることができ好ましい。具体的方法として、沈降法やゾル−ゲル法等を用いることができる。例えば、蛍光物質、シラノール(Si(OEt)OH)、及びエタノールを混合してスラリーを形成し、該スラリーをノズルからリッドの窓部に吐出させた後、300℃にて3時間加熱してシラノールをSiOとし、蛍光物質を固着させることができる。
また、無機物である結着剤をバインダーとして用いることもできる。結着剤とは、いわゆる低融点ガラスであり、微細な粒子であり且つ紫外から可視領域のふく射線に対して吸収が少なくバインダー中にて極めて安定であることが好ましく、沈殿法により得られた細かい粒子であるアルカリ土類のほう酸塩が適している。
また、大きい粒径を有する蛍光物質を付着させる場合、融点が高くても粒子が超微粉体である結着剤、例えば、デグサ製のシリカ、アルミナ、あるいは沈殿法で得られる細かい粒度のアルカリ土類金属のピロりん酸塩、正りん酸塩などを使用することが好ましい。
これらの結着剤は、単独、若しくは互いに混合して用いることができる。
ここで、上記結着剤の塗布方法について述べる。結着剤は、結着効果を十分に高めるため、ビヒクル中に湿式粉砕しスラリー状にして結着剤スラリーとして用いることが好ましい。前記ビヒクルとは、有機溶媒あるいは脱イオン水に少量の粘結剤を溶解して得られる高粘度溶液である。例えば、有機溶媒である酢酸ブチルに対して粘結剤であるニトロセルロースを1wt%含有させることにより、有機系ビヒクルが得られる。
このようにして得られた結着剤スラリーに蛍光物質を含有させて塗布液を作製する。塗布液中のスラリーの添加量は、前記塗布液中の蛍光物質量に対して前記スラリー中の結着剤の総量が1〜3%wt程度であることが好ましい。結着剤の添加量が多すぎると、光束維持率が低下する傾向にあるので、最小限の使用にとどめることが好ましい。
リッドの窓部背面に上記結着剤にて蛍光物質を固着させたい場合、前記塗布液を前記窓部の背面に塗布し、その後、温風あるいは熱風を吹き込み乾燥させる。最後に400℃〜700℃の温度でベーキングを行い、前記ビヒクルを飛散させる。これにより前記窓部の表面に蛍光体層が前記結着剤にて付着される。
<拡散剤>
更に、本発明において、上記の色変換部材中に蛍光物質に加えて拡散剤を含有させても良い。具体的な拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等が好適に用いられる。これによって良好な指向特性を有する発光装置が得られる。
ここで本明細書において拡散剤とは、中心粒径が1nm以上5μm未満のものをいう。1μm以上5μm未満の拡散剤は、発光素子及び蛍光物質からの光を良好に乱反射させ、大きな粒径の蛍光物質を用いることにより生じやすい色ムラを抑制することができ好ましい。また、発光スペクトルの半値幅を狭めることができ、色純度の高い発光装置が得られる。一方、1nm以上1μm未満の拡散剤は、発光素子からの光波長に対する干渉効果が低い反面、透明度が高く、光度を低下させることなく樹脂粘度を高めることができる。これにより、ポッティング等により色変換部材を配置させる場合、シリンジ内において樹脂中の蛍光物質をほぼ均一に分散させその状態を維持することが可能となり、比較的取り扱いが困難である粒径の大きい蛍光物質を用いた場合でも歩留まり良く生産することが可能となる。このように本発明における拡散剤は粒径範囲により作用が異なり、使用方法に合わせて選択若しくは組み合わせて用いることができる。
<フィラー>
更に、本発明において、色変換部材中に蛍光物質に加えてフィラーを含有させても良い。具体的な材料は拡散剤と同様であるが、拡散剤と中心粒径が異なり、本明細書においてフィラーとは中心粒径が5μm以上100μm以下のものをいう。このような粒径のフィラーを透光性樹脂中に含有させると、光散乱作用により発光装置の色度バラツキが改善される他、透光性樹脂の耐熱衝撃性を高めることができる。これにより高温下での使用においても、発光素子と外部電極とを電気的に接続しているワイヤーの断線や前記発光素子底面とパッケージの凹部底面と剥離等を防止することができる信頼性の高い発光装置が得られる。更には樹脂の流動性を長時間一定に調整することが可能となり所望とする場所内に封止部材を形成することができ歩留まり良く量産することが可能となる。
また、フィラーは蛍光物質と類似の粒径及び/又は形状を有することが好ましい。ここで、本明細書において類似の粒径とは、各粒子のそれぞれの中心粒径の差が20%未満の場合をいい、類似の形状とは、各粒径の真円との近似程度を表す円形度(円形度=粒子の投影面積に等しい真円の周囲長さ/粒子の投影の周囲長さ)の値の差が20%未満の場合をいう。このようなフィラーを用いることにより、蛍光物質とフィラーが互いに作用し合い、樹脂中にて蛍光物質を良好に分散させることができ色ムラが抑制される。更に、蛍光物質及びフィラーは、共に中心粒径が15μm〜50μm、より好ましくは20μm〜50μmであると好ましく、このように粒径を調整することにより、各粒子間に好ましい間隔を設けて配置させることができる。これにより光の取り出し経路が確保され、フィラー混入による光度低下を抑制しつつ指向特性を改善させることができる。
以下、本発明に係る実施例の発光装置について詳述する。なお、本発明は以下に示す実施例のみに限定されるものではない。
実施例1.
