JP2006286431A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2006286431A
JP2006286431A JP2005105733A JP2005105733A JP2006286431A JP 2006286431 A JP2006286431 A JP 2006286431A JP 2005105733 A JP2005105733 A JP 2005105733A JP 2005105733 A JP2005105733 A JP 2005105733A JP 2006286431 A JP2006286431 A JP 2006286431A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
negative electrode
exposed portion
collector exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105733A
Other languages
Japanese (ja)
Inventor
Masanori Machida
昌紀 町田
Masakazu Umehara
将一 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005105733A priority Critical patent/JP2006286431A/en
Publication of JP2006286431A publication Critical patent/JP2006286431A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery with a structure packaging a battery element by a laminate film in which temperature rise inside the battery is suppressed at the time of fracture or when a nail is stuck. <P>SOLUTION: The battery element is manufactured by forming a polymer electrolyte on respective both faces of a positive electrode of belt-shape coated with a positive electrode active material on both sides and a negative electrode of belt-shape coated with a negative electrode active material on both sides, and laminating and winding through a separator. A positive electrode current collector exposed portion and a negative electrode current collector exposed portion where the active material is not coated with a width of half round or more and one round or less are provided at the 2nd to 5th layer from the outer circumference part side of the battery element. At this time, the positive electrode collector exposed portion and the negative electrode collector exposed portion are arranged so as to be opposed to each other. Otherwise, only the positive electrode collector exposed portion may be provided with a width of half round or more and one round or less at the 2nd to 5th layer from the outer circumference part side of the battery element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ラミネートフィルムからなる外装材に電池素子を収容してなる非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery in which a battery element is accommodated in an exterior material made of a laminate film.

近年、携帯電話、ノートブック型パソコンなどをはじめとする電子機器のコードレス化、ポータブル化が進み、薄型、小型、軽量の携帯電子機器が次々と開発されている。また、機器や機能の多様化によって電力使用量が増加しており、それら電子機器のエネルギー源である電池、特に二次電池の高容量化に対する要求が高まっている。   In recent years, electronic devices such as mobile phones and notebook computers have become cordless and portable, and thin, small, and lightweight portable electronic devices have been developed one after another. In addition, the amount of electric power used is increasing due to diversification of devices and functions, and there is an increasing demand for higher capacity of batteries, particularly secondary batteries, which are energy sources for these electronic devices.

従来から使用されてきた二次電池としては、鉛畜電池、ニッケルカドミウム(Ni−Cd)電池があり、新たな二次電池としてはニッケル水素(Ni−MH)電池やリチウムイオン(Li−ion)電池が実用化されている。   Conventional secondary batteries include lead-acid batteries and nickel-cadmium (Ni-Cd) batteries, and new secondary batteries include nickel-hydrogen (Ni-MH) batteries and lithium-ion (Li-ion) batteries. Batteries are in practical use.

さらに、従来電池外装としてはステンレス(SUS)管やアルミ(Al)缶が使われていたが、近年、形状自由度が大きいことから、ラミネートフィルム外装を用いた電池が開発され、商品化されている。このラミネートフィルムを用いたリチウムイオン二次電池の開発により、小型、軽量、薄型で高いエネルギー密度を有する二次電池が実現可能となった。   Furthermore, stainless steel (SUS) tubes and aluminum (Al) cans have been used as conventional battery exteriors. However, due to the large degree of freedom in shape in recent years, batteries using laminate film exteriors have been developed and commercialized. Yes. Development of a lithium ion secondary battery using this laminate film has made it possible to realize a secondary battery that is small, light, thin, and has a high energy density.

上記の薄型リチウムイオン二次電池は、リチウム複合酸化物等を含有する正極活物質が、正極集電体の両面または片面に塗布された正極と、炭素材料を含有する負極活物質が、負極集電体の両面または片面に塗布された負極とを有している。このような正極および負極を、ポリオレフィン系微多孔膜よりなるセパレータを介して積層、もしくは積層後に巻回することにより電池素子を作製し、ラミネートフィルムに収容し、電解液を注液して封止することにより、電池を作製する。   The thin lithium ion secondary battery includes a positive electrode active material containing a lithium composite oxide or the like applied on both sides or one side of a positive electrode current collector, and a negative electrode active material containing a carbon material. A negative electrode applied on both sides or one side of the electric body. A battery element is produced by laminating such a positive electrode and a negative electrode via a separator made of a polyolefin microporous film, or winding after lamination, and then storing the battery element in a laminate film, injecting an electrolytic solution and sealing it. By doing so, a battery is manufactured.

また、電解液をゲル化して用いたリチウムイオンポリマー二次電池とすることもできる。電極の両面または片面に活物質およびゲル電解質を塗布した正極および負極を、セパレータを介して積層、または積層後に巻回することにより電池素子を作製し、ラミネートフィルムに収容して電池素子の周囲を封止する。これにより、薄型化とともに漏液の防止を図ることができる。   Moreover, it can also be set as the lithium ion polymer secondary battery which gelatinized and used electrolyte solution. A battery element is produced by laminating a positive electrode and a negative electrode coated with an active material and a gel electrolyte on both sides or one side of an electrode via a separator, or winding after laminating, and placing the battery element in a laminate film to surround the battery element Seal. As a result, it is possible to reduce the thickness and prevent leakage.

上述のように、リチウムイオン二次電池の外装としてラミネートフィルムを採用することにより電池の軽量化や薄型化は達成される。ところが、ラミネートフィルムは従来の金属容器(電池缶)と比較して強度が低く、外部からのダメージに弱いため、誤って鋭い突起物が刺さって正極と負極とが短絡し、発熱や熱暴走がおこるおそれがある。このため、外部からのダメージに対する電池内部の損傷を最小限に抑え、安全性を高めるための対策を施す必要がある。   As described above, the use of a laminate film as the exterior of the lithium ion secondary battery can achieve reduction in weight and thickness of the battery. However, the laminate film has a lower strength than conventional metal containers (battery cans) and is vulnerable to damage from the outside, so that sharp projections are accidentally stuck and the positive and negative electrodes are short-circuited, causing heat generation and thermal runaway. May happen. For this reason, it is necessary to take measures for minimizing damage inside the battery against external damage and enhancing safety.

以下の特許文献1に、金属容器を用いた電池の安全性を高めるための構造が記載されている。この特許文献1では、巻回した正極および負極の巻回終端部に活物質を塗布しない正極集電体露呈部分および負極集電体露呈部分を設け、この正極集電体露呈部分および負極集電体露呈部分がセパレータを介して巻回体の外周を1周以上覆うことにより、電池が圧壊しても損傷を最小限に抑えることができる電池構造が提案されている。
特開平11−233149号公報
Patent Document 1 below describes a structure for improving the safety of a battery using a metal container. In Patent Document 1, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion where no active material is applied are provided at the winding end portions of the wound positive electrode and negative electrode, and the positive electrode current collector exposed portion and the negative electrode current collector are provided. There has been proposed a battery structure in which the body-exposed portion covers one or more outer circumferences of the wound body via a separator so that damage can be minimized even if the battery is crushed.
JP-A-11-233149

これは、金属容器が圧壊した場合に外周部に配置された正極集電体露呈部分および負極集電体露呈部分が短絡し、瞬時に電圧を下げる効果によるものである。集電体露呈部分は電極最内周部の電極端部に設けることも検討されたが、この場合釘等が電池最内周部まで到達しなければ電圧を下げる効果が発現しないため、釘が中心部に達する前に熱暴走に至る場合もある。このため、最外周に集電体露呈部分を設けることが必要である。   This is because when the metal container is crushed, the positive electrode current collector exposed portion and the negative electrode current collector exposed portion arranged on the outer peripheral portion are short-circuited, and the voltage is instantaneously reduced. It was also considered that the current collector exposed portion was provided at the electrode end of the innermost electrode, but in this case, the effect of lowering the voltage would not be exhibited unless the nail or the like reached the innermost battery. In some cases, thermal runaway may occur before reaching the center. For this reason, it is necessary to provide a collector exposed portion on the outermost periphery.

