JP2006278505A5 - - Google Patents

Download PDF

Info

Publication number
JP2006278505A5
JP2006278505A5 JP2005092444A JP2005092444A JP2006278505A5 JP 2006278505 A5 JP2006278505 A5 JP 2006278505A5 JP 2005092444 A JP2005092444 A JP 2005092444A JP 2005092444 A JP2005092444 A JP 2005092444A JP 2006278505 A5 JP2006278505 A5 JP 2006278505A5
Authority
JP
Japan
Prior art keywords
carbon nanotube
electron beam
substrate
state
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005092444A
Other languages
Japanese (ja)
Other versions
JP4627206B2 (en
JP2006278505A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005092444A priority Critical patent/JP4627206B2/en
Priority claimed from JP2005092444A external-priority patent/JP4627206B2/en
Publication of JP2006278505A publication Critical patent/JP2006278505A/en
Publication of JP2006278505A5 publication Critical patent/JP2006278505A5/ja
Application granted granted Critical
Publication of JP4627206B2 publication Critical patent/JP4627206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明に係るカーボンナノチューブの製造方法は、基板の上にカーボンナノチューブが配置された状態とする工程と、カーボンナノチューブに電子線が照射された状態としてカーボンナノチューブのバンドギャップが電子線の照射前より広くなるなど照射前から変化した状態とする工程とを少なくとも備えるようにしたものである。このように電子線を照射することで、カーボンナノチューブの電気的特性が変更される。 The method for producing carbon nanotubes according to the present invention comprises a step of placing carbon nanotubes on a substrate, and a state in which the carbon nanotubes are irradiated with an electron beam, so that the band gap of the carbon nanotubes is before the irradiation of the electron beams. And a step of changing the state before irradiation such as widening. By irradiating the electron beam in this way, the electrical characteristics of the carbon nanotube are changed.

また、本発明に係るトランジスタの製造方法は、基板の上にチャネルとなるカーボンナノチューブが配置された状態とする工程と、基板の上にカーボンナノチューブに接続するソース電極及びドレイン電極が形成された状態とする工程と、カーボンナノチューブに電界を印加するゲート電極が形成された状態とする工程と、カーボンナノチューブに電子線が照射された状態としてカーボンナノチューブのバンドギャップが電子線の照射前より広くなるなど照射前から変化した状態とする工程とを少なくとも備えるようにしたものである。従って、配置されたカーボンナノチューブが金属的な電気伝導性を備えるものであっても、電子線の照射により半導体的な電気伝導性を備える状態となる。また、カーボンナノチューブが、半導体的な電気伝導性を備えていれば、電子線の照射によりバンドギャップがより広くなり、半導体の特性が変更される。 The transistor manufacturing method according to the present invention includes a step in which carbon nanotubes serving as channels are disposed on a substrate, and a state in which a source electrode and a drain electrode connected to the carbon nanotubes are formed on the substrate. The step of forming a gate electrode for applying an electric field to the carbon nanotube, and the state in which the carbon nanotube is irradiated with the electron beam, the band gap of the carbon nanotube becomes wider than before the irradiation of the electron beam. And at least a step of changing the state from before irradiation . Therefore, even if the arranged carbon nanotubes have metallic electrical conductivity, they are in a state having semiconducting electrical conductivity by irradiation with an electron beam. Further, if the carbon nanotube has semiconducting electrical conductivity, the band gap becomes wider by irradiation with an electron beam, and the characteristics of the semiconductor are changed.

Claims (2)

基板の上にカーボンナノチューブが配置された状態とする工程と、
前記カーボンナノチューブに電子線が照射された状態として前記カーボンナノチューブのバンドギャップが電子線の照射前から変化した状態とする工程と
を少なくとも備えることを特徴とするカーボンナノチューブの製造方法。
A step of placing the carbon nanotubes on the substrate;
And a step of changing the band gap of the carbon nanotube from that before the irradiation with the electron beam as a state in which the carbon nanotube is irradiated with the electron beam.
基板の上にチャネルとなるカーボンナノチューブが配置された状態とする工程と、
前記基板の上に前記カーボンナノチューブに接続するソース電極及びドレイン電極が形成された状態とする工程と、
前記カーボンナノチューブに電界を印加するゲート電極が形成された状態とする工程と、
前記カーボンナノチューブに電子線が照射された状態として前記カーボンナノチューブのバンドギャップが電子線の照射前から変化した状態とする工程と
を少なくとも備えることを特徴とするトランジスタの製造方法。
A step of placing carbon nanotubes serving as channels on a substrate; and
Forming a source electrode and a drain electrode connected to the carbon nanotube on the substrate; and
A step of forming a gate electrode for applying an electric field to the carbon nanotube;
And a step of changing the band gap of the carbon nanotube from that before irradiation with the electron beam as a state in which the carbon nanotube is irradiated with the electron beam.
JP2005092444A 2005-03-28 2005-03-28 Manufacturing method of nanotube transistor Expired - Fee Related JP4627206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092444A JP4627206B2 (en) 2005-03-28 2005-03-28 Manufacturing method of nanotube transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092444A JP4627206B2 (en) 2005-03-28 2005-03-28 Manufacturing method of nanotube transistor

Publications (3)

Publication Number Publication Date
JP2006278505A JP2006278505A (en) 2006-10-12
JP2006278505A5 true JP2006278505A5 (en) 2007-03-15
JP4627206B2 JP4627206B2 (en) 2011-02-09

Family

ID=37212983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092444A Expired - Fee Related JP4627206B2 (en) 2005-03-28 2005-03-28 Manufacturing method of nanotube transistor

Country Status (1)

Country Link
JP (1) JP4627206B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100877690B1 (en) 2006-12-05 2009-01-08 한국전자통신연구원 Manufacturing method of nano-wire array device
US7846786B2 (en) 2006-12-05 2010-12-07 Korea University Industrial & Academic Collaboration Foundation Method of fabricating nano-wire array
JP4666270B2 (en) * 2006-12-18 2011-04-06 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP4988369B2 (en) * 2007-02-05 2012-08-01 日本電信電話株式会社 Method for manufacturing carbon nanotube transistor
US8421129B2 (en) 2007-04-16 2013-04-16 Nec Corporation Semiconductor device using carbon nanotubes for a channel layer and method of manufacturing the same
US9174847B2 (en) * 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
CN108020573B (en) * 2016-10-31 2019-12-17 清华大学 Method for distinguishing carbon nanotube types
CN108023016B (en) * 2016-10-31 2020-07-10 清华大学 Preparation method of thin film transistor
CN108017048B (en) * 2016-10-31 2020-01-07 清华大学 Method for producing semiconductor layer
CN113130620B (en) * 2020-01-15 2023-07-18 清华大学 Field effect transistor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347532A (en) * 2003-05-23 2004-12-09 Japan Science & Technology Agency Biosensor
US20050036905A1 (en) * 2003-08-12 2005-02-17 Matsushita Electric Works, Ltd. Defect controlled nanotube sensor and method of production
EP1508926A1 (en) * 2003-08-19 2005-02-23 Hitachi, Ltd. Nanotube transistor device

Similar Documents

Publication Publication Date Title
JP2006278505A5 (en)
KR101715355B1 (en) Graphene electronic device
JP5220300B2 (en) Carbon nanotube field effect transistor, method of forming the same, and complementary carbon nanotube device
Kim et al. Irradiation effects of high-energy proton beams on MoS2 field effect transistors
TW200703468A (en) Semiconductor device and method for manufacturing the same
Khondaker et al. Bandgap engineering of MoS2 flakes via oxygen plasma: a layer dependent study
KR20110042952A (en) Method of healing defect of graphene using laser beam and manufacturing electronic device using the same
Kim et al. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics
JP2005520356A5 (en)
JP2008511169A5 (en)
TW200729354A (en) Method for manufacturing carbon nano-tube FET
AU2002322459A1 (en) Single-electron transistors and fabrication methods
JP2008270758A5 (en)
WO2009031681A1 (en) Switching device and method for manufacturing the same
JP2008073768A5 (en)
Kim et al. Defect‐Engineered n‐Doping of WSe2 via Argon Plasma Treatment and Its Application in Field‐Effect Transistors
JP2005286320A5 (en)
TW200512787A (en) A carbon nanotubes field emission display and the fabricating method of which
Jadwiszczak et al. Plasma treatment of ultrathin layered semiconductors for electronic device applications
Gan et al. Tuning the properties of graphene using a reversible gas-phase reaction
JP6095767B2 (en) Manufacturing method of organic field effect transistor
Zhang et al. Mixed‐Dimensional van der Waals Engineering for Charge Transfer Enables Wafer‐Level Flexible Electronics
JP4988369B2 (en) Method for manufacturing carbon nanotube transistor
Im et al. Self-Aligned Contact Doping of WSe2 Metal–Insulator–Semiconductor Field-Effect Transistors Using Hydrogen Silsesquioxane
CN101669196B (en) Multifinger carbon nanotube field-effect transistor