図1に示すような表面実装型の発光装置を形成する。LEDチップは、発光層として単色性発光ピークが可視光である475nmのIn0.2Ga0.8N半導体を有する窒化物半導体素子を用いる。より具体的にはLEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させることができる。ドーパントガスとしてSiHとCpMgを切り替えることによってn型窒化物半導体やp型窒化物半導体となる層を形成させる。
LEDチップの素子構造としてはサファイア基板上に、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、次に発光層を構成するバリア層となるGaN層、井戸層を構成するInGaN層、バリア層となるGaN層を1セットとしGaN層に挟まれたInGaN層を5層積層させた多重量子井戸構造としてある。発光層上にはMgがドープされたp型クラッド層としてAlGaN層、Mgがドープされたp型コンタクト層であるGaN層を順次積層させた構成としてある。(なお、サファイヤ基板上には低温でGaN層を形成させバッファ層とさせてある。また、p型半導体は、成膜後400℃以上でアニールさせてある。)
エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。各コンタクト層上に、スパッタリング法を用いて正負各台座電極をそれぞれ形成させた。なお、p型窒化物半導体上の全面には金属薄膜を透光性電極として形成させた後に、透光性電極の一部に台座電極を形成させてある。出来上がった半導体ウエハーをスクライブラインを引いた後、外力により分割させ半導体発光素子であるLEDチップを形成させる。
一方、中央部に凹部有し且つ前記凹部の両側にコバール製のリード電極が絶縁的に気密絶縁的に挿入固定されたベース部とからなるコバール製パッケージを用いる。前記パッケージ及びリード電極の表面にはNi/Ag層が設けられている。
このようにして構成されたパッケージの凹部内に、Ag−Sn合金にてLEDチップをダイボンドする。このように構成することにより、発光装置の構成部材を全て無機物とすることができ、飛躍的に信頼性の高い発光装置が得られる。
ここでダイボンドに用いられる接合部材は、上記のような合金の他、導電性材料が含有された樹脂又はガラス等を用いることができる。含有される導電性材料はAgが好ましく、含有量が80%〜90%であるAgペーストを用いると放熱性に優れて且つ接合後の応力が小さい発光装置が得られる。
次に、ダイボンドされたLEDチップの各電極と、パッケージ凹部底面から露出された各リード電極とをそれぞれAgワイヤにて電気的導通を取る。ここで本実施例の発光装置は構成部材として有機物である樹脂を用いないため、Alワイヤを用いることも可能である。
次に、パッケージの凹部内の水分を十分に排除した後、中央部にガラス窓部を有するコバール製リッドにて前記凹部を封止しシーム溶接を行う。
このようにして得られた発光措置に対して信頼性試験を行うと、If=500mA下において500時間経過した後に発光出力を測定すると、相対出力とほとんど差が見られず、多くの電流を印可しても長時間高い出力を維持できる発光装置が得られる。
実施例2.
金属パッケージを鉄にて構成し、ベース部の膜厚を凹部の底面厚より厚くする以外は、実施例1と同様にして発光装置を形成すると、実施例1よりも放熱性に優れ且つ強度の強い発光装置が得られる。これにより信頼性及び歩留まりが共に向上され、高出力を長時間に渡って維持できる発光装置が歩留まり良く得られる。
実施例3.
