JP2006284144A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2006284144A
JP2006284144A JP2005107809A JP2005107809A JP2006284144A JP 2006284144 A JP2006284144 A JP 2006284144A JP 2005107809 A JP2005107809 A JP 2005107809A JP 2005107809 A JP2005107809 A JP 2005107809A JP 2006284144 A JP2006284144 A JP 2006284144A
Authority
JP
Japan
Prior art keywords
heat
exhaust
cooling water
pipe
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005107809A
Other languages
Japanese (ja)
Inventor
Yasutoshi Yamanaka
保利 山中
Shinichi Hamada
伸一 浜田
Seiji Inoue
誠司 井上
Kimikazu Obara
公和 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005107809A priority Critical patent/JP2006284144A/en
Priority to DE102006015379A priority patent/DE102006015379A1/en
Priority to US11/396,987 priority patent/US20080115923A1/en
Publication of JP2006284144A publication Critical patent/JP2006284144A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • F01P9/02Cooling by evaporation, e.g. by spraying water on to cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • F28F1/28Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element the element being built-up from finned sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device using a heat pipe for reliably transporting heat from an evaporation part to a condensation part while preventing the condensation of operating medium in a heat insulating part. <P>SOLUTION: The exhaust heat recovery device comprises a heat switching function for restricting the amount of heat transport to the condensation part 110B as the amount of heat to the evaporation part 110A is increased, and the heat pipe 110 having the evaporation part 110A arranged in an exhaust pipe 11 for distributing exhaust gas from an internal combustion engine 10 and a condensation part 110B arranged in a cooling water flow path 30 for distributing cooling water to the internal combustion engine 10, whereby exhaust heat of exhaust gas is transported to the cooling water. In the heat insulating part 110C formed between the evaporation part 110A and the condensation part 110B, a wall portion 160 is provided for preventing heat transfer from external fluid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートパイプを用いて内燃機関の排気ガスの排熱を回収して、内燃機関の冷却水加熱のために利用する排熱回収装置に関するものであり、例えば内燃機関を備える車両用に用いて好適である。   The present invention relates to an exhaust heat recovery device that recovers exhaust heat of an exhaust gas of an internal combustion engine using a heat pipe and uses it for heating cooling water of the internal combustion engine. For example, for a vehicle equipped with an internal combustion engine. It is suitable for use.

従来の排熱回収装置として、例えば非特許文献1に示されるように、ヒートパイプの蒸発部および凝縮部のうち、蒸発部をエンジン排気管内に配設し、また凝縮部をエンジン冷却水と熱接触させたものが知られている。この排熱回収装置においては、ヒートパイプによって排気ガスの排熱がエンジン冷却水に輸送され、低温時におけるエンジン冷却水が積極的に加熱されて、エンジンの暖機性能や、エンジン冷却水を加熱源とする暖房器の暖房性能が向上されるものとなっている。   As a conventional waste heat recovery device, for example, as shown in Non-Patent Document 1, an evaporation unit is disposed in an engine exhaust pipe among an evaporation unit and a condensation unit of a heat pipe, and the condensation unit is heated with engine cooling water and heat. What is in contact is known. In this exhaust heat recovery device, exhaust heat of exhaust gas is transported to engine cooling water by a heat pipe, and engine cooling water is actively heated at low temperatures to heat engine warm-up performance and engine cooling water. The heating performance of the heater as the source is improved.

ここでは、ヒートパイプ内に封入される作動媒体量を規制する(少なくする)ことで、エンジン回転数が上昇(排気熱量が増加)しても、蒸発部がドライアウトを起して熱輸送の抑制が可能となる旨が記されている。
Wolf Dietrich Munzel、Daimler−Benz AG 「Heat Pipes for Recovery from Exhaust Gas of a Diesel Engine in a Passenger Car」 Proc.of International Heat Pipe Conference in Grenouble、France、1987、PP.740−743
Here, by regulating (decreasing) the amount of working medium enclosed in the heat pipe, even if the engine speed increases (exhaust heat increases), the evaporation section causes dryout and heat transport It is written that suppression is possible.
Wolf Dietrich Munzel, Daimler-Benz AG “Heat Pipes for Recovery from Exhaust Gas of a Diesel Engineer in a Passenger Car” Proc. of International Heat Pipe Pipe Conference in Glenoble, France, 1987, PP. 740-743

しかしながら、上記排熱回収装置においては、蒸発部と凝縮部との間に形成される断熱部についての熱に対する配慮は特に見られず、例えば、断熱部に冷却風など低温流体が当ると、蒸発部で蒸発した作動媒体がこの断熱部において凝縮してしまい、排気ガスの排熱を本来の凝縮部へ輸送できなくなる。   However, in the above exhaust heat recovery device, no particular consideration is given to the heat of the heat insulating part formed between the evaporation part and the condensing part. For example, if a low temperature fluid such as cooling air hits the heat insulating part, it evaporates. The working medium evaporated in the section is condensed in the heat insulating section, and the exhaust heat of the exhaust gas cannot be transported to the original condensing section.

本発明の目的は、上記問題に鑑み、ヒートパイプを利用するものにおいて、断熱部での作動媒体の凝縮を防止し、蒸発部から凝縮部への確実な熱輸送を可能とする排熱回収装置を提供することにある。   In view of the above problems, an object of the present invention is to provide a waste heat recovery device that prevents condensation of a working medium in a heat insulating part and enables reliable heat transport from the evaporation part to the condensing part in the case of using a heat pipe. Is to provide.

本発明は上記目的を達成するために、以下の技術的手段を採用する。   In order to achieve the above object, the present invention employs the following technical means.

請求項1に記載の発明では、蒸発部(110A)への加熱量増加に応じて、凝縮部(110B)への熱輸送量が規制される熱スイッチ機能を備えると共に、蒸発部(110A)が内燃機関(10)の排気ガス流通用の排気管(11)に配設され、凝縮部(110B)が内燃機関(10)の冷却水流通用の冷却水流路(30)に配設されるヒートパイプ(110)を有し、ヒートパイプ(110)によって排気ガスの排熱を冷却水へ輸送する排熱回収装置において、蒸発部(110A)と凝縮部(110B)との間に形成される断熱部(110C)に、外部流体からの熱伝達を防止する壁部(160)を設けたことを特徴としている。   In invention of Claim 1, while providing the heat switch function in which the heat transport amount to a condensation part (110B) is controlled according to the heating amount increase to an evaporation part (110A), an evaporation part (110A) is provided. A heat pipe disposed in the exhaust pipe (11) for circulating the exhaust gas of the internal combustion engine (10), and the condensing part (110B) disposed in the cooling water flow path (30) for circulating the cooling water of the internal combustion engine (10). (110) and a heat insulation part formed between the evaporation part (110A) and the condensation part (110B) in the exhaust heat recovery apparatus that transports the exhaust heat of the exhaust gas to the cooling water by the heat pipe (110) (110C) is provided with a wall portion (160) for preventing heat transfer from an external fluid.

これにより、外部流体の温度が冷却水温度より低い場合であっても、蒸発部(110A)で蒸発したヒートパイプ(110)内部の作動媒体が、断熱部(110C)において凝縮するのを防止できるので、蒸発部(110A)から凝縮部(110B)への確実な熱輸送が可能となる。   Thereby, even if the temperature of the external fluid is lower than the cooling water temperature, it is possible to prevent the working medium inside the heat pipe (110) evaporated in the evaporation section (110A) from condensing in the heat insulating section (110C). Therefore, reliable heat transport from the evaporation section (110A) to the condensation section (110B) becomes possible.