特許文献1に記載された構造は、導電性を持つ巻SUSやアルミ製の外装材の場合に大きな効果がある。しかしながら、ラミネートフィルムのように金属箔の両側表面が絶縁性樹脂に被覆された外装材では効果が発現しない場合がある。また、ラミネートフィルムは伸縮性の素材であるため、ラミネートフィルムで外装された電池素子に対しては釘等が外部から刺さった場合に外装材の巻き込みが発生し、最外周で短絡させることが困難となり、効果がない場合がある。   The structure described in Patent Document 1 has a great effect in the case of a winding SUS having conductivity and an aluminum exterior material. However, the effect may not be exhibited by an exterior material in which both surfaces of a metal foil are covered with an insulating resin, such as a laminate film. In addition, since the laminate film is a stretchable material, it is difficult to short-circuit the outer periphery of the battery element covered with the laminate film when a nail or the like is stuck from the outside. And may not be effective.

したがって、この発明は、上記問題点に鑑み、ラミネートフィルムを外装材に用いた場合であっても外部損傷に対して安全性の高い非水電解質電池を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to provide a non-aqueous electrolyte battery that is highly safe against external damage even when a laminate film is used as an exterior material.

上記課題を解決するために、この発明による非水電解質電池は、両面に正極活物質が塗布された帯状の正極と、両面に負極活物質が塗布された帯状の負極のそれぞれの両面にポリマー電解質を形成し、上記正極および上記負極をセパレータを介して積層し、巻回して作製した電池素子を、ラミネートフィルムで外装した構造であって、集電体に活物質が塗布されない集電体露呈部が、上記電池素子外周側から2〜5層目に半周以上一周以下の幅で設けられることを特徴とする。   In order to solve the above problems, a non-aqueous electrolyte battery according to the present invention comprises a polymer electrolyte on both sides of a strip-like positive electrode coated with a positive electrode active material on both sides and a strip-shaped negative electrode coated with a negative electrode active material on both sides. A current collector exposed portion in which a battery element formed by laminating and winding the positive electrode and the negative electrode through a separator is wrapped with a laminate film, and an active material is not applied to the current collector However, it is provided in the 2-5th layer from the said battery element outer peripheral side with the width | variety of a half circumference or more and a circumference or less.

この発明によれば、外部損傷などの異常時でも正極集電体露呈部分および負極集電体露呈部分を確実に短絡させて電池内部の急激な発熱や熱暴走を防止し、安全性の向上を図ることができる。   According to the present invention, the positive electrode current collector exposed portion and the negative electrode current collector exposed portion can be reliably short-circuited even in the event of an abnormality such as external damage to prevent sudden heat generation and thermal runaway inside the battery, thereby improving safety. Can be planned.

以下、この発明の一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に、この発明を適用して作製した非水電解質電池の構成を示す。図2に詳細に示すように、この電池1は電池素子10がラミネートフィルム4に形成された凹部に収容されて外装されており、電池素子10の周辺部を封止することにより作製されている。以下、電池素子10の構成について説明する。   FIG. 1 shows a configuration of a nonaqueous electrolyte battery manufactured by applying the present invention. As shown in detail in FIG. 2, the battery 1 is produced by sealing the periphery of the battery element 10 with the battery element 10 housed in a recess formed in the laminate film 4. . Hereinafter, the configuration of the battery element 10 will be described.

図3に、ラミネートフィルム4に収容される電池素子10の構造を示す。この電池素子10は、帯状の正極11と、セパレータ13aと、正極11と対向して配された帯状の負極12と、セパレータ13bとを順に積層し、長手方向に巻回されており、正極11および負極12の両面にはポリマー電解質14が塗布されている。電池素子10からは正極11と接続された正極端子2aおよび負極12と接続された負極端子2bが導出されており(以下、特定の端子を指さない場合は電極端子2とする)、正極端子2aおよび負極端子2bには後に外装するラミネートフィルム4との接着性を向上させるために、樹脂片であるシーラント3aおよび3b(以下、特定のシーラントを示さない場合はシーラント3と適宜称する)が被覆されている。   FIG. 3 shows the structure of the battery element 10 accommodated in the laminate film 4. This battery element 10 is formed by sequentially laminating a strip-like positive electrode 11, a separator 13a, a strip-like negative electrode 12 disposed opposite to the positive electrode 11, and a separator 13b, and is wound in the longitudinal direction. A polymer electrolyte 14 is applied to both surfaces of the negative electrode 12. A positive electrode terminal 2a connected to the positive electrode 11 and a negative electrode terminal 2b connected to the negative electrode 12 are led out from the battery element 10 (hereinafter referred to as an electrode terminal 2 when not referring to a specific terminal). 2a and negative electrode terminal 2b are coated with sealant 3a and 3b (hereinafter referred to as sealant 3 as appropriate when a specific sealant is not shown) to improve the adhesion to laminate film 4 to be packaged later. Has been.

[正極]
正極は、正極活物質を含有する正極活物質層が、正極集電体の両面上に形成されたものである。正極集電体としては、例えばアルミニウム(Al)箔、ニッケル(Ni)箔あるいは、ステンレス箔などの金属箔により構成されている。
[Positive electrode]
In the positive electrode, a positive electrode active material layer containing a positive electrode active material is formed on both surfaces of a positive electrode current collector. The positive electrode current collector is made of a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, or a stainless steel foil.

正極活物質層は、例えば正極活物質と、導電剤と、結着剤とを含有して構成されている。ここで、正極活物質、導電剤、結着剤および溶剤は、均一に分散していればよく、その混合比は問わない。   The positive electrode active material layer includes, for example, a positive electrode active material, a conductive agent, and a binder. Here, the positive electrode active material, the conductive agent, the binder, and the solvent only have to be uniformly dispersed, and the mixing ratio is not limited.

正極活物質としては、目的とする電池の種類に応じて、金属酸化物、金属硫化物または特定の高分子を用いることができる。例えばリチウムイオン電池を構成する場合、LiXMO2(式中、Mは、一種以上の遷移金属を表し、xは、電池の充放電状態によって異なり、通常0.05以上1.10以下である)を主体とする、リチウムと遷移金属との複合酸化物が用いられる。リチウム複合酸化物を構成する遷移金属としては、コバルト(Co),Ni,マンガン(Mn)等が用いられる。 As the positive electrode active material, a metal oxide, a metal sulfide, or a specific polymer can be used depending on the type of the target battery. For example, in the case of constituting a lithium ion battery, Li x MO 2 (wherein M represents one or more transition metals, and x varies depending on the charge / discharge state of the battery, and is usually 0.05 or more and 1.10 or less. ) And a composite oxide of lithium and transition metal. As the transition metal constituting the lithium composite oxide, cobalt (Co), Ni, manganese (Mn) or the like is used.

このようなリチウム複合酸化物として、具体的には、LiCoO2、LiNiO2、LiMn24、LiNiyCo1-y2(0<y<1)等が挙げられる。また、遷移金属元素の一部を他の元素に置換した固溶体も使用可能である。LiNi0.5Co0.52、LiNi0.8Co0.22等がその例として挙げられる。これらのリチウム複合酸化物は、高電圧を発生でき、エネルギー密度が優れたものである。さらに、正極活物質としてTiS2、MoS2、NbSe2、V25等のリチウムを有しない金属硫化物または酸化物を使用しても良い。これらの正極活物質は、単独で用いるか、もしくは複数種を混合して用いてもよい。 Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi y Co 1-y O 2 (0 <y <1). A solid solution in which a part of the transition metal element is substituted with another element can also be used. Examples thereof include LiNi 0.5 Co 0.5 O 2 and LiNi 0.8 Co 0.2 O 2 . These lithium composite oxides can generate a high voltage and have an excellent energy density. Furthermore, TiS 2, MoS 2, NbSe 2, V 2 O no lithium metal sulfides such as 5 or may be used an oxide as the positive electrode active material. These positive electrode active materials may be used alone or in combination of two or more.

また、導電剤としては、例えばカーボンブラックあるいはグラファイトなどの炭素材料等が用いられる。また、結着剤としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニリデンフルオライド等が用いられる。また、溶剤としては、例えばN−メチルピロリドン等が用いられる。   As the conductive agent, for example, a carbon material such as carbon black or graphite is used. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyvinylidene fluoride, or the like is used. Moreover, as a solvent, N-methylpyrrolidone etc. are used, for example.