図4の如く、金属パッケージの凹部内壁側のみをテーパー形状とする以外は実施例2と同様にして発光装置を形成すると、実施例2より発光出力及び機械的強度が15%向上される。
実施例4.
透光性窓部を凸レンズ形状とする以外は実施例3と同様にして発光装置を形成すると、実施例3より正面光度が50%向上される。
実施例5.
図5の如く、リッドの窓部に蛍光物質を含有させる以外は実施例3と同様にして発光装置を形成する。
ここで蛍光物質は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させる。これを焼成して得られる共沈酸化物と、酸化アルミニウムと混合して混合原料を得る。これにフラックスとしてフッ化バリウムを混合して坩堝に詰め、空気中1400°Cの温度で3時間焼成して焼成品を得られる。焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して中心粒径が22μmである(Y0.995Gd0.0052.750Al12:Ce0.250蛍光物質を形成する。
このようにして得られた蛍光物質とパウダー状のシリカとを1:2の割合で混合させ、リッドに設けられた開口部に配置しプレス加工により一括成型させる。 このようにして得られた色変換型発光装置は、実施例1と同様な効果が得られ、信頼性が高く且つ高出力で白色光を発光することができる。
実施例6.
ニトロセルロース90wt%とγ−アルミナ10wt%からなるスラリーに対して上記蛍光物質を50wt%含有させ、リッドの透光性窓部の背面に塗布し、220℃にて30分間加熱硬化させることにより色変換部材を構成する以外は実施例3と同様にして発光装置を形成すると、実施例5と同様の効果が得られる。
実施例7.
前記色変換部材を、蛍光物質が50wt%含有されたシリコーン樹脂にて構成する以外は実施例6と同様にして発光装置を形成すると、実施例6と同様な効果が得られる。
実施例8.
前記色変換部材を、蛍光物質が50wt%含有されたシリカ−ゲルを塗布して色変換部材を形成する以外は実施例6と同様にして発光装置を形成したところ、実施例6と同様の効果が得られる。
実施例9.
パッケージの凹部内に蛍光物質含有のシリコーン樹脂を充填させて色変換部材を形成する以外は実施例3と同様に発光装置を形成すると、実施例5より正面光度の高い発光装置が得られる。また、発光素子を樹脂にて被覆することにより、点光源を面光源とすることができ、光の混色性に優れているので、角度による色バラツキがなく均一な発光が得られる。また前記シリコーン樹脂として、エラストマー状シリコーン樹脂またはゲル状シリコーン樹脂を用いると、耐熱応力に優れた発光装置が得られ、信頼性が向上される。
実施例10.
図9に示すような表面実装型の発光装置を形成する。鉄からなるベース状平板の中心を、背面側にテーパー形状の金型を設置した状態にて、主面方向から絞り加工を施して金属を背面および主面へと流し、ベース部の膜厚より薄い底面厚を有し且つ主面側において隣接するベース部より突出した縁部を有し内壁がテーパ−形状である凹部を一体成形する。このように形成することにより、信頼性および光取り出し効率に優れた発光装置を量産性良く得ることができる。
次に、前記凹部を囲むベース部において、一端面に沿って2つの貫通孔を厚さ方向に形成する。
一方、主面側の面積が底面側の面積よりも広い、T字形状のリード電極をコバールにて形成し、表面にNi/Auメッキを施す。このようにして形成されたリード電極を主面側から前記貫通孔に挿入する。ここで、上記リード電極はT字形状であるため、前記貫通孔内へ挿入する際に位置決めが容易であり、リード電極を精度良く固定することができる。次に、前記リード電極の主面側を該主面サイズと合致する凹部を有する炭素製治具に固定し、前記貫通孔と前記リード電極との界面にガラスを塗布し溶融し、前記界面を気密封止する。前記リード電極の主面の面積は大きく設計されているため、前記炭素製治具に安定性高く固定することができる。これにより、前記界面の気密封止を精度良く行うことができる。また、本実施例の発光装置は、パッケージの主面側は窒素ガスにて気密封止される。これにより、主面側において金属のマイグレーションは防止され、リード電極の主面側の面積を最大限に大きくすることが可能となる。これにより、各リード電極の主面にワイヤをステッチボンディングして切断した後、前記ステッチボンディング部を他の金属片にて補強することができる。