請求項2に記載の発明では、壁部(160)は、少なくとも断熱部(110C)の外部流体流れの上流側に設けられたことを特徴としている。   The invention according to claim 2 is characterized in that the wall portion (160) is provided at least on the upstream side of the external fluid flow of the heat insulating portion (110C).

これにより、外部流体の流れを壁部(160)によって遮り、断熱部(110C)に当るのを防止できるので、最小限の壁部(160)の設定で断熱部(110C)における作動媒体の凝縮を防止できる。   Accordingly, the flow of the external fluid is blocked by the wall (160) and can be prevented from hitting the heat insulating part (110C), so that the working medium is condensed in the heat insulating part (110C) with the minimum setting of the wall part (160). Can be prevented.

請求項3に記載の発明では、壁部(160)は、蒸発部(110A)および凝縮部(110B)に接続されると共に、蒸発部(110A)と凝縮部(110B)との間において、所定量の隙間部(161)が形成されて分離されており、分離された各壁部(160)は、弾性を有する弾性部(162)によって接続されたことを特徴としている。   In the invention according to claim 3, the wall portion (160) is connected to the evaporation portion (110A) and the condensation portion (110B), and between the evaporation portion (110A) and the condensation portion (110B). A fixed gap portion (161) is formed and separated, and each separated wall portion (160) is connected by an elastic portion (162) having elasticity.

これにより、壁部(160)において蒸発部(110A)と凝縮部(110B)との温度差によって発生する熱歪みを隙間部(161)および弾性部(162)によって吸収することができる。尚、壁部(160)は分離されつつも、弾性部(162)によって一体化されるので、組付け性が低下されることはない。   Thereby, in the wall part (160), the thermal distortion generated by the temperature difference between the evaporation part (110A) and the condensation part (110B) can be absorbed by the gap part (161) and the elastic part (162). Although the wall portion (160) is separated, the wall portion (160) is integrated by the elastic portion (162), so that the assembling property is not deteriorated.

また、熱スイッチ機能によって凝縮部(110B)への熱輸送量が既成される時に、蒸発部(110A)からの熱伝導が隙間部(161)によって遮断されるので、熱輸送の規制が悪化されることがない。   In addition, when the amount of heat transport to the condensing part (110B) is already established by the heat switch function, the heat conduction from the evaporation part (110A) is blocked by the gap part (161), so the heat transport regulation is deteriorated. There is nothing to do.

請求項4に記載の発明では、ヒートパイプ(110)は、複数設けられており、複数のヒートパイプ(110)の一端側には、複数のヒートパイプ(110)を互いに連通させる連通部(140)が設けられたことを特徴としている。   In the invention according to claim 4, a plurality of heat pipes (110) are provided, and at one end side of the plurality of heat pipes (110), a communication portion (140) that allows the plurality of heat pipes (110) to communicate with each other. ) Is provided.

これにより、連通部(140)の一箇所のみに封入部(141)を設けることで、内部の真空引きや作動媒体の封入が可能となる。   Accordingly, by providing the sealing portion (141) only at one place of the communication portion (140), it is possible to evacuate the inside and seal the working medium.

請求項4に記載の発明において、請求項5に記載の発明では、蒸発部(110A)は、凝縮部(110B)の下方に配置され、連通部(140)は、蒸発部(110A)側端部に設けられ、排気管(11)の外表面、あるいは内部に配置されたことを特徴としている。   In the invention according to claim 4, in the invention according to claim 5, the evaporating part (110A) is disposed below the condensing part (110B), and the communicating part (140) is an end of the evaporating part (110A) side. Provided on the outer surface or inside of the exhaust pipe (11).

これにより、連通部(140)内の作動媒体も排気ガスによって積極的に加熱されることになるので、熱スイッチ機能(排熱回収停止)を作動させるためのドライアウトを早期に行うことができる。   As a result, the working medium in the communication section (140) is also positively heated by the exhaust gas, so that dryout for operating the heat switch function (exhaust heat recovery stop) can be performed at an early stage. .

請求項1〜請求項4に記載の発明において、請求項6に記載の発明では、ヒートパイプ(110)の内壁には、蒸発部(110A)から凝縮部(110B)に至るウィックが設けられ、蒸発部(110A)は、凝縮部(110B)の上方に配置されたことを特徴としている。   In the invention according to any one of claims 1 to 4, in the invention according to claim 6, the inner wall of the heat pipe (110) is provided with a wick from the evaporation section (110A) to the condensation section (110B), The evaporating part (110A) is arranged above the condensing part (110B).

これにより、排気管(11)および冷却水流路(30)の設定位置に応じて、蒸発部(110A)が凝縮部(110B)の上方に配置される場合であっても、両者間(110A、110B)の熱輸送が可能となる。   Thereby, even if it is a case where an evaporation part (110A) is arrange | positioned above a condensation part (110B) according to the setting position of an exhaust pipe (11) and a cooling water flow path (30), between both (110A, 110B) is possible.

請求項7に記載の発明では、排気管(11)の一部を成す排気管部(130A)と、冷却水流路(30)の一部を成す冷却水流路部(150A)とを設け、蒸発部(110A)に排気管部(130A)が、凝縮部(110B)に冷却水流路部(150A)がそれぞれ一体的に接合されたことを特徴としている。   In the invention according to claim 7, an exhaust pipe part (130A) forming a part of the exhaust pipe (11) and a cooling water flow path part (150A) forming a part of the cooling water flow path (30) are provided, and evaporation is performed. The exhaust pipe part (130A) is integrally joined to the part (110A), and the cooling water flow path part (150A) is integrally joined to the condensing part (110B).

これにより、1つの熱交換器として排気管(11)と冷却水流路(30)とに容易に装着可能な排熱回収装置(100)を提供することができる。   Accordingly, it is possible to provide the exhaust heat recovery device (100) that can be easily attached to the exhaust pipe (11) and the cooling water passage (30) as one heat exchanger.

尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description mentioned later.

(第1実施形態)
本発明の第1実施形態を図1〜図3に示し、まず、具体的な構成について以下説明する。本実施形態の排熱回収装置100は、エンジン10を走行用の駆動源とする車両(自動車)に適用されるものとしている。尚、図1は排熱回収装置100の車両への搭載状態を示す模式図、図2は排熱回収装置100を示す(a)は正面図、(b)は(a)の右側面図、図3は排熱回収装置100によるエンジン冷却水への伝熱量を示すグラフである。
(First embodiment)
A first embodiment of the present invention is shown in FIG. 1 to FIG. 3, and a specific configuration will be described first. The exhaust heat recovery apparatus 100 of this embodiment is applied to a vehicle (automobile) that uses the engine 10 as a driving source for traveling. FIG. 1 is a schematic view showing a state in which the exhaust heat recovery apparatus 100 is mounted on a vehicle, FIG. 2 is a front view of the exhaust heat recovery apparatus 100, (b) is a right side view of (a), FIG. 3 is a graph showing the amount of heat transferred to the engine coolant by the exhaust heat recovery device 100.

図1に示すように、車両のエンジン10は、水冷式の内燃機関であり、燃料が燃焼した後の排気ガスが排出される排気管11を有している。排気管11には排気ガスを浄化する触媒コンバータ12が設けられている。   As shown in FIG. 1, a vehicle engine 10 is a water-cooled internal combustion engine, and has an exhaust pipe 11 through which exhaust gas after combustion of fuel is discharged. The exhaust pipe 11 is provided with a catalytic converter 12 for purifying exhaust gas.

また、エンジン10は、エンジン冷却水(以下、冷却水)の循環によってエンジン10が冷却されるラジエータ回路20と、冷却水(温水)を加熱源として空調空気を加熱するヒータ回路30とを有している。   The engine 10 also includes a radiator circuit 20 that cools the engine 10 by circulation of engine cooling water (hereinafter referred to as cooling water), and a heater circuit 30 that heats conditioned air using the cooling water (hot water) as a heating source. ing.

ラジエータ回路20にはラジエータ21が設けられており、ラジエータ21は、ウォータポンプ22によって循環される冷却水を外気との熱交換により冷却する。尚、ラジエータ回路20中にはラジエータ21を迂回して冷却水が流通するバイパス通路(図示せず)が設けられており、サーモスタット(図示せず)によってラジエータ21を流通する冷却水量とバイパス通路を流通する冷却水量とが調節されるようになっている。特に暖機時においてはバイパス通路側の冷却水量が増加されて暖機が促進される(つまり、ラジエータ21による冷却水の過冷却が防止される)。   The radiator circuit 20 is provided with a radiator 21, and the radiator 21 cools the cooling water circulated by the water pump 22 by heat exchange with the outside air. The radiator circuit 20 is provided with a bypass passage (not shown) through which the cooling water flows around the radiator 21, and the amount of cooling water flowing through the radiator 21 and the bypass passage are bypassed by a thermostat (not shown). The amount of circulating cooling water is adjusted. Particularly during warm-up, the amount of cooling water on the bypass passage side is increased to promote warm-up (that is, cooling water overcooling by the radiator 21 is prevented).

ヒータ回路(本発明における冷却水流路に対応)30には、暖房用熱交換器としてのヒータコア31が設けられており、上記のウォータポンプ22によって冷却水(温水)が循環されるようにしている。ヒータコア31は、図示しない空調ユニットの空調ケース内に配設されており、送風機によって送風される空調空気を温水との熱交換により加熱する。   The heater circuit (corresponding to the cooling water flow path in the present invention) 30 is provided with a heater core 31 as a heat exchanger for heating, and the cooling water (hot water) is circulated by the water pump 22 described above. . The heater core 31 is disposed in an air conditioning case of an air conditioning unit (not shown), and heats the conditioned air blown by the blower by heat exchange with hot water.

排熱回収装置100は、複数のチューブ110を有し、各チューブ110の一端側が排気管部130A内に配設され、他端側が冷却水流路部150A(水タンク150)内に配設されて形成されている。各構成部材(以下説明)は高耐食性を備えるステンレス材から成り、各構成部材が組み付けされた後に、当接部や嵌合部に設けられたろう材により、一体的にろう付けされて形成されている。そして、排気管部130Aが触媒コンバータ12の下流側となる排気管11に介在され、また、冷却水流通部150Aにヒータ回路30内の冷却水が流通するようにしている。   The exhaust heat recovery apparatus 100 has a plurality of tubes 110, one end of each tube 110 is disposed in the exhaust pipe portion 130 </ b> A, and the other end is disposed in the cooling water passage portion 150 </ b> A (water tank 150). Is formed. Each constituent member (described below) is made of a stainless steel material having high corrosion resistance. After each constituent member is assembled, it is formed by brazing integrally with a brazing material provided in a contact portion or a fitting portion. Yes. The exhaust pipe portion 130A is interposed in the exhaust pipe 11 on the downstream side of the catalytic converter 12, and the cooling water in the heater circuit 30 flows through the cooling water circulation portion 150A.

以下、図2を用いて排熱回収装置100の詳細について説明する。チューブ110は、後述するように内部が真空引きされた後に作動媒体が所定量封入されて、ヒートパイプとして作動するものであり、長手方向が上下方向となる姿勢で使用されて、下側が蒸発部110A、上側が凝縮部110B、両者110A、110Bの間が断熱部110Cとなっている(ボトムヒート型)。尚、凝縮部110Bに対応するチューブ110の内壁には、金属製メッシュ、金属製フェルト、焼結金属等から成るウィック(多孔性物質)が設けられている(図示せず)。   Hereinafter, the details of the exhaust heat recovery apparatus 100 will be described with reference to FIG. As described later, the tube 110 is operated as a heat pipe after a predetermined amount of working medium is sealed after the inside is evacuated, and is used in a posture in which the longitudinal direction is the vertical direction, and the lower side is the evaporation unit. 110A, the upper side is a condensing part 110B, and between both 110A, 110B is a heat insulating part 110C (bottom heat type). A wick (porous material) made of metal mesh, metal felt, sintered metal or the like is provided on the inner wall of the tube 110 corresponding to the condensing unit 110B (not shown).

チューブ110は、ここでは2枚のチューブプレート111、112が互いに最中合わせされて扁平状に形成されており、図2(a)中の左右方向に複数(ここでは4本)積層されている。このチューブ110の上端部は閉塞されており、下端部は開口されている。尚、チューブ110は、図2(b)中の左右方向には、複数列(例えば3列)となるように配設されている(図示せず)。   Here, the tube 110 is formed in a flat shape in which two tube plates 111 and 112 are aligned with each other, and a plurality (four in this case) are stacked in the left-right direction in FIG. . The upper end portion of the tube 110 is closed, and the lower end portion is opened. The tubes 110 are arranged in a plurality of rows (for example, 3 rows) in the left-right direction in FIG. 2B (not shown).

蒸発部110A(チューブ110の下端部から上側に向けて中間部を越える位置までの領域)において、積層される各チューブ110間、および最外方チューブ110の外方には、薄肉板材から断面クランク状に形成されたコルゲートタイプのフィン120が設けられている。   In the evaporation portion 110A (region extending from the lower end portion of the tube 110 to the position exceeding the intermediate portion upward), between the tubes 110 to be stacked and on the outer side of the outermost tube 110, a cross-sectional crank is formed from a thin plate material. Corrugated fins 120 formed in a shape are provided.

チューブ110の下端部(開口部)は、外形が四角形状を成して、各チューブ110に対応する位置にチューブ孔が形成された第1プレート131に接合されている。また、上記第1プレート131と同様の第2プレート132のチューブ孔に各チューブ110が貫通され、第2プレート132はフィン120の上端となる位置に配設されて、チューブ110に接合されている。更に、第2プレート132と同様に、第3プレート133が凝縮部110Bと断熱部110Cとの境界位置に配設されて、チューブ110に接合されている。   The lower end portion (opening portion) of the tube 110 is joined to a first plate 131 having a rectangular outer shape and having a tube hole formed at a position corresponding to each tube 110. In addition, each tube 110 passes through a tube hole of the second plate 132 similar to the first plate 131, and the second plate 132 is disposed at a position that becomes the upper end of the fin 120 and is joined to the tube 110. . Further, like the second plate 132, the third plate 133 is disposed at the boundary position between the condensing part 110 </ b> B and the heat insulating part 110 </ b> C and joined to the tube 110.

チューブ110の積層方向の両最外方フィン120(図2(a)中の左右両側のフィン120)には、外形が四角形状を成すサイドプレート134が設けられており、サイドプレート134はフィン120に接合されると共に、サイドプレート134の下端部および上端部はそれぞれ第1プレート131、第2プレート132に接合されている。   Both outermost fins 120 in the stacking direction of the tubes 110 (the fins 120 on both the left and right sides in FIG. 2A) are provided with side plates 134 having an outer shape of a square shape. And the lower end and the upper end of the side plate 134 are joined to the first plate 131 and the second plate 132, respectively.

上記第1プレート131、第2プレート132、2つのサイドプレート134によって、流路断面として四角形となるダクトが形成され、このダクトが排気管部130Aとなっている。よって、蒸発部110Aおよびフィン120は排気管部130A内に配設される形となっている。そして、排気管部130Aの両開口部には、それぞれ流入側取付け部135、流出側取付け部136が接合されている。両取付け部135、136は共に同一の形状を成すものであり、上記排気管部130Aの開口部と同一の開口部135aを有する四角形の枠体としており、四隅には排気管11への取付け用の取付け穴135bが設けられている。   The first plate 131, the second plate 132, and the two side plates 134 form a square duct as a cross section of the flow path, and this duct serves as the exhaust pipe portion 130A. Therefore, the evaporation part 110A and the fin 120 are arranged in the exhaust pipe part 130A. An inflow side attachment portion 135 and an outflow side attachment portion 136 are joined to both openings of the exhaust pipe portion 130A, respectively. Both attachment portions 135 and 136 have the same shape, and have a rectangular frame having an opening 135a identical to the opening of the exhaust pipe portion 130A, and are attached to the exhaust pipe 11 at the four corners. Mounting holes 135b are provided.

第1プレート131の下側面(排気管部130Aの下側面)には、底浅で第1プレート131側に開口するタンク(本発明における連通部に対応)140が接合されており、各チューブ110が、このタンク140によって互いに連通するようにしている。タンク140の中心部には、タンク140内に連通する封入パイプ141が設けられている。   A tank (corresponding to a communicating portion in the present invention) 140 that opens to the first plate 131 side at the bottom is joined to the lower surface of the first plate 131 (the lower surface of the exhaust pipe portion 130A). However, these tanks 140 communicate with each other. An enclosing pipe 141 communicating with the inside of the tank 140 is provided at the center of the tank 140.

そして、封入パイプ141から各チューブ110内が真空引きされ、その後に作動媒体が封入され、その後に、封入パイプ141は封止される。作動媒体は、ここでは水を使用している。水の沸点は、通常(一気圧で)100℃であるが、チューブ110内を真空引きしているため、沸点は、30〜40℃となる。尚、作動媒体としては、水の他にアルコール、フロロカーボン、フロン等を用いても良い。   Then, each tube 110 is evacuated from the enclosed pipe 141, and then the working medium is enclosed, and then the enclosed pipe 141 is sealed. Here, water is used as the working medium. The boiling point of water is usually 100 ° C. (at one atmospheric pressure), but since the tube 110 is evacuated, the boiling point is 30 to 40 ° C. As the working medium, alcohol, fluorocarbon, chlorofluorocarbon or the like may be used in addition to water.

第3プレート133の上側面には、扁平な直方体で第3プレート133側に開口する水タンク150が接合されている。水タンク150の図2(a)中の左側面には、入口パイプ151が設けられ、また、対向する右側面には、出口パイプ152が設けられており、各パイプ151、152は水タンク150内に連通している。上記第3プレート133、水タンク150、両パイプ151、152によって冷却水流路部150Aが形成され、凝縮部110Bは冷却水流路150A内に配設される形となっている。   A water tank 150 that is a flat rectangular parallelepiped and opens to the third plate 133 side is joined to the upper side surface of the third plate 133. An inlet pipe 151 is provided on the left side surface of the water tank 150 in FIG. 2A, and an outlet pipe 152 is provided on the opposite right side surface. It communicates with the inside. The third plate 133, the water tank 150, and both the pipes 151 and 152 form a cooling water channel portion 150A, and the condensing unit 110B is disposed in the cooling water channel 150A.

断熱部110Cの外方には、車両において排熱回収装置100が配設される領域を流れる冷却風(本発明における外部流体に対応)が、断熱部110Cに当るのを防止するための断熱壁部160が設けられている。ここでは、冷却風の流れが図2(a)中の左から右方向であるものとして、図2(a)中の左右両側に断熱壁部160を設けるようにしている。断熱壁部160は、板状部材であって、下端部が第2プレート132(蒸発部110A)に接合され、また上端部が第3プレート(凝縮部110B)133に接合されている。そして、断熱壁部160は、蒸発部110Aと凝縮部110Bとの間において、所定量の切込み部(本発明における隙間部に対応)161が形成されて分離されるようにしており、分離された各壁部160は、湾曲成形されて板バネとしての弾性を有する湾曲部(本発明における弾性部に対応)162によって接続されるようにしている。   Outside the heat insulating portion 110C, a heat insulating wall for preventing cooling air (corresponding to the external fluid in the present invention) flowing through the region where the exhaust heat recovery device 100 is disposed in the vehicle from hitting the heat insulating portion 110C. A portion 160 is provided. Here, assuming that the flow of the cooling air is from left to right in FIG. 2A, the heat insulating wall portions 160 are provided on both the left and right sides in FIG. 2A. The heat insulating wall 160 is a plate-like member, and has a lower end joined to the second plate 132 (evaporating part 110A) and an upper end joined to the third plate (condensing part 110B) 133. The heat insulating wall 160 is separated by forming a predetermined amount of cut portion 161 (corresponding to the gap portion in the present invention) 161 between the evaporation portion 110A and the condensation portion 110B. Each of the wall portions 160 is connected by a curved portion (corresponding to an elastic portion in the present invention) 162 that is curved and has elasticity as a leaf spring.

上記のように構成される排熱回収装置100は、触媒コンバータ12の下流側となる排気管11に排気管部130Aが介在され、両取付け部135、136によって固定され、また、冷却水流通部150Aの入口パイプ151、出口パイプ152がヒータ回路30に接続される。排気管部130Aは、排気管11の一部を成し、また、冷却水流路部150Aは、ヒータ回路30の一部を成す。   In the exhaust heat recovery apparatus 100 configured as described above, the exhaust pipe portion 130A is interposed in the exhaust pipe 11 on the downstream side of the catalytic converter 12, and is fixed by both mounting portions 135 and 136, and the cooling water circulation portion. An inlet pipe 151 and an outlet pipe 152 of 150A are connected to the heater circuit 30. The exhaust pipe part 130 </ b> A forms part of the exhaust pipe 11, and the cooling water flow path part 150 </ b> A forms part of the heater circuit 30.

次に、上記構成に基づく作動について説明する。エンジン10が作動されると併せてウォータポンプ22が作動され、冷却水はラジエータ回路20、ヒータ回路30を循環する。ヒータ回路30を循環する冷却水は、排熱回収装置100の冷却水流路部150Aを流通する。また、エンジン10で燃焼された燃料の排気ガスは、触媒コンバータ12を経て排気管11から排熱回収装置100の排気管部130Aを通り大気中に排出される。   Next, the operation based on the above configuration will be described. When the engine 10 is operated, the water pump 22 is operated, and the coolant circulates through the radiator circuit 20 and the heater circuit 30. The cooling water circulating through the heater circuit 30 flows through the cooling water flow path portion 150A of the exhaust heat recovery apparatus 100. Further, the exhaust gas of the fuel combusted in the engine 10 passes through the catalytic converter 12 and is discharged from the exhaust pipe 11 to the atmosphere through the exhaust pipe portion 130A of the exhaust heat recovery apparatus 100.

排熱回収装置100において、チューブ110内の水(作動媒体)は、タンク140および蒸発部110Aで、排気管部130Aを流れる排気ガスから受熱して沸騰気化し、蒸気となってチューブ110内を上昇し、凝縮部110B内に流れ込む。凝縮部110B内へ流入した蒸気は、冷却水流路部150Aを流れる冷却水によって冷却され、内壁に設けられたウィックで凝縮水となって重力によって下降し、蒸発部110Aに還流する。   In the exhaust heat recovery apparatus 100, water (working medium) in the tube 110 receives heat from the exhaust gas flowing through the exhaust pipe portion 130 </ b> A by the tank 140 and the evaporation unit 110 </ b> A to be boiled and vaporized, and becomes vapor in the tube 110. Ascend and flow into the condensing unit 110B. The steam that has flowed into the condensing unit 110B is cooled by the cooling water flowing through the cooling water flow path unit 150A, becomes condensed water at the wick provided on the inner wall, descends due to gravity, and returns to the evaporation unit 110A.

このように、排気ガスの熱が水に伝達されて蒸発部110Aから凝縮部110Bへ輸送され、この凝縮部110Bで蒸気が凝縮する際に凝縮潜熱として放出され、冷却水流路部150Aを流れる冷却水が加熱される。尚、排気ガスの熱はチューブ110の壁面を介して熱伝導によって蒸発部110Aから凝縮部110Bに移動される分も存在する。   In this way, the heat of the exhaust gas is transferred to water and transported from the evaporation unit 110A to the condensing unit 110B. When the vapor condenses in the condensing unit 110B, it is released as latent heat of condensation and flows through the cooling water channel unit 150A. Water is heated. The heat of the exhaust gas is also transferred by the heat conduction through the wall surface of the tube 110 from the evaporation unit 110A to the condensation unit 110B.

そして、図3に示すように、エンジン10の負荷に応じて増加する排気熱量に伴って、所定負荷(伝熱量切替え点)までは蒸発部110Aから凝縮部110Bに輸送される熱量、即ち冷却水への伝熱量が増加する(ヒートパイプによる排熱回収ON)。   As shown in FIG. 3, the amount of heat transported from the evaporator 110 </ b> A to the condenser 110 </ b> B up to a predetermined load (heat transfer amount switching point) with the amount of exhaust heat that increases according to the load of the engine 10, i.e., cooling water. The amount of heat transfer to the heat increases (exhaust heat recovery by heat pipe ON).

このように、外気温が比較的低い時にエンジン10を始動した場合、ヒートパイプによる排熱回収がONされ、積極的に冷却水が加熱され、エンジン10の暖機が促進されることになるので、エンジン10のフリクションロスの低減、低温始動性向上のための燃料増量の抑制等が図られ燃費性能が向上される。また、冷却水を加熱源とするヒータコア31の暖房性能が向上される。   Thus, when the engine 10 is started when the outside air temperature is relatively low, the exhaust heat recovery by the heat pipe is turned on, the cooling water is positively heated, and the warm-up of the engine 10 is promoted. In addition, the reduction of the friction loss of the engine 10 and the suppression of the fuel increase for improving the low temperature startability are achieved, and the fuel efficiency is improved. Moreover, the heating performance of the heater core 31 using cooling water as a heat source is improved.

一方、エンジン10の負荷が所定負荷より増加し、排気熱量が更に増加していくと、蒸発部110Aにおける水の蒸発が促進され、凝縮部110B側に向かう(上側に向かう)蒸気流速が増大する。そして、この時の蒸気流速によって、凝縮部110Bで凝縮された凝縮水の下降が阻止されて、凝縮水はウィックで保水されたままとなる。すると、蒸発部110Aの水は蒸発しきってしまい(ドライアウト)、水の蒸発、凝縮による熱輸送が停止され、冷却水側に伝達される熱量がチューブ110を介した熱伝導のみとなる(ヒートパイプによる排熱回収OFF)。尚、上記ヒートパイプによる排熱回収ONとOFFとの切替えが、熱スイッチ機能に対応するものである。   On the other hand, when the load of the engine 10 increases from the predetermined load and the exhaust heat quantity further increases, the evaporation of water in the evaporation unit 110A is promoted, and the steam flow rate toward the condensation unit 110B (upward) increases. . And the fall of the condensed water condensed by the condensing part 110B is blocked | prevented by the vapor | steam flow velocity at this time, and condensed water remains water-retained with the wick. Then, the water in the evaporating section 110A is completely evaporated (dry out), the heat transport due to the evaporation and condensation of the water is stopped, and the amount of heat transmitted to the cooling water side is only the heat conduction through the tube 110 (heat Exhaust heat recovery using pipes OFF). Note that switching between exhaust heat recovery ON and OFF by the heat pipe corresponds to the heat switch function.

よって、エンジン10の負荷増加に伴い排気熱量が高くなる中で、排熱回収をそのまま続けると、冷却水温度が上昇しすぎて、ラジエータ21での放熱能力(例えば4kW)を超え、オーバーヒートに至ってしまうところを、排熱回収OFFへの切替えにより、その不具合が防止されることになる。   Therefore, if exhaust heat recovery increases as the load of the engine 10 increases, if the exhaust heat recovery is continued as it is, the cooling water temperature rises too much and exceeds the heat dissipation capability (for example, 4 kW) in the radiator 21, leading to overheating. However, the problem is prevented by switching to exhaust heat recovery OFF.

尚、本発明者の実車確認では、1.5Lクラスのガソリン車で40km/h、外気温0〜25℃の条件で、燃費性能については3〜5%の効果、また、ヒータコア31の入口水温については+5〜8℃の効果を得ている。   In addition, according to the inventor's actual vehicle confirmation, a 1.5 L class gasoline vehicle is 40 km / h, the outside air temperature is 0 to 25 ° C., the fuel efficiency is 3 to 5%, and the heater core 31 inlet water temperature is The effect of +5 to 8 ° C. is obtained.

ここで、本実施形態においては、チューブ110の断熱部110Cに断熱壁部160を設けるようにしているので、例えば寒冷地のように断熱部110Cに当る冷却風の温度が冷却水温度より低い場合であっても、冷却風が断熱部110Cに当るのが防止されるので、蒸発部110Aで蒸発した蒸気が断熱部110Cにおいて凝縮するのを防止でき、蒸発部110Aから凝縮部110Bへの確実な熱輸送が可能となる。   Here, in this embodiment, since the heat insulation wall part 160 is provided in the heat insulation part 110C of the tube 110, when the temperature of the cooling air which hits the heat insulation part 110C is lower than a cooling water temperature like a cold district, for example. Even so, the cooling air is prevented from hitting the heat insulating part 110C, so that the vapor evaporated in the evaporation part 110A can be prevented from condensing in the heat insulating part 110C, and a reliable flow from the evaporation part 110A to the condensing part 110B can be ensured. Heat transport is possible.

また、断熱壁部160を切込み部161によって分離し、分離された各壁部160を弾性を有する湾曲部162によって接続するようにしているので、断熱壁部160において蒸発部110Aと凝縮部110Bとの温度差によって発生する熱歪みを切込み部161および湾曲部162によって吸収することができる。尚、断熱壁部160は分離されつつも、湾曲部162によって一体化されるので、組付け性が低下されることはない。また、熱スイッチ機能によって凝縮部110Bへの熱輸送が停止される時に、蒸発部110Aからの熱伝導が切込み部161によって遮断されるので、熱輸送の停止が悪化されることがない。   Moreover, since the heat insulation wall part 160 is separated by the notch part 161 and each separated wall part 160 is connected by the curved part 162 having elasticity, the evaporation part 110A and the condensation part 110B in the heat insulation wall part 160 The thermal distortion generated by the temperature difference can be absorbed by the cut portion 161 and the curved portion 162. In addition, since the heat insulation wall part 160 is separated and integrated by the curved part 162, the assembling property is not deteriorated. Further, when the heat transfer to the condensing unit 110B is stopped by the heat switch function, the heat conduction from the evaporation unit 110A is interrupted by the cut portion 161, so that the stop of the heat transport is not worsened.

また、複数のチューブ110を連通させるタンク140を設けているので、タンク140の一箇所のみに封入パイプ141を設けることで、内部の真空引きや作動媒体の封入が可能となる。   In addition, since the tank 140 that allows the plurality of tubes 110 to communicate with each other is provided, the internal pipe 141 can be provided only at one location of the tank 140 so that the internal vacuum can be drawn and the working medium can be sealed.

また、蒸発部110Aを凝縮部110Bの下方に配置し、タンク140を蒸発部110A側端部に設けると共に、排気管部130A(第1プレート131)に接触するように配置しているので、タンク140内の作動媒体も排気ガスによって積極的に加熱されることになり、熱スイッチ機能を作動させる(排熱回収OFFとする)ためのドライアウトを早期に行うことができる。   In addition, the evaporation unit 110A is disposed below the condensing unit 110B, the tank 140 is provided at the end of the evaporation unit 110A side, and is disposed so as to contact the exhaust pipe unit 130A (first plate 131). The working medium in 140 is also positively heated by the exhaust gas, and dryout for operating the heat switch function (turning off exhaust heat recovery) can be performed at an early stage.

また、排気管11の一部を成す排気管部130Aと、ヒータ回路30の一部を成す冷却水流路部150Aとをそれぞれ、蒸発部110A、凝縮部110Bに一体的に接合される排熱回収装置100としているので、1つの熱交換器として排気管11とヒータ回路30とに容易に装着可能なものとすることができる。   In addition, exhaust heat recovery in which an exhaust pipe portion 130A that forms part of the exhaust pipe 11 and a cooling water flow path portion 150A that forms part of the heater circuit 30 are integrally joined to the evaporation section 110A and the condensation section 110B, respectively. Since the apparatus 100 is used, it can be easily attached to the exhaust pipe 11 and the heater circuit 30 as one heat exchanger.

(第2実施形態)
本発明の第2実施形態を図4に示す。第2実施形態は、上記第1実施形態のチューブ110、フィン120に対して、チューブ110a、フィン120aに変更したものである。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. 2nd Embodiment changes the tube 110a and the fin 120a with respect to the tube 110 and the fin 120 of the said 1st Embodiment.

チューブ110aは、2つのチューブプレート111、112から成る扁平のチューブ110に対して、丸管タイプのものとしている。また、フィン120aは、コルゲートタイプのフィン120に対して、チューブバーリング孔を有し、チューブ110aが挿通されるプレートタイプのものとしている。尚、凝縮部110Bにおいては、冷却水側との熱伝達を向上させるために、プレートタイプの水側フィン120bを装着している。これにより、上記第1実施形態と同様の効果を得ることができる。   The tube 110a is a round tube type with respect to the flat tube 110 which consists of the two tube plates 111,112. Further, the fin 120a is a plate type that has a tube burring hole with respect to the corrugated fin 120 and through which the tube 110a is inserted. In addition, in the condensing part 110B, in order to improve heat transfer with the cooling water side, a plate type water side fin 120b is mounted. Thereby, the effect similar to the said 1st Embodiment can be acquired.

(第3実施形態)
本発明の第3実施形態を図5に示す。第3実施形態は、上記第1実施形態に対して、チューブ110、水タンク150、断熱壁部160を廃止して、プレートタイプのフィン120cを積層することでチューブ110b、水タンク150a、断熱壁部160aを形成するようにしたものである。
(Third embodiment)
A third embodiment of the present invention is shown in FIG. Compared to the first embodiment, the third embodiment abolishes the tube 110, the water tank 150, and the heat insulation wall 160, and stacks the plate-type fins 120c so that the tube 110b, the water tank 150a, and the heat insulation wall are stacked. The portion 160a is formed.

フィン120cにはバーリング部121を有する孔が複数設けられており、フィン120cを積層することで、バーリング部121が順次接続され、丸管に相当するチューブ110bが形成されるようにしている。   The fin 120c is provided with a plurality of holes having the burring portion 121. By stacking the fins 120c, the burring portion 121 is sequentially connected to form a tube 110b corresponding to a round tube.

凝縮部110Bに対応するフィン120cの外周には縁立て部122が設けられており、フィン120cを積層することで、縁立て部122が順次接続され、直方体容器に相当する水タンク150aが形成されるようにしている。尚、凝縮部110Bに対応するフィン120cの複数のバーリング部121同士間には、水用孔が設けられており、水タンク150aの全体に渡って冷却水が流通できるようにしている。   A fringe portion 122 is provided on the outer periphery of the fin 120c corresponding to the condensing portion 110B, and by laminating the fins 120c, the fringe portion 122 is sequentially connected to form a water tank 150a corresponding to a rectangular parallelepiped container. I try to do it. A water hole is provided between the plurality of burring portions 121 of the fin 120c corresponding to the condensing unit 110B so that the cooling water can be circulated throughout the water tank 150a.

また、断熱部110Cに対応するフィン120cの端部には折り曲げ部123が設けられており、フィン120cを積層することで、折り曲げ部123が順次並び、複数に分離された板状部材に相当する断熱壁部160aが形成されるようにしている。   Further, a bent portion 123 is provided at an end of the fin 120c corresponding to the heat insulating portion 110C, and the bent portions 123 are sequentially arranged by stacking the fins 120c, and correspond to a plurality of separated plate-like members. A heat insulating wall 160a is formed.

これにより、チューブ110、水タンク150、断熱壁部160を廃止して、安価な対応が可能となる。   Thereby, the tube 110, the water tank 150, and the heat insulation wall part 160 are abolished, and an inexpensive response | compatibility is attained.

(第4実施形態)
本発明の第4実施形態を図6〜図8に示す。第4実施形態は、上記第1〜第3実施形態に対して、チューブ110、110a、110bの蒸発部110Aを凝縮部110Bの上方に配置して、トップヒート型にしたものである。図6、図7、図8に示す各排熱回収装置100は、外観的には、それぞれ図2、図4、図5で説明した排熱回収装置100に対して、上下を反転すると共に、チューブ110、110a、110bの内壁に凝縮部110Bから蒸発部110Aに至るウィックを設けている。
(Fourth embodiment)
A fourth embodiment of the present invention is shown in FIGS. The fourth embodiment is a top heat type in which the evaporator 110A of the tubes 110, 110a, 110b is arranged above the condenser 110B with respect to the first to third embodiments. Each of the exhaust heat recovery devices 100 shown in FIGS. 6, 7, and 8 is turned upside down with respect to the exhaust heat recovery devices 100 described in FIGS. 2, 4, and 5. Wicks extending from the condensation unit 110B to the evaporation unit 110A are provided on the inner walls of the tubes 110, 110a, and 110b.

これにより、車両における排気管11およびヒータ回路30の設定位置に応じて、蒸発部110Aが凝縮部110Bの上方に配置される場合であっても、両者間110A、110Bの熱輸送が可能となる。   Thereby, even if the evaporation unit 110A is arranged above the condensing unit 110B according to the set positions of the exhaust pipe 11 and the heater circuit 30 in the vehicle, heat transport between the two units 110A and 110B becomes possible. .

(その他の実施形態)
上記各実施形態では、断熱壁部160を冷却風流れの上流側および下流側の2ヶ所に設けるものとして説明したが、これに限らず、少なくとも冷却風流れの上流側の1ヶ所のみの設定としても良い。これにより、冷却風の流れを断熱壁部160によって効果的に遮り、断熱部110Cに当るのを防止できるので、最小限の断熱壁部160の設定で、断熱部110Cにおける作動媒体の凝縮を防止できる。また、逆に断熱壁部160を断熱部110Cの周りすべて(4ヶ所)に設けるようにしても良い。
(Other embodiments)
In each of the above embodiments, the heat insulating wall 160 is described as being provided at two locations on the upstream side and the downstream side of the cooling air flow. However, the present invention is not limited to this, and at least only one location on the upstream side of the cooling air flow is set. Also good. As a result, the flow of the cooling air can be effectively blocked by the heat insulating wall portion 160 and can be prevented from hitting the heat insulating portion 110C, so that the condensation of the working medium in the heat insulating portion 110C can be prevented with the minimum heat insulating wall portion 160 setting. it can. Conversely, the heat insulating wall 160 may be provided all around (four locations) around the heat insulating portion 110C.

排熱回収装置の車両への搭載状態を示す模式図である。It is a schematic diagram which shows the mounting state to the vehicle of a waste heat recovery apparatus. 第1実施形態における排熱回収装置を示す(a)は正面図、(b)は(a)の右側面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) which shows the waste heat recovery apparatus in 1st Embodiment is a front view, (b) is a right view of (a). 排熱回収装置によるエンジン冷却水への伝熱量を示すグラフである。It is a graph which shows the heat transfer amount to the engine cooling water by a waste heat recovery apparatus. 第2実施形態における排熱回収装置を示す(a)は正面図、(b)は(a)の右側面図である。(A) which shows the waste heat recovery apparatus in 2nd Embodiment is a front view, (b) is a right view of (a). 第3実施形態における排熱回収装置を示す(a)は正面図、(b)は(a)の右側面図である。(A) which shows the waste heat recovery apparatus in 3rd Embodiment is a front view, (b) is a right view of (a). 第4実施形態の1における排熱回収装置を示す(a)は正面図、(b)は(a)の右側面図である。(A) which shows the waste heat recovery apparatus in 1 of 4th Embodiment is a front view, (b) is a right view of (a). 第4実施形態の2における排熱回収装置を示す(a)は正面図、(b)は(a)の右側面図である。(A) which shows the waste heat recovery apparatus in 2 of 4th Embodiment is a front view, (b) is a right view of (a). 第4実施形態の3における排熱回収装置を示す(a)は正面図、(b)は(a)の右側面図である。(A) which shows the waste heat recovery apparatus in 3 of 4th Embodiment is a front view, (b) is a right view of (a).

符号の説明Explanation of symbols

10 エンジン(内燃機関)
11 排気管
30 ヒータ回路(冷却水流路)
100 排熱回収装置
110 チューブ(ヒートパイプ)
110A 蒸発部
110B 凝縮部
110C 断熱部
130A 排気管部
140 タンク(連通部)
150A 冷却水流路部
160 断熱壁部(壁部)
161 切込み部(隙間部)
162 湾曲部(弾性部)
10 Engine (Internal combustion engine)
11 Exhaust pipe 30 Heater circuit (cooling water flow path)
100 Waste heat recovery device 110 Tube (heat pipe)
110A Evaporating section 110B Condensing section 110C Heat insulation section 130A Exhaust pipe section 140 Tank (communication section)
150A Cooling water flow passage 160 Heat insulation wall (wall)
161 notch (clearance)
162 Curved part (elastic part)

Claims (7)

蒸発部(110A)への加熱量増加に応じて、凝縮部(110B)への熱輸送量が規制される熱スイッチ機能を備えると共に、前記蒸発部(110A)が内燃機関(10)の排気ガス流通用の排気管(11)に配設され、前記凝縮部(110B)が前記内燃機関(10)の冷却水流通用の冷却水流路(30)に配設されるヒートパイプ(110)を有し、
前記ヒートパイプ(110)によって前記排気ガスの排熱を前記冷却水へ輸送する排熱回収装置において、
前記蒸発部(110A)と前記凝縮部(110B)との間に形成される断熱部(110C)に、外部流体からの熱伝達を防止する壁部(160)を設けたことを特徴とする排熱回収装置。
A heat switch function is provided in which the amount of heat transported to the condensing unit (110B) is regulated according to an increase in the heating amount to the evaporating unit (110A), and the evaporating unit (110A) is an exhaust gas of the internal combustion engine (10). The heat pipe (110) is provided in the exhaust pipe (11) for circulation, and the condensing part (110B) is provided in the cooling water passage (30) for circulation of the cooling water of the internal combustion engine (10). ,
In the exhaust heat recovery apparatus for transporting exhaust heat of the exhaust gas to the cooling water by the heat pipe (110),
A wall part (160) for preventing heat transfer from an external fluid is provided in the heat insulating part (110C) formed between the evaporation part (110A) and the condensing part (110B). Heat recovery device.
前記壁部(160)は、少なくとも前記断熱部(110C)の前記外部流体流れの上流側に設けられたことを特徴とする請求項1に記載の排熱回収装置。   The exhaust heat recovery apparatus according to claim 1, wherein the wall (160) is provided at least on the upstream side of the external fluid flow of the heat insulating part (110C). 前記壁部(160)は、前記蒸発部(110A)および前記凝縮部(110B)に接続されると共に、前記蒸発部(110A)と前記凝縮部(110B)との間において、所定量の隙間部(161)が形成されて分離されており、
分離された各壁部(160)は、弾性を有する弾性部(162)によって接続されたことを特徴とする請求項1または請求項2に記載の排熱回収装置。
The wall portion (160) is connected to the evaporation portion (110A) and the condensation portion (110B), and a gap portion of a predetermined amount is provided between the evaporation portion (110A) and the condensation portion (110B). (161) is formed and separated,
The exhaust heat recovery apparatus according to claim 1 or 2, wherein the separated wall portions (160) are connected by an elastic portion (162) having elasticity.
前記ヒートパイプ(110)は、複数設けられており、
複数の前記ヒートパイプ(110)の一端側には、複数の前記ヒートパイプ(110)を互いに連通させる連通部(140)が設けられたことを特徴とする請求項1〜請求項3のいずれか1つに記載の排熱回収装置。
A plurality of the heat pipes (110) are provided,
The communication part (140) which connects the said some heat pipe (110) mutually is provided in the one end side of the said some heat pipe (110), The any one of Claims 1-3 characterized by the above-mentioned. The exhaust heat recovery apparatus according to one.
前記蒸発部(110A)は、前記凝縮部(110B)の下方に配置され、
前記連通部(140)は、前記蒸発部(110A)側端部に設けられ、前記排気管(11)の外表面、あるいは内部に配置されたことを特徴とする請求項4に記載の排熱回収装置。
The evaporator (110A) is disposed below the condenser (110B),
The exhaust heat according to claim 4, wherein the communication portion (140) is provided at an end portion on the evaporation portion (110A) side, and is disposed on the outer surface or the inside of the exhaust pipe (11). Recovery device.
前記ヒートパイプ(110)の内壁には、前記蒸発部(110A)から前記凝縮部(110B)に至るウィックが設けられ、
前記蒸発部(110A)は、前記凝縮部(110B)の上方に配置されたことを特徴とする請求項1〜請求項4のいずれか1つに記載の排熱回収装置。
The inner wall of the heat pipe (110) is provided with a wick from the evaporation section (110A) to the condensation section (110B),
The exhaust heat recovery apparatus according to any one of claims 1 to 4, wherein the evaporator (110A) is disposed above the condenser (110B).
前記排気管(11)の一部を成す排気管部(130A)と、
前記冷却水流路(30)の一部を成す冷却水流路部(150A)とを設け、
前記蒸発部(110A)に前記排気管部(130A)が、前記凝縮部(110B)に前記冷却水流路部(150A)がそれぞれ一体的に接合されたことを特徴とする請求項1〜請求項6のいずれか1つに記載の排熱回収装置。
An exhaust pipe part (130A) forming a part of the exhaust pipe (11);
A cooling water flow path portion (150A) forming a part of the cooling water flow path (30),
The exhaust pipe portion (130A) is integrally joined to the evaporation portion (110A), and the cooling water flow passage portion (150A) is integrally joined to the condensing portion (110B), respectively. 6. The exhaust heat recovery apparatus according to any one of 6.
JP2005107809A 2005-04-04 2005-04-04 Exhaust heat recovery device Withdrawn JP2006284144A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005107809A JP2006284144A (en) 2005-04-04 2005-04-04 Exhaust heat recovery device
DE102006015379A DE102006015379A1 (en) 2005-04-04 2006-04-03 Waste heat recycling system for vehicle internal combustion engine, has thermo-switch limiting amount of heat and isolating part formed between evaporator and condenser and having wall section to avoid heat transfer from external fluid
US11/396,987 US20080115923A1 (en) 2005-04-04 2006-04-03 Exhaust heat recovering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107809A JP2006284144A (en) 2005-04-04 2005-04-04 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
JP2006284144A true JP2006284144A (en) 2006-10-19

Family

ID=37295563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107809A Withdrawn JP2006284144A (en) 2005-04-04 2005-04-04 Exhaust heat recovery device

Country Status (3)

Country Link
US (1) US20080115923A1 (en)
JP (1) JP2006284144A (en)
DE (1) DE102006015379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116045715A (en) * 2023-01-09 2023-05-02 浙江志高动力科技有限公司 Energy-saving screw air compressor

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012570B1 (en) * 2007-04-11 2021-07-21 MAHLE Behr GmbH & Co. KG Heat exchanger
JP4450056B2 (en) * 2007-11-21 2010-04-14 トヨタ自動車株式会社 Exhaust heat recovery unit
JP4870702B2 (en) * 2008-03-13 2012-02-08 トヨタ自動車株式会社 Exhaust heat recovery unit
US8596073B2 (en) * 2008-07-18 2013-12-03 General Electric Company Heat pipe for removing thermal energy from exhaust gas
US8186152B2 (en) * 2008-07-23 2012-05-29 General Electric Company Apparatus and method for cooling turbomachine exhaust gas
US8359824B2 (en) * 2008-07-29 2013-01-29 General Electric Company Heat recovery steam generator for a combined cycle power plant
US8015790B2 (en) * 2008-07-29 2011-09-13 General Electric Company Apparatus and method employing heat pipe for start-up of power plant
US20100024424A1 (en) * 2008-07-29 2010-02-04 General Electric Company Condenser for a combined cycle power plant
US8157512B2 (en) * 2008-07-29 2012-04-17 General Electric Company Heat pipe intercooler for a turbomachine
US8425223B2 (en) * 2008-07-29 2013-04-23 General Electric Company Apparatus, system and method for heating fuel gas using gas turbine exhaust
US20100064655A1 (en) * 2008-09-16 2010-03-18 General Electric Company System and method for managing turbine exhaust gas temperature
US20100072292A1 (en) * 2008-09-25 2010-03-25 Munro Mark S Indoor Space Heating Apparatus
US8046998B2 (en) * 2008-10-01 2011-11-01 Toyota Motor Engineering & Manufacturing North America, Inc. Waste heat auxiliary power unit
US20100095648A1 (en) * 2008-10-17 2010-04-22 General Electric Company Combined Cycle Power Plant
US8330285B2 (en) * 2009-07-08 2012-12-11 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for a more efficient and dynamic waste heat recovery system
JP5331026B2 (en) * 2010-02-18 2013-10-30 トヨタ自動車株式会社 Waste heat recovery device
US8714288B2 (en) 2011-02-17 2014-05-06 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid variant automobile drive
DE102011004599A1 (en) * 2011-02-23 2012-08-23 J. Eberspächer GmbH & Co. KG Water heating system, especially for campers
DE102011121471A1 (en) * 2011-12-17 2013-06-20 Volkswagen Aktiengesellschaft Heat accumulator for storage of waste heat from e.g. motor car, has accumulator main portion that is filled with fluid and pouring elements
US20150300261A1 (en) * 2014-04-17 2015-10-22 General Electric Company Fuel heating system for use with a combined cycle gas turbine
US20160109193A1 (en) * 2014-10-21 2016-04-21 Greenergy Products, Inc. Equipment and Method
US9939203B2 (en) * 2015-06-15 2018-04-10 Hamilton Sundstrand Corporation Variable heat rejection using heat pipe heat exchanger
WO2017030381A1 (en) * 2015-08-18 2017-02-23 한온시스템 주식회사 Vehicle oil warmer and heat exchange system
US10428713B2 (en) 2017-09-07 2019-10-01 Denso International America, Inc. Systems and methods for exhaust heat recovery and heat storage
KR102598538B1 (en) * 2018-10-22 2023-11-03 현대자동차주식회사 Exhaust tail trim for vehicle
CN109489460A (en) * 2018-11-27 2019-03-19 重庆大学 A kind of ash-laden gas stage purification residual neat recovering system and dedusting store heat-exchanger rig
CN109989811A (en) * 2019-05-14 2019-07-09 河北工业大学 A kind of intermediate medium type exhaust gases of internal combustion engines temperature difference electricity generation device
CN111957170A (en) * 2020-08-13 2020-11-20 四川淼垚森环保科技有限公司 Combustion flue gas recycling device and using method thereof
CN217715008U (en) * 2022-05-06 2022-11-01 天津大学滨海工业研究院有限公司 Waste heat recovery device for boiler equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177858A (en) * 1977-08-22 1979-12-11 Foster Wheeler Energy Corporation Heat exchanger
US4781242A (en) * 1987-03-09 1988-11-01 Volvo Flygmotor A.B. Exhaust heat recovery system for compartment heating
US6793009B1 (en) * 2003-06-10 2004-09-21 Thermal Corp. CTE-matched heat pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116045715A (en) * 2023-01-09 2023-05-02 浙江志高动力科技有限公司 Energy-saving screw air compressor

Also Published As

Publication number Publication date
DE102006015379A1 (en) 2006-11-16
US20080115923A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP2006284144A (en) Exhaust heat recovery device
US7946112B2 (en) Exhaust heat recovery device
JP2006317013A (en) Heat pipe and waste heat recovering device using the same
JP4375454B2 (en) Waste heat recovery device
JP2007278623A (en) Exhaust heat recovery system
JP4245063B2 (en) Waste heat recovery device
JP4882699B2 (en) Waste heat recovery device
JP5331026B2 (en) Waste heat recovery device
JP2009008318A (en) Exhaust heat recovery device
JP2006313056A (en) Heat pipe, and exhaust heat recovery system using the same
JP2007024423A (en) Exhaust heat recovery device
JP2007332857A (en) Exhaust heat recovery equipment
JP2009074494A (en) Exhaust heat recovery device
JP4627254B2 (en) Heat pipe equipment
JP4737219B2 (en) Exhaust heat recovery system
JP2008014304A (en) Exhaust heat recovery equipment
JP2007170299A (en) Exhaust heat recovery system
JP5316452B2 (en) Exhaust heat recovery device
JP2008275292A (en) Exhaust heat recovery device
JP2007024424A (en) Exhaust heat recovery device and refrigerant filling method of exhaust heat recovery device
JP2008303728A (en) Exhaust heat recovery apparatus
JP2008267354A (en) Exhaust gas heat recovery device
JP2009058205A (en) Exhaust heat recovery device
JP6517951B2 (en) Exhaust heat recovery system
JP2009036103A (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081217