JP2006274397A - Purification method of zinc concentrate decoction - Google Patents

Purification method of zinc concentrate decoction Download PDF

Info

Publication number
JP2006274397A
JP2006274397A JP2005098099A JP2005098099A JP2006274397A JP 2006274397 A JP2006274397 A JP 2006274397A JP 2005098099 A JP2005098099 A JP 2005098099A JP 2005098099 A JP2005098099 A JP 2005098099A JP 2006274397 A JP2006274397 A JP 2006274397A
Authority
JP
Japan
Prior art keywords
zinc
removal
copper
added
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098099A
Other languages
Japanese (ja)
Inventor
Hidenori Okamoto
秀則 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2005098099A priority Critical patent/JP2006274397A/en
Publication of JP2006274397A publication Critical patent/JP2006274397A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently removing the cobalt included as an impurity in a zinc concentrate decoction used in a zinc electrowinning method. <P>SOLUTION: The purification method comprises adding an arsenious acid together with zinc dust to the liquid in a Cu removal process, sending the post-decupirization liquid including the generated decupirization residue to a Co removing process without filtration, and implementing the Co removal by adding the zinc dust again to the liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、亜鉛精鉱浸出液の浄液方法であって、亜鉛電解採取法で使用される亜鉛精鉱浸出液に不純物として含まれるCoを、効率よく除去する方法に関する。 The present invention relates to a method for purifying zinc concentrate leaching solution, and relates to a method for efficiently removing Co contained as an impurity in zinc concentrate leaching solution used in zinc electrowinning.

亜鉛電解で使用される亜鉛精鉱浸出液には、CuやCoが不純物として含まれており、亜鉛電解液中でこれら成分が一定値濃度を超えると、製品である電気亜鉛の品質及び電流効率に悪影響を及ぼす。
このため、種々の方法で亜鉛精鉱浸出液の浄液が行われている。例えば、図4に示すように、亜鉛精鉱浸出液に亜鉛末を添加し、Cuを還元除去後、発生した銅残渣を濾過後、亜砒酸(As2O3)及び亜鉛末を添加し、Coを除去する方法等が取られている。
The zinc concentrate leachate used in zinc electrolysis contains Cu and Co as impurities, and if these components exceed a certain concentration in the zinc electrolyte, the quality and current efficiency of the product electro-zinc will be reduced. Adversely affect.
For this reason, the zinc concentrate leachate is purified by various methods. For example, as shown in FIG. 4, zinc powder is added to the zinc concentrate leachate, Cu is reduced and removed, the generated copper residue is filtered, arsenous acid (As 2 O 3 ) and zinc powder are added, and Co is added. The removal method is taken.

一般的には、亜鉛末,亜砒酸でのCo除去効率を上げるため、前段で行う脱Cu工程で、脱Cu後液中のCu濃度を200〜400mg/L程度残す操作が取られており、脱Co工程で得られた脱Co残渣は、前段の脱Cu残渣とともに銅原料として銅製錬に送られている。
また一方で、亜鉛末使用量を低減するために、脱Co残渣を繰り返すという方法も取られている。(特許文献1:特公昭57−49492)
In general, in order to increase the efficiency of removing Co with zinc dust and arsenous acid, the removal of Cu after the removal of Cu is performed in the previous step of removing Cu, and the operation of leaving a Cu concentration of about 200 to 400 mg / L is taken. The de-Co residue obtained in the Co process is sent to copper smelting as a copper raw material together with the de-Cu residue in the previous stage.
On the other hand, in order to reduce the amount of zinc powder used, a method of repeating the de-Co residue is also taken. (Patent Document 1: Japanese Patent Publication No. 57-49492)

特許文献1の方法では、残渣繰返しのための固/液分離装置(シックナー等)が必要となる上、繰返し残渣の撹拌に必要な動力が増加するという問題がある。
また、図5に示す従来法1のように、回分式の結果ではあるが、脱Cu後液に脱Co残渣を繰り返した場合、従来法2の繰り返しなしに比較して、脱Cu後液中のCu2+と繰り返し残渣中のCoが置換反応を起こし、Coの再溶解現象が確認された。
連続式の場合でも、上記再溶解を防止するために、亜鉛末の使用量が多くなっている可能性は高い。
In the method of Patent Document 1, a solid / liquid separation device (such as a thickener) for repeating the residue is required, and the power necessary for stirring the repeated residue increases.
Further, as in the conventional method 1 shown in FIG. 5, although it is a batch-type result, when the de-Co residue is repeated in the post-Cu removal solution, it is in the post-Cu removal solution compared to the conventional method 2 without repetition. Cu 2+ and Co in the residue repeatedly caused a substitution reaction, and Co re-dissolution phenomenon was confirmed.
Even in the case of a continuous type, there is a high possibility that the amount of zinc powder used is increased in order to prevent the re-dissolution.

特公昭57−49492「金属イオン水溶液の精製方法」Japanese Patent Publication No.57-49492 “Purification Method of Aqueous Metal Ion Solution”

本発明の目的は、脱Co残渣を繰り返すことなく、亜鉛末,亜砒酸による、脱Co反応の反応速度、反応効率を向上させ、反応設備をコンパクトにすると共に、シックナー、フィルタープレス等の付帯設備を極力減らすことである。 The object of the present invention is to improve the reaction rate and reaction efficiency of the de-Co reaction with zinc powder and arsenous acid without repeating the de-co residue, to make the reaction equipment compact, and to provide auxiliary equipment such as thickener and filter press. It is to reduce as much as possible.

本発明は、上記の課題を解決するものであって、
(1)亜鉛末による脱Cu工程で亜砒酸を添加し、生成した脱Cu残渣を、濾過すること無くスラリーのまま脱Co工程に送り、脱Co工程で亜鉛末のみを再添加して脱Coを行う亜鉛精鉱浸出液の浄液方法。
(2)上記(1)の亜砒酸の添加量が、As2O3/Co=2以上である亜鉛精鉱浸出液の浄液方法。
(3)上記(1)から(2)の脱銅後液中に、銅を残存させる亜鉛精鉱浸出液の浄液方法。
である。
The present invention solves the above problems,
(1) Add arsenous acid in the de-Cu process with zinc dust, and send the generated de-Cu residue to the de-co process as a slurry without filtering, and re-add only the zinc powder in the de-co process to remove de-co A method for purifying zinc concentrate leachate.
(2) The method for purifying zinc concentrate leachate according to (1) above, wherein the amount of arsenous acid added is As 2 O 3 / Co = 2 or more.
(3) A method for purifying a zinc concentrate leachate in which copper remains in the post-decopperization solution of (1) to (2) above.
It is.

本発明は、以下の効果を有する。
(1)亜鉛精鉱浸出液の浄液方法において、Coを含まず、Cu3Asを含んだ脱Cu残渣を生成し、これを脱Co工程に添加すれば、効率的な脱Coが行えることになる。
(2)更に、シックナー、フィルタープレス等の付帯設備を減らすことが可能となる。
(3)アルシンガスの発生を抑制した状態での亜鉛精鉱浸出液の浄液方法を提供できる。
The present invention has the following effects.
(1) In the purification method of zinc concentrate leachate, it is possible to produce de-Cu residue that does not contain Co and contains Cu 3 As, and if this is added to the de-Co process, efficient de-Co can be performed. Become.
(2) Furthermore, it is possible to reduce incidental facilities such as thickeners and filter presses.
(3) A method for purifying zinc concentrate leachate in a state where generation of arsine gas is suppressed can be provided.

図1に示すように、本発明の処理対象液である亜鉛精鉱浸出液中の鉄を予め除去する。
亜鉛精鉱の浸出液は、例えば、亜鉛140〜160g/L、pH 1〜3、鉄0.01〜3g/L、銅0.5〜1.5g/L、コバルト1〜15mg/L、カドミウム200〜500mg/L、タリウム3〜15mg/L程度含むものである。
As shown in FIG. 1, iron in the zinc concentrate leachate, which is the treatment target liquid of the present invention, is removed in advance.
The zinc concentrate leachate is, for example, zinc 140-160 g / L, pH 1-3, iron 0.01-3 g / L, copper 0.5-1.5 g / L, cobalt 1-15 mg / L, cadmium 200-500 mg / L, Contains about 3-15 mg / L thallium.

脱鉄処理は、pH4程度までの中和により行われる。 The iron removal treatment is performed by neutralization up to about pH 4.

次いで、脱銅処理を行う。
脱銅処理は、亜鉛末を必要脱銅量のほぼ理論当量添加し、脱銅後液中に70から400mg/L程度残るように行う。
Next, a copper removal process is performed.
The copper removal treatment is performed such that zinc powder is added in a theoretical amount equivalent to the required amount of copper removal and remains in the solution after copper removal at about 70 to 400 mg / L.

また、脱銅時には、亜砒酸を添加する。 該添加量は、As2O3をAs2O3/Co=2以上と成るように添加する。
これにより、銅と砒素がCu3Asを形成し、これにより次工程の脱Co効果を狙うためである。
本方法により、亜鉛精鉱浸出液中の銅を有効活用でき、脱Co反応効率及び反応速度が向上し、反応設備をコンパクトにできると共に、従来法から脱銅残渣の濾過工程を省略できることになる。
なお、本方法で回収される脱Cu,脱Co残渣は、脱Co反応効率が改善されるため、従来法の含銅残渣と同等以上の銅品位となる。
この際、液温度を70から90℃前後に維持する。 上記反応を促進させるためである。
Arsenous acid is added during copper removal. As for the addition amount, As 2 O 3 is added so that As 2 O 3 / Co = 2 or more.
This is because copper and arsenic form Cu 3 As, thereby aiming at the effect of removing Co in the next step.
By this method, the copper in the zinc concentrate leachate can be effectively used, the de-Co reaction efficiency and reaction rate can be improved, the reaction equipment can be made compact, and the copper removal residue filtering step can be omitted from the conventional method.
In addition, since the de-Cu and de-Co residue recovered by this method improves the de-Co reaction efficiency, it has a copper quality equivalent to or higher than that of the conventional copper-containing residue.
At this time, the liquid temperature is maintained at about 70 to 90 ° C. This is to promote the reaction.

亜鉛末添加後、攪拌をしつつ、45分から1時間30分程度反応を促進させる。
その後、酸化還元電位が、-450から-550mV(vs
Ag/AgCl)程度と成るように亜鉛末を継続的に添加する。
この際、液温度を70から90℃前後に維持する。 上記反応を促進させるためである。
その後、ろ過し、銅、コバルトを残渣として除去した。
After the zinc powder is added, the reaction is promoted for about 45 minutes to 1 hour 30 minutes with stirring.
After that, the redox potential is -450 to -550mV (vs
Add zinc powder continuously so that it becomes about Ag / AgCl).
At this time, the liquid temperature is maintained at about 70 to 90 ° C. This is to promote the reaction.
Then, it filtered and copper and cobalt were removed as a residue.

脱Co工程での反応式は以下の反応式が考えられる。
Co2++As3++2.5Zn → CoAs+2.5Zn2+
3Cu2++As3++4.5Zn → Cu3As+4.5Zn2+
Cu2++Zn → Cu+ Zn2+
2H2O+Zn → H2+Zn+2OH-
Cu3As+Co2+Zn → 3Cu+CoAs+Zn2+
As the reaction formula in the de-Co process, the following reaction formula can be considered.
Co 2+ + As 3+ + 2.5Zn → CoAs + 2.5Zn 2+
3Cu 2+ + As 3+ + 4.5Zn → Cu 3 As + 4.5Zn 2+
Cu 2+ + Zn → Cu + Zn 2+
2H 2 O + Zn → H 2 + Zn + 2OH -
Cu 3 As + Co 2 + Zn → 3Cu + CoAs + Zn 2+

よって、Cu3Asの存在下で、Coの除去効率が向上できることが期待できる。
本発明では、脱Cu工程で、亜鉛末と共に亜砒酸を添加し、生成した脱Cu残渣含みの脱Cu後液を、濾過すること無く脱Co工程に送り、亜鉛末を再添加することにより脱Coを実施すれば、効率的な脱Coが行えるものである。
Therefore, it can be expected that the removal efficiency of Co can be improved in the presence of Cu 3 As.
In the present invention, in the Cu removal step, arsenous acid is added together with zinc powder, and the resulting Cu-free solution containing the removed Cu residue is sent to the Co removal step without filtration, and the zinc powder is added again to remove the Co powder. If this is implemented, efficient de-Co can be performed.

また、シックナー、フィルタープレス等の付帯設備を減らすことが可能となる。 In addition, it is possible to reduce incidental facilities such as thickeners and filter presses.

さらに、通常の脱Co工程では、亜砒酸溶液中に亜鉛末を添加するため、アルシンガスが発生している。
本方法によれば、通常の方法よりもCu2+濃度が高いうちに、亜砒酸,亜鉛末を添加するため、Cu2+とアルシンガスが反応し、Cu3Asが生成し、アルシンガスの発生も抑制されると考えられる。
ここで、銅濃度は、脱銅後液中に、銅を70から400mg/L残存させるのが好ましい。上記のCu3Asを生成させるためである。
Furthermore, in a normal de-co process, arsine gas is generated because zinc powder is added to the arsenous acid solution.
According to this method, while high Cu 2+ concentration than conventional methods, arsenite, for adding zinc dust, Cu 2+ and arsine gas are reacted, Cu 3 As is produced, generation of arsine gas suppression It is thought that it is done.
Here, the copper concentration is preferably 70 to 400 mg / L of copper remaining in the solution after copper removal. This is for generating the above Cu 3 As.

また、脱コバルト、脱銅を行った処理後液は、更に亜鉛末を添加し、脱カドミウム、脱タリウム処理が成される。
この後、亜鉛電解工程において、上記処理後液から亜鉛を回収する。
Further, after the treatment after cobalt removal and copper removal, zinc powder is further added to carry out cadmium and dethallium treatment.
Then, zinc is collect | recovered from the said process liquid in a zinc electrolysis process.

(実施例1)
(亜砒酸の添加が多い場合(As2O3/Co=40))
図1に示すように、脱Cu時にAs2O3をAs2O3/Co=40となるように添加し、亜鉛末を添加し、80℃に保持して、60分脱Cu反応を行った。
脱銅後液中には、銅を70mg/L残存させた。これは、Cu3Asを生成させるためである。
その後に、亜鉛末をORPが-500mV(vs Ag/AgCl)に保持するように添加した。
その結果、図2に示すように、脱Co反応の反応速度が増加することが確認できた。
上記反応速度は、以下のように計算する。
一般的に反応速度は、dC/dt=kC(t)で表される。これを変形するとdC/C=kdtとなり、ln(C)=kt+αとなる。(尚tは、反応時間、Cは、液中のCo濃度を示す。)
従って液中濃度と反応時間の関係を片対数でプロットし、その傾きから反応速度定数を求めることができる。
Example 1
(When there is much addition of arsenous acid (As 2 O 3 / Co = 40))
As shown in Fig. 1, As 2 O 3 is added at the time of Cu removal so that As 2 O 3 / Co = 40, zinc powder is added, and kept at 80 ° C for 60 minutes to remove Cu. It was.
In the solution after copper removal, 70 mg / L of copper remained. This is to generate Cu 3 As.
Thereafter, zinc dust was added to keep ORP at -500 mV (vs Ag / AgCl).
As a result, as shown in FIG. 2, it was confirmed that the reaction rate of the de-Co reaction was increased.
The reaction rate is calculated as follows.
Generally, the reaction rate is represented by dC / dt = kC (t). If this is transformed, dC / C = kdt and ln (C) = kt + α. (Where t represents the reaction time, and C represents the Co concentration in the liquid.)
Therefore, the relation between the concentration in the liquid and the reaction time is plotted in semilogarithm, and the reaction rate constant can be obtained from the slope.

(比較例1)
(脱銅工程において、亜砒酸を添加しない場合
脱Co工程での亜砒酸を添加が多い場合(As2O3/Co=40))
図4に示すように、通常の浄液方法で、亜鉛末のみにより脱Cu後液中にCuを360mg/L残した状態まで脱Cu(反応時間60分)した。
その濾液を供試液として、反応温度:80℃、As2O3添加量:As2O3/Co=40で脱Co試験を行った。
Zn末は、反応時のORPを-500mV(vs Ag/AgCl)に保持するように添加した。
その結果、図2に示すように、脱Co反応の反応速度が上記の実施例比較して、極めて遅いことを確認した。
(Comparative Example 1)
(When copper arsenite is not added in the copper removal process, when arsenous acid is added frequently in the copper removal process (As 2 O 3 / Co = 40))
As shown in FIG. 4, Cu was removed (reaction time 60 minutes) by a normal liquid purification method to a state where 360 mg / L of Cu was left in the post-Cu removal solution using only zinc powder.
Using the filtrate as a test solution, a de-Co test was conducted at a reaction temperature of 80 ° C. and an As 2 O 3 addition amount of As 2 O 3 / Co = 40.
Zn powder was added so that the ORP during the reaction was kept at -500 mV (vs Ag / AgCl).
As a result, as shown in FIG. 2, it was confirmed that the reaction rate of the de-Co reaction was extremely slow compared to the above examples.

(実施例2)
(亜砒酸の添加が少ない場合(As2O3/Co=2))
図4に示すように、脱Cu時にAs2O3をAs2O3/Co=2となるように添加し、亜鉛末を添加し60分脱Cu反応を行った。この際脱銅後液中には、銅を70mg/L残存させた。これは、Cu3Asを生成させるためである。
この後に、亜鉛末をORPが-500mV(vs Ag/AgCl)に保持するように添加した。
図3に示すように、実施例1程ではないが、比較例に比べ、脱Co反応の反応速度が増加することが確認できた。
(Example 2)
(When there is little addition of arsenous acid (As 2 O 3 / Co = 2))
As shown in FIG. 4, As 2 O 3 was added so that As 2 O 3 / Co = 2 at the time of Cu removal, zinc powder was added, and a Cu removal reaction was performed for 60 minutes. At this time, 70 mg / L of copper remained in the solution after the copper removal. This is to generate Cu 3 As.
After this, zinc dust was added to keep ORP at -500 mV (vs Ag / AgCl).
As shown in FIG. 3, although not as much as Example 1, it was confirmed that the reaction rate of the de-Co reaction was increased as compared with the comparative example.

なお、実施例1及び2の残渣品位を表.1に示す。
亜鉛精鉱浸出液の、一般的な浄液工程で発生する、銅製錬送り含Cu残渣中Cu品位は60mass%程度であり、本実施例で回収される、脱Cu,Co残渣品位のCu品位の方が高くなっている。
すなわち、より効率的に脱Cu,Coが行われていることを示している。
The residue grades of Examples 1 and 2 are shown in Table 1.
The Cu grade in the copper smelting feed containing Cu smelted in the zinc concentrate leachate is about 60 mass%, and the Cu grade of the Cu-free and Co-residue grade recovered in this example is about 60 mass%. Is higher.
That is, it shows that Cu removal and Co removal are performed more efficiently.

(比較例2)
(脱銅工程において、亜砒酸を添加しない場合
脱Co工程での亜砒酸を添加が少ない場合(As2O3/Co=2))
図4に示すように、通常の浄液方法で、亜鉛末のみにより脱Cu後液中にCuを360mg/L残した状態まで脱Cu(反応時間60分)処理した。
その濾液を供試液として、反応温度:80℃。As2O3添加量:As2O3/Co=2で脱Co試験を行った。
(Comparative Example 2)
(When arsenous acid is not added in the copper removal process
When there is little addition of arsenous acid in the de-co process (As 2 O 3 / Co = 2))
As shown in FIG. 4, Cu removal (reaction time 60 minutes) was carried out to the state which left 360 mg / L of Cu in the liquid after Cu removal only by zinc powder by the normal liquid purification method.
Using the filtrate as a test solution, reaction temperature: 80 ° C. De-Co test was performed with As 2 O 3 addition amount: As 2 O 3 / Co = 2.

Zn末は、反応時のORPを-500mV(vs
Ag/AgCl)に保持するように添加した。その結果、図3に示すように、実施例に比べ、脱Co反応の反応速度が低い
ことを確認した。
Zn powder has an ORP of -500mV (vs
Ag / AgCl) was added. As a result, as shown in FIG. 3, it was confirmed that the reaction rate of the de-Co reaction was lower than that of the example.

本発明の浄液方法を示す。The liquid purification method of this invention is shown. 比較例1及び実施例1の結果を示す。The result of the comparative example 1 and Example 1 is shown. 比較例2及び実施例2の結果を示す。The result of the comparative example 2 and Example 2 is shown. 一般的な亜鉛精鉱浸出液の浄液方法を示す。A method for cleaning a general zinc concentrate leachate will be described. 従来法における脱Co残渣繰り返し時のCo再溶解を示す。Co re-dissolution during repeated removal of Co residue in the conventional method is shown.

Claims (3)

亜鉛末による脱Cu工程で亜砒酸を添加し、生成した脱Cu残渣を、濾過すること無くスラリーのまま脱Co工程に送り、脱Co工程で亜鉛末のみを再添加して脱Coを行うことを特徴とする亜鉛精鉱浸出液の浄液方法。 Arsenic acid is added in the de-Cu process with zinc powder, and the generated de-Cu residue is sent to the de-co process as a slurry without filtration, and de-co is performed by re-adding only the zinc powder in the de-co process. A method for purifying zinc concentrate leachate. 請求項1の亜砒酸の添加量が、As2O3/Co=2以上であることを特徴とする亜鉛精鉱浸出液の浄液方法。 2. The method for purifying zinc concentrate leachate according to claim 1, wherein the amount of arsenous acid added is As 2 O 3 / Co = 2 or more. 請求項1から2の脱銅後液中に、銅を残存させることを特徴とする亜鉛精鉱浸出液の浄液方法。

A method for purifying a zinc concentrate leaching solution, wherein copper is left in the solution after copper removal according to claim 1 or 2.

JP2005098099A 2005-03-30 2005-03-30 Purification method of zinc concentrate decoction Pending JP2006274397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098099A JP2006274397A (en) 2005-03-30 2005-03-30 Purification method of zinc concentrate decoction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098099A JP2006274397A (en) 2005-03-30 2005-03-30 Purification method of zinc concentrate decoction

Publications (1)

Publication Number Publication Date
JP2006274397A true JP2006274397A (en) 2006-10-12

Family

ID=37209429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098099A Pending JP2006274397A (en) 2005-03-30 2005-03-30 Purification method of zinc concentrate decoction

Country Status (1)

Country Link
JP (1) JP2006274397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106241960A (en) * 2016-08-31 2016-12-21 湖南凯天重金属污染治理工程有限公司 A kind of processing method of acid heavy metal wastewater
JP7423479B2 (en) 2020-09-01 2024-01-29 Jx金属株式会社 Ruthenium recovery method
JP7423467B2 (en) 2020-07-21 2024-01-29 Jx金属株式会社 Ruthenium recovery method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106241960A (en) * 2016-08-31 2016-12-21 湖南凯天重金属污染治理工程有限公司 A kind of processing method of acid heavy metal wastewater
JP7423467B2 (en) 2020-07-21 2024-01-29 Jx金属株式会社 Ruthenium recovery method
JP7423479B2 (en) 2020-09-01 2024-01-29 Jx金属株式会社 Ruthenium recovery method

Similar Documents

Publication Publication Date Title
JP5495418B2 (en) Method for recovering manganese
CN103781923A (en) Process for purifying zinc oxide
JP4734603B2 (en) Indium recovery method
JPH05255772A (en) Method for recovering zinc and lead from flue dust generated in electric steelmaking, method for recirculating refined metal into furnace and apparatus for executing this method
JP5591749B2 (en) Method for recovering tellurium from alkaline leaching residue containing tellurium
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2012246198A (en) Method for purifying selenium by wet process
JP2006274397A (en) Purification method of zinc concentrate decoction
JP2010138490A (en) Method of recovering zinc
JP4215547B2 (en) Cobalt recovery method
JP5702272B2 (en) Treatment method of bismuth electrolytic deposits
JP2006346618A (en) Selenium-containing wastewater treatment method
JP2008106348A (en) Method of separating and recovering zinc
JP2006348375A (en) Method for recovering silver
JP3536901B2 (en) Method of recovering valuable metals from fly ash
JP2012214307A (en) Method for recovering tellurium
JP4239801B2 (en) Method for producing waste acid gypsum
JP2005126800A (en) Method for leaching reduced slag containing selenium and tellurium
JP7420001B2 (en) Method for producing metal cadmium
JP2003342763A (en) Method of recovering copper alloy pickling waste liquid
JP3080947B1 (en) Electric furnace dust treatment method
JP3762047B2 (en) Method for treating and recovering liquid containing cadmium and zinc
JP6250365B2 (en) Method for concentrating rhodium and ruthenium
JP4914976B2 (en) Method for removing thallium from zinc sulfate solution
JP6457039B2 (en) Silver recovery method