具体的には、リード電極表面に第1のステッチボンディングを行いワイヤ切断した後、前記第一のステッチボンディングの少なくとも一部を覆うように別途のワイヤにて補強用ボールを形成し、そのままワイヤを上部に引き上げるとともに前記補強用ボールの中心を介してLEDチップと接続されたワイヤと反対側へ移動させ、前記補強用ボールを介して前記第一のステッチボンディング上を覆うように第二のステッチボンディングを行いワイヤを切断する。このような補強金属片は、第一のステッチボンディング部上に、第二のボールボンディング部と第二のステッチボンディングとが、全て一方向に並んで配置して構成されている。これにより、前記一方向にて、各ボンディングによる加重及び超音波印可、つまり合計で3度の加重及び超音波印可が集中的に施され、リード電極との密着強度を高めることができる。また、前記第一のステッチボンディング部と前記第二のステッチボンディング部は、前記補強用ボールを介してほぼ対称であることが好ましく、これにより第1のステッチボンディング部と第2のステッチボンディングとの間に介される第2のボールボンディング部の膜厚はほぼ均等となり、第2のステッチボンディングによる加重及び超音波印可を前記一方向において全面均等に伝達することができ、満遍なく接合強度を強化することができる。このようにボンディング補強を行うと、各ボンディング条件が良くない場合でも高い信頼性を維持することができる。
また、リード電極の表面積を大きくできることから、各リード電極表面上に複数のワイヤを精度良くボンディングすることができる。例えば、発光領域を複数有する大チップ型発光素子は、大電流の投下により高出力にて発光することが可能であるが、発光とともに自己発熱を伴うため、ワイヤにて電気的導電を取る場合、前記自己発熱によるワイヤ溶断を防止するため複数本のワイヤにて電気的接続を取ることが好ましく、本実施例のパッケージはこのような発光素子を信頼性高く載置することができる。また、発光素子の静電耐圧を高めることを目的として、前記ベース部に別途保護素子を載置する場合、発光素子と保護素子とからそれぞれリード電極へワイヤボンディングされ、一つのリード電極の主面において2以上のワイヤがボンディングされることとなるが、本実施例のパッケージを用いることにより、信頼性が高く光学特性に優れた発光装置を量産性良く形成することができる。一方、底面側は空気と接触するため、マイグレーションの発生を考慮し表面積を小さくすることが好ましい。
また、本実施例では、上記各リード電極は、パッケージの一端面に沿って配列されている。このように構成することにより、実装基板の電極配線を簡易化することができると共に放熱させるための領域を広くすることができる。また、実装パターンのバリエーションが豊富となり好ましい。さらに、信頼性を高めるため発光素子とは別途に保護素子を載置する場合、前記保護素子は前記一端面に沿って前記各リード電極の間に載置することが好ましい。これにより、前記保護素子から前記各リード電極の主面へボンディングされるワイヤの長さを極力短くすることができ、光学特性へ悪影響を与えることなく信頼性を高めることができる。
また、前記凹部の縁部主面は、前記各リード電極の主面と略同一平面上に位置していることが好ましく、これによりワイヤボンディング精度を高めることができ、信頼性が高い薄型化発光装置が得られる。また、前記凹部の縁部のうち、前記凹部と前記各リード電極との間に位置する縁部の主面は、前記ベース部主面よりも低く構成されていることが好ましく、更に主面と内壁とからなる角はRを帯びていることが好ましい。これにより、ワイヤのループ高さを更に低くすることができ、輝度向上と薄型化とを共に実現することができる。このように部分的に高さが調整された縁部は、凹部形成時のプレス加工により一体成形することができる。
次に、ベース部において、前記各リード電極と前記凹部を介して対向する2カ所に、主面側からプレス加工を施し金属の一部を底面側へ流すことにより支持体を形成する。支持体の底面は、前記リード電極底面及び凹部底面と略同一平面上に位置している。これにより、実装性および放熱性に優れた発光装置が得られる。
このようにして構成されたパッケージの凹部内に、Ag−Sn合金にて、同一面側に正負の各電極を2つずつ有するLEDチップをダイボンドする。LEDチップは、光を発光する側面が前記凹部の突出した縁部と対向するように載置することが好ましい。具体的には、チップの角が前記各リード電極と対向するように載置する。このように載置することにより、光取り出し効率を低下させることなく発光装置の薄型化を実現することができる。LEDチップの2つ正電極はそれぞれ一方のリード電極の主面とAuワイヤにて導電をとり、また2つの負電極はそれぞれ他方のリード電極の主面とAuワイヤにて導電を取る。このように各電極を2つ以上有する発光素子は、発光出力が優れている反面比較的多くのは発熱量を伴うが、本発明のパッケージは放熱性に優れているため信頼性を損なうことなく高出力の発光装置を形成することができる。また、各リード電極の主面側の面積を大きく形成しているため、信頼性高く複数のワイヤをボンディングすることができる。本実施例では、各リード電極が一端部側に配列されているため、所望に応じてリード電極の主面積をさらに大きくしても、一方向のみにパッケージを大きくすればよく、発光装置の大型化を最小限にとどめることができる。
次に、パッケージの凹部内の水分を排除した後、中央部にガラス窓部を有するコバール製リッドにて前記LEDチップおよびワイヤを被覆し、窒素ガスにて気密封止しシーム溶接を行う。
ここで、前記ガラス窓部は、前記凹部の内壁の延長線と交わることが好ましく、さらには、前記発光素子の側面と対向する前記内壁の立ち上がり地点と前記発光素子を介して向かい合った前記内壁の最上端点とを結ぶ直線と交わることが好ましい。このように窓部の面積を設計することにより、前記内壁にて反射散乱された光を効率よく外部へ取り出すことができる。
このようにして得られた発光装置は、実施例3よりさらに高い発光出力および機械的強度を有する。
実施例11.
図10の如く、発光素子であるLEDチップの表面および凹部内の平面上に実施例5と同様の蛍光物質8(Y0.995Gd0.0052.750Al12:Ce0.250とSiOを有する連続した色変換層を、スプレーコーティングにより形成する以外は、実施例10と同様にして発光装置を形成する。ここで、前記色変換層の形成方法について詳述する。
工程1.
アルキルシリケートとしてメチルシリケート、エチルシリケート、N−プロピルシリケート、N−ブチルシリケート、が使用できるが、本実施例では、SiOを40wt%含むエチルシリケートを縮合させた無色透明のオリゴマー液体を使用する。また、エチルシリケートは、予め触媒存在下において水と反応させて加水分解反応を起こしゾル化させたものを使用する。
まず、ゾル状エチルシリケートとエチレングリコールと蛍光物質とが、重量比が1:1:1の割合で混合された溶液を撹拌し塗布液を調整する。ここで、ゾル状エチルシリケートは乾燥しやすいため、ブタノール、エチレングリコールのような高沸点(100℃〜200℃)の有機溶剤と混合することによりゲル化を防止することが好ましい。このように高沸点の有機溶剤と混合すると、ゾル状エチルシリケートのゲル化によるノズル先端部の目詰まりを防止し、作業効率を高めることができる。
工程2.
上記塗布液を容器18に入れ、循環ポンプ20によって塗布液を容器からノズル17に搬送する。塗布液の流量はバルブ19によって調節する。ここで、ノズル17から噴出される霧状の塗布液は、霧状で且つ螺旋状に回転されながら吹き付けられることを特徴とする。具体的には、ノズルの付近では円錐状に噴霧が広がり、ノズルから離れるにつれて円柱状に広がる。これにより、発光素子の上面、側面、および角部の全てを、膜厚がほぼ等しく且つ蛍光物質が均一に分散されてなる連続した色変換層にて覆うことができ、ブルーリング等の色むらを改善することができる。また、前記色変換層は一粒子層からなることが好ましく、これにより光の取り出し効率が向上される。本実施例では、発光素子の上面からノズル下端までの距離を40〜50mmとして円柱状に噴霧が広がった状態の所に発光素子の表面がくるように設置し、図11の如く、塗布液とガスとを発光素子の上面、側面および角、さらに凹部内平面上にほぼ均一な膜厚を有し連続した色変換層を形成する。
また、上記工程は、塗布する場所を加温した状態にて行うことを特徴とする。これにより、エチルシリケートのゾル化にて生成したエタノールや溶剤を、発光素子上に吹き付けた瞬時に飛ばすことができる。これにより、発光素子へ悪影響を与えることなく色変換層を設けることができる。本実施例では、ヒーター15上パッケージを載置しながらスプレーコーティングしており、前記ヒーターの温度は50℃以上300℃以下の温度に調整されていることが好ましい。
工程3.
手順2を行った後、室温で放置し、ゾル状エチルシリケートと空気中の水分とが反応し、SiOにより蛍光物質が固着される。
工程4.