上述の正極活物質、結着剤、導電剤を均一に混合して正極合剤とし、この正極合剤を溶剤中に分散させてスラリー状にする。次いで、このスラリーをドクターブレード法等により正極集電体上に均一に塗布する。   The above-described positive electrode active material, binder, and conductive agent are uniformly mixed to form a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent to form a slurry. Next, this slurry is uniformly applied on the positive electrode current collector by a doctor blade method or the like.

このとき、図4に示すように、巻回前の正極11において、正極集電体11aの片面、もしくは両面の一部分に正極合剤の未塗布部(以下、正極集電体露呈部と適宜称する)15aを設ける。図4において、A側を巻回体の巻始め端部、B側を巻終わり端部とすると、巻終わり端部に近い部分に正極集電体露呈部15aが形成されるようにして正極合剤が塗布される。この正極集電体露呈部15aは負極12およびセパレータ13と共に積層し、巻回した電池素子10において、外周側から2〜5層目に当たる部分に形成される。正極集電露呈部15aの幅は作製する電池の径により異なるが、巻回体を作製したときに正極集電体露呈部15aが半周分以上1周分以下であればよい。   At this time, as shown in FIG. 4, in the positive electrode 11 before winding, on one side of the positive electrode current collector 11 a or a part of both surfaces, an uncoated portion of the positive electrode mixture (hereinafter referred to as a positive electrode current collector exposed portion is appropriately referred to). ) 15a is provided. In FIG. 4, when the A side is the winding start end of the wound body and the B side is the winding end, the positive electrode collector exposed portion 15a is formed in a portion near the winding end. The agent is applied. The positive electrode current collector exposed portion 15a is formed in a portion corresponding to the second to fifth layers from the outer peripheral side in the battery element 10 which is laminated and wound together with the negative electrode 12 and the separator 13. The width of the positive electrode current collector exposed portion 15a varies depending on the diameter of the battery to be manufactured, but it is sufficient that the positive electrode current collector exposed portion 15a is not less than a half turn and not more than one turn when a wound body is produced.

上述のようにして正極集電体露呈部15aを設けるようにして正極合剤を塗布した後、高温で乾燥させて溶剤を飛ばすことにより正極活物質層11bが形成される。   After applying the positive electrode mixture so as to provide the positive electrode current collector exposed portion 15a as described above, the positive electrode active material layer 11b is formed by drying at high temperature and removing the solvent.

正極11は正極集電体11aの一端部にスポット溶接または超音波溶接で接続された正極端子2aを有している。この正極端子2aは金属箔、網目状のものが望ましいが、電気化学的および化学的に安定であり、導通がとれるものであれば金属でなくとも問題はない。正極端子2aの材料としては、例えばAl等が挙げられる。   The positive electrode 11 has a positive electrode terminal 2a connected to one end of the positive electrode current collector 11a by spot welding or ultrasonic welding. The positive electrode terminal 2a is preferably a metal foil or a mesh-like one, but there is no problem even if it is not metal as long as it is electrochemically and chemically stable and can conduct electricity. Examples of the material of the positive electrode terminal 2a include Al.

[負極]
負極は、負極活物質を含有する負極活物質層が、負極集電体の両面上に形成されたものである。負極集電体としては、例えば銅(Cu)箔,Ni箔あるいはステンレス箔などの金属箔により構成されている。
[Negative electrode]
In the negative electrode, a negative electrode active material layer containing a negative electrode active material is formed on both surfaces of a negative electrode current collector. The negative electrode current collector is made of a metal foil such as a copper (Cu) foil, a Ni foil, or a stainless steel foil.

負極活物質層は、例えば負極活物質と、必要であれば導電剤と、結着剤とを含有して構成されている。これらを均一に混合して負極合剤とし、この負極合剤を溶剤中に分散させてスラリー状にする。次にこのスラリーをドクターブレード法等により負極集電体上に均一に塗布し、高温で乾燥させて溶剤を飛ばすことにより負極活物質層が形成される。ここで、負極活物質、導電剤、結着剤および溶剤は、正極活物質と同様に、その混合比は問わない。   The negative electrode active material layer includes, for example, a negative electrode active material, a conductive agent if necessary, and a binder. These are uniformly mixed to form a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent to form a slurry. Next, the slurry is uniformly applied on the negative electrode current collector by a doctor blade method or the like, dried at a high temperature, and the solvent is blown off to form a negative electrode active material layer. Here, the mixing ratio of the negative electrode active material, the conductive agent, the binder, and the solvent is not limited as in the positive electrode active material.

負極活物質としては、リチウム金属、リチウム合金またはリチウムをドープ・脱ドープ可能な炭素材料または金属系材料と炭素系材料との複合材料が用いられる。具体的に、リチウムをドープ・脱ドープ可能な炭素材料としてはグラファイト、難黒鉛化炭素、易黒鉛化炭素等が挙げられる。より具体的には、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス)、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等の炭素材料を使用することができる。さらに、リチウムをドープ、脱ドープできる材料としては、ポリアセチレン、ポリピロール等の高分子やSnO2等の酸化物を使用することができる。 As the negative electrode active material, lithium metal, a lithium alloy, a carbon material that can be doped / undoped with lithium, or a composite material of a metal material and a carbon material is used. Specific examples of the carbon material that can be doped / undoped with lithium include graphite, non-graphitizable carbon, and graphitizable carbon. More specifically, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke), graphites, glassy carbons, organic polymer compound fired bodies (phenolic resin, furan resin, etc.) at an appropriate temperature. Carbon materials such as those obtained by firing and carbonization), carbon fibers, activated carbon, and the like can be used. Furthermore, as a material capable of doping and dedoping lithium, a polymer such as polyacetylene or polypyrrole or an oxide such as SnO 2 can be used.

また、リチウムを合金化可能な材料としては多様な種類の金属等が使用可能であるが、スズ(Sn)、コバルト(Co)、インジウム(In)、Al、ケイ素(Si)およびこれらの合金がよく用いられる。金属リチウムを使用する場合は、必ずしも粉体を結着剤で塗布膜にする必要はなく、圧延したLi金属箔を集電体に圧着する方法でも構わない。   In addition, various types of metals can be used as materials capable of alloying lithium, but tin (Sn), cobalt (Co), indium (In), Al, silicon (Si), and alloys thereof can be used. Often used. When metal lithium is used, it is not always necessary to use powder as a coating film with a binder, and a method of pressing a rolled Li metal foil to a current collector may be used.

結着剤としては、例えばポリフッ化ビニリデン、スチレンブタジエンゴム等が用いられる。また、溶剤としては、例えばN−メチルピロリドン、メチルエチルケトン等が用いられる。   As the binder, for example, polyvinylidene fluoride, styrene butadiene rubber or the like is used. Moreover, as a solvent, N-methylpyrrolidone, methyl ethyl ketone, etc. are used, for example.

上述の負極活物質、結着剤、導電剤を均一に混合して負極合剤とし、溶剤中に分散させてスラリー状にした後、正極と同様の方法により負極集電体上に均一に塗布する。   The negative electrode active material, binder, and conductive agent described above are uniformly mixed to form a negative electrode mixture, dispersed in a solvent to form a slurry, and then uniformly applied on the negative electrode current collector in the same manner as the positive electrode To do.

このとき、図4に示す正極11の場合と同様に、負極集電体の片面、もしくは両面の一部分に負極合剤の未塗布部(以下、負極集電体露呈部と適宜称する)を設ける。この負極集電体露呈部は正極と同様に、巻回後の電池素子10において、外周側から2〜5層目に当たる部分に、半周以上1周以下の幅で形成される。   At this time, as in the case of the positive electrode 11 shown in FIG. 4, an uncoated portion of the negative electrode mixture (hereinafter, appropriately referred to as a negative electrode current collector exposed portion) is provided on one surface or a part of both surfaces of the negative electrode current collector. In the battery element 10 after winding, the negative electrode current collector exposed portion is formed in a portion corresponding to the second to fifth layers from the outer peripheral side with a width of not less than a half circumference and not more than one circumference, similarly to the positive electrode.

負極12も正極11と同様に、集電体の一端部にスポット溶接または超音波溶接で接続された負極端子2bを有しており、この負極端子2bは電気化学的および化学的に安定であり、導通がとれるものであれば金属でなくとも問題はない。負極端子2bの材料としては、例えば銅、Ni等が挙げられる。   Similarly to the positive electrode 11, the negative electrode 12 has a negative electrode terminal 2b connected to one end of the current collector by spot welding or ultrasonic welding, and this negative electrode terminal 2b is electrochemically and chemically stable. There is no problem even if it is not metal as long as it can conduct electricity. Examples of the material of the negative electrode terminal 2b include copper and Ni.

なお、正極端子2aおよび負極端子2bは同じ方向から導出されていることが好ましいが、短絡等が起こらず電池性能にも問題がなければ、どの方向から導出されていても問題はない。また、正極端子2aおよび負極端子2bの接続箇所は、電気的接触がとれているのであれば取り付ける場所、取り付ける方法は上記の例に限られない。   In addition, although it is preferable that the positive electrode terminal 2a and the negative electrode terminal 2b are derived | led-out from the same direction, if a short circuit etc. do not occur and there is no problem in battery performance, it is satisfactory even if it derive | leads out from which direction. Moreover, the connection location of the positive electrode terminal 2a and the negative electrode terminal 2b is not limited to the above example as long as electrical contact is established, and the method of attachment is not limited to the above example.

[ポリマー電解質]
ポリマー電解質としては、高分子固体電解質またはゲル状電解質等を用いることができる。以下、電解質について詳細に説明する。
[Polymer electrolyte]
As the polymer electrolyte, a polymer solid electrolyte or a gel electrolyte can be used. Hereinafter, the electrolyte will be described in detail.

正極活物質層または負極活物質層に積層されている固体電解質、またはゲル状電解質は、高分子化合物と電解質塩と溶媒、(ゲル電解質の場合は、さらに可塑剤)からなる溶液を正極活物質層または負極活物質層に含浸させ、溶媒を除去して固体化またはゲル化したものである。正極活物質層または負極活物質層に積層された固体電解質、またはゲル状電解質は、その一部が正極活物質層または負極活物質層に含浸されて固体化またはゲル化されている。架橋系の場合は、その後、光または熱で架橋して固体化される。   For the solid electrolyte or gel electrolyte laminated on the positive electrode active material layer or the negative electrode active material layer, a solution composed of a polymer compound, an electrolyte salt, and a solvent (or a plasticizer in the case of a gel electrolyte) is used as the positive electrode active material. A layer or a negative electrode active material layer is impregnated, and the solvent is removed to solidify or gel. Part of the solid electrolyte or gel electrolyte laminated on the positive electrode active material layer or the negative electrode active material layer is impregnated into the positive electrode active material layer or the negative electrode active material layer to be solidified or gelled. In the case of a crosslinked system, it is then solidified by crosslinking with light or heat.

ゲル状電解質は、可塑剤に電解質塩を添加し、2重量%以上30重量%以下のマトリクス高分子および溶媒を混合した後、電極に塗布し、溶媒を除去することにより得られる。   The gel electrolyte is obtained by adding an electrolyte salt to a plasticizer, mixing 2% by weight to 30% by weight of a matrix polymer and a solvent, applying the mixture to an electrode, and removing the solvent.

ゲル状電解質に用いられる可塑剤としては、エステル類、エーテル類、炭酸エステル類を単独で用いてもよいし、複数種を所定の組成で混合してもよい。具体的には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、エチルプロピルカーボネート等が挙げられる。   As the plasticizer used for the gel electrolyte, esters, ethers, and carbonates may be used alone, or a plurality of types may be mixed with a predetermined composition. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, and ethyl propyl carbonate.

また、リチウム塩としては通常の電池電解液に用いられる材料を使用することが可能である。具体的には、LiCl、LiBr、LiI、LiClO3、LiClO4、LiBF4、LiPF6、LiNO3、LiN(CF3SO22、LiN(C25SO22、LiAsF6、LiCF3SO3、LiC(SO2CF33、LiAlCl4、LiSiF6等を挙げることができるが、酸化安定性の点からLiPF6、LiBF4が望ましい。これらリチウム塩は単独で用いても複数種を混合して用いても良い。リチウム塩を溶解する濃度として、可塑剤中に0.1〜3.0molで実施できるが、好ましくは0.5〜2.0mol/lで用いることができる。 Moreover, as lithium salt, it is possible to use the material used for normal battery electrolyte solution. Specifically, LiCl, LiBr, LiI, LiClO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiNO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiAsF 6 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 and the like can be mentioned, but LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability. These lithium salts may be used alone or in combination of two or more. Although it can implement by 0.1-3.0 mol in a plasticizer as a density | concentration which melt | dissolves lithium salt, Preferably it can use at 0.5-2.0 mol / l.

ゲル状電解質を調整するにあたり、このような可塑剤をゲル化するマトリクス高分子としては、ゲル状電解質を構成するのに使用されている種々の高分子が利用できる。中でも酸化還元安定性から、たとえばポリ(ビニリデンフルオロライド)やポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)などのフッ素系高分子を用いることが望ましい。   In preparing the gel electrolyte, various polymers used for constituting the gel electrolyte can be used as the matrix polymer for gelling such a plasticizer. Among them, it is desirable to use a fluorine-based polymer such as poly (vinylidene fluoride) or poly (vinylidene fluoride-co-hexafluoropropylene) from the viewpoint of redox stability.

また、溶媒としては揮発しやすい低沸点の溶媒が望ましい。具体的には、ジメチルカーボネート、エチルメチルカーボネート等が挙げられる。   Further, as the solvent, a low boiling point solvent which is easy to volatilize is desirable. Specific examples include dimethyl carbonate and ethyl methyl carbonate.

高分子固体電解質は、リチウム塩とそれを溶解する高分子化合物からなり、高分子化合物としては、ポリ(エチレンオキサイド)や同架橋体などのエーテル系高分子、ポリ(メタクリレート)エステル系、アクリレート系、ポリ(ビニリデンフルオロライド)やポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)などのフッ素系高分子などを単独、または混合して用いることができるが、酸化還元安定性から、たとえばポリ(ビニリデンフルオロライド)やポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)などのフッ素系高分子を用いることが望ましい。   The polymer solid electrolyte is composed of a lithium salt and a polymer compound that dissolves the lithium salt. Examples of the polymer compound include ether polymers such as poly (ethylene oxide) and cross-linked polymers, poly (methacrylate) esters, and acrylates. , Fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene) can be used alone or in combination. It is desirable to use a fluorine-based polymer such as (fluoride) or poly (vinylidene fluoride-co-hexafluoropropylene).

また、リチウム塩としてはゲル状電解質で用いた材料と同様のものを用いることができる。   As the lithium salt, the same material as that used in the gel electrolyte can be used.

[セパレータ]
セパレータは、例えばポリプロピレン(PP)あるいはポリエチレン(PE)などのポリオレフィン系の材料よりなる多孔質膜、またはセラミック製の不織布などの無機材料よりなる多孔質膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリエチレン、ポリプロピレンの多孔質フィルムが最も有効である。
[Separator]
The separator is composed of, for example, a porous film made of a polyolefin-based material such as polypropylene (PP) or polyethylene (PE), or a porous film made of an inorganic material such as a ceramic nonwoven fabric. A structure in which a porous film is laminated may be used. Among these, polyethylene and polypropylene porous films are the most effective.

一般的にセパレータの厚みは5〜50μmが好適に使用可能であるが、7〜30μmがより好ましい。セパレータは、厚すぎると活物質の充填量が低下して電池容量が低下するとともに、イオン伝導性が低下して電流特性が低下する。逆に薄すぎると、膜の機械的強度が低下する。   In general, the thickness of the separator is preferably 5 to 50 μm, more preferably 7 to 30 μm. If the separator is too thick, the amount of the active material filled decreases, the battery capacity decreases, and the ionic conductivity decreases and the current characteristics deteriorate. On the other hand, if the film is too thin, the mechanical strength of the film decreases.

[電池素子の作製]
上述のようにして作製したポリマー電解質溶液を正極11および負極12に均一に塗布し、正極活物質層および負極活物質層に含浸させた後、常温で保存するか、もしくは乾燥工程を経てポリマー電解質層14を形成する。次いで、ポリマー電解質層14を形成した正極11および負極12を用い、正極12、セパレータ13a、負極12、セパレータ13bの順に積層して巻回し、電池素子10とする。この時、正極11および負極12に設けた半周〜1周分の正極集電体露呈部分15a、および負極集電体露呈部分15bが、外周側から2〜5層目部分に位置している。
[Production of battery element]
The polymer electrolyte solution prepared as described above is uniformly applied to the positive electrode 11 and the negative electrode 12 and impregnated in the positive electrode active material layer and the negative electrode active material layer, and then stored at room temperature or a polymer electrolyte through a drying process. Layer 14 is formed. Next, using the positive electrode 11 and the negative electrode 12 on which the polymer electrolyte layer 14 is formed, the positive electrode 12, the separator 13 a, the negative electrode 12, and the separator 13 b are stacked and wound in this order to obtain the battery element 10. At this time, the positive electrode current collector exposed portion 15a and the negative electrode current collector exposed portion 15b for half to one turn provided on the positive electrode 11 and the negative electrode 12 are located in the second to fifth layer portions from the outer peripheral side.

以下、ラミネートフィルム外装材4に収容される電池素子10の断面図を用いて、集電体露呈部の構成例を説明する。図5〜図8は、正極11および負極12のそれぞれに集電体露呈部を設けており、外周側から2層目に集電体露呈部を形成した場合の構成例である。図5〜図8では、参照符号11aで正極集電体、参照符号11bで正極活物質層、参照符号12aで負極集電体、参照符号12bで負極活物質層、参照符号13でセパレータを示している。また、説明を容易にするため、正極活物質層11bおよび負極活物質層12b上に形成されたポリマー電解質は図中に表示しない。   Hereinafter, a configuration example of the current collector exposing portion will be described using a cross-sectional view of the battery element 10 accommodated in the laminate film exterior material 4. 5 to 8 are configuration examples in the case where the current collector exposed portion is provided in each of the positive electrode 11 and the negative electrode 12, and the current collector exposed portion is formed in the second layer from the outer peripheral side. 5 to 8, reference numeral 11 a indicates a positive electrode current collector, reference numeral 11 b indicates a positive electrode active material layer, reference numeral 12 a indicates a negative electrode current collector, reference numeral 12 b indicates a negative electrode active material layer, and reference numeral 13 indicates a separator. ing. For ease of explanation, the polymer electrolyte formed on the positive electrode active material layer 11b and the negative electrode active material layer 12b is not shown in the drawing.

なお、図5以下に示す電池の断面図は実際の巻回数よりも少ない巻回数で示されており、実際は例えば10〜20回程度巻回されたものを用いる。   In addition, the cross-sectional views of the battery shown in FIG. 5 and below are shown with a smaller number of turns than the actual number of turns, and actually, for example, those wound about 10 to 20 times.

図5は、正極集電体露呈部15aおよび負極集電体露呈部15bをそれぞれ片面に半周分形成した場合の断面図であり、図6は、正極集電体露呈部15aおよび負極集電体露呈部15bをそれぞれ片面に1周分形成した場合の断面図であり、図7は、正極集電体露呈部15aおよび負極集電体露呈部15bをそれぞれ両面に半周分形成した場合の断面図であり、図8は、正極集電体露呈部15aおよび負極集電体露呈部15bをそれぞれ両面に1周分形成した場合の断面図である。   FIG. 5 is a cross-sectional view of the case where the positive electrode current collector exposed portion 15a and the negative electrode current collector exposed portion 15b are formed on one side for half a circumference, and FIG. 6 shows the positive electrode current collector exposed portion 15a and the negative electrode current collector. FIG. 7 is a cross-sectional view when the exposed portion 15b is formed on one side for one turn, and FIG. 7 is a cross-sectional view when the positive electrode current collector exposed portion 15a and the negative electrode current collector exposed portion 15b are formed on both surfaces for a half turn. FIG. 8 is a cross-sectional view of the case where the positive electrode current collector exposed portion 15a and the negative electrode current collector exposed portion 15b are formed on each side for one turn.

ただし、電池内部の安全性が確保されるように構成されていれば必ずしも集電体露呈部が図5〜図8のように設けられていなくても良い。例えば、図6のように1周分の正極集電体露呈部15aおよび負極集電体露呈部15bを設ける場合、図9に示すように少なくとも電池上面部および電池底面部の平坦部に集電体露呈部が設けられていればよい。扁平型電池の場合電池厚さが非常に小さく、電池側面部から釘等が刺さる危険性が少ないためであるが、1周分の集電体露呈部を設けた方が製造工程上容易に電池を作製することができる。また、集電体露呈部は外周側から2〜5層目のいずれかに形成すればよい。   However, as long as it is comprised so that the safety | security inside a battery may be ensured, the collector exposed part does not necessarily need to be provided like FIGS. For example, when the positive electrode current collector exposed portion 15a and the negative electrode current collector exposed portion 15b for one turn are provided as shown in FIG. 6, the current collector is at least on the flat portion of the battery upper surface portion and the battery bottom surface portion as shown in FIG. It suffices if a body exposing part is provided. In the case of a flat battery, the battery thickness is very small, and there is less risk of a nail or the like being stuck from the side surface of the battery. However, it is easier to manufacture a battery by providing a current collector exposed part for one turn. Can be produced. Moreover, what is necessary is just to form a collector exposure part in the 2nd-5th layer from an outer peripheral side.

このように、正極集電体露呈部15aおよび負極集電体露呈部15bが対向するように配置することにより、外部からの圧壊時や釘刺し時に正極集電体11aおよび負極集電体12aが接触し、確実に抵抗の小さい短絡を起こすことができる。これにより瞬時に電圧が低下し、異常発熱や熱暴走を防止することが可能である。   In this way, the positive electrode current collector exposed portion 15a and the negative electrode current collector exposed portion 15b are arranged so as to face each other, so that the positive electrode current collector 11a and the negative electrode current collector 12a can be provided when the external crushing or nail penetration is performed. They can touch and cause a short circuit with low resistance. As a result, the voltage drops instantaneously, and abnormal heat generation and thermal runaway can be prevented.

また、他の実施形態として、図10〜図13に示すように負極集電体露呈部を設けず、正極集電体露呈部15aのみを設けることも可能である。図10〜図13は集電体露呈部を外周側から2層目に設けた場合の構成例である。図10は、正極集電体露呈部15aを片面に半周分形成した場合の断面図であり、図11は、正極集電体露呈部15aを片面に1周分形成した場合の断面図であり、図12は、正極集電体露呈部15aを両面に半周分形成した場合の断面図であり、図13は、正極集電体露呈部15aを両面に1周分形成した場合の断面図である。   As another embodiment, as shown in FIGS. 10 to 13, it is possible to provide only the positive electrode current collector exposed portion 15 a without providing the negative electrode current collector exposed portion. 10 to 13 are configuration examples when the current collector exposing portion is provided in the second layer from the outer peripheral side. FIG. 10 is a cross-sectional view of the case where the positive electrode current collector exposed portion 15a is formed on one side for half a circumference, and FIG. 11 is a cross-sectional view of the case where the positive electrode current collector exposed portion 15a is formed on one side for one round. FIG. 12 is a cross-sectional view when the positive electrode current collector exposed portion 15a is formed on both sides by half a circle, and FIG. 13 is a cross-sectional view when the positive electrode current collector exposed portion 15a is formed on one side by one turn. is there.

負極活物質層12bが塗布された負極12は、対向する部分に正極活物質層11bが形成された正極11が配置されることにより充放電を行うものである。このため、この実施形態のように、正極集電体露呈部15aのみを設けた場合、正極集電体露呈部15aとの対向部分に位置する負極12は危険なものとはならない。また、負極12はその表面にカーボンを含む負極活物質が塗布されているが、カーボン自身が高い導電性を有する。このため、正極集電体露呈部15aと負極12が接触した場合にも、第1の実施形態と比較して多少効果が小さいものの、実用に耐えうる安全性の高い電池を得ることができる。   The negative electrode 12 to which the negative electrode active material layer 12b is applied is charged and discharged by disposing the positive electrode 11 having the positive electrode active material layer 11b formed in an opposing portion. For this reason, when only the positive electrode current collector exposed portion 15a is provided as in this embodiment, the negative electrode 12 located at the portion facing the positive electrode current collector exposed portion 15a is not dangerous. The negative electrode 12 is coated with a negative electrode active material containing carbon on the surface, but the carbon itself has high conductivity. For this reason, even when the positive electrode current collector exposed portion 15a and the negative electrode 12 are in contact with each other, a highly safe battery that can withstand practical use can be obtained although the effect is somewhat smaller than that of the first embodiment.

以下、実施例および比較例にてこの発明を具体的に説明する。   The present invention will be specifically described below with reference to examples and comparative examples.

まず、試験用電池に用いる正極合剤、負極合剤、ゲル状電解質を以下のようにして作製する。   First, a positive electrode mixture, a negative electrode mixture, and a gel electrolyte used for a test battery are prepared as follows.

<実施例1>
[正極の作製]
正極活物質としてLiCoO2を用いて正極を作製する。まず、LiCoO2を得るために炭酸リチウムと炭酸コバルトを0.5mol対1molの比率で混合し、900℃の空気中で5時間焼成した。次いで、得られたLiCoO291重量部と、導電剤として黒鉛6重量部と、結着剤としてポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)10重量部とを混合して正極合剤を調製し、さらにこれをN−メチル−2−ピロリドンに分散させてスラリー状とした。
<Example 1>
[Production of positive electrode]
A positive electrode is produced using LiCoO 2 as the positive electrode active material. First, in order to obtain LiCoO 2 , lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol and fired in air at 900 ° C. for 5 hours. Next, 91 parts by weight of LiCoO 2 obtained, 6 parts by weight of graphite as a conductive agent, and 10 parts by weight of poly (vinylidene fluoride-co-hexafluoropropylene) as a binder are mixed to prepare a positive electrode mixture. Further, this was dispersed in N-methyl-2-pyrrolidone to form a slurry.

次いで、このスラリーを正極集電体である厚さ20μmの帯状アルミニウム箔の両面に均一に塗布した。このとき、外周から2層目に当たる個所に片面半周分、正極集電体露呈部を形成した。次いで乾燥工程を経てロールプレス機で圧縮成形し、50mm×300mmに切り出して使用した。   Next, this slurry was uniformly applied to both surfaces of a 20 μm-thick strip-shaped aluminum foil as a positive electrode current collector. At this time, the positive electrode current collector exposed portion was formed for one half of the circumference on the portion corresponding to the second layer from the outer periphery. Next, after a drying process, it was compression molded with a roll press and cut into 50 mm × 300 mm for use.

[負極の作製]
粉砕した黒鉛粉末90重量部と、結着剤としてポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)10重量部とを混合して負極合剤を調製し、さらにこれをN−メチル−2−ピロリドンに分散させてスラリー状とした。
[Production of negative electrode]
90 parts by weight of the pulverized graphite powder and 10 parts by weight of poly (vinylidene fluoride-co-hexafluoropropylene) as a binder are mixed to prepare a negative electrode mixture, and this is further mixed with N-methyl-2-pyrrolidone. To form a slurry.

次いで、このスラリーを負極集電体である厚さ10μmの帯状銅箔の両面に均一に塗布した。このとき、外周から2層目で、正極集電体露呈部と対向する個所に片面半周分、負極集電体露呈部を形成した。次いで、乾燥工程を経て、ロールプレス機で圧縮成形し、52mm×320mmに切り出して使用した。   Next, this slurry was uniformly applied to both surfaces of a 10 μm-thick strip-shaped copper foil as a negative electrode current collector. At this time, in the second layer from the outer periphery, a negative electrode current collector exposed portion corresponding to a half circumference on one side was formed at a location facing the positive electrode current collector exposed portion. Then, after passing through a drying step, it was compression-molded with a roll press and cut into 52 mm × 320 mm for use.

[ゲル状電解質]
エチレンカーボネート(EC)42.5重量部、プロピレンカーボネート(PC)42.5重量部からなる可塑剤に、電解質塩としてLiPF615重量部を混合した後、重量平均分子量60万のポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)10重量部、そしてジメチルカーボネート60重量部を混合溶解させて電解質溶液を作製した。この電解質溶液を正極および負極の表面に均一に塗布して正極活物質層および負極活物質層に含浸させ、常温で8時間放置し、ジメチルカーボネートを気化、除去して、ゲル状電解質膜を得た。
[Gel electrolyte]
After mixing 15 parts by weight of LiPF 6 as an electrolyte salt with a plasticizer comprising 42.5 parts by weight of ethylene carbonate (EC) and 42.5 parts by weight of propylene carbonate (PC), poly (vinylidene fluoro having a weight average molecular weight of 600,000 is obtained. Ride-co-hexafluoropropylene) 10 parts by weight and dimethyl carbonate 60 parts by weight were mixed and dissolved to prepare an electrolyte solution. The electrolyte solution is uniformly applied to the surfaces of the positive electrode and the negative electrode, impregnated in the positive electrode active material layer and the negative electrode active material layer, and left at room temperature for 8 hours to vaporize and remove dimethyl carbonate to obtain a gel electrolyte membrane. It was.

次いで、ゲル状電解質膜を形成した正極および負極を、セパレータを介して積層し、巻回して、2Whの容量を持つ薄型の電池素子を作製した。この電池素子は、厚さ100μmのアルミラミネートフィルムにより外装し、正極端子および負極端子をアルミラミネートフィルムから導出した後、電池素子周辺を真空封止して試験用電池を作製した。   Next, the positive electrode and the negative electrode on which the gel electrolyte membrane was formed were stacked via a separator and wound to produce a thin battery element having a capacity of 2 Wh. This battery element was covered with an aluminum laminate film having a thickness of 100 μm, and after the positive electrode terminal and the negative electrode terminal were led out from the aluminum laminate film, the periphery of the battery element was vacuum-sealed to produce a test battery.

また、上述の試験用電池の他、以下のように集電体露呈部を設けた試験用電池を作製する。なお、電池容量については、実施例1のように正極および負極のそれぞれに片面半周分の集電体露呈部を設けた場合に2Whとなるようにしたものであり、全ての実施例および比較例において電池容量が2Whとなるように試験用電池を作製したものではない。   In addition to the test battery described above, a test battery provided with a current collector exposed portion as described below is prepared. The battery capacity is set to 2 Wh when the collector exposed portion for one half of the circumference is provided on each of the positive electrode and the negative electrode as in Example 1, and all Examples and Comparative Examples However, the test battery was not manufactured so that the battery capacity was 2 Wh.

<実施例2>
実施例1において、外周側から2層目に当たる個所に片面1周分の正極集電体露呈部および負極集電体露呈部を形成し、正極集電体露呈部および負極集電体露呈部が対向するようにして巻回した。他は実施例1と同様に電池を作製した。
<Example 2>
In Example 1, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion corresponding to one turn on one side are formed at a location corresponding to the second layer from the outer peripheral side, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion are Wrapped so as to face each other. Otherwise, a battery was fabricated in the same manner as in Example 1.

<実施例3>
実施例1において、外周側から5層目に当たる個所に片面1周分の正極集電体露呈部および負極集電体露呈部を形成し、正極集電体露呈部および負極集電体露呈部が対向するようにして巻回した。他は実施例1と同様に電池を作製した。
<Example 3>
In Example 1, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion for one round on one side are formed at a location corresponding to the fifth layer from the outer peripheral side, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion are Wrapped so as to face each other. Otherwise, a battery was fabricated in the same manner as in Example 1.

<実施例4>
実施例1において、外周側から2層目に当たる個所に両面半周分の正極集電体露呈部および負極集電体露呈部を形成し、正極集電体露呈部および負極集電体露呈部が対向するようにして巻回した。他は実施例1と同様に電池を作製した。
<Example 4>
In Example 1, the positive electrode current collector exposed portion and the negative electrode current collector exposed portion corresponding to the second layer from the outer peripheral side are formed on both sides, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion face each other. Wrapped as you did. Otherwise, a battery was fabricated in the same manner as in Example 1.

<実施例5>
実施例1において、外周側から2層目に当たる個所に両面1周分の正極集電体露呈部および負極集電体露呈部を形成し、正極集電体露呈部および負極集電体露呈部が対向するようにして巻回した。他は実施例1と同様に電池を作製した。
<Example 5>
In Example 1, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion corresponding to one turn on both surfaces are formed at a position corresponding to the second layer from the outer peripheral side, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion are Wrapped so as to face each other. Otherwise, a battery was fabricated in the same manner as in Example 1.

<実施例6>
実施例1において、外周側から5層目に当たる個所に両面半周分の正極集電体露呈部および負極集電体露呈部を形成し、正極集電体露呈部および負極集電体露呈部が対向するようにして巻回した。他は実施例1と同様に電池を作製した。
<Example 6>
In Example 1, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion for a half circumference on both sides are formed at a location corresponding to the fifth layer from the outer peripheral side, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion face each other. Wrapped as you did. Otherwise, a battery was fabricated in the same manner as in Example 1.

<実施例7>
実施例1において、外周側から2層目に当たる個所に片面半周分の正極集電体露呈部を形成し、負極集電体露呈部を設けずに負極を作製して巻回した。他は実施例1と同様に電池を作製した。
<Example 7>
In Example 1, a positive electrode current collector exposed portion corresponding to a half circumference on one side was formed at a location corresponding to the second layer from the outer peripheral side, and a negative electrode was produced and wound without providing the negative electrode current collector exposed portion. Otherwise, a battery was fabricated in the same manner as in Example 1.

<実施例8>
実施例1において、外周側から5層目に当たる個所に片面半周分の正極集電体露呈部を形成し、負極集電体露呈部を設けずに負極を作製して巻回した。他は実施例1と同様に電池を作製した。
<Example 8>
In Example 1, a positive electrode current collector exposed portion corresponding to a half circumference on one side was formed at a position corresponding to the fifth layer from the outer peripheral side, and a negative electrode was produced and wound without providing the negative electrode current collector exposed portion. Otherwise, a battery was fabricated in the same manner as in Example 1.

<比較例1>
実施例1において、外周側から6層目に当たる個所に片面1周分の正極集電体露呈部および負極集電体露呈部を形成し、正極集電体露呈部および負極集電体露呈部が対向するようにして巻回した。他は実施例1と同様に電池を作製した。
<Comparative Example 1>
In Example 1, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion for one round on one side are formed at a location corresponding to the sixth layer from the outer peripheral side, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion are Wrapped so as to face each other. Otherwise, a battery was fabricated in the same manner as in Example 1.

<比較例2>
実施例1において、外周側から2〜3層目に当たる個所に片面1.5周分の正極集電体露呈部および負極集電体露呈部を形成し、正極集電体露呈部および負極集電体露呈部が対向するようにして巻回した。他は実施例1と同様に電池を作製した。
<Comparative example 2>
In Example 1, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion for 1.5 turns on one side are formed at locations corresponding to the second to third layers from the outer peripheral side, and the positive electrode current collector exposed portion and the negative electrode current collector are formed. It wound so that a body exposed part might face. Otherwise, a battery was fabricated in the same manner as in Example 1.

<比較例3>
実施例1において、外周側から1層目に当たる個所に1周分の正極集電体露呈部および負極集電体露呈部を形成し、正極集電体露呈部および負極集電体露呈部が対向するようにして巻回した。他は実施例1と同様に電池を作製した。
<Comparative Example 3>
In Example 1, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion corresponding to the first layer from the outer peripheral side are formed, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion face each other. Wrapped as you did. Otherwise, a battery was fabricated in the same manner as in Example 1.

このように作製した各試験用電池のそれぞれについて電池容量を測定した。次いで、各試験用電池のそれぞれに釘刺し試験を行った。試験は、4.35Vに充電した各試験用電池を直径2.5mmの釘を用いて1000mm/secで貫通させ、そのときの電池最高温度を測定した。   The battery capacity was measured for each of the test batteries thus prepared. Next, a nail penetration test was performed on each of the test batteries. In the test, each test battery charged to 4.35 V was penetrated at 1000 mm / sec using a nail having a diameter of 2.5 mm, and the maximum battery temperature at that time was measured.

一般的に、この試験では6000mm/sec以上の速度で釘を貫通させる。しかしながら、今回は通常よりも遅い1000mm/secの速度で試験を行った。最内周部に集電体露呈部を設けた場合に、釘が最内周部に到達する前にショートを起こすことがあるという問題について述べたが、これは釘の刺さる速度が遅い場合に生じる問題点である。そこで、今回1000mm/secの速度で釘刺しが起こった場合であっても、確実にショートを起こすことができるかどうかを確認する。   Generally, in this test, the nail is penetrated at a speed of 6000 mm / sec or more. However, this time, the test was performed at a speed of 1000 mm / sec slower than usual. In the case where the current collector exposed part is provided on the innermost peripheral part, the problem that the nail may cause a short circuit before reaching the innermost peripheral part is described. This is a problem that arises. Therefore, it is confirmed whether or not a short circuit can be surely caused even when nail penetration occurs at a speed of 1000 mm / sec.

以下の表1に試験結果を示す。   The test results are shown in Table 1 below.

Figure 2006286431
Figure 2006286431

各試験用電池は、実用の観点から発熱温度が150℃以下のものを良品とした。また、電池容量は、1.8Wh以上の電池容量を有するものを良品とした。   Each of the test batteries was a non-defective product having a heat generation temperature of 150 ° C. or less from a practical viewpoint. The battery capacity was determined to be a non-defective product having a battery capacity of 1.8 Wh or more.

実施例2、実施例3および比較例1より、集電体露呈部の面積が同じであっても、集電体露呈部を設ける個所が内周側に近づくほど電池温度の上昇が大きくなることが分かる。これは、電池外周部から2層目部分に集電体露呈部を設けたことにより、釘が刺さった後早い段階で低抵抗のショートを確実に起こし、温度の上昇を防ぐためである。   From Example 2, Example 3, and Comparative Example 1, even if the area of the current collector exposed portion is the same, the increase in battery temperature increases as the location where the current collector exposed portion is provided approaches the inner periphery. I understand. This is because the current collector exposed portion is provided in the second layer portion from the battery outer peripheral portion, thereby reliably causing a low-resistance short circuit at an early stage after the nail is pierced and preventing an increase in temperature.

また、比較例2のように、電池外周部付近(1〜2層目)に集電体露呈部を正極、負極ともに1.5周分ずつ設けた場合、温度の上昇は防げるものの電極の反応面積が少なく、電池容量が低下する。集電体露呈部を半周〜1周分とすることにより、電池容量も良品の範囲内とすることができる。   Further, as in Comparative Example 2, when the current collector exposed portion is provided in the vicinity of the outer periphery of the battery (first and second layers) for both the positive electrode and the negative electrode for 1.5 laps, the reaction of the electrode can be prevented although the temperature rise is prevented. The area is small and the battery capacity is reduced. By setting the current collector exposed portion to a half to one turn, the battery capacity can be within the range of non-defective products.

結果から分かるように、電池外周側から2〜5層目に、半周〜1周分の集電体露呈部を形成することにより、1000mm/secの速度での釘刺し時でも温度上昇を防止し、十分な電池容量を有する電池を作製することができる。   As can be seen from the results, by forming the current collector exposed part for half to one turn on the second to fifth layers from the battery outer side, temperature rise is prevented even when nailing at a speed of 1000 mm / sec. A battery having a sufficient battery capacity can be manufactured.

また、釘刺し速度が1000mm/sec未満の場合でもこの発明の電池構造により温度上昇を防止することができることが確認されている。これは、
(1)ラミネートフィルムを外装に用いた構造であるためフィルムが巻き込まれ、最表層でショートが起こる可能性が低く、
(2)1000mm/secより遅い速度で釘刺しが起こる場合、より表面に近い個所でショートが起こる、
という理由から、2〜5層目に集電体露呈部があれば1000mm/sec未満でも確実にショートを起こすことができるためである。
Further, it has been confirmed that the battery structure of the present invention can prevent the temperature rise even when the nail penetration speed is less than 1000 mm / sec. this is,
(1) Since the structure uses a laminate film for the exterior, the film is involved and the possibility of a short circuit occurring at the outermost layer is low.
(2) When nail penetration occurs at a speed slower than 1000 mm / sec, a short circuit occurs near the surface.
For this reason, if there is a current collector exposed portion in the 2nd to 5th layers, a short circuit can surely occur even at a rate of less than 1000 mm / sec.

さらに、釘刺し速度が1000mm/secを超える場合でも、この電池構造は適用可能である。一般的に釘刺し速度が速くなるほど電池内部でショートが発生する。しかしながら、電池外周部付近に集電体露呈部を設けることにより、釘が内周部に達する前に正極集電体露呈部および負極集電体露呈部を短絡させ、強制的に低抵抗のショートを起こすことができるためである。   Furthermore, this battery structure is applicable even when the nail penetration speed exceeds 1000 mm / sec. Generally, as the nail penetration speed increases, a short circuit occurs in the battery. However, by providing a current collector exposed portion near the outer periphery of the battery, the positive electrode current collector exposed portion and the negative electrode current collector exposed portion are short-circuited before the nail reaches the inner peripheral portion, and the low-resistance short circuit is forced. It is because it can cause.

以上、この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。   As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, The various deformation | transformation based on the technical idea of this invention is possible.

例えば、上述の実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。   For example, the numerical values given in the above embodiment are merely examples, and different numerical values may be used as necessary.

この発明を適用して作製した非水電解質電池の外観の一例を示す模式図である。It is a schematic diagram which shows an example of the external appearance of the nonaqueous electrolyte battery produced by applying this invention. この発明を適用して作製した非水電解質電池の構成を詳細に示す模式図である。It is a schematic diagram which shows in detail the structure of the nonaqueous electrolyte battery produced by applying this invention. ラミネートフィルム外装材に収容される電池素子の構造を示す模式図である。It is a schematic diagram which shows the structure of the battery element accommodated in a laminate film exterior material. 今回の発明を適用した正極の構成を示す模式図である。It is a schematic diagram which shows the structure of the positive electrode to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied. 今回の発明を適用した電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the battery to which this invention is applied.

符号の説明Explanation of symbols

1・・・電池
2a・・・正極端子
2b・・・負極端子
3a,3b・・・シーラント
4・・・ラミネートフィルム
10・・・電池素子
11・・・正極
11a・・・正極集電体
11b・・・正極活物質層
12・・・負極
12a・・・負極集電体
12b・・・負極活物質層
13、13a,13b・・・セパレータ
14・・・ポリマー電解質
15a・・・正極集電体露呈部
15b・・・負極集電体露呈部
DESCRIPTION OF SYMBOLS 1 ... Battery 2a ... Positive electrode terminal 2b ... Negative electrode terminal 3a, 3b ... Sealant 4 ... Laminate film 10 ... Battery element 11 ... Positive electrode 11a ... Positive electrode collector 11b ... Positive electrode active material layer 12 ... Negative electrode 12a ... Negative electrode current collector 12b ... Negative electrode active material layer 13, 13a, 13b ... Separator 14 ... Polymer electrolyte 15a ... Positive electrode current collector Body exposed part 15b ... Negative electrode current collector exposed part

Claims (5)

両面に正極活物質が塗布された帯状の正極と、両面に負極活物質が塗布された帯状の負極のそれぞれの両面にポリマー電解質を形成し、上記正極および上記負極をセパレータを介して積層し巻回して作製した電池素子を、ラミネートフィルムで外装した非水電解質電池において、
集電体に活物質が塗布されない集電体露呈部が、上記電池素子外周側から2〜5層目に半周以上1周以下の幅で設けられることを特徴とする非水電解質電池。
A polymer electrolyte is formed on both sides of the strip-shaped positive electrode coated with the positive electrode active material on both sides and the strip-shaped negative electrode coated with the negative electrode active material on both surfaces, and the positive electrode and the negative electrode are laminated via a separator and wound. In a non-aqueous electrolyte battery with a battery element produced by rotating and sheathed with a laminate film,
A non-aqueous electrolyte battery characterized in that a current collector exposed portion in which an active material is not applied to the current collector is provided in the second to fifth layers from the outer periphery side of the battery element with a width of a half or more and a round or less.
上記集電体露呈部が上記正極および上記負極のそれぞれの片面に設けられ、正極集電体露呈部および負極集電体露呈部がセパレータを介して対向するようにして配置されることを特徴とする請求項1に記載の非水電解質電池。   The current collector exposed portion is provided on one side of each of the positive electrode and the negative electrode, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion are arranged to face each other with a separator interposed therebetween. The nonaqueous electrolyte battery according to claim 1. 上記集電体露呈部が上記正極および上記負極のそれぞれの両面に設けられ、正極集電体露呈部および負極集電体露呈部がセパレータを介して対向するようにして配置されることを特徴とする請求項1に記載の非水電解質電池。   The current collector exposed portions are provided on both surfaces of the positive electrode and the negative electrode, respectively, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion are arranged to face each other with a separator interposed therebetween. The nonaqueous electrolyte battery according to claim 1. 上記集電体露呈部が上記正極の片面に設けられることを特徴とする請求項1に記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the current collector exposed portion is provided on one side of the positive electrode. 上記集電体露呈部が上記正極の両面に設けられることを特徴とする請求項1に記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the current collector exposed portions are provided on both surfaces of the positive electrode.
JP2005105733A 2005-04-01 2005-04-01 Nonaqueous electrolyte battery Pending JP2006286431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105733A JP2006286431A (en) 2005-04-01 2005-04-01 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105733A JP2006286431A (en) 2005-04-01 2005-04-01 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2006286431A true JP2006286431A (en) 2006-10-19

Family

ID=37408116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105733A Pending JP2006286431A (en) 2005-04-01 2005-04-01 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2006286431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075868A2 (en) 2007-12-27 2009-07-01 TDK Corporation Wound electrochemical device and method of manufacturing same
CN107112494A (en) * 2015-06-09 2017-08-29 索尼公司 Battery, battery pack, electronic instrument, electric automobile, electric power storing device and power system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075868A2 (en) 2007-12-27 2009-07-01 TDK Corporation Wound electrochemical device and method of manufacturing same
US8481198B2 (en) 2007-12-27 2013-07-09 Tdk Corporation Wound electrochemical device and method of manufacturing same
CN107112494A (en) * 2015-06-09 2017-08-29 索尼公司 Battery, battery pack, electronic instrument, electric automobile, electric power storing device and power system
JP2017152414A (en) * 2015-06-09 2017-08-31 ソニー株式会社 Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and electric power system
JP2018170302A (en) * 2015-06-09 2018-11-01 株式会社村田製作所 Battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
CN107112494B (en) * 2015-06-09 2020-11-06 株式会社村田制作所 Battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Similar Documents

Publication Publication Date Title
JP4586820B2 (en) Winding type non-aqueous electrolyte secondary battery
JP5728721B2 (en) Heat-resistant lithium ion secondary battery
JP4883025B2 (en) Secondary battery
JP4915390B2 (en) Non-aqueous electrolyte battery
JP2002063938A (en) Secondary battery and its manufacturing method
JP5168850B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP4872950B2 (en) Nonaqueous electrolyte secondary battery
JP4815845B2 (en) Polymer battery
JP2008047398A (en) Nonaqueous electrolyte secondary battery
JP2008041504A (en) Nonaqueous electrolyte battery
JP2010049909A (en) Nonaqueous electrolyte secondary battery
JP4297166B2 (en) Nonaqueous electrolyte secondary battery
JP6664148B2 (en) Lithium ion secondary battery
JP4741526B2 (en) Nonaqueous electrolyte secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP4449214B2 (en) Non-aqueous electrolyte battery
JP2006261059A (en) Non-aqueous electrolyte secondary battery
JP4782266B2 (en) Non-aqueous electrolyte battery
JP2007134149A (en) Nonaqueous electrolyte battery
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
KR20090045069A (en) Secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery
JP5380908B2 (en) Winding electrode body and non-aqueous electrolyte secondary battery
JP6962231B2 (en) Non-aqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery