JP2006291252A - Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube - Google Patents

Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube Download PDF

Info

Publication number
JP2006291252A
JP2006291252A JP2005110466A JP2005110466A JP2006291252A JP 2006291252 A JP2006291252 A JP 2006291252A JP 2005110466 A JP2005110466 A JP 2005110466A JP 2005110466 A JP2005110466 A JP 2005110466A JP 2006291252 A JP2006291252 A JP 2006291252A
Authority
JP
Japan
Prior art keywords
less
steel
steel pipe
quenched
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005110466A
Other languages
Japanese (ja)
Inventor
Masaru Fujiwara
勝 藤原
Satoshi Tagashira
聡 田頭
Terushi Hiramatsu
昭史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2005110466A priority Critical patent/JP2006291252A/en
Publication of JP2006291252A publication Critical patent/JP2006291252A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the fatigue characteristics of a steel tube for machine structural member while reducing material costs and manufacturing costs to levels equal to those of conventional materials. <P>SOLUTION: The material steel plate with excellent fatigue characteristics for quenched-and-tempered steel tube has a composition consisting of, by mass, 0.1 to 0.4% C, ≤0.5% Si, 0.1 to 1.5% Mn, ≤0.02% P, ≤0.01% S, 0.1 to 2.0% Cr, 0.01 to 0.10% Ti, 0.0003 to 0.01% B, 0 to 2.0% Ni, 0 to 2.0% Mo, 0 to 0.5% V, 0 to 0.5% Nb, 0 to 0.02% Ca and the balance Fe with inevitable impurities, and further, a difference Δk in C section hardness between the plate-thickness central part and a position at a depth of 20 μm from the surface is ≤30 Hv. The steel tube formed by subjecting the above material steel plate to tubemaking and quench-and-temper treatment is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、焼入れおよび焼戻しの処理を施して使用される高強度鋼管に用いるための素材鋼板、およびその素材鋼板を用いて製造される焼入れ焼戻し鋼管に関するものである。   The present invention relates to a raw steel plate for use in a high-strength steel pipe that is used after being subjected to quenching and tempering treatments, and a quenched and tempered steel pipe manufactured using the raw steel plate.

自動車をはじめ、各種機械構造物においては、高強度と疲労特性が要求される部材に焼入れ焼戻しの処理を施した「鋼管」を使用することが多々ある。
一般に鋼材の疲労特性を向上させるためには、表面を硬化したり平滑化したりすることが有効であるとされる。
特許文献1には、窒化処理により表面を硬化させて疲労特性を向上させる技術が開示されている。引用文献2には、鋼管内面を研削することにより平滑化するとともに脱炭層を除去して鋼管の疲労特性を向上させる技術が開示されている。
特開平6−264177号公報 特開平7−215038号公報
In various mechanical structures such as automobiles, “steel pipes” are often used in which quenching and tempering treatment is applied to members that require high strength and fatigue characteristics.
Generally, in order to improve the fatigue characteristics of steel materials, it is considered effective to harden or smooth the surface.
Patent Document 1 discloses a technique for improving fatigue characteristics by hardening a surface by nitriding treatment. Cited Document 2 discloses a technique for improving the fatigue characteristics of a steel pipe by smoothing the inner surface of the steel pipe by grinding and removing the decarburized layer.
JP-A-6-264177 JP-A-7-215038

昨今、機械構造物の各種部材には小型軽量化の要求が高まっている。鋼管で構成される高強度部材についても例外ではない。
鋼管部材を軽量化するには、肉厚の低減が最も有効である。しかし、薄肉化は強度や疲労特性の面で不利となる。特に、鋼管は曲げ加工などにより所望の形状に加工される場合が多いが、曲げの外側では肉厚が薄くなり、耐久性の点で厳しい状況となる。
Recently, there is an increasing demand for reducing the size and weight of various members of mechanical structures. High strength members made of steel pipe are no exception.
In order to reduce the weight of the steel pipe member, it is most effective to reduce the wall thickness. However, thinning is disadvantageous in terms of strength and fatigue characteristics. In particular, the steel pipe is often processed into a desired shape by bending or the like, but the thickness is reduced outside the bending, and the situation is severe in terms of durability.

このように、高強度鋼管の耐久性を維持しながら薄肉化を図ることは必ずしも容易ではない。この問題の解決手段として、特殊元素の添加により鋼材自体の強度・疲労特性レベルを向上させる方法が考えられる。しかし、多くの機械構造物においてそのような素材コストの増加を招く手法は許容されない。ショットピーニングによる圧縮残留応力の付与によって耐久性を向上させる方法が採られることもある。しかし、ショットピーニングは鋼管の外面側には付与できるが、内面側に付与することは困難であるため、圧縮残留応力の不足する内面側から破損することがある。また、特許文献2のように内面を研削することも考えられる。しかし、これは工程の増加につながり、現状の鋼管製造プロセスをそのまま適用できるものではなく、工程増および歩留り低下によるコストアップも避けられない。   Thus, it is not always easy to reduce the thickness while maintaining the durability of the high-strength steel pipe. As a means for solving this problem, a method of improving the strength and fatigue property level of the steel material itself by adding a special element is conceivable. However, such a method that causes an increase in material cost is not allowed in many mechanical structures. A method of improving durability by applying compressive residual stress by shot peening may be employed. However, although shot peening can be applied to the outer surface side of the steel pipe, it is difficult to apply the shot peening to the inner surface side. Moreover, grinding an inner surface like patent document 2 is also considered. However, this leads to an increase in processes, and the current steel pipe manufacturing process cannot be applied as it is, and an increase in costs due to an increase in processes and a decrease in yield is unavoidable.

本発明は、このような現状に鑑み、素材コストおよび製造コストを従来材と同等に抑えながら、鋼管の耐久性、特に疲労特性を向上させる技術の提供を目的とする。   In view of such a current situation, the present invention aims to provide a technique for improving the durability of a steel pipe, in particular, fatigue characteristics, while suppressing the raw material cost and the manufacturing cost to be equal to those of a conventional material.