次に、300℃の温度で2時間乾燥させる。窒化物系発光素子は350℃以上の温度下に置かれると、発光素子としての性能が低下するため、300℃の温度下で発光素子表面への固着が可能なアルキルシリケートは、蛍光物質の固着剤として好ましく用いることができる。
以上のように構成された発光装置は、全てが無機物にて構成されているため、高い放熱性と有すると共に近視外や紫外線に対する耐光性にも優れている。本実施例の発光装置は、紫外域で発光する発光素子等、あらゆる素子を用いることができる。
実施例12.
蛍光物質として、第一の蛍光物質(Y0.995Gd0.0052.750Al12:Ce0.250と第二の蛍光物質Ca1.8Eu0.2Siとを混合分散させたものを用いる以外は、実施例11と同様にして発光装置を形成すると、実施例11より演色性に優れた発光装置が得られる。本実施例で用いることができる前記第二の蛍光物質は特に限定されないが、前記第一の蛍光物質と励起波長が類似であり且つ黄色から赤色の蛍光を発光することが可能なMxSiyNx:Eu(但し、MはCa、Sr、Ba、およびZnの群から選択されたアルカリ土類金属の少なくとも一種、z=2/3x+4/3y)を用いると、優れた演色性を有する光が得られ好ましい。
実施例13.
エチルシリケートの代わりに、フッ素樹脂(PTFE=ポリテトラフルオロエチレン)を用いて塗布液を調整して蛍光体をバインドする以外は、実施例11と同様の方法により発光装置を形成すると、実施例11と同等の性能が得られ、かつ良好な製造歩留まりが得られる。
実施例14.
発光素子として、主波長が400nmであるLEDチップを用い、蛍光物質として(Sr0.96,Eu0.01,Mn0.0310(POClを用いる以外は実施例11と同様にして発光装置を形成する。
ここで、上記蛍光物質の形成方法を述べる。まず、各原料であるSrHPO、SrCO、Eu、MnCO、NHClを上記組成比となるように調整し混合する。(SrHPO:1000g、SrCO:482.4g、Eu:16.0g、MnCO:35.2g、NHCl:116.5g)
次に、上記原料を秤量しボールミル等の混合機によって乾式で充分に混合する。この混合原料をSiC、石英、アルミナなどの坩堝に詰め、N,Hの還元雰囲気中にて960℃/hrで1200℃まで昇温し、恒温部1200℃で3時間焼成する。得られた焼成品を水中で粉砕、分散、篩過、分離、水洗、乾燥して目的の蛍光体粉末を得る。
このようにして得られた蛍光物質を実施例11と同様にして発光素子周囲及び凹部内平面に塗布し色変換層を形成すると、高輝度に発光可能な発光装置が得られる。
実施例15.
原料としてCaHPO、CaCO、Eu、MnCO、NHCl、およびNHBrを用い(Ca0.93,Eu0.05,Mn0.0210(POBr1.0Cl1.0の組成比となるように調整、混合する。
上記原料を秤量しボールミル等の混合機によって乾式で充分に混合する。この御合原料をSiC、石英、アルミナなどの坩堝に詰め、N,Hの還元雰囲気中にて960℃/hrで1200℃まで昇温し、恒温部1200℃で3時間焼成する。得られた焼成品を水中で粉砕、分散、篩過、分離、水洗、乾燥して目的の蛍光体粉末を得る。この蛍光物質を用いた以外は実施例14と同様にして発光素子周囲及び凹部内平面に塗布し色変換層を形成すると、高輝度に発光可能な発光装置が得られる。
実施例16.
蛍光物質として、第一の蛍光物質(Y0.995Gd0.0052.750Al12:Ce0.250と第二の蛍光物質(Ca0.93,Eu0.05,Mn0.0210(POBr1.0Cl1.0とを混合分散させたものを用いる以外は、実施例14と同様にして発光装置を形成すると、高輝度に発光可能な白色光源が得られる。
実施例17.
