JP2006297754A - 流体吐出装置および流体吐出方法 - Google Patents

流体吐出装置および流体吐出方法 Download PDF

Info

Publication number
JP2006297754A
JP2006297754A JP2005122835A JP2005122835A JP2006297754A JP 2006297754 A JP2006297754 A JP 2006297754A JP 2005122835 A JP2005122835 A JP 2005122835A JP 2005122835 A JP2005122835 A JP 2005122835A JP 2006297754 A JP2006297754 A JP 2006297754A
Authority
JP
Japan
Prior art keywords
nozzle
fluid
electrode
discharge
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005122835A
Other languages
English (en)
Inventor
Shigeru Nishio
茂 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005122835A priority Critical patent/JP2006297754A/ja
Publication of JP2006297754A publication Critical patent/JP2006297754A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

【課題】 誤吐出を防止可能な流体吐出装置を提供する。
【解決手段】 本ヘッドは、複数のノズル21を備えた絶縁材料からなるノズル基板10を有している。また、ノズル21ごとに、2つの電極40・41を備えている。吐出電極41によりノズル21内の流体を帯電させ、両電極40・41によってノズル21の先端部分に強電界を生成し、これによって、ノズル21の先端部から流体を吐出する。ノズル21およびノズル基板10を絶縁材料で構成しているため、1つのノズル21の電極40・41に電圧を印加したときに、ノズル基板10の他の部分での電荷の移動を防止できる。このため、隣接するノズル21あるいはノズル基板表面13の帯電を防止できるので、これらからの流体の誤吐出を完全に回避できる。
【選択図】 図1

Description

本発明は、ノズル内の流体を帯電し、電界によって吐出する流体吐出装置に関するものである。
一般に、インク等の流体を対象物(記録媒体)上に吐出する流体ジェット方式には、インクジェットプリンタとして実用化されているピエゾやサーマルなどの方式がある。また、その他の方式として、吐出する流体に電圧を印加してノズルのノズル孔(インク吐出孔・吐出孔)から吐出させる、静電吸引方式がある。
この静電吸引方式には、ピエゾやサーマル方式と比べて以下のような利点がある。
まず、超微細液滴の吐出が可能である。
現在、ピエゾ方式やサーマル方式では、実現可能な吐出液滴サイズ(液滴径)は約2pLであるが、このサイズをより小さくすると、液滴が飛翔中に受ける空気抵抗の方が吐出力よりも大きくなり、液滴が最終的に対象基板(対象物)上に着弾しなくなる。一方、静電吸引方式の場合、液滴の飛翔中に、初期吐出力以外に静電力が吐出方向に常時働く。このため、対象基板上に液滴を着弾させられる。
また、別の利点として、吐出液体に関する選択の自由度を挙げられる。例えば、現在のピエゾ方式で吐出可能な液体粘度の限界値は約30cpである。一方、静電吸引方式では、10000cpの粘度を有する液体でも吐出できる。
このような静電吸引方式を採用した微細パターン形成装置(インクジェット記録装置)は、例えば特許文献1に開示されている。
図15は、この文献のインクジェット記録装置を示す断面図である。
図15において、インク100は、プラス帯電性の色剤成分を帯電制御剤やバインダーなどとともに、108 Ωcm以上の抵抗率を持つ絶縁性の溶媒中にコロイド状に分散させ浮遊させたものである。
このインク100は、ポンプおよびインク流路を含む還流機構111から、ヘッドブロック101に形成されたインク供給流路112を通して、ヘッド基板102と制御電極基板103との間に向けて供給され、同じくヘッドブロック101に形成されたインク回収流路113を通してインク還流機構111に回収される。
制御電極基板103は、貫通孔107を有する絶縁性基板104と、この貫通孔107の周囲で記録媒体121側に形成されている制御電極109とから構成されている。
ヘッド基板102上には、貫通孔107のほぼ中心位置に、凸状インクガイド108が配置されている。この凸状インクガイド108は、プラスチック樹脂などの絶縁性部材からなり、貫通孔107と中心が等しくなるように、同じ列間隔・ピッチで配置され、所定の方法でヘッド基板102上に保持されている。
各凸状インクガイド108は、一定の厚みを有する平板の先端を、三角形あるいは台形状に切り出した形状であり、その先端部がインク滴飛翔位置110となる。さらに、各凸状インクガイド108は、それぞれの貫通孔107からほぼ垂直に、所定の距離だけインク滴飛翔方向に突きだしている。
凸状インクガイド108の先端に対向して、記録紙である記録媒体121が配置される。この記録媒体121の背面側(ヘッド基板102と反対側)に、記録媒体121を案内するプラテンの役割を兼ねる対向電極122が配置されている。
例えば、絶縁性基板104は25μm程度の厚さのポリイミドからなり、制御電極109は18μm程度の厚さの銅箔からなり、貫通孔107の内径はφ150μmからφ250μm程度である。
次に、この記録装置の記録動作を説明する。
記録時には、図15で示すインク還流機構111からインク供給流路112を経て供給されたインク100が、貫通孔107から凸状インクガイド108の先端のインク飛翔位置110に供給される。また、インク100の一部は、インク回収流路113を経てインク還流機構111に回収される。
ここで、制御電極109には、バイアス電圧源123から、常時バイアスとして例えば1.5kVの電圧が与えられている。そして、この電極109に、信号電圧源124からの画像信号に応じた信号電圧として、例えばON時に500Vのパルス電圧が重畳される。
一方、対向電極122は、図15のように、接地電圧0Vに設定されている。制御電圧109がON状態(500Vを印加された状態)となり、バイアスDC1.5kVに500Vのパルス電圧が重畳された合計2kVの電圧が加わると、制御電極109に接触したインク中に電荷が供給され、その場の電界の影響を受けて移動する。この電荷の誘導力に応じて、インク109が、凸状電極108の先端へ移動し、インク滴飛翔位置110からインク滴115として飛び出す。インク滴115は、対向電極122に引っ張られて、記録媒体121に向けて飛翔し、媒体上に微細画像を形成する。
しかしこの装置では、インク109を凸状インクガイド108に沿って供給しているため、インク109の供給量によって、吐出時における飛翔位置110での流体形状(メニスカス)の大きさが変化しやすい。さらに、制御電極109に印加する電圧値によってメニスカスの大きさが変化しやすいという欠点もある。
すなわち、液体の供給路が内部にあると、液体はノズル先端部の端面で規制されるため、液体はノズル端面に応じた膨らみ形状(メニスカス)を形成する。一方、上記の装置のように、外部に供給路を設けると、その膨らみ(メニスカス)の大きさを規制するものがなく、供給量に応じて大きさが変化しやすい。
さらに、超微小な液滴を形成することが非常に難しい。特許文献1の実施例によると、凸状インクガイド108の先端部(メニスカスのサイズを規制する部材)は、微細加工技術の限界のため、最小で数10μmである。この場合、飛翔できるインク液滴サイズは数10μm以上となる。
以上のことから、図15に示した装置のように、「ノズルを構成する絶縁基板上の制御電極から電荷を供給し、凸形状のガイドに従って先端部にインクを誘導し、静電力で液滴を飛翔させる構成」では、マイクロメータオーダの液滴を形成することが非常に困難であるといえる。
次に、マイクロメータオーダの液滴形成の可能な、静電吸引型流体吐出装置(吐出方法)について説明する。このような装置は、特許文献2に記載されている。
図16は、特許文献2に示された吐出装置(微細パターン形成装置;インクジェット記録装置)の一例を示す断面図である。
図16において、微細パターン形成装置1は、シリコン基板2、このシリコン基板2の表面2A側に配設された主電極6、支持部材8、シリコン基板2の裏面2B側に所定の間隔を設けて配置された対向電極7、シリコン基板2と支持部材8との空隙部にインクを供給するインク流路9、このインク流路9に接続されたインク供給装置10を備えている。
シリコン基板2は、表面2A側から裏面2B側に貫通する、複数の微細孔3を備えている。この微細孔3における表面2A側の開口部3aは、シリコン基板2と支持部材8とにより形成されている、空隙部に露出している。
シリコン基板2の材質は、シリコンの単結晶が好ましく、厚みは200〜500μm程度が好ましい。このようなシリコン基板2は、その線膨張係数が約2.6×10−6/Kと低いため、温度による形状変化が極めて小さいものである。
微細孔3は、その軸方向に垂直な横断面形状(シリコン2基板の表面2Aに平行な断面)が円形、その軸方向に沿った縦断面形状(シリコン基板2の表面2Aに垂直な断面)が長方形である、円柱形状の空間である。
また、微細孔3の壁面には、シリコン酸化物層4が設けられている。通常、このシリコン酸化物層4の厚みは5000〜10000Å程度である。図16に示した例では、シリコン基板2の厚み、シリコン酸化物層4を備えた微細孔3の開口径、形成数、形成ピッチ等は、装置構成を説明するために簡略化してあるが、微細孔3の開口径は1〜100μm程度、微細孔3のアスペクト比(長手方向の開口径に対する、横断面の開口径の比)は1〜100程度の範囲で適宜設定することができる。
また、微細孔3の形成数および形成ピッチは、微細パターン形成装置1により形成するパターン形状・形成方法等に応じて適宜設定でき、形成ピッチは最小で2μm程度が好ましい。微細孔3の横断面形状は、上記の円形の他に楕円形、多角形等、あるいは、特殊な形状であってもよい。また、横断面形状の異なる2種以上の微細孔からなるものでもよい。横断面形状が楕円形、長方形の場合、長手方向の開口径は5〜500μmの範囲で適宜設定できる。また、微細孔3の縦断面形状は、長方形の他に、シリコン基板2の裏面2B側の狭い台形(テーパ形状)であってもよい。
図17に示すように、主電極6は、開口部6aを有し、複数の微細孔を囲むように配設されている。主電極6は、アルミニウム、銅、クロム、金、銀、シリコン等の導電性薄膜からなるものであり、シリコン基板2の表面2Aにポリイミド等の電気絶縁性薄膜を介して配設される。
対向電極7は、電気的には、接地状態および浮遊状態のいずれであってもよい。ただし、より細いラインを描画するためには、接地状態が好ましい。上記の対向電極7とシリコン基板2との距離は50〜500μm程度の範囲内で設定できる。このような対向電極7としては、SUS304、銅、アルミニウム等の導電性を有する材料で形成されたものを用いることができる。また、ガラス、樹脂材料等の非導電性材料に導電性薄膜を形成して対向電極とすることもできる。
支持部材8は、シリコン基板2の表面側2Aに配設され、シリコン基板2を保持するためのものである。
このような微細パターン形成装置1は、インク吐出手段として、主電極と対向電極との間に形成される電界と、インク供給装置10からのインク供給圧とを併用している。従って、低いインクの供給圧で、シリコン基板2の微細孔3からインクを微量かつ高精度で吐出できる。
また、微細孔(ノズル)3によってインク形状を規制しているため、微細孔3と同等サイズの、マイクロメータオーダの液滴を容易に吐出できる。また、例えば、100〜10000cpの範囲にある高粘度のインクを微量かつ高精度で吐出させることもできる。
なお、インク供給空間にインクがあれば、インク供給圧をかけなくとも、電界だけでインクを吐出できる。
特開平10−138493号公報(公開日;1998年5月26日) 特開2003−311944号公報(公開日;2003年11月6日)
しかしながら、特許文献2の装置では、微細孔3を、電気伝導率が10Ω・cm以下のシリコンで形成している。このため、図17に示した主電極6に印加した電圧は、所望の微細孔3(図中の5つの微細孔3)だけでなく、これらに隣接した他の微細孔3(図示せず)に対しても印加されることとなる。
すなわち図17に示すように、主電極6は、シリコン基板2の表面2Aに、ポリイミド等の電気絶縁性薄膜を介して配設され、この膜により絶縁化処理を施されている。しかし、主電極6とシリコン基板2との間に直接的、あるいは、インクを介して間接的に電気的接触点が存在すると、主電極6に電圧を印加することでシリコン基板全体に電圧が印加されることとなる。
さらに、シリコン基板2の表面2Aに自然酸化膜が形成され、表面が絶縁化されている場合においても、電圧印加時にシリコン基板2の内部電位が駆動電圧に従って変動する。このため、各主電極6に対して独立に電圧を印加する度に内部の電位変動が発生し、吐出可能条件に影響を及ぼし吐出が不安定となる。
そのため、所望の主電極6のみに電圧を印加できず、各微細孔3から独立して吐出可能なオンデマンド吐出による微細な描画パターンの形成を実現できない。
すなわち、シリコン基板2として電気伝導率が10Ω・cm以下のシリコンを使用すると、インク流路表面全体がたとえ自然酸化膜で被覆されている場合でも、内部のシリコン基板2内で電荷の移動が自由に発生してしまう。例えば、ある主電極6に電圧を印加すると、シリコン基板2内部に誘導電荷が発生して、シリコン基板2の全体に移動する。そして、その誘導電荷は、電圧を印加していない主電極6に応じた隣接の微細孔3にも流れ、この隣接の微細孔3の吐出電圧特性に少なからず影響を及ぼす。
また別の問題点として、流体の安定吐出を挙げられる。
図16の装置では、主電極6に印加する電圧の大きさで吐出量を制御する。ここで、電圧が大きくなると、微細孔3の先端部3bで形成されるメニスカスが大きくなる。このため、微細孔3の先端部3bで保持しきれない一部の液体が、微細孔3の形成材料との間の濡れ性に従って、微細孔3の外壁面に溢れ出す現象が発生する。その際、濡れ広がって微細孔3の周辺に蓄積された液体が強い電界強度を受けると、微細孔3と同様に液滴分離が始まり、誤吐出が発生する。
このように、微細孔3以外の場所で、液体が強電界を受けるような電界強度分布が形成されていると、誤吐出が起きやすくなる。従って、所望の微細孔3から吐出を行えるような安定吐出状態を得られない。
本発明は、上記のような従来の問題点に鑑みてなされたものである。そして、その目的は、誤吐出を防止可能な流体吐出装置を提供することにある。
上記の目的を達成するために、本発明の流体吐出装置(本装置)は、
複数のノズルを備えたノズル基板を有し、各ノズルに備えられた吐出電極によって流体を帯電し、吐出電極および制御電極のつくる電界によってノズルから流体を吐出する流体吐出装置において、
上記ノズル基板が、絶縁材料から構成されていることを特徴としている。
本装置は、描画パターン形成装置に備えられる流体吐出部(ヘッド)である。
描画パターン形成装置は、描画対象となる記録媒体に、インクなどの流体を用いて描画パターンを形成するためのもの(例えばインクジェット記録装置)である。
そして、本装置は、描画パターン形成装置の本体から供給された電圧信号に基づいて、記録媒体に流体を吐出するものである。
上記のように、本装置は、複数のノズルを備えたノズル基板を有している。このノズルは、記録媒体に向けて流体を吐出する部分である。
また、流体の吐出は、2つの電極を用いて行われる。
すなわち、まず、流体の吐出に用いるノズルに備えられた吐出電極により、このノズル内の流体を帯電させる。そして、吐出電極および制御電極によって、このノズルの先端部分に、記録媒体に向かう強電界を生成する。そして、この電界によって、ノズルの先端部から流体を吐出するようになっている。
また、本装置では、ノズルを備えたノズル基板を、絶縁材料で構成している。
従って、本装置では、1つのノズルの吐出電極に電圧を印加したとき、これによるノズル基板の他の部分での電荷の移動を防止できる。このため、隣接するノズルあるいはノズル基板表面の帯電を防止できるので、これらからの流体の誤吐出を完全に回避できる。
従って、本装置では、安定性および着弾精度の高い、理想的なオンデマンド吐出を実現することが可能となっている。
なお、ノズルおよびノズル基板をなす絶縁材料としては、1011Ω・cm以上の抵抗率を有するものを用いることが好ましい。
また、上記のノズルの吐出孔の径については、30μm以下、好ましくは1〜30μmの範囲に設定することが好ましい。これにより、微細なパターンの描画を行える。
また、この場合、ノズルの突出長さ(ノズル突出長)を、10μm以上とすることが好ましい。これにより、ノズル基板表面に溢れた流体の高さよりも、ノズル突出長を十分に長くできる。従って、ノズルの先端部に形成される流体のメニスカスの形状変動を、完全に抑えられる
上記の吐出電極については、各ノズルの吐出孔内に配することが好ましい。これにより、ノズル内の流体を容易に帯電させられる。
また、上記の制御電極については、ノズルを囲むように、ノズルごとに独立に配されていることが好ましい。
このような制御電極を用いることで、ノズル先端部に電界を集中させられるので、ノズル先端部に大きな電位勾配を形成できる。従って、吐出電極に印加する電圧を小さくしても、強電界を発生させることが可能となる。
また、ノズル先端部に電界を集中させられるため、ノズル先端部とノズル基板表面との電界強度比を3(3倍)にできる。
このため、ノズル基板表面上に流出した流体が強い電界を受けて誤吐出することを回避できる。従って、ノズル先端部のみから流体を吐出できる。これにより、安定吐出の可能な状態を形成することが可能である。
また、制御電極を設けない場合、本装置と同様の電界分布を得るためには、ノズルの突出長(ノズル突出長)を100μmとすればよい。
しかし、吐出孔径をマイクロメータオーダとする一方、ノズル突出長を100μm以上とするような、高アスペクト比形状のノズルを形成するための微細加工は、非常に困難である。また、ノズル突出長を長くするほど、ノズル基板表面に対する「ノズルの垂直度」に誤差が生じやすくなる。そして、このような誤差の生じた場合、流体液滴の飛翔方向にゆがみが発生し、吐出精度が悪化する。
ここで、上記のように、本装置では、制御電極を設けることにより、ノズル突出長を100μmとした場合と同様の電界強度を得られるように設計されている。すなわち、本装置では、制御電極を設置することで、ノズルの突出長を極端に小さくできるといえる。従って、ノズルの加工性を大幅に改善できる。また、ノズル基板表面(ノズル部材の平坦面)に対するノズルの垂直度の悪化を抑制し、着弾制度の悪化を防止できる。
なお、上記のような制御電極については、ノズルの根元の表面(ノズル基板の表面)に配することが可能である。この場合、この表面上に制御電極を形成する場合、電極を露出させてもよいが、絶縁体からなる電極被覆膜により電極を被覆してもよい。
電極被覆膜の材料としては、絶縁体であればなんでもよく、例えば、ポリイミド、PMMA等の樹脂材料をスピンコートすることで形成できる。
また、電極被覆膜の厚さ(コート厚)については、薄いほうが好ましい。この厚さについては、クラックを生じさせずに膜を安定して形成することを考慮に入れると、300Å〜2μmの範囲に設定することが好ましい。
この構成では、ノズルから流体が溢れてノズル基板表面上に蓄積されたとしても、その流体が制御電極に直接に接触することを防止できる。このため、流体の接触による制御電極の電圧降下を回避できるので、制御電極に安定した電圧を印加でき、吐出制御を安定させられる。
また、制御電極については、ノズル基板から分離した状態(ノズル基板表面から離れている状態)としてもよい。この場合でもノズルから溢れた流体が制御電極に直接接触することを防止できる。
また、この場合、制御電極とノズル先端部との相対位置を変えられるように設計することが好ましい。
これにより、制御電極の位置を変えることで、ノズル先端部の電界強度を調整できる。従って、流体を吐出するために、電極の印加電圧だけでなく、制御電極の位置についても調整することで、ノズル先端部の電界強度を微調整できる。従って、流体吐出のための制御に関する精密さ高められる。
また、吐出電極については、ノズルごとに独立に制御してもよいし、共通化してもよい。吐出電極を共通化する(全ての吐出電極を同電位とする)場合、吐出電極に電圧を印加すると、吐出電極から電荷が流出し、ノズル先端部に充填された流体を帯電する(待機状態)。
そして、この状態で、流体を吐出させるべきノズルに応じた制御電極の電圧を調整することで、このノズルから流体を吐出できる。
このように、吐出電極を共通化することで、内部の流体全体を、吐出電極とほぼ同電位に保ち、電荷を十分に供給した状態(十分に帯電した状態)にできる。
このため、吐出に必要な電荷量を得て流体を吐出した後でも、すぐに流体を帯電させられる。従って、吐出に必要な電荷を流体にためるまでの時間を短くできる(流体の帯電速度を高められる)。
なお、静電吸引型の流体吐出装置の場合、流体の帯電速度は、吐出応答性に直接に寄与する。従って、上記の構成では、吐出応答性を向上することが可能である。
また、吐出電極を共通化することにより、ノズル基板の全体で流体を同電位にできる。このため、流体を媒体とした隣接ノズルへの電荷のリークを防止できる。従って、隣接ノズルからの誤吐出、すなわちクロストークを防止できる。
このように、吐出電極を共通化することで、吐出応答性を向上でき、かつクロストークを防止した安定吐出を実現できる。
また、互いに隣接するノズルの制御電極の間に、自身の近傍における電界強度の向きをノズルに近づく方向に向けるための、シールド電極を備えてもよい。
このようなシールド電極に電圧を印加することによって、吐出電極および制御電極のつくる電界強度の向きを、ノズルに近づく方向に向けられる。これにより、隣接ノズルへの影響を抑制できる。従って、隣接ノズルの吐出精度の悪化、吐出量変動などの悪影響を回避できる。
また、本装置に、吐出電極および制御電極に印加する電圧信号として、同期のとれた正負両極性に反転する両極性パルス電圧を付与する電圧制御装置を備えることも好ましい。
各電極にこのような電圧信号を与えると、各電極に正パルスの印加された場合、ノズルから正帯電した流体が飛翔する。逆に、各電極に負パルスの印加された場合、ノズルから負帯電した流体が飛翔する。
すなわち、パルス信号の極性反転に従って、飛翔する流体の帯電極性を交互に変化させながら記録媒体に着弾させられる。
なお、本装置では、吐出する流体は、すべて帯電しており、電荷を含有した状態で基板(記録媒体)上に着弾する。
そして特に、記録媒体として電気電導性の低い絶縁基板を用いる場合、着弾した流体中の電荷が基板上に残留してしまい、基板の電位上昇、つまりチャージアップが発生する。
そして、チャージアップが発生すると、吐出条件を決定するノズル先端部の電界強度の大きさおよび分布が変動しやすくなる。このため、ノズルからの吐出量ばらつきや、着弾精度の低下を引き起こし、吐出を安定的に行えなくなる。しかし、上記のように、流体の帯電極性を交互に反転させながら基板に着弾させることにより、着弾した流体中の電荷によるチャージアップを抑制できる。従って、基板の種類(絶縁性)によらず、常に安定した吐出を行えるため、パターン形成を安定的に行える。
また、本発明の流体吐出方法は、
吐出電極によって帯電した流体を、吐出電極および制御電極のつくる電界によって、絶縁体からなる複数のノズルから吐出する流体吐出方法において、
各ノズルの吐出孔内に配された吐出電極と、ノズルを囲むように、ノズルごとに配された制御電極とを用いて、流体に静電吸引力を与えることを特徴とする方法である。
この方法は、上記した本装置において用いられている方法である。従って、この方法を用いることで、安定性および着弾精度の高い、理想的なオンデマンド吐出を実現できる。
以上のように、本発明の流体吐出装置(本装置)は、
複数のノズルを備えたノズル基板を有し、各ノズルに備えられた吐出電極によって流体を帯電し、吐出電極および制御電極のつくる電界によってノズルから流体を吐出する流体吐出装置において、
上記ノズル基板が、絶縁材料から構成されている構成である。
本装置では、ノズルを備えたノズル基板を、絶縁材料によって構成している。
従って、本装置では、1つのノズルの吐出電極に電圧を印加したとき、これによるノズル基板の他の部分での電荷の移動を防止できる。このため、隣接するノズルあるいはノズル基板表面の帯電を防止できるので、これらからの流体の誤吐出を完全に回避できる。
従って、本装置では、安定性および着弾精度の高い、理想的なオンデマンド吐出を実現することが可能となっている。
本発明の一実施形態について説明する。
本実施形態にかかる静電吸引型流体吐出装置であるインクジェットヘッド(本ヘッド)は、描画パターン形成装置に備えられるインク吐出ヘッドである。
この描画パターン形成装置は、描画対象となる記録媒体に対し、インクを用いて描画パターンを形成するためのものである。
そして、本ヘッドは、描画パターン形成装置の制御部から供給された電圧信号に基づいて、記録媒体にインクを吐出するものである。
まず、本ヘッドの構成について説明する。
図1(a)は、本ヘッドの構成を示す断面図であり、図1(b)は、そのノズルの概略図である。
図1(a)に示すように、本ヘッドは、記録媒体(図示せず)に対向するノズル基板10、ノズル基板10に連結されたインク供給路20、および圧力供給路30を備えている。
インク供給路20は、加工性の高いガラス等の絶縁材料から構成される。本ヘッドでは、インク供給路20は、インクの経路となる複数の微細孔11を有している。
各微細孔11は、それぞれ電気的に完全に独立した構成となっている。これは、隣接する微細孔11間(チャネル間)を電気的に分断するためである。
ノズル基板10は、1011Ω・cm以上の抵抗率を有する絶縁性材料で構成されている。このような絶縁性材料としては、例えば、ポリイミド、エポキシ、PTFE(polytetrafluoroethylene)等の耐薬品性の高い樹脂材料を使用することが好ましい。
このノズル基板10は、インク供給路20の微細孔11に応じた、複数のノズル(ノズル突出部)21を備えている。
ノズル21は、ノズル基板10と同じ材料からなり、ノズル基板10と一体形成されている。また、各ノズル21は、それぞれ吐出孔12を備えている。
この吐出孔12の孔径サイズについては、描画パターンのサイズ(線幅)に応じて、適宜設定できる。基本的に、孔径サイズを1〜30μmの範囲とすると、微細孔11の径とほぼ同等の描画ライン幅を得られる。
なお、1〜30μmの孔径サイズ、数10μmの長さを有する吐出孔12をノズル21に形成するためには、エキシマレーザ加工、X線フォトリソ加工、あるいは微小放電加工を用いることが可能である。
また、ノズル基板10には、インクの吐出に使用される2種類の電極40・41が、ノズル21ごとに独立に設けられている。
吐出電極40は、インク供給路20の微細孔11の先端に、吐出孔12内に延びるように設置されている棒状の電極である。各吐出電極40は、互いに独立に配線されている。吐出電極40の材料としては、アルミニウム,銅,クロム,金,銀,シリコン等の導電性材料を使用できる。
一般に、吐出電極40のパターニングは、蒸着により行われる。しかし、微細孔11に対する設置深さの大きい場合は、微細孔11の径よりも小さなサイズの金属ワイヤを微細孔11に挿入して吐出電極40とすることも可能である。
制御電極41は、ノズル基板表面13上に、ノズル21を囲むように設置されたリング状の電極であり、ノズル21ごとに独立に配線されている。制御電極41の材料としては、吐出電極40と同様の導電性材料を使用できる。また、この制御電極41については、ノズル21を微細加工した後に、蒸着によって形成できる。
なお、ノズル基板10における、制御電極41の形成部分の厚さは10μmである。
圧力供給路30は、圧力供給装置の駆動力により、全ての微細孔11に対して均一な圧力(最大10atm)を付与するものである。
次に、本ヘッドの吐出原理について説明する。
本ヘッドでは、ノズル21ごと(チャネルごと)に、電極40・41に与える電圧を切り替える(ON/OFFする)ようになっている。
まず、電源から各吐出電極40に電圧を印加すると、吐出電極40から電荷が流出し、吐出孔12の先端部(ノズル21の先端部(ノズル先端部);特に吐出電極40の先端から吐出孔12の先端までの間)に充填されたインクが帯電する。
そして、制御電極41に電圧を印加すると、電極40・41に印加された電圧に応じた電位勾配が発生し、ノズル先端部の近傍に、記録媒体方向に向かう強電界が形成される。
そして、ノズル先端部で帯電したインクは、その強電界の影響を受けて吐出され、記録媒体に着弾する。
次に、ノズル21の周囲に配置した、制御電極41の効果について説明する。図2は、吐出電圧および電界強度の大きさを比較計算した結果を示す説明図である。これは、吐出孔12の径を10μm、ノズル21の突出長(ノズル基板表面13から先端までの長さ)を5μmとした場合における、吐出可能電圧および電界強度比の計算結果である。
この図に示すように、制御電極41を設置して電圧を印加することにより、吐出電極40に印加するべき電圧(吐出可能電圧;インクを吐出するために必要な電圧)を極端に小さくできる。
すなわち、図3に示すように、ノズル21を囲むように制御電極41を設置することで、ノズル先端部に電界を集中させられる。従って、ノズル先端部に、大きな電位勾配を形成できる。すなわち、点線で示すような密度の高い等電位線を形成できる(当電位線の間隔が狭くなると、電位勾配が大きくなり電界が大きくなる)。
従って、吐出電極40に印加する電圧を小さくしても、強電界を発生させることが可能となる。
また、ノズル先端部に電界を集中させられるため、ノズル先端部とノズル基板表面13との電界強度比を3(3倍)にできる。
このため、ノズル基板表面13上に流出したインクが強い電界を受けて誤吐出することを回避できる。従って、電圧を印加した制御電極41に応じたノズル21の先端部のみからインクを吐出できる。これにより、安定吐出の可能な状態を形成することが可能である。
また、図2に示すように、制御電極41を設けない場合、本ヘッドと同様の電界分布を得るためには、ノズル21の突出長(ノズル突出長)を100μmとする必要がある。
ここで、ノズル突出長と電界強度分布との関係について説明する。
図4は、ノズル突出長と、ノズル先端部とノズル基板表面13との電界強度比との関係を示すグラフである。このグラフに示すように、ノズル突出長を長くすることにより、電界強度比を大きくできる。また、突出長を100μm以上に設定することで、電界強度比を3倍以上にできる。
また、図5は、ノズル突出長と、ノズル基板表面13およびノズル先端部の電界強度を示すグラフである。
このグラフに示すように、ノズル突出長を100μm以上に長くする場合には、電界強度比を3倍以上にできる。また、ノズル先端部の電界をスプレー現象開始電圧より小さくした状態で、ノズル基板表面13の電界強度を、常に吐出開始電界以下にできる。従って、ノズル基板表面13からの吐出を抑えられる。
ここで、スプレー現象とは、過剰電圧を印加したためにノズル先端部の電界強度が高くなりすぎ、メニスカスの先端部が割れてインク液滴の着弾精度が悪化する現象である。
しかし、吐出孔径をマイクロメータオーダとする一方、ノズル突出長を100μm以上とするような、高アスペクト比形状のノズルを形成するための微細加工は、非常に困難である。また、ノズル突出長を長くするほど、ノズル基板表面13に対する「ノズル21の垂直度」に誤差が生じやすくなる。そして、このような誤差の生じた場合、インク液滴の飛翔方向にゆがみが発生し、吐出精度が悪化する。
ここで、上記のように、本ヘッドでは、制御電極41を設けることにより、ノズル突出長を100μmとした場合と同様の電界強度を得られるように設計されている。すなわち、本ヘッドでは、制御電極41を設置することで、ノズル21の突出長を極端に小さくできるといえる。従って、ノズル21の加工性を大幅に改善できる。また、ノズル基板表面13(ノズル部材の平坦面)に対するノズル21の垂直度の悪化を抑制し、着弾制度の悪化を防止できる。
また、本ヘッドでは、ノズル21を備えたノズル基板10を、1011Ω・cm以上の抵抗率を有する絶縁性材料で構成している。
従って、本ヘッドでは、1つのノズル21の電極40・41に電圧を印加したとき、ノズル基板10内に自由に移動可能な誘導電荷は発生しない。このため、電圧印加によってノズル基板10の他の部分での電荷の移動を防止できる。
従って、隣接するノズル21あるいはノズル基板表面13の帯電・誘導電荷の流れ込みを防止できるので、これらからのインクの誤吐出(クロストーク)を完全に回避できる。
これにより、本ヘッドを用いることで、安定性および着弾精度の高い、理想的なオンデマンド吐出を実現することが可能である。
次に、ノズル21の突出長と、インクの濡れ広がりとの関係について説明する。
図6(a)〜(c)は、ノズル基板表面13上へのインクの広がり状態を示す図である。
本ヘッドでインクIを吐出させた場合、電極40・41に印加する電圧(駆動電圧)の増加に従って流出量が増加する。その際、ノズル先端部に形成されるインクIのメニスカスも拡大するため、インクが少なからず溢れ出して、ノズル基板表面13上に蓄積される。
まず、図6(a)のように、ノズル突出長の短い場合、ノズル基板表面13に溢れ出したインクとノズル先端部のメニスカスとが合体して、大きなメニスカスが形成される。
このようにメニスカスが急激に大きくなった場合、インクを吐出するための電界強度をノズル先端部で確保できず、インクを吐出できなくなる。
次に、図6(b)に示すように、溢れ出したインクの高さとノズル突出長とがほぼ同等の場合は、ノズル先端部のメニスカス形状に微小な変化が発生する。このため、電極40・41に一定の電圧を印加していても、インク吐出量が変動する。
また、図6(c)に示すように、ノズル基板表面13に溢れたインクの高さよりも、ノズル突出長を十分に長くする場合、メニスカスの形状変動を完全に抑えられる。従って、インク吐出量を常に一定にできる(安定吐出が可能である)。
また、図7は、ノズル突出長とインクの溢れ広がり状況との関係を実際に確認した実験結果を示す説明図である。吐出孔12の径を1〜30μmとする場合、この図に示すように、ノズル突出長を10μm以上とすると、図6(c)の状態を得られ、安定吐出を実現できることがわかる。
なお、上記では、制御電極41をノズル基板表面13上に配するとしている。この制御電極41については、ノズル基板表面13上で露出させてもよいが、図8に示すように、絶縁体からなる電極被覆膜14により被覆してもよい。
電極被覆膜14の材料としては、絶縁体であればなんでもよく、例えば、ポリイミド、PMMA(ポリメチルメタクリレート)等の樹脂材料をスピンコートすることで形成できる。
また、電極被覆膜14の厚さ(コート厚)については、薄いほうが好ましい。この厚さについては、クラックを生じさせずに膜を安定して形成することを考慮に入れると、300Å〜2μmの範囲に設定することが好ましい。
この構成では、吐出孔12からインクが溢れてノズル基板表面13上に蓄積されたとしても、そのインクが制御電極41に直接に接触することを防止できる。このため、インクの接触による制御電極41の電圧降下を回避できるので、制御電極41に安定した電圧を印加でき、吐出制御を安定させられる。
また、図9に示すように、ノズル基板10と分離した基板に制御電極41を配置した、制御電極プレート45を用いてもよい。
この制御電極プレート45の基板材料としては、剛性の高いものを用いることが好ましく、絶縁材料ではガラス、導電性(金属)材料ではAl、SUS等を用いることが好ましい。
制御電極プレート45の基板をガラス等の絶縁材料から構成する場合、基板上に制御電極41のパターンを配線することで、制御電極プレート45を形成できる。また、制御電極41を薄膜絶縁材料で被覆し、制御電極41を露出させないことが好ましい。
また、制御電極プレート45の基板を導電性材料で形成した場合、制御電極41を共通電極として使用することで、電圧を制御できる。この場合においても、薄膜絶縁材料で被覆することによって、制御電極プレート45の金属部分を露出させない構成とすることが好ましい。
このように、制御電極プレート45を用いる構成では、制御電極41をノズル基板10と分離できるので、吐出孔12より溢れたインクが制御電極41に直接接触することを防止できる。
このため、インクの接触による制御電極41の電圧降下を防止できるので、制御電極41の電圧を常に安定した状態に保てる。
また、ノズル先端部に対する制御電極プレート45の相対位置を変えることで、ノズル先端部の電界強度(吐出電界強度)を調整できる。従って、インクを吐出するために、電極40・41の印加電圧だけでなく、制御電極プレート45の位置についても調整することで、吐出電界強度の微調整を行える。従って、インク吐出のための制御に関する精密さ高められる。
なお、制御電極プレート45を支持するために、制御電極プレート45を安定して支持するための土台と、プレート45の厚み方向への正確な位置制御ができるシステムを備えることが好ましい。
このようなシステムとして、例えば、プレート45の四方を保持する精密ステージを用いることが可能である。
また、上記では、吐出電極40を、ノズル21ごとに独立に制御するとしている。しかしながら、これに限らず、吐出電極40を共通化してもよい。
図10は、このような構成における、ノズル基板10におけるインク供給路20側の面(裏面;ノズル基板表面13と反対側の面)を示す説明図である。
この図に示すように、この構成では、ノズル基板10面上に各ノズルの吐出電極40の配線がパターニングされており、配線は共通化されて電源に繋がっている。
この構成の駆動について説明する。
まず、共通化された吐出電極40に電圧を印加すると、吐出電極40から電荷が流出し、ノズル先端部に充填されたインクを帯電する(待機状態)。この待機状態で吐出電極40に印加する電圧としては、吐出の開始する電圧よりも低い範囲内で、できるだけ高い値に設定することが好ましい。
例えば、吐出孔径が10μm、突出長が5μmの場合、吐出電極40に400V、制御電極41に300V以上の電圧を印加することが好ましい。
そして、この状態で、インクを吐出させるべきノズル21に応じた制御電極41の電圧を250〜300Vに設定することで、このノズル21からインクを吐出できる。
このように、吐出電極40を共通化して所望の一定電圧を印加することで、内部のインク全体を、吐出電極40とほぼ同電位に保ち、電荷を十分に供給した状態(十分に帯電した状態)にできる。
このため、吐出に必要な電荷量を得てインクを吐出した後でも、すぐにインクを帯電させられる。従って、吐出に必要な電荷をインクにためるまでの時間を短くできる(インクの帯電速度を高められる)。
なお、静電吸引型の流体吐出装置の場合、インクの帯電速度は、吐出応答性に直接に寄与する。従って、上記の構成では、吐出応答性を向上することが可能である。
また、吐出電極40を共通化することにより、ノズル基板10の全体でインクを同電位にできる。このため、図11に示すように、インク供給路20内で、ノズル21ごとにインク流路(微細孔11)を独立させずに、インク流路を共通にしても、インクを媒体とした隣接ノズルへの電荷のリークを防止できる。従って、隣接ノズルからの誤吐出、すなわちクロストークを防止できる。
このように、吐出電極40を共通化することで、吐出応答性を向上でき、かつクロストークを防止した安定吐出を実現できる。
また、図8に示した構成では、ノズル基板10上で制御電極41を電極被覆膜14により被覆している。ここで、この構成において、図12(a)〜(c)に示すように、ノズル基板表面13上の電極被覆膜14内に、制御電極41とともにシールド電極42を備えてもよい。
図12(a)(b)に示すように、シールド電極42の配置位置は、各制御電極(ノズル周囲電極)41の間である。また、全てのシールド電極42は共通化されており、共通の配線パターンを介して電源に繋がっている。
シールド電極42の形状は、ノズル基板表面13上で、ノズル設置方向に垂直な方向の長さが制御電極41と同等以上であれば、どのような形状でも構わない。
また、シールド電極42に印加する電圧値については、制御電極41に印加される電圧値と同じまたはそれ以上にすればよい。
例えば、吐出電極40に480V,制御電極41に300Vを印加する場合、シールド電極42には、300〜350V程度の電圧を印加することが好ましい。
図12(c)に示すように、各ノズル21の間にシールド電極42を設置して所望の電圧を印加することによって、点線で示すような電位勾配を形成できる。この図に矢印で示すように、シールド電極42の近傍における電界強度の向きを、ノズル21に近づく方向に向けられる。
このように、電界の向きをノズル21に近づく方向に向けることにより、隣接ノズルへの影響を抑制できる。従って、隣接ノズルの吐出精度の悪化、吐出量変動などの悪影響を回避できる。
また、上記したように、図1に示した本ヘッドでは、ノズル21の内部(吐出孔12内)のインク流路中に形成される吐出電極40と、ノズル21の周囲に形成される制御電極41との、2種類の電極が備えられている。
ここで、電極40・41に印加する電圧(電圧信号)について説明する。
本ヘッドでは、図示しない電圧制御装置により、各電極40・41に印加する電圧を制御するように設計されている。
そして、図13に示すように、各電極40・41に印加する電圧を、バイアスをゼロとした、正負両極性に反転する両極性パルス電圧信号としている。さらに、このようなパルスの電圧信号を、電極40・41に対して、互いに同期をとった状況で印加するように設計されている。
各電極40・41にこのような電圧信号を与えると、各電極40・41に正パルスの印加された場合、ノズル21から正帯電したインク液滴が飛翔する。逆に、各電極40・41に負パルスの印加された場合、ノズル21から負帯電したインク液滴が飛翔する。
すなわち、本ヘッドでは、パルス信号の極性反転に従って、飛翔するインク液滴の帯電極性を交互に変化させながら記録媒体に着弾させられる。
例えば、吐出孔12の径を10μm、ノズル突出長を5μmとし、吐出電極40に±480V、突出ノズル周囲の制御電極41に±300Vを印加して、各電極40・41に印加する電圧信号を同期させることで、上記のようなインク吐出を実現できる。
なお、図14(a)(b)に示すように、本ヘッドのような静電吸引型のインクジェットヘッドでは、吐出するインクは、すべて帯電しており、電荷を含有した状態で基板(記録媒体)上に着弾する。
そして特に、記録媒体として電気電導性の低い絶縁基板を用いる場合、着弾したインク中の電荷が基板上に残留してしまい、基板の電位上昇、つまりチャージアップが発生する。
そして、チャージアップが発生すると、吐出条件を決定するノズル先端部の電界強度の大きさおよび分布が変動しやすくなる。このため、ノズル21からの吐出量ばらつきや、着弾精度の低下を引き起こし、吐出を安定的に行えなくなる。
しかし、上記のように、インク液滴の帯電極性を交互に反転させながら基板に着弾させることにより、着弾したインク液滴中の電荷によるチャージアップを抑制できる。従って、基板の種類(絶縁性)によらず、常に安定した吐出を行えるため、パターン形成を安定的に行える。
また、本実施形態では、ノズル21を、ノズル基板10と同じ材料から、ノズル基板10と一体形成するとしている。しかしながら、これに限らず、ノズル21を、ノズル基板10とは異なる材料から形成してもよい。
また、本実施形態では、帯電したインクに静電吸引力を与えるために、制御電極41(およびシールド電極42)を用いるとしている。しかしながら、これに限らず、記録媒体の裏側(インクの着弾されない側)に、制御電極としての対向電極を備えてもよい。この対向電極については、接地状態にあることが好ましい。
また、本ヘッドを、に制御電極41を備えない構成としてもよい。すなわち、本ヘッドは、絶縁体からなるノズル基板10を備えているため、制御電極41を用いなくとも、隣接ノズルやノズル基板表面13上からのインクの誤吐出を防止できる。
また、本実施形態では、本ヘッドがインクを吐出するとしている。しかしながら、これに限らず、本ヘッドの構成を用いることで、インク以外の他の流体(液体)を吐出することも可能である。
また、本ヘッドのノズル基板10をなす絶縁材料として、抵抗率が1011Ω・cm以下のもの(例えば10Ω・cm程度のもの)を用いてもよい。従って、本ヘッドを、複数のノズルを備えたノズル基板を有し、各ノズルに備えられた吐出電極によって流体を帯電し、吐出電極および制御電極のつくる電界によってノズルから流体を吐出する流体吐出装置において、上記の吐出電極が、各ノズルの吐出孔内に配されており、上記の制御電極が、ノズルを囲むように、ノズルごとに独立に配されている構成である、と表現することもできる。この構成では、ノズルの吐出孔の径を、数十μmの範囲(1〜100μm、好ましくは1〜30μm)とすることが好ましい。
また、本発明の目的は、所望のノズルに電圧を印加しても隣接ノズルの電圧信号に影響を与えず、さらにノズル周辺部等からの誤吐出が全く発生しない安定したオンデマンド吐出を可能とし、さらに吐出精度の悪化することのない静電吸引型流体吐出装置を提供することにあるともいえる。
また、上記した本ヘッドについて、以下のように設定してもよい。すなわち、吐出電極40を、ノズル部材10のインク供給路20側に設置し、各微細孔11に対して独立に配線する。制御電極41については、ノズル部材の突出ノズル側に設置し、各ノズルに対して独立に配線する。電極材料については、制御電極41と同様の導電性材料を使用し、ノズル突出部の微細加工後に蒸着し形成する。また、インク供給路20は各微細孔11に対して独立した構成とすることが好ましい。これは、隣接チャンネル間を電気的に分断するためであり、このように電気的に完全に独立した構成にすることにより、理想的なオンデマンド吐出を行うことが可能となる。
また、本ヘッドでは、1つのノズルの電極40・41に電圧を印加したとき、ノズル基板10が分極することはない。すなわち、マルチノズルを形成する主部材であるノズル基板10を絶縁性の材料で形成しているため、電極に電圧を印加しても、自由に移動可能な誘導電荷の発生はなく、従って、誘導電荷流れ込みによるクロストークは発生しないといえる。
また、本発明を、以下の第1〜第7方法および第1装置として表現することもできる。すなわち、第1方法は、電圧印加により帯電された吐出流体を、流体吐出ヘッドを構成する被記録材料に対向したノズル部材中の流体噴出孔から静電吸引によって吐出させ被記録材料に着弾させることによって、該被記録材料表面に吐出流体による描画パターンを形成する方法において、上記ノズル部材は、流体噴出孔を複数有する絶縁性材料で構成されたマルチノズル構造であり、各流体噴出孔が30μm以下でかつ流体を吐出させる方向に突出しており、さらに流体噴出孔先端面を含めたインク流路中に電荷を供給するための吐出電極と、吐出電極とは別に突出した流体噴出孔の周囲に制御電極を配置した構成であることを特徴とする静電吸引型流体吐出方法である。
従来技術では、ノズル部材を形成する材料としてシリコンを使用しているため、1つの電極に電圧を印加すると少なからず隣接するノズルの電圧信号に対して影響を与えるが、本発明ではノズル部材が絶縁材料であるため、隣接ノズルに全く影響を与えることなく、安定したオンデマンド吐出が可能となる。また、1つのノズルに対して、上記2種類の電極を配置することで、液体吐出に必要なノズル先端部に集中的に電界強度を高めることができ、ノズル周辺部に付着した液体が電界を受けて誤吐出することなく安定した吐出状態を確保することができる。また突出長が小さくても電界強度を高くすることができるため、マイクロメータオーダのノズル加工が容易になり、かつノズルの加工精度の高さに伴い、高い液滴着弾精度を得ることが可能である。
また、第2方法は、第1方法において、上記流体噴出孔の突出長さを10μm以上とする方法である。これにより、ノズルから溢れ出してノズル部材表面上に液体が蓄積された場合でも、その蓄積した液体とノズル先端部のメニスカスが合体して大きくなることがなく、吐出時のメニスカス形状を変動させることなく常に安定した吐出状態を形成する効果がある。
また、第3方法は、第1方法において、上記流体噴出孔の周囲に配置された制御電極の表面を絶縁被覆している方法である。これにより、流体噴出孔の周囲に配置された制御電極の表面が露出しておらず、ノズルから溢れ出した液体に制御電極が直接接触することがないため、吐出時に常に安定的に電圧を印加する効果がある。
また、第4方法は、第1方法において、上記流体噴出孔の周囲に配置された制御電極が、上記ノズル部材に対して分離配置している方法である。これにより、ノズルから溢れ出した液体に制御電極が直接接触することがないため、吐出時に常に安定的に電圧を印加することができる。また、吐出に必要なノズル先端部の電界強度の制御を各電極の電圧値で行うだけでなく、制御電極の位置によっても微調整を行うことができるため、吐出制御性を向上させることが可能である。
また、第5方法は、第1方法において、上記全ノズルの流体噴出孔先端面を含めたインク流路中の吐出電極を共通化し、吐出時に一定電圧を印加する方法である。これにより、共通化したインク流路中の吐出電極に吐出最低電圧よりも低い電圧を常時与えておくことにより、インクに対する電荷の供給を常時行うことができ、インクの帯電速度、つまり吐出応答性を向上させる効果がある。また、インク流路全体が同電位となるため、インク流路内部の電位勾配に伴う隣接ノズルからの誤吐出、つまり、クロストークが発生することがなく、インク供給路を共通化して、液体を供給することが可能である。
また、第6方法は、第1方法において、上記流体噴出孔の周囲に配置された制御電極の隣接電極間に、シールド電極を設置する方法である。これにより、各制御電極に電圧を印加した際に形成される電界強度分布の広がりを抑制することができ、電界強度分布の広がりに伴う隣接ノズルへの影響を抑制する効果がある。
また、第7方法は、第1方法において、上記流体噴出孔の周囲に配置された制御電極と流体噴出孔先端面を含めたインク流路中の吐出電極に印加する電圧信号として、同期のとれた正負両極性に反転する両極性パルス電圧を付与する電圧制御手段を備えている方法である。これにより、正帯電、負帯電の液滴を交互に吐出させることができるため、特に、絶縁基板上にパターン形成する場合でも、基板上でチャージアップすることなく、常に安定した描画パターンの形成を実現する効果がある。
また、第1装置は、第1〜7方法のいずれか1つを用いることを特徴とする静電吸引型流体吐出装置である。
以上、第1〜第7方法および第1装置によれば、安定したオンデマンド吐出が可能なマルチノズルヘッドを実現する効果がある。
本発明は、インクジェット記録装置のヘッドなどの、ノズル内の流体を帯電し、電界によって吐出する流体吐出装置に対し、好適に利用できるものである。
図1(a)は、本発明の一実施形態にかかる静電吸引型流体吐出装置のヘッド(インクジェットヘッド;本ヘッド)を示す断面図であり、図1(b)は、そのノズルの概略図である。 吐出電圧および電界強度の大きさを比較計算した結果を示す説明図である。 制御電極を備えた本ヘッドと、制御電極を備えていないヘッドとの、ノズル先端部での電位勾配を示す説明図である。 ノズル突出長と、ノズル先端部とノズル部材表面との電界強度比との関係を示すグラフである。 ノズル突出長と、ノズル先端部およびノズル部材表面の電界強度を示すグラフである。 図6(a)〜(c)は、ノズル部材表面上へのインクの広がり状態を示す図である。 ノズル突出長とインクの漏れ広がり状況との関係を実際に確認した実験結果を示す説明図である。 図1に示したヘッドの構成において、絶縁体からなる電極被覆膜により制御電極を被覆した構成を示す説明図である。 図1に示したヘッドの構成において、制御電極プレートに制御電極を備えた構成を示す説明図である。 吐出電極を共通化した構成における、ノズル基板のインク供給路側の面(裏面;ノズル部材表面と反対側の面)を示す説明図である。 図1に示したヘッドの構成において、インク供給路内で、ノズルごとにインク流路(微細孔)を独立させずに、インク流路を共通化した構成を示す説明図である。 図12(a)〜(c)は、図1に示したヘッドの構成において、ノズル部材表面上の電極被覆膜内に、制御電極とともにシールド電極を備えた構成を示す説明図である。 本ヘッドの電極に印加する、正負両極性に反転する両極性パルス電圧信号を示す説明図である。 図14(a)(b)は、基板に吐出された帯電インクの状態を示す説明図である。 従来のインクジェット記録装置を示す断面図である。 従来の他のインクジェット記録装置を示す断面図である。 図16に示したインクジェット記録装置の一部を示す説明図である。
符号の説明
10 ノズル基板
11 微細孔
12 吐出孔
13 ノズル基板表面
14 電極被覆膜
20 インク供給路
21 ノズル
30 圧力供給路
40 吐出電極
41 制御電極
42 シールド電極
45 制御電極プレート
I インク

Claims (12)

  1. 複数のノズルを備えたノズル基板を有し、各ノズルに備えられた吐出電極によって流体を帯電し、吐出電極および制御電極のつくる電界によってノズルから流体を吐出する流体吐出装置において、
    上記ノズル基板が、絶縁材料から構成されていることを特徴とする、流体吐出装置。
  2. 上記のノズルおよびノズル基板を構成する絶縁材料の抵抗率が、1011Ω・cm以上であることを特徴とする、請求項1に記載の流体吐出装置。
  3. 上記のノズルの吐出孔の径が30μm以下であることを特徴とする、請求項1に記載の流体吐出装置。
  4. 上記のノズルにおける突出長さが10μm以上であることを特徴とする、請求項3に記載の静電吸引型流体吐出方法。
  5. 上記の吐出電極が、各ノズルの吐出孔内に配されており、
    上記の制御電極が、ノズルを囲むように、ノズルごとに独立に配されていることを特徴とする、請求項1に記載の流体吐出装置。
  6. 上記の制御電極の表面を覆う、絶縁材料からなる電極被覆膜を備えていることを特徴とする請求項5記載の流体吐出装置。
  7. 上記の制御電極が、ノズル基板から分離していることを特徴とする請求項5に記載の流体吐出装置。
  8. 全てのノズルの吐出電極が共通化されていることを特徴とする、請求項5に記載の流体吐出装置。
  9. 互いに隣接するノズルの制御電極の間に、自身の近傍における電界強度の向きをノズルに近づく方向に向けるための、シールド電極を備えていることを特徴とする、請求項5に記載の流体吐出装置。
  10. 上記の吐出電極および制御電極に印加する電圧信号として、同期のとれた正負両極性に反転する両極性パルス電圧を付与する電圧制御装置を備えていることを特徴とする、請求項5に記載の流体吐出装置。
  11. 請求項1に記載の流体吐出装置を備えた、描画パターン形成装置。
  12. 吐出電極によって帯電した流体を、吐出電極および制御電極のつくる電界によって、絶縁体からなる複数のノズルから吐出する流体吐出方法において、
    各ノズルの吐出孔内に配された吐出電極と、ノズルを囲むようにノズルごとに配された制御電極とを用いて、流体に静電吸引力を与えることを特徴とする流体吐出方法。
JP2005122835A 2005-04-20 2005-04-20 流体吐出装置および流体吐出方法 Pending JP2006297754A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005122835A JP2006297754A (ja) 2005-04-20 2005-04-20 流体吐出装置および流体吐出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005122835A JP2006297754A (ja) 2005-04-20 2005-04-20 流体吐出装置および流体吐出方法

Publications (1)

Publication Number Publication Date
JP2006297754A true JP2006297754A (ja) 2006-11-02

Family

ID=37466419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005122835A Pending JP2006297754A (ja) 2005-04-20 2005-04-20 流体吐出装置および流体吐出方法

Country Status (1)

Country Link
JP (1) JP2006297754A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121574A (ja) * 2011-12-12 2013-06-20 Ulvac Japan Ltd 塗布方法、塗布装置
JP2014532121A (ja) * 2011-09-14 2014-12-04 インヴェンテック・ヨーロッパ・エイビーInventech Europe Ab 長手状基材をコーティングするためのコーティング装置
JP2016513003A (ja) * 2013-02-11 2016-05-12 デュール システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 塗布装置用有孔板、対応する塗布方法及び製造方法
KR102082621B1 (ko) * 2019-12-13 2020-02-27 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치
CN111319358A (zh) * 2018-12-13 2020-06-23 株式会社Enjet 电流体动力学印刷装置
KR102146196B1 (ko) * 2019-07-10 2020-08-21 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치
KR20200122228A (ko) * 2020-03-05 2020-10-27 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치
US10828896B1 (en) 2019-04-16 2020-11-10 Enjet Co. Ltd. Induced electrohydrodynamic jet printing apparatus
WO2021008699A1 (en) * 2019-07-17 2021-01-21 Scrona Ag Electrohydrodynamic print head with structured feed layer
WO2022067350A1 (en) * 2020-09-28 2022-03-31 Axalta Coating Systems Gmbh Nozzle plate comprising borosilicate glass
WO2022152380A1 (en) * 2021-01-14 2022-07-21 Scrona Ag Electrohydrodynamic print head with ink pinning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208500A (ja) * 1992-01-31 1993-08-20 Matsushita Electric Ind Co Ltd インクジェット記録装置
JP2004136657A (ja) * 2002-09-24 2004-05-13 Konica Minolta Holdings Inc 液体吐出装置及びその製造方法
JP2004136652A (ja) * 2002-09-24 2004-05-13 Konica Minolta Holdings Inc 液体吐出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208500A (ja) * 1992-01-31 1993-08-20 Matsushita Electric Ind Co Ltd インクジェット記録装置
JP2004136657A (ja) * 2002-09-24 2004-05-13 Konica Minolta Holdings Inc 液体吐出装置及びその製造方法
JP2004136652A (ja) * 2002-09-24 2004-05-13 Konica Minolta Holdings Inc 液体吐出装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532121A (ja) * 2011-09-14 2014-12-04 インヴェンテック・ヨーロッパ・エイビーInventech Europe Ab 長手状基材をコーティングするためのコーティング装置
JP2013121574A (ja) * 2011-12-12 2013-06-20 Ulvac Japan Ltd 塗布方法、塗布装置
JP2016513003A (ja) * 2013-02-11 2016-05-12 デュール システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 塗布装置用有孔板、対応する塗布方法及び製造方法
US10232400B2 (en) 2013-02-11 2019-03-19 Durr Systems Gmbh Perforated plate for an application device and corresponding method
US10864730B2 (en) 2018-12-13 2020-12-15 Enjet Co. Ltd. Electrohydrodynamic printing apparatus
CN111319358A (zh) * 2018-12-13 2020-06-23 株式会社Enjet 电流体动力学印刷装置
US10828896B1 (en) 2019-04-16 2020-11-10 Enjet Co. Ltd. Induced electrohydrodynamic jet printing apparatus
KR102146196B1 (ko) * 2019-07-10 2020-08-21 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치
WO2021008699A1 (en) * 2019-07-17 2021-01-21 Scrona Ag Electrohydrodynamic print head with structured feed layer
KR102082621B1 (ko) * 2019-12-13 2020-02-27 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치
KR20200122228A (ko) * 2020-03-05 2020-10-27 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치
KR102229578B1 (ko) 2020-03-05 2021-03-19 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치
WO2022067350A1 (en) * 2020-09-28 2022-03-31 Axalta Coating Systems Gmbh Nozzle plate comprising borosilicate glass
WO2022152380A1 (en) * 2021-01-14 2022-07-21 Scrona Ag Electrohydrodynamic print head with ink pinning

Similar Documents

Publication Publication Date Title
JP2006297754A (ja) 流体吐出装置および流体吐出方法
US7296879B2 (en) Liquid ejection head and method of producing the same
JP6677735B2 (ja) マルチノズル印字ヘッド
US20080036820A1 (en) Apparatus and Method for Jetting Droplet Using Electrostatic Field
JP2005059215A (ja) 静電吸引型流体吐出装置
US7681995B2 (en) Liquid ejection head and method of manufacturing the same
KR20200140891A (ko) 액적 토출 장치 및 액적 토출 방법
JP5012641B2 (ja) 液体塗布方法
JP4397642B2 (ja) 静電吸引型流体吐出方法およびその装置
WO2005014179A1 (ja) 静電吸引型流体吐出装置、静電吸引型流体吐出方法、およびそれを用いた描画パターン形成方法
US7520592B2 (en) Electrostatic attraction fluid jet device
JP2009234026A (ja) 静電吸引型インクジェットヘッド
JP4835637B2 (ja) 液体塗布装置および液体塗布方法
JPH10138492A (ja) 静電式インクジェット記録ヘッド及びその製造方法
JP4498084B2 (ja) 静電吸引型流体吐出装置
JP2010064359A (ja) 静電式液滴吐出機構およびマルチノズルユニット
JP2009233907A (ja) 静電吸引型インクジェットヘッド
JP2005081716A (ja) 静電吐出型インクジェットヘッド
JP2005238551A (ja) 液体吐出ヘッドおよび液体吐出ヘッドの作製方法
JP2006110757A (ja) 静電吸引型流体吐出装置
JP3967298B2 (ja) 静電吸引型流体吐出方法およびその装置
JPH10100411A (ja) インクジェット記録装置
JP2005231236A (ja) 液体吐出ヘッドおよび液体吐出ヘッドの作製方法
US7207660B2 (en) Electrostatic ink jet head fixing a position of an edge portion of a meniscus of ink
JP2005058809A (ja) 静電吸引型流体吐出装置、およびそれを用いた描画パターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Effective date: 20100416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A02