発明者らは、高強度鋼管の疲労特性に及ぼす種々の要因について詳細に見直しを行った。その結果、鋼管の中間製品である「素材鋼板」の段階において、表面の脱炭層の形成が十分に抑止されていれば、鋼管製造後における疲労特性が顕著に向上することを見出した。また、そのような素材鋼板は、熱延条件や焼鈍条件を工夫することで製造可能であることが確認された。   The inventors have made a detailed review of various factors affecting the fatigue properties of high-strength steel pipes. As a result, it has been found that the fatigue characteristics after steel pipe manufacture is significantly improved if the formation of the surface decarburized layer is sufficiently suppressed at the stage of the “raw steel plate” which is an intermediate product of the steel pipe. Moreover, it was confirmed that such a raw material steel plate can be manufactured by devising hot rolling conditions and annealing conditions.

すなわち、上記目的は、質量%で、C:0.1〜0.4%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.01%以下、Cr:0.1〜2%、Ti:0.01〜0.1%、B:0.0003〜0.01%、Ni:0〜2%、Mo:0〜2%以下、V:0〜0.5%、Nb:0〜0.5%、Ca:0〜0.02%、残部がFeおよび不可避的不純物の組成を有し、板厚中心部と表面から20μm位置のC断面硬さの差Δkが30HV以下である、疲労特性の良好な焼入れ焼戻し鋼管用素材鋼板によって達成される。   That is, the above purpose is mass%, C: 0.1 to 0.4%, Si: 0.5% or less, Mn: 0.1 to 1.5%, P: 0.02% or less, S: 0.01% or less, Cr: 0.1-2%, Ti: 0.01-0.1%, B: 0.0003-0.01%, Ni: 0-2%, Mo: 0-2% Hereinafter, V: 0 to 0.5%, Nb: 0 to 0.5%, Ca: 0 to 0.02%, the balance having the composition of Fe and inevitable impurities, 20 μm from the center of the plate thickness and the surface This is achieved by a material steel plate for quenching and tempering steel pipe having good fatigue characteristics, in which the difference Δk in the C cross-sectional hardness at the position is 30 HV or less.

そのような鋼板は、加熱抽出温度1150〜1300℃、巻取温度570℃以下での熱間圧延、あるいはさらにAc1点未満の温度での焼鈍を施すことにより製造される。熱間圧延後には脱スケール工程を入れることができる。また、熱延鋼板に対して、冷間圧延とAc1点未満の温度での焼鈍を施すこともできる。 Such a steel sheet is manufactured by performing hot rolling at a heating extraction temperature of 1150 to 1300 ° C. and a coiling temperature of 570 ° C. or lower, or annealing at a temperature of less than Ac 1 point. A descaling step can be included after hot rolling. In addition, the hot-rolled steel sheet can be subjected to cold rolling and annealing at a temperature less than Ac 1 point.

なお、Ni、Mo、V、Nb、Caは任意添加元素であり、その下限0%は通常の製鋼工場での分析手法で測定限界以下である場合を意味する。「C断面」は、圧延方向に垂直な断面である。板厚中心部と表面から20μm位置のC断面硬さは、例えばマイクロビッカース硬度計によって測定できる。Δkは(板厚中心部の硬さ)−(表面から20μm位置の硬さ)であるが、これは負の値になっても構わない。「鋼板」には「鋼帯」が含まれる。   Ni, Mo, V, Nb, and Ca are arbitrarily added elements, and the lower limit of 0% means that they are below the measurement limit by an analysis method in a normal steel factory. “C section” is a section perpendicular to the rolling direction. The C section hardness at a position of 20 μm from the center of the plate thickness and the surface can be measured by, for example, a micro Vickers hardness meter. Δk is (the hardness at the center of the plate thickness) − (the hardness at the position of 20 μm from the surface), but this may be a negative value. “Steel plate” includes “steel strip”.

また、前記のような素材鋼板を溶接造管したのち必要に応じて成形加工を施し、最終的に焼入れおよび焼き戻しされた鋼管であって、鋼管の肉厚中心部と内表面から20μm位置のC断面硬さの差Δk1が70HV以下である焼入れ焼戻し鋼管が提供される。
この場合の「C断面」は、鋼管の長手方向に垂直な断面である。Δk1は(肉厚中心部の硬さ)−(内表面から20μm位置の硬さ)であるが、これは負の値になっても構わない。
Further, the steel sheet as described above is welded and formed, and then subjected to forming as necessary. Finally, the steel pipe is quenched and tempered, and is 20 μm from the thickness center portion and the inner surface of the steel pipe. A quenched and tempered steel pipe having a difference in cross-sectional hardness Δk1 of 70 HV or less is provided.
The “C cross section” in this case is a cross section perpendicular to the longitudinal direction of the steel pipe. Δk1 is (the hardness at the center of the thickness) − (the hardness at the position of 20 μm from the inner surface), but this may be a negative value.

本発明に従えば、従来材と同等の安価な鋼を用いて、各種機械構造部材に用いる高強度鋼管の疲労特性を向上させることが可能となった。特に、中間製品である素材鋼板の段階で表層部の硬度低下を抑制しておく手法を採用し、これが鋼管の疲労特性向上効果をもたらすので、鋼管製造段階において疲労特性を改善するために特段の手段を要しない。すなわち、鋼管製造工程への負荷が軽減される。また、研削等の機械的除去手段を採用する必要がなく、それによる歩留り低下の心配がない。本発明は、高強度鋼管の薄肉化、ひいては自動車をはじめとする機械構造物の軽量化に寄与し得るものである。   According to the present invention, it is possible to improve the fatigue characteristics of high-strength steel pipes used for various mechanical structural members by using inexpensive steel equivalent to conventional materials. In particular, a method of suppressing the hardness reduction of the surface layer part at the stage of the intermediate steel plate is adopted, and this brings about the effect of improving the fatigue characteristics of the steel pipe. No means are required. That is, the load on the steel pipe manufacturing process is reduced. Further, there is no need to employ mechanical removal means such as grinding, and there is no concern about yield reduction. The present invention can contribute to reducing the thickness of high-strength steel pipes and, in turn, to reducing the weight of mechanical structures such as automobiles.

本発明では各元素の含有量を以下のように調整した鋼を使用する。なお、合金元素含有量の「%」は「質量%」を意味する。
Cは、機械構造用高強度鋼管に望まれる強度とばね特性を確保するために、0.1%以上の含有が必要である。ただし、多量に含有させると靱性低下による脆性破壊が生じやすくなり、造管時の加工性や溶接部の健全性が劣化する。このためC含有量は0.1〜0.4%に規定される。
In the present invention, steel whose content of each element is adjusted as follows is used. Note that “%” of the alloy element content means “mass%”.
C needs to be contained in an amount of 0.1% or more in order to ensure the strength and spring characteristics desired for a high-strength steel pipe for machine structures. However, if contained in a large amount, brittle fracture is likely to occur due to a decrease in toughness, and the workability during pipe making and the soundness of the welded portion deteriorate. For this reason, C content is prescribed | regulated to 0.1 to 0.4%.

Siは、製鋼での脱酸に有効な元素であるが、0.5%を超えると熱間圧延時のスラブ加熱においてファイアライトが生成し易くなり、これが熱延でのデスケール性を劣化させ、表面疵や疲労破壊の起点を作りやすい。また、多量のSi含有は溶接性および靱性を劣化させる。このためSi含有量は0.5%以下に制限される。   Si is an element effective for deoxidation in steel making. However, if it exceeds 0.5%, it becomes easy to generate firelight in slab heating during hot rolling, which deteriorates descaleability in hot rolling, It is easy to make surface flaws and fatigue fracture starting points. In addition, a large amount of Si contained deteriorates weldability and toughness. For this reason, the Si content is limited to 0.5% or less.

Mnは、焼入れ性および強度を確保する上で有効な元素であり、その効果を十分に得るためには0.1%以上含有させる必要である。しかし、過剰に添加すると、炭素当量も高くなり、加工性および溶接部の健全性に悪影響を及ぼす。このためMn含有量は0.1〜1.5%に規定される。   Mn is an element effective in securing hardenability and strength, and in order to sufficiently obtain the effect, it is necessary to contain 0.1% or more. However, if added in excess, the carbon equivalent also increases, which adversely affects workability and the soundness of the weld. For this reason, Mn content is prescribed | regulated to 0.1-1.5%.

Pは、焼入れ時にオーステナイト粒界に偏析して延性、靱性を劣化させる。このためP含有量は0.02%以下に制限される。   P segregates at the austenite grain boundaries during quenching and deteriorates ductility and toughness. For this reason, the P content is limited to 0.02% or less.

Sは、鋼中でMnSを形成し、これが亀裂の起点となって強度、靱性を低下させる要因になる。このためS含有量は0.01%以下に制限される。   S forms MnS in steel, which becomes a starting point of cracks and becomes a factor of reducing strength and toughness. For this reason, the S content is limited to 0.01% or less.

Crは、Mnと同様に焼入れ性の向上に有効であり、少なくとも0.1%以上の含有が必要である。しかし、2%を超えると焼入れ・焼戻し後の組織が未溶解炭化物を多量に含むものとなり、この炭化物が亀裂を助長させる起点となって、靱性や疲労特性の低下を招く。このためCr含有量は0.1〜2%に規定される。   Cr is effective for improving the hardenability like Mn, and must be contained at least 0.1% or more. However, if it exceeds 2%, the structure after quenching and tempering contains a large amount of undissolved carbide, and this carbide serves as a starting point for promoting cracks, leading to deterioration of toughness and fatigue characteristics. For this reason, Cr content is prescribed | regulated to 0.1 to 2%.

Tiは、鋼中のNをTiNとして固定することにより、焼入れ性向上に有効な固溶Bの確保に寄与する。また、焼入れ時に旧オーステナイト粒径の粗大化を抑制する。これらの効果を十分に得るには0.01%以上のTi含有が必要となる。ただし、0.1%を超えてTiを添加しても旧オーステナイト粒径の粗大化抑制効果は飽和し、却って疲労破壊の起点となるTi系介在物が増加する。このためTi含有量は0.01〜0.1%に規定される。   Ti contributes to securing solid solution B effective in improving hardenability by fixing N in steel as TiN. Further, the coarsening of the prior austenite grain size is suppressed during quenching. In order to sufficiently obtain these effects, it is necessary to contain 0.01% or more of Ti. However, even if Ti is added in excess of 0.1%, the effect of suppressing the coarsening of the prior austenite grain size is saturated, and on the other hand, Ti-based inclusions that become the starting point of fatigue fracture increase. For this reason, Ti content is prescribed | regulated to 0.01 to 0.1%.

Bは、微量の添加で焼入れ性を高める効果がある。また、焼入れ・焼戻し後の旧オーステナイト粒界を強化して脆性破壊を抑制し、靱性を向上させる効果を有する。これらの効果を十分に発揮させるためには0.0003%以上のB含有が必要である。ただし、0.01%を超えるとこれらの効果は飽和する。このためB含有量は0.0003〜0.01%に規定される。   B has an effect of enhancing the hardenability by adding a small amount. Moreover, it has the effect of strengthening the prior austenite grain boundaries after quenching and tempering to suppress brittle fracture and improve toughness. In order to fully exhibit these effects, 0.0003% or more of B content is necessary. However, if it exceeds 0.01%, these effects are saturated. For this reason, the B content is specified to be 0.0003 to 0.01%.

Niは、焼入れ性および靱性の向上に有効である。これらの効果を十分に得るには0.01%以上含有させることが望ましい。ただし、2%を超えると上記効果は飽和し、不経済となる。このためNiを添加する場合は2%以下の範囲で行う必要があり、0.1〜2%の範囲で含有させることが好ましい。   Ni is effective in improving hardenability and toughness. In order to obtain these effects sufficiently, it is desirable to contain 0.01% or more. However, if it exceeds 2%, the above effect is saturated and uneconomical. For this reason, when adding Ni, it is necessary to carry out in the range of 2% or less, and it is preferable to contain in 0.1 to 2% of range.

Moは、焼入れ性と焼戻し軟化抵抗の向上に有効な元素であり、Mn、Crの過剰な添加による靱性劣化を抑えるために補助的に添加することができる。Moを添加する場合は0.05%以上の含有量とすることが効果的である。ただしMoは高価な元素であり、多量添加は経済性を損なうので、Mo添加は2%以下の範囲で行う必要がある。   Mo is an element effective for improving hardenability and temper softening resistance, and can be supplementarily added to suppress toughness deterioration due to excessive addition of Mn and Cr. When adding Mo, it is effective to make the content 0.05% or more. However, Mo is an expensive element, and addition of a large amount impairs economic efficiency. Therefore, addition of Mo needs to be performed within a range of 2% or less.

Vは、焼入れ時に結晶粒を微細化する作用があり、靱性向上に有効である。Vを添加する場合は0.05%以上の含有量とすることが好ましい。ただしVも高価な元素であり、多量添加は経済性を損なうので、V添加は0.5%以下の範囲で行う必要がある。   V has the effect of refining crystal grains during quenching, and is effective in improving toughness. When V is added, the content is preferably 0.05% or more. However, V is also an expensive element, and addition of a large amount impairs economic efficiency. Therefore, addition of V must be performed within a range of 0.5% or less.

Nbは、炭窒化物を形成し、旧オーステナイト結晶粒の粗大化を抑制して靱性を向上させる作用がある。Nbを添加する場合は0.05%以上の含有量とすることが好ましい。ただし、0.5%を超えても上記作用の上昇はあまり期待できない。このためNb添加は0.5%以下の範囲で行う。   Nb has the effect of forming carbonitrides and suppressing toughening of prior austenite crystal grains to improve toughness. When Nb is added, the content is preferably 0.05% or more. However, even if it exceeds 0.5%, the increase in the above action cannot be expected so much. Therefore, Nb addition is performed within a range of 0.5% or less.

Caは、圧延鋼材中における圧延方向に長く伸びたMnS系介在物を低減することにより、鋼材の異方性を軽減する効果がある。Caを添加する場合は0.001%以上の含有量とすることが好ましい。しかし、多量に添加するとCa系介在物が増加して疲労特性に悪影響を及ぼすので、Ca含有量は0.02%以下に制限される。   Ca has the effect of reducing the anisotropy of the steel material by reducing the MnS inclusions elongated in the rolling direction in the rolled steel material. When adding Ca, the content is preferably 0.001% or more. However, when Ca is added in a large amount, Ca-based inclusions increase and adversely affect fatigue properties, so the Ca content is limited to 0.02% or less.

Nは、BをBNの形成によって消費し、前記のB添加の効果を引き出す上でマイナスの要因となる。このためN含有量はできるだけ低い方が望ましく、最大でも0.01%以下にすべきである。   N consumes B by the formation of BN, and becomes a negative factor in extracting the effect of the B addition. Therefore, the N content is preferably as low as possible, and should be 0.01% or less at the maximum.

以上の化学組成を有する鋼を用いて素材鋼板を製造し、これを造管して各種機械構造物に用いる鋼管を得る。   A raw steel plate is manufactured using steel having the above chemical composition, and this is piped to obtain steel pipes used for various machine structures.

発明者らの詳細な研究によれば、最終的に得られる鋼管部材の疲労特性は、鋼管を製造する前の「素材鋼板」の性状に大きく依存することが明らかになった。すなわち、「素材鋼板」の段階で、表面の脱炭層の形成を十分に抑止しておけば、その素材鋼板に由来する鋼管部材の疲労特性を改善することが可能になるのである。   According to detailed studies by the inventors, it has been clarified that the fatigue characteristics of the steel pipe member finally obtained greatly depend on the properties of the “material steel plate” before the steel pipe is manufactured. That is, if the formation of the surface decarburized layer is sufficiently suppressed at the stage of the “material steel plate”, it becomes possible to improve the fatigue characteristics of the steel pipe member derived from the material steel plate.

具体的には、素材鋼板の板厚中心部と表面から20μm位置のC断面硬さの差Δkが30HV以下になるように表層部の脱炭層形成が抑止されていることが必要である。Δkが30HVを超える程度に表層部が軟化していれば、その素材鋼板を用いた焼入れ焼き戻し鋼管の疲労特性を安定して改善することが難しくなる。   Specifically, it is necessary that the formation of a decarburized layer in the surface layer portion is suppressed so that the difference Δk in the C cross-sectional hardness at a position 20 μm from the plate thickness center portion and the surface of the raw steel plate is 30 HV or less. If the surface layer portion is softened to such an extent that Δk exceeds 30 HV, it is difficult to stably improve the fatigue characteristics of a quenched and tempered steel pipe using the material steel plate.

Δkが30HV以下になるように脱炭層の生成が抑止された鋼板は、前記化学組成を持つ鋼を用い、熱間圧延あるいは焼鈍を工夫することによって製造できることがわかった。
熱間圧延では加熱抽出温度を1150〜1300℃の範囲とし、かつ、巻取温度を570℃以下とすればよい。熱延後の脱スケールは通常、酸洗で十分である。脱スケール後には焼鈍を行うことができる。熱延後〜造管前の段階では基本的に焼鈍は最終焼鈍1回で済ますのが良い。その焼鈍はAc1点未満の温度で行う。水素雰囲気などの非酸化性雰囲気で行うと脱炭を防ぐことができ、研削等により脱炭層を除去する必要がなくなる。酸化性雰囲気での焼鈍を行った場合、そのままの状態でΔkを安定して30HV以下にすることが難しい。
熱延、脱スケール後には必要に応じて冷間圧延を行うことができる。熱延時にわずかに生じた脱炭層も例えば15%以上好ましくは30%以上の冷間圧延を行うと更に薄くなり、疲労特性向上に有利となる。
It has been found that a steel sheet in which the formation of a decarburized layer is suppressed so that Δk is 30 HV or less can be produced by devising hot rolling or annealing using steel having the above chemical composition.
In hot rolling, the heating extraction temperature may be in the range of 1150 to 1300 ° C, and the winding temperature may be 570 ° C or less. For descaling after hot rolling, pickling is usually sufficient. Annealing can be performed after descaling. From the stage after hot rolling to before pipe forming, it is basically good to perform annealing only once. The annealing is performed at a temperature less than Ac 1 point. When performed in a non-oxidizing atmosphere such as a hydrogen atmosphere, decarburization can be prevented, and there is no need to remove the decarburized layer by grinding or the like. When annealing in an oxidizing atmosphere is performed, it is difficult to make Δk stable to 30 HV or less in the same state.
After hot rolling and descaling, cold rolling can be performed as necessary. A decarburized layer slightly generated during hot rolling also becomes thinner when cold rolled, for example, 15% or more, preferably 30% or more, which is advantageous for improving fatigue characteristics.

以上のような素材鋼板は、一般的な手法により溶接造管に供される。溶接法は高周波溶接、通電溶接、TIG溶接などが適用できる。造管後、必要に応じて成形加工される。その後、焼入れおよび焼き戻しされ、疲労特性の良好な高強度鋼管が得られる。焼入れおよび焼き戻しの処理では、表面の脱炭ができるだけ進行しないように配慮すべきであるが、素材鋼板の前記Δkが30HV以下になっていれば、通電加熱等の通常の手法で焼入れおよび焼き戻しを行った後に、鋼管の肉厚中心部と内表面から20μm位置のC断面硬さの差Δk1を70HV以下に維持することが可能である。このΔk1が70HV以下になっていれば、内面の表層部は研削等の機械的手段で除去されていなくても、顕著な疲労特性改善効果が得られるのである。   The material steel plate as described above is used for welded pipe making by a general method. As the welding method, high frequency welding, current welding, TIG welding, or the like can be applied. After pipe making, it is molded as necessary. Thereafter, it is quenched and tempered to obtain a high-strength steel pipe with good fatigue characteristics. In the quenching and tempering treatments, care should be taken so that surface decarburization does not proceed as much as possible. However, if the Δk of the raw steel sheet is 30 HV or less, quenching and quenching can be performed by a normal method such as electric heating. After returning, it is possible to maintain the difference Δk1 in the C section hardness at a position of 20 μm from the thickness center portion of the steel pipe and the inner surface at 70 HV or less. If this Δk1 is 70 HV or less, a remarkable improvement in fatigue characteristics can be obtained even if the surface layer portion on the inner surface is not removed by mechanical means such as grinding.

表1に示す鋼を溶製し、スラブを熱間圧延して板厚3.0〜5.0mmの熱延鋼板を得た。熱間圧延後には酸洗を行った。その後、焼鈍、あるいは冷間圧延と焼鈍に供した材料も含め、最終的に以下の工程で板厚3.0mmの鋼板(「素材鋼板」という)を得た。
工程a:熱間圧延→脱スケール(酸洗)
工程b:熱間圧延→脱スケール(酸洗)→焼鈍
工程c:熱間圧延→脱スケール(酸洗)→冷間圧延→焼鈍
焼鈍は、温度670〜720℃、保持時間15〜20時間で行い、雰囲気はH2:100%、露点(DP):−60℃、またはN2:97%+H2:3%、露点(DP):50℃とした。焼鈍温度は670〜720℃、保持時間は15〜20時間とした。この温度範囲は再結晶温度以上Ac1点以下に該当する。焼鈍後に酸洗は行っていない。
表2に製造条件を示してある。表2中、FDTはスラブの加熱抽出温度、CTは巻取温度である。工程については、上記工程aを「熱延」、工程bを「焼鈍」、工程cを「冷延焼鈍」と表示してある。
The steel shown in Table 1 was melted, and the slab was hot-rolled to obtain a hot-rolled steel sheet having a thickness of 3.0 to 5.0 mm. After hot rolling, pickling was performed. Thereafter, a steel plate (referred to as “material steel plate”) having a thickness of 3.0 mm was finally obtained through the following steps, including materials subjected to annealing or cold rolling and annealing.
Process a: Hot rolling → descaling (pickling)
Step b: Hot rolling → Descaling (pickling) → Annealing Step c: Hot rolling → Descaling (pickling) → Cold rolling → Annealing The temperature is 670 to 720 ° C. and the holding time is 15 to 20 hours. The atmosphere was H 2 : 100%, dew point (DP): −60 ° C., or N 2 : 97% + H 2 : 3%, dew point (DP): 50 ° C. The annealing temperature was 670 to 720 ° C., and the holding time was 15 to 20 hours. This temperature range corresponds to the recrystallization temperature or more and the Ac 1 point or less. Pickling is not performed after annealing.
Table 2 shows the manufacturing conditions. In Table 2, FDT is the slab heating extraction temperature, and CT is the coiling temperature. Regarding the process, the process a is indicated as “hot rolling”, the process b as “annealing”, and the process c as “cold rolling annealing”.

Figure 2006291252
Figure 2006291252

各素材鋼板について、マイクロビッカース硬度計を用いて、板厚中心部および表面から20μm位置のC断面硬さを測定した。それぞれn=10とし、平均を採った。これらの特定値から「板厚中心部の硬さ(HV)−表面から20μm位置のC断面硬さ(HV)」を算出し、これをΔkとした。   About each raw material steel plate, C cross-section hardness of a 20-micrometer position from a plate | board thickness center part and the surface was measured using the micro Vickers hardness meter. Each was set to n = 10 and the average was taken. From these specific values, “the hardness at the center of the plate thickness (HV) —the C section hardness (HV) at a position 20 μm from the surface” was calculated, and this was taken as Δk.

次に、各素材鋼板を用いて焼入れ焼戻し後の疲労特性を調べた。これは、表面脱炭層の有無が疲労特性に及ぼす影響を素材鋼板によってより精度良く比較するための実験であり、この実験で疲労特性に劣ったものは焼入れ焼戻し鋼管においても良好な疲労特性を期待することはできない。逆に、この実験で疲労特性が顕著に改善されたものは、焼入れ焼戻し鋼管においても相対的に疲労特性の顕著な改善が見込まれる。
各素材鋼板から長手方向が圧延方向となるように幅35×長さ110mmの短冊状試験片を作製し、「900℃×15分保持→油冷」の焼入れ、および「300〜400℃×1時間保持」の焼戻しを行って調質硬さ370〜430HVにした。その後、JIS Z2273の両振り平面曲げ疲れ試験に準拠した方法で最大曲げ応力600N/mm2の平面曲げ疲労試験を実施した。なお、1×106サイクルを超えた場合はその時点で終了し、疲労寿命>1×106サイクルと評価した。平面曲げ疲労特性は疲労寿命が1×105以上を良好(○評価)、それ未満を不良(×評価)とした。
Next, the fatigue characteristics after quenching and tempering were examined using each material steel plate. This is an experiment to compare the influence of the presence or absence of a surface decarburized layer on the fatigue characteristics more accurately by the steel sheet. Those inferior to the fatigue characteristics in this experiment are expected to have good fatigue characteristics even in quenched and tempered steel pipes. I can't do it. On the contrary, if the fatigue characteristics are remarkably improved in this experiment, the fatigue characteristics are expected to be remarkably improved even in the quenched and tempered steel pipe.
A strip-shaped test piece having a width of 35 × 110 mm is produced from each material steel plate so that the longitudinal direction is the rolling direction, quenching of “900 ° C. × 15 minutes holding → oil cooling”, and “300 to 400 ° C. × 1” Tempering hardness was set to 370 to 430 HV by tempering "time retention". Thereafter, a plane bending fatigue test with a maximum bending stress of 600 N / mm 2 was carried out by a method based on the double swing plane bending fatigue test of JIS Z2273. Incidentally, if it exceeds 1 × 10 6 cycles is terminated at that point, was evaluated as fatigue life> 1 × 10 6 cycles. As for the plane bending fatigue characteristics, a fatigue life of 1 × 10 5 or more was evaluated as good (◯ evaluation), and less than that was determined as poor (× evaluation).

次に、各素材鋼板を用いて外径27.2mmの鋼管を製造した。造管はいずれも高周波溶接で行った。得られた鋼管について管の断面形状および溶接部の欠陥を調べ、造管性を評価した。
これらの結果を表2に示す。表2中、平面曲げ疲労評価、造管性評価、総合評価は○が良好、×が不良と判定されるものである。
Next, a steel pipe having an outer diameter of 27.2 mm was manufactured using each material steel plate. Both pipes were formed by high frequency welding. About the obtained steel pipe, the cross-sectional shape of the pipe and the defect of the welded portion were examined, and the pipe forming property was evaluated.
These results are shown in Table 2. In Table 2, plane bending fatigue evaluation, pipe forming evaluation, and comprehensive evaluation are determined to be good for ◯ and poor for x.

Figure 2006291252
Figure 2006291252

表2から判るように、No.1〜14の本発明例のものは、板厚中心部と表面から20μm位置のC断面硬さの差Δkが30HV以下であり、1×105サイクル以上の優れた平面曲げ疲労特性、および優れた造管性を呈した。 As can be seen from Table 2, in the examples of the present invention Nos. 1 to 14, the difference Δk in the C section hardness at the position of 20 μm from the center of the plate thickness and the surface is 30 HV or less, and 1 × 10 5 cycles or more. Excellent plane bending fatigue properties and excellent pipe forming properties were exhibited.

これに対し、比較例No.15はC量が低いので強度不足により鋼板の疲労寿命が短かった。No.16はC量が高いので鋼管の断面形状が不良となった。No.17はSi量が高く、No.18はMn量が高く、No.19はCr量が高いので、これらは造管の際、高周波溶接時にそれぞれSi、Mn、Crの酸化物の生成量が多くなり、この酸化物が溶接部に貫入した形で存在する欠陥(ペネトレータ)が生じた。これらは鋼板では良好な疲労特性を示すものの、鋼管では溶接部を起点とした早期折損が生じることがある。   On the other hand, Comparative Example No. 15 had a low amount of C, so the fatigue life of the steel sheet was short due to insufficient strength. No. 16 had a high C content, so the cross-sectional shape of the steel pipe was poor. No. 17 has a high amount of Si, No. 18 has a high amount of Mn, and No. 19 has a high amount of Cr. Therefore, these are amounts of oxides of Si, Mn, and Cr during pipe forming and high frequency welding, respectively. As a result, defects (penetrator) existed in the form of penetration of this oxide into the weld. Although these steel sheets exhibit good fatigue characteristics, steel pipes may suffer early breakage starting from the weld.

No.20〜24は熱延での巻取温度が高いために脱炭量が大きく、Δkが30HVを超える大きな表面硬さの低下がみられた。このため疲労特性に劣った。またNo.24、25は酸化性雰囲気の焼鈍で仕上げたことによりΔkが30HVを超え、疲労特性に劣った。   Nos. 20 to 24 had a large decarburization amount due to the high coiling temperature in hot rolling, and a large decrease in surface hardness exceeding ΔHV of 30 HV was observed. For this reason, it was inferior to the fatigue characteristics. Nos. 24 and 25 were finished by annealing in an oxidizing atmosphere, and Δk exceeded 30 HV, resulting in poor fatigue characteristics.

次に、表1の鋼C、Dを用いて、実施例1で示した工程a〜cにより素材鋼板を製造し、実施例1と同様の手法で高周波造管し、その後「900℃×15分保持→油冷」の焼入れ、および「300〜400℃×1時間保持」の焼戻しを行って外径27.2mmの鋼管を製造した。管の外面、内面とも、研削等の機械的除去手段を何も施していない。   Next, the steel plates C and D in Table 1 were used to manufacture a raw steel plate by the steps a to c shown in Example 1, and high-frequency tube forming was performed in the same manner as in Example 1. Thereafter, “900 ° C. × 15 A steel pipe having an outer diameter of 27.2 mm was manufactured by quenching of “minute retention → oil cooling” and tempering of “300 to 400 ° C. × 1 hour”. No mechanical removal means such as grinding is applied to the outer and inner surfaces of the tube.

各素材鋼板の段階で、C断面におけるΔkを実施例1と同様の手法で求めた。
また、各焼入れ焼戻し後の鋼管について、肉厚中心部と内表面から20μm位置のC断面硬さの差Δk1を求めた。硬さの測定法およびΔk1の算出法は前述のΔkの場合に準じた。
さらに、各焼入れ焼戻し鋼管について、曲げ疲労試験を実施した。この場合、鋼管外面の最大引張応力発生部位における引張応力が600N/mm2となる条件で行った。前述の平面曲げ疲労試験と同様、1×106サイクルを超えた場合はその時点で終了し、疲労寿命>1×106サイクルと評価した。鋼管疲労評価は、鋼管曲げ疲労寿命が1×105以上を良好(○評価)、それ未満を不良(×評価)とした。
結果を表3に示す。
At the stage of each material steel plate, Δk in the C cross section was determined in the same manner as in Example 1.
Further, for each steel pipe after quenching and tempering, a difference Δk1 in C cross-sectional hardness at a position of 20 μm from the thickness center portion and the inner surface was obtained. The method for measuring hardness and the method for calculating Δk1 were the same as those for Δk described above.
Furthermore, a bending fatigue test was performed on each quenched and tempered steel pipe. In this case, it was performed under the condition that the tensile stress at the site where the maximum tensile stress was generated on the outer surface of the steel pipe was 600 N / mm 2 . Similar to the above-described plane bending fatigue test, when the cycle exceeded 1 × 10 6 cycles, the test was terminated at that point, and the fatigue life was evaluated as> 1 × 10 6 cycles. In the steel pipe fatigue evaluation, a steel pipe bending fatigue life of 1 × 10 5 or more was evaluated as good (◯ evaluation), and less than that was determined as poor (× evaluation).
The results are shown in Table 3.

Figure 2006291252
Figure 2006291252

表3から判るように、素材鋼板の段階でΔkが30以下となるように脱炭層の形成を抑止した本発明例の鋼管は、焼入れ焼戻し後のΔk1が70HV以下の範囲に収まっており、最終的に脱炭層の形成が非常に少ない鋼管が得られた。その結果、鋼管における曲げ疲労寿命も1×105サイクル以上と良好であった。 As can be seen from Table 3, the steel pipe of the example of the present invention in which the formation of the decarburized layer was suppressed so that Δk was 30 or less at the raw steel plate stage had Δk1 after quenching and tempering in the range of 70 HV or less. In particular, a steel pipe with very little formation of decarburized layer was obtained. As a result, the bending fatigue life of the steel pipe was also as good as 1 × 10 5 cycles or more.

これに対し、比較例C4、C6、D4、D6は素材鋼板製造段階において熱延巻取温度が高く、またC5、D5は素材鋼板製造段階における焼鈍を酸化性雰囲気で行ったため、これらはいずれもΔkが30を超え、Δk1は70を超えた。その結果鋼管の曲げ疲労寿命は短かった。   On the other hand, Comparative Examples C4, C6, D4, and D6 have high hot rolling coiling temperatures in the raw steel sheet manufacturing stage, and C5 and D5 are all annealed in an oxidizing atmosphere in the raw steel sheet manufacturing stage. Δk exceeded 30 and Δk1 exceeded 70. As a result, the bending fatigue life of the steel pipe was short.

Claims (6)

質量%で、C:0.1〜0.4%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.01%以下、Cr:0.1〜2%、Ti:0.01〜0.1%、B:0.0003〜0.01%、Ni:0〜2%、Mo:0〜2%以下、V:0〜0.5%、Nb:0〜0.5%、Ca:0〜0.02%、残部がFeおよび不可避的不純物の組成を有し、板厚中心部と表面から20μm位置のC断面硬さの差Δkが30HV以下である、疲労特性の良好な焼入れ焼戻し鋼管用素材鋼板。   C: 0.1 to 0.4%, Si: 0.5% or less, Mn: 0.1 to 1.5%, P: 0.02% or less, S: 0.01% or less, Cr: 0.1 to 2%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.01%, Ni: 0 to 2%, Mo: 0 to 2% or less, V: 0 to 0% 0.5%, Nb: 0 to 0.5%, Ca: 0 to 0.02%, the balance is Fe and inevitable impurities, and the C section hardness is 20 μm from the thickness center and the surface. A material steel plate for quenched and tempered steel pipe with good fatigue characteristics, having a difference Δk of 30 HV or less. 質量%で、C:0.1〜0.4%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.01%以下、Cr:0.1〜2%、Ti:0.01〜0.1%、B:0.0003〜0.01%、Ni:0〜2%、Mo:0〜2%以下、V:0〜0.5%、Nb:0〜0.5%、Ca:0〜0.02%、残部がFeおよび不可避的不純物の組成を有し、加熱抽出温度1150〜1300℃、巻取温度570℃以下での熱間圧延、および脱スケールを経た鋼板であって、板厚中心部と表面から20μm位置のC断面硬さの差Δkが30HV以下である、疲労特性の良好な焼入れ焼戻し鋼管用素材鋼板。   C: 0.1-0.4%, Si: 0.5% or less, Mn: 0.1-1.5%, P: 0.02% or less, S: 0.01% or less, Cr: 0.1 to 2%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.01%, Ni: 0 to 2%, Mo: 0 to 2% or less, V: 0 to 0% 0.5%, Nb: 0 to 0.5%, Ca: 0 to 0.02%, the balance having the composition of Fe and inevitable impurities, heating extraction temperature 1150 to 1300 ° C, coiling temperature 570 ° C or less Steel sheet that has been subjected to hot rolling and descaling in which a difference Δk in C cross-sectional hardness at a position 20 μm from the center of the sheet thickness and the surface is 30 HV or less, and has good fatigue characteristics. . 質量%で、C:0.1〜0.4%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.01%以下、Cr:0.1〜2%、Ti:0.01〜0.1%、B:0.0003〜0.01%、Ni:0〜2%、Mo:0〜2%以下、V:0〜0.5%、Nb:0〜0.5%、Ca:0〜0.02%、残部がFeおよび不可避的不純物の組成を有し、Ac1点未満の温度で焼鈍された鋼板であって、板厚中心部と表面から20μm位置のC断面硬さの差Δkが30HV以下である、疲労特性の良好な焼入れ焼戻し鋼管用素材鋼板。 C: 0.1-0.4%, Si: 0.5% or less, Mn: 0.1-1.5%, P: 0.02% or less, S: 0.01% or less, Cr: 0.1 to 2%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.01%, Ni: 0 to 2%, Mo: 0 to 2% or less, V: 0 to 0% A steel plate having a composition of 0.5%, Nb: 0 to 0.5%, Ca: 0 to 0.02%, the balance being Fe and inevitable impurities, and annealed at a temperature less than Ac 1 point. A material steel plate for quenched and tempered steel pipe with good fatigue properties, wherein the difference Δk in C cross-sectional hardness at a position 20 μm from the center of the plate thickness and the surface is 30 HV or less. 質量%で、C:0.1〜0.4%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.01%以下、Cr:0.1〜2%、Ti:0.01〜0.1%、B:0.0003〜0.01%、Ni:0〜2%、Mo:0〜2%以下、V:0〜0.5%、Nb:0〜0.5%、Ca:0〜0.02%、残部がFeおよび不可避的不純物の組成を有し、加熱抽出温度1150〜1300℃、巻取温度570℃以下での熱間圧延、脱スケール、およびAc1点未満の温度での焼鈍を経た鋼板であって、板厚中心部と表面から20μm位置のC断面硬さの差Δkが30HV以下である、疲労特性の良好な焼入れ焼戻し鋼管用素材鋼板。 C: 0.1-0.4%, Si: 0.5% or less, Mn: 0.1-1.5%, P: 0.02% or less, S: 0.01% or less, Cr: 0.1 to 2%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.01%, Ni: 0 to 2%, Mo: 0 to 2% or less, V: 0 to 0% 0.5%, Nb: 0 to 0.5%, Ca: 0 to 0.02%, the balance having the composition of Fe and inevitable impurities, heating extraction temperature 1150 to 1300 ° C, coiling temperature 570 ° C or less A steel sheet that has undergone hot rolling, descaling, and annealing at a temperature less than Ac 1 point, and a difference Δk in C cross-sectional hardness at a position of 20 μm from the center of the plate thickness and the surface is 30 HV or less. Material steel for quenching and tempering steel pipes with good characteristics. 質量%で、C:0.1〜0.4%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.01%以下、Cr:0.1〜2%、Ti:0.01〜0.1%、B:0.0003〜0.01%、Ni:0〜2%、Mo:0〜2%以下、V:0〜0.5%、Nb:0〜0.5%、Ca:0〜0.02%、残部がFeおよび不可避的不純物の組成を有し、加熱抽出温度1150〜1300℃、巻取温度570℃以下での熱間圧延、脱スケール、冷間圧延、およびAc1点未満の温度での焼鈍を経た鋼板であって、板厚中心部と表面から20μm位置のC断面硬さの差Δkが30HV以下である、疲労特性の良好な焼入れ焼戻し鋼管用素材鋼板。 C: 0.1-0.4%, Si: 0.5% or less, Mn: 0.1-1.5%, P: 0.02% or less, S: 0.01% or less, Cr: 0.1 to 2%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.01%, Ni: 0 to 2%, Mo: 0 to 2% or less, V: 0 to 0% 0.5%, Nb: 0 to 0.5%, Ca: 0 to 0.02%, the balance having the composition of Fe and inevitable impurities, heating extraction temperature 1150 to 1300 ° C, coiling temperature 570 ° C or less Steel sheet that has undergone hot rolling, descaling, cold rolling, and annealing at a temperature of less than Ac 1 point, and the difference Δk in C section hardness at a position of 20 μm from the center of the sheet thickness and the surface is 30 HV or less. A steel sheet for quenching and tempering steel pipes with good fatigue properties. 請求項1〜5のいずれかに記載の鋼板を溶接造管したのち最終的に焼入れおよび焼き戻しされた鋼管であって、鋼管の肉厚中心部と内表面から20μm位置のC断面硬さの差Δk1が70HV以下である焼入れ焼戻し鋼管。   A steel pipe which is finally quenched and tempered after welding the steel plate according to any one of claims 1 to 5, and having a C-section hardness at a position of 20 µm from the thickness center portion and the inner surface of the steel pipe. Quenched and tempered steel pipe having a difference Δk1 of 70 HV or less.
JP2005110466A 2005-04-07 2005-04-07 Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube Withdrawn JP2006291252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110466A JP2006291252A (en) 2005-04-07 2005-04-07 Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110466A JP2006291252A (en) 2005-04-07 2005-04-07 Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube

Publications (1)

Publication Number Publication Date
JP2006291252A true JP2006291252A (en) 2006-10-26

Family

ID=37412141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110466A Withdrawn JP2006291252A (en) 2005-04-07 2005-04-07 Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube

Country Status (1)

Country Link
JP (1) JP2006291252A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079280A (en) * 2007-09-27 2009-04-16 Nisshin Steel Co Ltd Quenched and tempered steel pipe with high fatigue life, and its manufacturing method
JP2009249650A (en) * 2008-04-01 2009-10-29 Nisshin Steel Co Ltd High fatigue service life quenching/tempering steel tube and manufacturing method therefor
CN114032470A (en) * 2022-01-07 2022-02-11 北京科技大学 Carburizing bearing steel and preparation method thereof
CN114622136A (en) * 2022-02-25 2022-06-14 包头钢铁(集团)有限责任公司 Continuous casting round tube blank for rare earth-containing railway vehicle hub and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079280A (en) * 2007-09-27 2009-04-16 Nisshin Steel Co Ltd Quenched and tempered steel pipe with high fatigue life, and its manufacturing method
JP2009249650A (en) * 2008-04-01 2009-10-29 Nisshin Steel Co Ltd High fatigue service life quenching/tempering steel tube and manufacturing method therefor
CN114032470A (en) * 2022-01-07 2022-02-11 北京科技大学 Carburizing bearing steel and preparation method thereof
CN114622136A (en) * 2022-02-25 2022-06-14 包头钢铁(集团)有限责任公司 Continuous casting round tube blank for rare earth-containing railway vehicle hub and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5196934B2 (en) High fatigue life quenched and tempered steel pipe and method for manufacturing the same
JP6027302B2 (en) High strength tempered spring steel
JP5387073B2 (en) Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
JP5034803B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP2021181625A (en) High strength member, manufacturing method of high strength member, and manufacturing method of steel sheet for high strength member
JP5543814B2 (en) Steel plate for heat treatment and method for producing steel member
JP2006274348A (en) High carbon steel sheet
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP5151354B2 (en) High tensile cold-rolled steel sheet and method for producing high-tensile cold-rolled steel sheet
JP5142792B2 (en) High fatigue life quenched and tempered steel pipe and method for manufacturing the same
JP6796472B2 (en) Hollow member and its manufacturing method
US9540704B2 (en) Method of making quenched and tempered steel pipe with high fatigue life
JP2006291252A (en) Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP2009235499A (en) Method for manufacturing hollow stabilizer
JP2009155730A (en) Automobile undercarriage component having irregular cross-sectional shape and excellent in fatigue performance
JP2009203492A (en) High-tensile welded steel pipe for automobile structural member, and method for producing the same
JPH1017928A (en) Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
US20120103459A1 (en) High fatigue service life quenching/tempering steel tube and manufacturing method therefor
JP5929233B2 (en) Steel plate for machine structural parts
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
JP2005350736A (en) High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
JP2007107032A (en) Method for producing steel pipe for hollow stabilizer, and producing method for producing hollow stabilizer
EP3214189B1 (en) Method for manufacturing a quenched and tempered seamless pipe for a high-strength hollow spring

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701