(Ca0.93,Eu0.05,Mn0.0210(POBr1.0Cl1.0蛍光物質とAlからなる塗布液を発光素子周囲及び凹部内平面に上記スプレーにて塗布し第一色変換層を形成した後、前記前記第一色変換層上に接してY0.995Gd0.0052.750Al12:Ce0.250蛍光物質を実施例11と同様の方法にてゾル状エチルシリケートを用いSiOにより固着されてなる第二色変換層を形成する以外は、実施例14と同様にして発光装置を形成する。このようにして形成することにより、第二色変換層の光屈折率<第一色変換層の光屈折率<窒化ガリウム系化合物半導体層の屈折率とすることができ、発光素子からの光の取り出し効率が高まり高出力で発光することが可能な発光装置が得られる。
本発明の発光装置は、高い信頼性を有する金属製パッケージを用い、発光素子が配置される箇所を実装基板に接するように構成することにより、放熱性が飛躍的に向上され、大電流の投下にも劣化されることなく高い信頼性を維持することができる。これにより、信頼性が高く且つ照明と同等の明るさを長時間発光することが可能な発光装置を実現することができ、産業上の利用価値は極めて高い。
本発明の発光装置を示す模式的平面図である。 本発明の発光装置を示す模式的断面図である。 本発明の他の発光装置を示す模式的平面図である。 本発明の他の発光装置を示す模式的断面図である。 本発明の他の発光装置を示す模式的平面図である。 本発明の他の発光装置を示す模式的断面図である。 本発明の他の発光装置を示す模式的断面図である。 本発明の他の発光装置を示す模式的断面図である。 本発明の他の発光装置を示す模式的断面図である。 本発明の他の発光装置を示す模式的断面図である。 本発明の他の発光装置を示す模式的断面図である。 本発明の他の発光装置を示す模式的平面図である。 図9AのA−A‘線における模式的断面図である。 本発明の他の発光装置を示す模式的断面図である。 図10の発光装置を形成する一工程を示すも模式図である。 本発明と比較のために示す発光装置の模式的断面図である。 本発明と比較のために示す発光装置の模式的断面図である。 図10の発光装置を形成する一工程に用いられる装置を示す模式図である。 図15は本願発明の一発光装置が高熱伝導性基板に実装された模式的平面図である。
符号の説明
1 発光素子、2 リード電極、3 絶縁部材、4 ワイヤ、5 パッケージ、6 リッド、7 透光性窓部、8 蛍光物質、27 実装用基板、28 高熱伝導性領域、29 配線、a 凹部、b ベース部。

Claims (6)

  1. 発光素子と、
    前記発光素子を収容された凹部と少なくとも1つの貫通孔を有するベース部とからなる金属パッケージと、
    絶縁部材によって前記金属パッケージと電気的に分離されかつその先端部が前記ベース部の底面から突出するように前記貫通孔内に挿入されたリード電極とを有する発光装置であって、
    前記発光素子が載置された面に対向する外表面である凹部底面には、前記金属パッケージを構成する金属の表面が露出されており、実装基板に実装されたときに、前記露出された金属の表面が前記実装基板に接することを特徴とする発光装置。
  2. 前記ベース部の膜厚は、前記凹部の底面厚より厚いことを特徴とする請求項1に記載の発光装置。
  3. 前記凹部の底面は、逆凸形状であることを特徴とする請求項1又は2に記載の発光装置。
  4. 前記凹部の内壁は、テーパー形状であることを特徴とする請求項1乃至3のいずれか一つに記載の発光装置。
  5. 前記ベース部の背面側に支持体を有することを特徴とする請求項1乃至4のいずれか一つに記載の発光装置。
  6. 前記凹部の底面とリード電極の底面との間に溝を有することを特徴とする請求項1乃至5のいずれか一つに記載の発光装置。
JP2006220903A 2001-04-17 2006-08-14 発光装置 Expired - Fee Related JP4165592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220903A JP4165592B2 (ja) 2001-04-17 2006-08-14 発光装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001118568 2001-04-17
JP2002024208 2002-01-31
JP2006220903A JP4165592B2 (ja) 2001-04-17 2006-08-14 発光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002586412A Division JP3891115B2 (ja) 2001-04-17 2002-04-16 発光装置

Publications (2)

Publication Number Publication Date
JP2006303547A true JP2006303547A (ja) 2006-11-02
JP4165592B2 JP4165592B2 (ja) 2008-10-15

Family

ID=37471384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220903A Expired - Fee Related JP4165592B2 (ja) 2001-04-17 2006-08-14 発光装置

Country Status (1)

Country Link
JP (1) JP4165592B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226110A (ja) * 2009-03-20 2010-10-07 Yiguang Electronic Ind Co Ltd 発光ダイオードパッケージ構造及びその製造方法
KR20150046917A (ko) * 2013-10-23 2015-05-04 삼성전자주식회사 반도체 발광소자 패키지 및 이를 이용한 조명장치
CN111724692A (zh) * 2020-05-12 2020-09-29 深圳市隆利科技股份有限公司 可拼接的显示器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435692A (en) * 1977-08-24 1979-03-15 Nec Corp Luminous semiconductor device
JPH0425257U (ja) * 1990-06-20 1992-02-28
JPH04230056A (ja) * 1990-06-01 1992-08-19 Robert Bosch Gmbh 電子構成素子およびこの電子構成素子を製造するための方法
JPH05166979A (ja) * 1991-12-16 1993-07-02 Mitsubishi Electric Corp 半導体装置及びその製造方法
JPH1187778A (ja) * 1997-09-02 1999-03-30 Toshiba Corp 半導体発光素子、半導体発光装置およびその製造方法
JP2000058924A (ja) * 1998-08-06 2000-02-25 Shichizun Denshi:Kk 表面実装型発光ダイオード及びその製造方法
JP2001185763A (ja) * 1999-12-27 2001-07-06 Toshiba Electronic Engineering Corp 光半導体パッケージ
JP2006303548A (ja) * 2001-04-17 2006-11-02 Nichia Chem Ind Ltd 発光装置
JP3891115B2 (ja) * 2001-04-17 2007-03-14 日亜化学工業株式会社 発光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435692A (en) * 1977-08-24 1979-03-15 Nec Corp Luminous semiconductor device
JPH04230056A (ja) * 1990-06-01 1992-08-19 Robert Bosch Gmbh 電子構成素子およびこの電子構成素子を製造するための方法
JPH0425257U (ja) * 1990-06-20 1992-02-28
JPH05166979A (ja) * 1991-12-16 1993-07-02 Mitsubishi Electric Corp 半導体装置及びその製造方法
JPH1187778A (ja) * 1997-09-02 1999-03-30 Toshiba Corp 半導体発光素子、半導体発光装置およびその製造方法
JP2000058924A (ja) * 1998-08-06 2000-02-25 Shichizun Denshi:Kk 表面実装型発光ダイオード及びその製造方法
JP2001185763A (ja) * 1999-12-27 2001-07-06 Toshiba Electronic Engineering Corp 光半導体パッケージ
JP2006303548A (ja) * 2001-04-17 2006-11-02 Nichia Chem Ind Ltd 発光装置
JP3891115B2 (ja) * 2001-04-17 2007-03-14 日亜化学工業株式会社 発光装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226110A (ja) * 2009-03-20 2010-10-07 Yiguang Electronic Ind Co Ltd 発光ダイオードパッケージ構造及びその製造方法
KR20150046917A (ko) * 2013-10-23 2015-05-04 삼성전자주식회사 반도체 발광소자 패키지 및 이를 이용한 조명장치
KR102070089B1 (ko) 2013-10-23 2020-01-29 삼성전자주식회사 반도체 발광소자 패키지 및 이를 이용한 조명장치
CN111724692A (zh) * 2020-05-12 2020-09-29 深圳市隆利科技股份有限公司 可拼接的显示器

Also Published As

Publication number Publication date
JP4165592B2 (ja) 2008-10-15

Similar Documents

Publication Publication Date Title
JP3891115B2 (ja) 発光装置
JP4055373B2 (ja) 発光装置の製造方法
JP4269709B2 (ja) 発光装置およびその製造方法
US6924514B2 (en) Light-emitting device and process for producing thereof
CN1323441C (zh) 发光装置及其制造方法
JP4430264B2 (ja) 表面実装型発光装置
JP4450547B2 (ja) 発光装置の製造方法
JP4645071B2 (ja) パッケージ成型体およびそれを用いた半導体装置
JP4792751B2 (ja) 発光装置およびその製造方法
US7462928B2 (en) Semiconductor apparatus
JP4591071B2 (ja) 半導体装置
JP3925137B2 (ja) 発光装置の製造方法
CN101794855A (zh) 半导体发光装置及半导体发光装置的制造方法
JP2006303548A (ja) 発光装置
JP2004186309A (ja) 金属パッケージを備えた半導体発光装置
JP4661031B2 (ja) 発光装置
JP2000315826A5 (ja)
JP4165592B2 (ja) 発光装置
JP4900374B2 (ja) 金属パッケージを備えた半導体発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R150 Certificate of patent or registration of utility model

Ref document number: 4165592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees