JP2006274488A - Acrylic synthetic fiber and method for producing the same and fiber product - Google Patents

Acrylic synthetic fiber and method for producing the same and fiber product Download PDF

Info

Publication number
JP2006274488A
JP2006274488A JP2005094677A JP2005094677A JP2006274488A JP 2006274488 A JP2006274488 A JP 2006274488A JP 2005094677 A JP2005094677 A JP 2005094677A JP 2005094677 A JP2005094677 A JP 2005094677A JP 2006274488 A JP2006274488 A JP 2006274488A
Authority
JP
Japan
Prior art keywords
far
fiber
fine particle
acrylic
particle content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005094677A
Other languages
Japanese (ja)
Inventor
Toshiyuki Iwabuchi
俊行 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005094677A priority Critical patent/JP2006274488A/en
Publication of JP2006274488A publication Critical patent/JP2006274488A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylic synthetic fiber having an excellent heat-retaining property without deteriorating an operation property and a processing property on the production of the acrylic synthetic fiber, and to provide a method for producing the same. <P>SOLUTION: This acrylic conjugated fiber having a multi-layered structure in which the three or more layers of an acrylic polymer are joined in the fiber axial direction is characterized in that the conjugated structure comprises layers each having a far IR ray-radiating fine particle content of 5 to 30 wt.% and layers each having a far IR ray-radiating fine particle content of ≤1 wt.%, and the conjugated fiber totally has a far IR ray-radiating fine particle content of 3 to 15 wt.%. The method for producing the same is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は遠赤外線を多く放射し、保温性良好なアクリル系合成繊維およびその製造方法ならびに繊維製品に関する。   The present invention relates to an acrylic synthetic fiber that emits a large amount of far-infrared rays and has good heat retention, a method for producing the same, and a fiber product.

従来、冬季にはその寒さをしのぐため、厚くかつ重い衣服を着用していた。しかし、近年は特に若年層でファッション性を重視する傾向が強まり、冬季でも薄着であることが多くなった。そのため、薄くても保温性が高い保温下着の需要が高まっている。   In the past, thick and heavy clothing was worn to overcome the cold in winter. In recent years, however, the trend toward emphasizing fashion has become particularly strong among young people, and it has become increasingly light even in winter. Therefore, there is an increasing demand for heat insulation underwear that is thin but has high heat insulation.

従来の保温下着は伸縮性良好な生地を起毛し、空気層を設けることにより保温性を確保していたが、さらにその保温性を高めるため、通常より多くの遠赤外線を発生する繊維の開発が進められている。   Conventional warming underwear has raised fabric with good stretch and secured an air layer by providing an air layer, but in order to further enhance its warming, the development of fibers that generate more far infrared rays than usual It is being advanced.

例えば、特許文献1では遠赤外線を発生する微粒子をアクリル系合成繊維全体に均一に練り込んでいる。保温効果を得るためには練り込み量を多くする必要があり、一方練り込み量を多くすると繊維製造時の操業性(主に口金圧上昇率)および加工性(紡績性)が悪化しやすい。そこで、特許文献2にあるように芯鞘構造とし、芯部に高濃度の蓄熱剤を練り込むなどの方法が試みられている。この方法であれば加工性は問題ないと思われるが、精密な口金を用いるため、口金ユニット自体が高価格になり、加えて口金圧上昇率が大きく、操業性に劣る。   For example, in Patent Document 1, fine particles that generate far-infrared rays are uniformly kneaded into the entire acrylic synthetic fiber. In order to obtain a heat retaining effect, it is necessary to increase the amount of kneading. On the other hand, if the amount of kneading is increased, the operability (mainly the rate of increase in the die pressure) and the workability (spinnability) during fiber production are likely to deteriorate. Therefore, as disclosed in Patent Document 2, a method of making a core-sheath structure and kneading a high-concentration heat storage agent into the core has been attempted. With this method, workability seems to be no problem, but since a precise base is used, the base unit itself is expensive, and in addition, the rate of increase in the base pressure is large, resulting in poor operability.

また、特許文献3は遠赤外線放射セラミックスを含有させてなる繊維であり、基本的に特許文献1と同様に繊維中に均一に微粒子を練り込んでいるが、微粒子含有紡糸原液と微粒子不含紡糸原液を使用して複合紡糸することができることも記載されている。しかしながら、ここでの複合紡糸においては、特許文献2と同様に精密な口金が必要であり口金ユニット自体が高価格で操業性が劣る(口金圧上昇率が大きい)。
特公平4−74454号公報(特許請求の範囲) 特開2000−96346号公報(特許請求の範囲) 特許第2580715号公報(特許請求の範囲、第4欄)
Patent Document 3 is a fiber containing far-infrared radiation ceramics. Basically, fine particles are uniformly kneaded into the fiber as in Patent Document 1, but a fine particle-containing spinning stock solution and a fine particle-free spinning fiber are used. It is also described that composite spinning can be performed using stock solutions. However, in the composite spinning here, a precise die is required as in Patent Document 2, and the die unit itself is expensive and inferior in operability (large increase in die pressure).
Japanese Patent Publication No. 4-74454 (Claims) JP 2000-96346 A (Claims) Japanese Patent No. 2580715 (claims, column 4)

本発明では従来のアクリル系合成繊維の製造時の操業性および加工性を損なうことなく、優れた保温性を有するアクリル系合成繊維およびその製造方法を提供することにある。   It is an object of the present invention to provide an acrylic synthetic fiber having excellent heat retaining properties and a method for producing the same without impairing the operability and processability during the production of the conventional acrylic synthetic fiber.

本発明者は鋭意検討した結果、遠赤外線放射微粒子(以後、遠赤微粒子と略す)を繊維に均一に練り込むのではなく、少なくとも一つの遠赤微粒子を5重量%以上30重量%以下含むアクリル系重合体、および少なくとも一つの遠赤微粒子を1重量%以下含むアクリル系重合体を繊維軸方向に沿って3層以上に接合して複合紡糸することにより製造時の操業性および製品加工時の加工性と遠赤外線放射性(保温性)を両立できることを見いだした。   As a result of diligent study, the present inventor did not knead far-infrared radiation fine particles (hereinafter abbreviated as far-red fine particles) uniformly into the fiber, but an acrylic containing at least one far-red fine particle in an amount of 5 wt% to 30 wt%. The composite polymer and the acrylic polymer containing 1 wt% or less of at least one far-red fine particle are joined together in three or more layers along the fiber axis direction, and composite spinning is performed, thereby improving operability during production and product processing. We have found that both workability and far-infrared radiation (heat retention) can be achieved.

すなわち本発明は、アクリル系重合体が繊維軸方向に沿って3層以上接合された多層構造を有するアクリル系複合繊維であって、該複合構造が遠赤外線放射微粒子含有量5重量%以上30重量%以下である層および遠赤外線放射微粒子含有量1重量%以下の層を含み、繊維全体の遠赤外線放射微粒子含有量が3重量%以上15重量%以下であることを特徴とするアクリル系合成繊維であり、さらに 少なくとも一つの遠赤外線放射微粒子含有量5重量%以上30重量%以下のアクリル系重合体、および少なくとも一つの遠赤外線放射微粒子含有量1重量%以下のアクリル系重合体を、繊維軸方向に沿って3層以上に接合して複合紡糸することを特徴とする請求項1記載のアクリル系合成繊維の製造方法である。   That is, the present invention provides an acrylic composite fiber having a multilayer structure in which three or more acrylic polymers are joined along the fiber axis direction, and the composite structure has a far-infrared radiation fine particle content of 5 wt% or more and 30 wt%. % Acrylic fiber with a far-infrared radiation fine particle content of 3% by weight to 15% by weight. And at least one far-infrared radiation fine particle content of 5 wt% or more and 30 wt% or less, and at least one far infrared radiation fine particle content of 1 wt% or less, The method for producing an acrylic synthetic fiber according to claim 1, wherein the composite spinning is performed by joining three or more layers along the direction.

本発明によれば、遠赤微粒子が密集して存在する層では微粒子同士の距離が小さくなり遠赤微粒子同士の相互作用により、繊維全体に遠赤微粒子を均一に練り込んだ場合より高い遠赤外線放射効果が得られる。また、芯鞘繊維のように複雑な口金を用いることがなく製造できるので、操業性に優れる。   According to the present invention, in a layer in which far-red fine particles are densely present, the distance between the fine particles becomes smaller, and the far-infrared particles are higher than when the far-red fine particles are uniformly kneaded throughout the fiber due to the interaction between the far-red fine particles. Radiation effect is obtained. Moreover, since it can manufacture without using a complicated nozzle | cap | die like a core sheath fiber, it is excellent in operativity.

本発明を詳細に説明する。   The present invention will be described in detail.

本発明で使用するアクリル系重合体としては、アクリロニトリルを30重量%以上含有するアクリル系ポリマーで繊維形成能を有していれば良い。アクリロニトリル以外の共重合成分としてはアクリル酸、メタクリル酸およびそれらのアルキルエステル類、アクリルアミド、メタクリルアミド、酢酸ビニル、塩化ビニル、スチレン、塩化ビニリデンなどのビニル系化合物の他に、ビニルスルホン酸、アクリルスルホン酸、メタクリルスルホン酸、パラスチレンスルホン酸などの不飽和スルホン酸およびそれらの塩類を用いることができる。   The acrylic polymer used in the present invention may be an acrylic polymer containing 30% by weight or more of acrylonitrile and having fiber forming ability. As copolymerization components other than acrylonitrile, in addition to vinyl compounds such as acrylic acid, methacrylic acid and their alkyl esters, acrylamide, methacrylamide, vinyl acetate, vinyl chloride, styrene, vinylidene chloride, vinyl sulfonic acid, acrylic sulfone Unsaturated sulfonic acids such as acid, methacrylsulfonic acid, parastyrene sulfonic acid, and salts thereof can be used.

上記アクリル系重合体は懸濁重合、溶液重合、乳化重合等のいずれの方法によって製造されたものでもよい。また、溶媒は上記アクリル系重合体を溶解するものであればよく、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、アセトン等の有機系溶媒や硝酸、ロダン酸ソーダ、塩化亜鉛等の無機塩水溶液等の無機系溶媒が好ましく用いられる。   The acrylic polymer may be produced by any method such as suspension polymerization, solution polymerization, and emulsion polymerization. The solvent may be any solvent that dissolves the acrylic polymer, and is an organic solvent such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, or acetone, or an inorganic salt solution such as nitric acid, sodium rhodanate, or zinc chloride. A system solvent is preferably used.

本発明で使用する遠赤微粒子としては、遠赤外線を多く放射する微粒子であれば、いずれも使用することができるが、本発明では同条件で測定した場合、γ−アルミナを超える遠赤外線量を発生する微粒子のことをいう。このような微粒子としてはAl、Si、Li、Mg、Ti、Zr、V、Nb、Ta、Cr、Mo、Wの窒化吻、珪化物、炭化物及び酸化物のいずれかを1種以上含む混合物が挙げられ、好ましくは、Al、Si、Mg、Zr、Crの珪化物、炭化物及び酸化物から選ばれる1種以上の化合物の混合物である。好ましい具体例としては、炭化珪素、炭化ジルコニウム、アルミノケイ酸ナトリウム、トルマリンなどが挙げられ、最も好ましくは、アルミノケイ酸ナトリウムおよび/もしくはトルマリンである。なお、遠赤微粒子の粒径は0.3〜2.0μmの範囲であることが好ましい。これは通常、アクリル繊維に遠赤微粒子を練り込む場合、溶媒に分散し、分散液として練り込むが(以降、この遠赤微粒子分散液を遠赤分散液と略す)、0.3μm未満であると遠赤分散液調製時に凝集しやすく、2.0μmを超えると遠赤微粒子が繊維断面積の大きな部分を占めることになり、繊維強度が低下する場合がある。さらに好ましくは0.4〜0.7μmである。この範囲であれば、分散性、繊維強度ともに良好である。   As the far-red fine particles used in the present invention, any fine particles that emit a large amount of far-infrared rays can be used, but in the present invention, when measured under the same conditions, the far-infrared amount exceeding γ-alumina is increased. It refers to the generated fine particles. As such fine particles, a mixture containing at least one of Al, Si, Li, Mg, Ti, Zr, V, Nb, Ta, Cr, Mo, W nitrides, silicides, carbides, and oxides. Preferably, it is a mixture of one or more compounds selected from silicides, carbides and oxides of Al, Si, Mg, Zr and Cr. Preferable specific examples include silicon carbide, zirconium carbide, sodium aluminosilicate, tourmaline and the like, and most preferred is sodium aluminosilicate and / or tourmaline. In addition, it is preferable that the particle diameter of a far-red fine particle is 0.3-2.0 micrometers. Usually, when far-red fine particles are kneaded into an acrylic fiber, it is dispersed in a solvent and kneaded as a dispersion (hereinafter, this far-red fine particle dispersion is abbreviated as a far-red dispersion), but it is less than 0.3 μm. When it exceeds 2.0 μm, the far-red fine particles occupy a large portion of the fiber cross-sectional area, and the fiber strength may be lowered. More preferably, it is 0.4-0.7 micrometer. Within this range, both dispersibility and fiber strength are good.

本発明のアクリル系複合繊維は、遠赤微粒子含有量5重量%以上30重量%以下である層および遠赤微粒子含有量1重量%以下の層を含み、繊維全体の遠赤微粒含有量が3重量%以上15重量%以下であることが重要である。 Acrylic composite fiber of the present invention includes a far-fine particle content of 5% by weight to 30% by weight or more or less layers and far-fine particle content of 1 wt% or less of the layer, the far-red fine particles content of the entire fiber It is important that the content is 3% by weight or more and 15% by weight or less.

ここで遠赤微粒子含有量5重量%以上30重量%以下のアクリル系重合体は、遠赤微粒子濃度が5重量%未満であると遠赤外線放射効果が発揮できない。含有量は好ましくは8〜20重量%、さらに好ましくは10〜15重量%である。遠赤微粒子が多いほど遠赤外線放射効果は強くなるが、その反面、口金圧が上がり易くなるなど操業性が悪化し、繊維強度も低下する場合があるので、30重量%以下にすることにより操業性が良好で繊維強度も優れた繊維を得ることができる。一方、遠赤微粒子含有量1重量%以下のアクリル系重合体は、好ましくは遠赤微粒子を全く含まないアクリル系重合体であり、含んだとしても1重量%以下を含むものである。さらに、繊維全体に含まれる遠赤微粒子濃度は3重量%以上15重量%以下である必要がある。遠赤微粒子を層状に練り込むことで効果的に遠赤外線を放射させることはできるが、その場合でも3重量%未満では遠赤外線放射効果が小さい。15重量%以下とすることにより繊維断面中で遠赤微粒子を含む層の割合がそれほど大きくならないので、繊維物性を阻害することがない。   Here, an acrylic polymer having a far red fine particle content of 5 wt% or more and 30 wt% or less cannot exhibit the far infrared radiation effect when the far red fine particle concentration is less than 5 wt%. The content is preferably 8 to 20% by weight, more preferably 10 to 15% by weight. The far-infrared radiation effect becomes stronger as the amount of far-infrared particles increases, but on the other hand, the operability deteriorates and the fiber strength also decreases because the base pressure is easily increased. A fiber having excellent properties and excellent fiber strength can be obtained. On the other hand, the acrylic polymer having a far-red fine particle content of 1% by weight or less is preferably an acrylic polymer that does not contain far-red fine particles at all, and if included, contains 1% by weight or less. Furthermore, the concentration of the far-red fine particles contained in the entire fiber needs to be 3% by weight or more and 15% by weight or less. Although far-infrared rays can be effectively radiated by kneading the far-red fine particles into layers, even in that case, the far-infrared radiation effect is small at less than 3% by weight. By setting the content to 15% by weight or less, the ratio of the layer containing the far-red fine particles in the fiber cross section does not increase so much, and the physical properties of the fiber are not hindered.

以下、本発明の繊維の製造方法を説明する。   Hereafter, the manufacturing method of the fiber of this invention is demonstrated.

本発明の繊維を製造する方法としては、少なくとも一つの遠赤微粒子含有量5重量%以上30重量%以下のアクリル系重合体、および少なくとも一つの遠赤微粒子含有量1重量%以下のアクリル系重合体を、繊維軸方向に沿って3層以上に接合して複合紡糸する。   The fiber of the present invention includes an acrylic polymer having at least one far-red fine particle content of 5% by weight to 30% by weight and an acrylic polymer having at least one far-red fine particle content of 1% by weight or less. The coalescence is joined to three or more layers along the fiber axis direction and subjected to composite spinning.

アクリル系重合体をアクリル系重合体を溶解する溶媒に溶解して紡糸原液を製造する。
溶媒はアクリル重合体の重合溶媒をそのまま使用することもできる。すなわち、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、アセトン等の有機系溶媒や硝酸、ロダン酸ソーダ、塩化亜鉛等の無機塩水溶液等の無機系溶媒が好ましく用いられる。これら溶媒に溶解し、紡糸原液とする。紡糸原液中の重合体濃度は通常10〜30重量%に設定する。
An acrylic polymer is dissolved in a solvent for dissolving the acrylic polymer to produce a spinning dope.
As the solvent, an acrylic polymer polymerization solvent can be used as it is. That is, an organic solvent such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, and acetone, and an inorganic solvent such as an inorganic salt aqueous solution such as nitric acid, sodium rhodanate, and zinc chloride are preferably used. Dissolve in these solvents to make a spinning dope. The polymer concentration in the spinning dope is usually set to 10 to 30% by weight.

この紡糸原液中に繊維形成能および操業性を阻害しないその他の添加剤を練り込んでも構わない。例えば、酸化チタン、酸化アンチモンなどの金属酸化物、紫外線吸収剤、染料、顔料などであるが、これらに限らない。   Other additives that do not impair the fiber forming ability and operability may be incorporated into the spinning dope. Examples thereof include metal oxides such as titanium oxide and antimony oxide, ultraviolet absorbers, dyes, and pigments, but are not limited thereto.

遠赤微粒子は、溶媒分散液としてアクリル系重合体の紡糸原液に練り込むことによって、アクリル系重合体に添加することができる。分散溶媒は、紡糸原液の溶媒と同じであっても異なっていてもかまわないが、溶媒回収を簡単にできる点から、紡糸原液と同じ溶媒を使用することが好ましい。分散濃度は凝集せず、流動性を確保できる範囲で可能な限り高くすることが好ましい。具体的には15重量%以上、50重量%以下、好ましくは20重量%以上、さらに好ましくは25重量%以上である。分散はホモミキサーもしくはプロペラ撹拌機で容器中の溶媒を攪拌しながら、遠赤微粒子を投入する。投入完了し、均一に分散した液をサンドグラインダーにて処理することが好ましい。特に高濃度に分散する場合はサンドグラインダー処理した方が紡糸時の口金圧上昇も少ない。   The far-red fine particles can be added to the acrylic polymer by kneading into the spinning solution of the acrylic polymer as a solvent dispersion. The dispersion solvent may be the same as or different from the solvent of the spinning dope, but it is preferable to use the same solvent as the spinning dope from the viewpoint of easy solvent recovery. The dispersion concentration is preferably as high as possible within a range in which fluidity is ensured without aggregation. Specifically, it is 15% by weight or more and 50% by weight or less, preferably 20% by weight or more, and more preferably 25% by weight or more. Dispersion is carried out while stirring the solvent in the container with a homomixer or a propeller stirrer, and the far-red particles are added. It is preferable to complete the charging and treat the uniformly dispersed liquid with a sand grinder. In particular, when the dispersion is performed at a high concentration, the sand grinder treatment causes less increase in the die pressure during spinning.

遠赤微粒子含有量5重量%以上30重量%以下のアクリル系重合体と遠赤微粒子含有量1重量%以下のアクリル系重合体を複合紡糸する方法を図2により説明する。図2は本発明の繊維を製造するための複合紡糸装置の一実施態様の概略平面図である。まず、遠赤微粒子含有量5重量%以上30重量%以下のアクリル系重合体を含む紡糸原液(1)と遠赤微粒子含有量1重量%以下のアクリル系重合体を含む紡糸原液(2)を用意する。これら2種の紡糸原液を図2の紡糸装置を用いて混合する。二種の紡糸原液(1)、(2)は各々ろ過部(図示せず)を通過した後、スタティックミキサー(3)に供給され、混練される。このスタティックミキサー(3)によって、紡糸原液(1)(2)は3層以上に積層される。スタティックミキサー(3)で多層に積層された後、を通って口金ユニット(4)に入り、紡糸孔(5)より流出されフィラメント群として吐出される。
紡糸に用いるスタティックミキサー(3)は、例えばケニックス社製「スタティックミキサー」、東レエンジニアリング社製「ミキシングユニット」、スルーザー社製ミキシングエレメントなど公知のものが用いられる。多層構造を有する繊維の形状は、紡糸孔の形状により丸断面,三角断面,偏平などの任意の形状を選択することができる。
A method of composite spinning of an acrylic polymer having a far red fine particle content of 5 wt% to 30 wt% and an acrylic polymer having a far red fine particle content of 1 wt% or less will be described with reference to FIG. FIG. 2 is a schematic plan view of one embodiment of a composite spinning apparatus for producing the fiber of the present invention. First, a spinning stock solution (1) containing an acrylic polymer having a far red fine particle content of 5 wt% to 30 wt% and a spinning stock solution (2) containing an acrylic polymer having a far red fine particle content of 1 wt% or less. prepare. These two types of spinning stock solutions are mixed using the spinning device shown in FIG. The two types of spinning stock solutions (1) and (2) pass through a filtration unit (not shown), and then are supplied to a static mixer (3) and kneaded. With this static mixer (3), the spinning dope (1) (2) is laminated in three or more layers. After being laminated in multiple layers by the static mixer (3), it passes through the die unit (4), flows out from the spinning hole (5), and is discharged as a filament group.
As the static mixer (3) used for spinning, known ones such as “Static Mixer” manufactured by Kenix, “Mixing Unit” manufactured by Toray Engineering Co., Ltd., and a mixing element manufactured by Sruzer are used. As the shape of the fiber having a multilayer structure, an arbitrary shape such as a round cross section, a triangular cross section, and a flat shape can be selected depending on the shape of the spinning hole.

凝固方法としては、紡糸口金孔から吐出された重合体を空気または不活性雰囲気中に吐出した後、熱で溶媒を気化し凝固する乾式紡糸、または紡糸口金孔から吐出された重合体を凝固浴中に直接吐出する湿式紡糸および紡糸口金孔から吐出された重合体を一旦空気または不活性雰囲気中に吐出した後、凝固浴に導入する乾湿式紡糸が採用でき、紡糸以降熱延伸、水洗、乾燥緻密化させ油剤を付与し、捲縮および熱緩和処理を施した後、カットされ紡績用繊維を得ることができる。 かくして、本発明の、アクリル系重合体が繊維軸方向に沿って3層以上接合された多層構造を有するアクリル系複合繊維を得ることができる。ここで、多層構造とは、繊維の長手方向に延在する第1のアクリル系重合体の層が、繊維の長手方向に延在する第2のアクリル系重合体の層と接触し、第2のアクリル系重合体は任意に1つ以上の別のアクリル系重合体層と接触する繊維を意味する。   As the coagulation method, the polymer discharged from the spinneret hole is discharged into air or an inert atmosphere and then the solvent is evaporated by heat to solidify the dry spinning, or the polymer discharged from the spinneret hole is solidified as a bath. Wet spinning directly discharged into the inside and the polymer discharged from the spinneret hole are once discharged into air or an inert atmosphere and then introduced into the coagulation bath, and dry and wet spinning can be adopted. After densification and oil application, crimping and thermal relaxation treatment, the fiber for spinning can be obtained. Thus, the acrylic composite fiber of the present invention having a multilayer structure in which three or more acrylic polymers are joined along the fiber axis direction can be obtained. Here, the multilayer structure means that the first acrylic polymer layer extending in the longitudinal direction of the fiber is in contact with the second acrylic polymer layer extending in the longitudinal direction of the fiber, and the second An acrylic polymer of the term means a fiber that is optionally in contact with one or more other acrylic polymer layers.

本発明の3層以上接合された多層構造を有するアクリル系複合繊維の一実施態様を図1に示す。図1は本発明の一実施態様の繊維の横断面概略図である。遠赤微粒子含有量5重量%以上30重量%以下のアクリル系重合体(11)と遠赤微粒子含有量1重量%以下のアクリル系重合体(12)が層状に接合された多層構造を形成している。図1にあるようにアクリル系重合体(11)とアクリル系重合体(12)を3層以上複合紡糸し、繊維外周部にアクリル系重合体(12)外側に露出するようにすることが好ましい。それによって従来のアクリル系合成繊維と同程度の加工性を得ることができる。   One embodiment of the acrylic composite fiber having a multilayer structure in which three or more layers of the present invention are joined is shown in FIG. FIG. 1 is a schematic cross-sectional view of a fiber according to an embodiment of the present invention. A multilayer structure is formed in which an acrylic polymer (11) having a far red fine particle content of 5 wt% or more and 30 wt% or less and an acrylic polymer (12) having a far red fine particle content of 1 wt% or less are joined in layers. ing. As shown in FIG. 1, it is preferable that three or more layers of the acrylic polymer (11) and the acrylic polymer (12) are composite-spun so that the outer periphery of the fiber is exposed to the outside of the acrylic polymer (12). . Thereby, processability comparable to that of conventional acrylic synthetic fibers can be obtained.

また、本発明の繊維において、地層状に成分が異なる層が3層以上積み重なり、それを繊維断面に応じて、切り抜いたとき、各層は直線状である必要はなく、曲線や波線状でも構わないし、層の厚みは一定である必要はない。しかし、各層の両端は繊維外周に接しているか、もしくは繊維外周からの距離が繊維断面に外接する円の直径の1/6以内である必要がある。   In the fiber of the present invention, when three or more layers having different components are stacked and cut according to the fiber cross section, each layer does not have to be linear, and may be curved or wavy. The layer thickness need not be constant. However, both ends of each layer are in contact with the outer periphery of the fiber, or the distance from the outer periphery of the fiber needs to be within 1/6 of the diameter of the circle circumscribing the fiber cross section.

以下実施例により本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples.

本発明および実施例における特性値の測定・判定方法は以下のとおりである。   The characteristic value measurement / judgment methods in the present invention and examples are as follows.

<遠赤外線放射特性>
遠赤外線協会指定方法で測定した値をいう。すなわち、赤外分光光度計(FT−IR)にて4〜20μmの波長領域における、積分分光放射率を測定したものである。アクリル系合成繊維の紡績糸もしくはフィラメントにて筒編みを作成し、測定用サンプルとした。測定は35℃の雰囲気で行い、装置はパーキンエルマー社製を用いた。
<Far infrared radiation characteristics>
The value measured by the Far-Infrared Association designated method. That is, the integral spectral emissivity in the wavelength region of 4 to 20 μm was measured with an infrared spectrophotometer (FT-IR). Cylindrical knitting was made with spun yarn or filament of acrylic synthetic fiber, and used as a measurement sample. The measurement was performed in an atmosphere of 35 ° C., and a device manufactured by PerkinElmer was used.

<繊維全体の遠赤微粒子含有量>
絶乾した繊維の質量を測定した後、灰化させる。灰化前後の質量から下記式1にて計算する。
繊維全体の微粒子濃度(%)=(灰分重量(g)/絶乾した繊維の重量(g))×100・・・・(式1)。
<Far red particle content of the entire fiber>
After measuring the mass of the absolutely dried fiber, it is incinerated. It calculates with the following formula 1 from the mass before and after ashing.
Fine particle concentration (%) of the entire fiber = (weight of ash (g) / weight of completely dried fiber (g)) × 100 (Equation 1).

<各層の遠赤微粒子含有量>
各層の遠赤微粒子を含む紡糸原液を水中に細くたらし、ラーメン状に固化した後、溶媒および水を完全に蒸発させ(絶乾)、質量を測定した後、灰化させる。灰化方法は上記と同じである。灰化前後の質量から下記式2にて計算する。
各層の微粒子濃度(%)=(灰分重量(g)/絶乾した固形物の重量(g))×100・・・・(式2)。
<Far red particle content of each layer>
The spinning stock solution containing the far-red fine particles of each layer is thinned into water, solidified into a ramen shape, the solvent and water are completely evaporated (absolutely dry), the mass is measured, and then incinerated. The ashing method is the same as above. It calculates with the following formula 2 from the mass before and after ashing.
Fine particle concentration (%) of each layer = (weight of ash (g) / weight of dried solid (g)) × 100 (Equation 2).

<操業性>
紡糸開始の口金圧とから24時間後の口金圧を測定し、その上昇率で評価した。0.3MPa/日以下が良好なレベルである。
<Operability>
The base pressure after 24 hours from the base pressure at the start of spinning was measured and evaluated by the rate of increase. A good level is 0.3 MPa / day or less.

<後加工性(紡績性)>
紡績工程での静電気、ネップ、スライバー強度および編み立て性などから総合的に判断した。遠赤微粒子未添加品を◎として対比し、かなり良好◎、良好○、劣る△、悪い(操業困難)×とした。◎および○が通常の紡績が操業できるレベルである。
<Post-processability (spinnability)>
Judging comprehensively from static electricity, spinning, sliver strength and knitting properties in the spinning process. Contrasting products with no far-red fine particles added as ◎ were marked as 良好, good 良好, inferior △, and bad (difficult to operate) ×. ◎ and ○ are levels at which normal spinning can be operated.

(実施例1)
繊維を形成するポリマーとして、アクリロニトリル(AN)/アクリル酸メチル(MEA)/メタクリルスルホン酸ナトリウム(SMAS)=95.5/4.2/0.3(mol%)を用い、これを溶媒ジメチルスルホキシド(DMSO)にポリマー濃度25重量%になるように溶解して紡糸原液を得た。遠赤微粒子として、アルミノ珪酸ナトリウムである“シルトンAMT”(水澤化学工業(株))を用いた。これをホモミキサーにてDMSO(ジメチルスルホキシド)溶媒に分散した後、分散安定化剤として上記ポリマーを添加し、遠赤微粒子含有アクリル系重合体分散液を得た。分散液中の比率は、“シルトン”/ポリマー/DMSO=26/2/72(重量%)であった。
Example 1
As the polymer forming the fiber, acrylonitrile (AN) / methyl acrylate (MEA) / sodium methacryl sulfonate (SMAS) = 95.5 / 4.2 / 0.3 (mol%) was used, and this was used as the solvent dimethyl sulfoxide. (DMSO) was dissolved to a polymer concentration of 25% by weight to obtain a spinning dope. As far-infrared particles, sodium aluminosilicate “Silton AMT” (Mizusawa Chemical Co., Ltd.) was used. This was dispersed in a DMSO (dimethyl sulfoxide) solvent with a homomixer, and then the above polymer was added as a dispersion stabilizer to obtain a far red fine particle-containing acrylic polymer dispersion. The ratio in the dispersion was “silton” / polymer / DMSO = 26/2/72 (% by weight).

上記紡糸原液をプロペラ攪拌機で攪拌しながら、遠赤微粒子含有量がポリマーに対して5重量%になるように遠赤微粒子分散液を加えた。この遠赤微粒子を含む紡糸原液と含まない紡糸原液を図2に示す装置にて東レエンジニアリング社製「ミキシングユニット」を用いて複合紡糸した。紡糸浴はDMSO濃度57重量%、温度30℃の水溶液であった。紡糸原液を紡糸浴中に口金より押し出し、凝固させた。口金はφ0.05mm×70000Hを使用した。凝固したトウを順次DMSO濃度が低下する数段の浴にて、脱溶媒させながら、5倍延伸した。延伸後、水洗機にて完全にDMSOを除き、膠着防止油剤を付与した。その後、乾燥緻密化、クリンプ付与したものを51mmにカットし、ステープルを得た。繊維全体の遠赤微粒子含有量、口金上昇率、遠赤外線の積分分光放射率を測定した結果を表1に示す。口金圧は0.80MPaから0.81MPaに上昇した。紡糸時の口金圧上昇率も小さく、得られたサンプルの後加工性も良好で赤外線放射率も未添加品に比較して大きい。   While stirring the spinning solution with a propeller stirrer, the far-red fine particle dispersion was added so that the content of the far-red fine particles was 5% by weight with respect to the polymer. The spinning stock solution containing the far-red fine particles and the spinning stock solution not containing the far-red fine particles were subjected to composite spinning using the “mixing unit” manufactured by Toray Engineering Co., Ltd. with the apparatus shown in FIG. The spinning bath was an aqueous solution having a DMSO concentration of 57% by weight and a temperature of 30 ° C. The stock solution for spinning was extruded from a die into a spinning bath and solidified. The base used was φ0.05 mm × 70000H. The coagulated tow was stretched 5 times while removing the solvent in several baths where the DMSO concentration gradually decreased. After stretching, DMSO was completely removed with a washing machine, and an anti-sticking oil agent was applied. Thereafter, the dried, densified and crimped material was cut into 51 mm to obtain staples. Table 1 shows the results of measurement of the far-red fine particle content, the die increase rate, and the far-infrared integral spectral emissivity of the entire fiber. The base pressure increased from 0.80 MPa to 0.81 MPa. The increase in the die pressure during spinning is small, the post-processability of the obtained sample is good, and the infrared emissivity is large compared to the unadded product.

(実施例2および3)
遠赤微粒子含有量をそれぞれ10重量%、20重量%に変更した以外は、実施例1と同じ条件で実施例2および3のステープルを調製した。測定結果を表1に示す。口金圧上昇率も小さく、後加工性ともに良好で、実施例1より多くの遠赤外線が発生した。
(Examples 2 and 3)
Staples of Examples 2 and 3 were prepared under the same conditions as in Example 1 except that the far-red fine particle content was changed to 10% by weight and 20% by weight, respectively. The measurement results are shown in Table 1. The base pressure increase rate was small, the post-processing property was good, and more far infrared rays were generated than in Example 1.

(比較例1)
遠赤微粒子含有量3重量%に変更し、単一の紡糸原液をスタティックミキサーを使用しない以外は、実施例1と同じ条件でステープルを調製した。結果を表1に示す。口金圧上昇率は良好であったが、繊維摩擦が大きく、後加工性(紡績性)が悪かった。
(Comparative Example 1)
Staples were prepared under the same conditions as in Example 1 except that the content of far-red fine particles was changed to 3% by weight and a single spinning dope was not used as a static mixer. The results are shown in Table 1. Although the die pressure increase rate was good, the fiber friction was large and the post-processability (spinnability) was poor.

(比較例2)
遠赤微粒子含有量10重量%に変更し、遠赤外線放射微粒子含有量10重量%のアクリル系重合体を芯として、芯鞘型口金を用いた以外は、実施例1と同じ条件でステープルを調製し、芯鞘型のステープルを得た。結果を表1に示す。遠赤微粒子を芯型に局在化させたことにより、高効率に遠赤外線が放射されているが、口金圧上昇率が大きく、頻繁に口金交換が必要であった。
(Comparative Example 2)
A staple was prepared under the same conditions as in Example 1, except that the far-red fine particle content was changed to 10% by weight, an acrylic polymer having a far-infrared radiation fine particle content of 10% by weight was used as a core, and a core-sheath die was used. Thus, a core-sheath type staple was obtained. The results are shown in Table 1. Although far-infrared particles are localized in the core shape, far-infrared rays are emitted with high efficiency. However, the rate of increase in the die pressure is large and frequent die replacement is necessary.

(比較例3,4)
遠赤微粒子含有量を表1に示すように変更した以外は、実施例1と同じ条件でステープルを調製した。結果を表1に示す。繊維全体の遠赤微粒子量が少ない比較例3は積分分光放射率が小さい。層中の遠赤微粒子含有量が多く、繊維全体のも多い比較例4は口金詰まりが多発し、安定操業できなかった。
(Comparative Examples 3 and 4)
Staples were prepared under the same conditions as in Example 1 except that the far-red fine particle content was changed as shown in Table 1. The results are shown in Table 1. Comparative Example 3 with a small amount of far-red fine particles in the entire fiber has a small integrated spectral emissivity. In Comparative Example 4 in which the content of far-red fine particles in the layer was large and the entire fiber was large, clogging occurred frequently, and stable operation was not possible.

Figure 2006274488
Figure 2006274488

本発明により得られるアクリル系合成繊維は優れた保温性を有し、かつ、製造時の操業性および紡績などの後加工性も良好である。そのため、本発明のアクリル系合成繊維は特に保温下着、靴下など保温性を要求される製品に最適である。   The acrylic synthetic fiber obtained by the present invention has excellent heat retention, and also has good workability during production and post-processability such as spinning. Therefore, the acrylic synthetic fiber of the present invention is particularly suitable for products requiring heat retaining properties such as heat retaining underwear and socks.

本発明の一実施態様の繊維の横断面概略図である。It is a cross-sectional schematic of the fiber of one embodiment of this invention. 図2は本発明の繊維を製造するための複合紡糸装置の一実施態様の概略平面図である。FIG. 2 is a schematic plan view of one embodiment of a composite spinning apparatus for producing the fiber of the present invention.

符号の説明Explanation of symbols

1:遠赤微粒子含有量5重量%以上30重量%以下のアクリル系重合体を含む紡糸原液
2:遠赤微粒子含有量1重量%以下のアクリル系重合体を含む紡糸原液
3:スタティックミキサー
4:口金ユニット
5:紡糸孔
11:遠赤微粒子含有量5重量%以上30重量%以下のアクリル系重合体を含む層
12:遠赤微粒子含有量1重量%以下のアクリル系重合体を含む層
1: Spinning stock solution containing an acrylic polymer having a far red fine particle content of 5 wt% or more and 30 wt% or less 2: Spinning stock solution containing an acrylic polymer having a far red fine particle content of 1 wt% or less 3: Static mixer 4: Base unit 5: Spinning hole 11: Layer containing an acrylic polymer with a content of far red fine particles of 5 wt% to 30 wt% 12: Layer containing an acrylic polymer with a content of far red fine particles of 1 wt% or less

Claims (5)

アクリル系重合体が繊維軸方向に沿って3層以上接合された多層構造を有するアクリル系複合繊維であって、該複合構造が遠赤外線放射微粒子含有量5重量%以上30重量%以下である層および遠赤外線放射微粒子含有量1重量%以下の層を含み、繊維全体の遠赤外線放射微粒子含有量が3重量%以上15重量%以下であることを特徴とするアクリル系合成繊維。  An acrylic composite fiber having a multilayer structure in which three or more acrylic polymers are joined along the fiber axis direction, wherein the composite structure has a far-infrared radiation fine particle content of 5 wt% or more and 30 wt% or less. And an acrylic synthetic fiber comprising a layer having a far-infrared radiation fine particle content of 1% by weight or less, wherein the far-infrared radiation fine particle content of the entire fiber is 3% by weight to 15% by weight. 遠赤外線放射微粒子がAl、Si、Mg、Zr、Crの珪化物、炭化物及び酸化物から選ばれる1種以上の化合物の混合物であることを特徴とする請求項1記載のアクリル系合成繊維。  2. The acrylic synthetic fiber according to claim 1, wherein the far-infrared radiation fine particles are a mixture of one or more compounds selected from silicides, carbides and oxides of Al, Si, Mg, Zr, and Cr. 遠赤外線放射微粒子がアルミノケイ酸ナトリウムおよび/もしくはトルマリンであることを特徴とする請求項1もしくは2記載のアクリル系合成繊維。  The acrylic synthetic fiber according to claim 1 or 2, wherein the far-infrared radiation fine particles are sodium aluminosilicate and / or tourmaline. 少なくとも一つの遠赤外線放射微粒子含有量5重量%以上30重量%以下のアクリル系重合体、および少なくとも一つの遠赤外線放射微粒子含有量1重量%以下のアクリル系重合体を、繊維軸方向に沿って3層以上に接合して複合紡糸することを特徴とする請求項1記載のアクリル系合成繊維の製造方法。   At least one far infrared radiation fine particle content of 5 wt% or more and 30 wt% or less, and at least one far infrared radiation fine particle content of 1 wt% or less are provided along the fiber axis direction. The method for producing an acrylic synthetic fiber according to claim 1, wherein the composite spinning is carried out by bonding to three or more layers. 請求項1〜4のいずれか記載のアクリル系合成繊維からなる繊維製品。    A fiber product comprising the acrylic synthetic fiber according to any one of claims 1 to 4.
JP2005094677A 2005-03-29 2005-03-29 Acrylic synthetic fiber and method for producing the same and fiber product Pending JP2006274488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094677A JP2006274488A (en) 2005-03-29 2005-03-29 Acrylic synthetic fiber and method for producing the same and fiber product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094677A JP2006274488A (en) 2005-03-29 2005-03-29 Acrylic synthetic fiber and method for producing the same and fiber product

Publications (1)

Publication Number Publication Date
JP2006274488A true JP2006274488A (en) 2006-10-12

Family

ID=37209514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094677A Pending JP2006274488A (en) 2005-03-29 2005-03-29 Acrylic synthetic fiber and method for producing the same and fiber product

Country Status (1)

Country Link
JP (1) JP2006274488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067520A (en) * 2014-09-29 2016-05-09 株式会社エルムジャパン Antibacterial deodorant, antibacterial deodorant dispersion, and antibacterial and deodorizing chemical fiber material
CN108149338A (en) * 2017-12-22 2018-06-12 平原恒丰纺织科技有限公司 A kind of stone needle modified polyester fiber and preparation method thereof and fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067520A (en) * 2014-09-29 2016-05-09 株式会社エルムジャパン Antibacterial deodorant, antibacterial deodorant dispersion, and antibacterial and deodorizing chemical fiber material
CN108149338A (en) * 2017-12-22 2018-06-12 平原恒丰纺织科技有限公司 A kind of stone needle modified polyester fiber and preparation method thereof and fabric

Similar Documents

Publication Publication Date Title
JP2003336130A (en) Carbon fiber, carbon nanofiber obtained from the same and method of production for carbon fiber and precursor fiber for the same
JP2006274488A (en) Acrylic synthetic fiber and method for producing the same and fiber product
JP2007270390A (en) Acrylic synthetic fiber, method for producing the same and textile product
JP4604911B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber
JP2007119992A (en) Synthetic acrylic fiber and method for producing the same
JP6909453B2 (en) High-performance fiber manufacturing method
JPWO2015105019A1 (en) PAN-based carbon fiber and method for producing the same
JP2010252712A (en) Aramid fiber for fishing net, and fishing net
JP2008088591A (en) Acrylic synthetic fiber and method for producing the same
JP2007092229A (en) Acrylic conjugate fiber and method for producing the same
JP4550563B2 (en) Carbon nanofiber or carbon nanotube aggregate and method for producing the same
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP5183329B2 (en) Wet spinning method of antibacterial acrylic fiber
JP4544581B2 (en) Carbon nanofiber and method for producing the same
JP6232814B2 (en) Acrylic fiber manufacturing method
JP2006265788A (en) Method for producing conjugated fiber
JP2018096009A (en) Synthetic fiber and production method thereof
JP4594055B2 (en) Carbon fiber and manufacturing method thereof, carbon nanofiber aggregate, precursor fiber
JP3213152B2 (en) Method for producing acrylic synthetic fiber containing carbon black excellent in spinnability
JP2019094589A (en) Production method of precursor fiber for carbon fiber
JP2010047859A (en) Method for producing fluorine-based hollow fiber
JP4603208B2 (en) Polyketone fiber
JP6870822B2 (en) Multifilament yarn made of high specific gravity fiber
JP6523026B2 (en) Black meta-type wholly aromatic polyamide fiber
JP2015014060A (en) Functional acrylic fiber