JP2006272876A - Electroconductive element - Google Patents

Electroconductive element Download PDF

Info

Publication number
JP2006272876A
JP2006272876A JP2005098994A JP2005098994A JP2006272876A JP 2006272876 A JP2006272876 A JP 2006272876A JP 2005098994 A JP2005098994 A JP 2005098994A JP 2005098994 A JP2005098994 A JP 2005098994A JP 2006272876 A JP2006272876 A JP 2006272876A
Authority
JP
Japan
Prior art keywords
conductive film
conductor
film
base material
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098994A
Other languages
Japanese (ja)
Inventor
Takashi Takayama
隆司 高山
Junichi Nakanishi
純一 中西
Tomonori Takada
知憲 高田
Hidemi Ito
秀己 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2005098994A priority Critical patent/JP2006272876A/en
Publication of JP2006272876A publication Critical patent/JP2006272876A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive element which exhibits very little change of a surface with the elapse of time resistivity and can maintain an initial surface resistivity. <P>SOLUTION: The electroconductive element of the constitution is made that an electroconductive film 2 is formed at least in one side of a substrate 1, or that the top surface and the perimeter of the electroconductive element use moisture as the electroconductive element A of the constitution that sealing is performed with a sealing agent 3 from the atmosphere containing the moisture. The substrate, the electroconductive film and the top surface material are formed in this order, or as the electroconductive element of the constitution that the sealing of the perimeter of the electroconductive element is performed with the sealing agent, and the electroconductive element of the constitution is formed that the sealing of the vertical double-sides and the perimeter of the electroconductive element is carried out with the sealing agent. Since the sealing of the electroconductive film 2 is carried out from the atmospheric air and contact for the moisture in the atmosphere is severed, the variation of the surface resistivity of the electroconductive film 2 becomes very small, and the almost same surface resistivity as that at the first stage is maintained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電波吸収体や電磁波シールド体や画像表示体やタッチパネルなどに使用される導電体に関する。   The present invention relates to a conductor used for a radio wave absorber, an electromagnetic wave shield, an image display, a touch panel, and the like.

電波吸収体に使用される抵抗膜(導電体)としては、片面に酸化インジウム−酸化錫(ITO)などの金属酸化物を蒸着して抵抗膜を形成したポリエチレンテレフタレートフィルムなどが使用され、誘電体や電波反射体と共に用いられて電波を吸収している(特許文献1)。
また、電磁波シールド体に使用されるシールド用導電体としては、基材の表面にITOなどの金属酸化物を蒸着したものや、アクリル樹脂基材の表面にカーボンナノチューブ塗膜を形成したものなど使用され、電気機器類のケーシングや覗き窓などから漏れる電磁波をシールドしている(特許文献2)。
また、画像表示装置などの静電気を除去する帯電防止導電体としては、ポリエチレンテレフタレートフィルムに金属粒子やウィスカーやアンチモンドープ酸化錫などの導電材を含む導電層(制電層)を設けたものが使用され、表示画面などに静電気が発生して塵媒が付着しないようになされている(特許文献3)。
さらに、タッチパネルに使用される電極(導電体)としては、ポリエチレンテレフタレートフィルムにITOなどの金属酸化物を蒸着したものが使用され、切符自動販売機などに用いられている(特許文献4)。
特開平5−335832号公報 特開2000−26760号公報 特開2001−316504号公報 特開平2−194943号公報
As the resistance film (conductor) used for the radio wave absorber, a polyethylene terephthalate film or the like in which a metal oxide such as indium oxide-tin oxide (ITO) is vapor-deposited on one side to form a resistance film is used. It is used together with a radio wave reflector to absorb radio waves (Patent Document 1).
In addition, as the shield conductor used in the electromagnetic wave shield, use is made by depositing a metal oxide such as ITO on the surface of the substrate, or by forming a carbon nanotube coating on the surface of the acrylic resin substrate. In addition, electromagnetic waves leaking from casings and viewing windows of electric devices are shielded (Patent Document 2).
In addition, as an antistatic conductor for removing static electricity such as in image display devices, a polyethylene terephthalate film provided with a conductive layer (antistatic layer) containing a conductive material such as metal particles, whiskers or antimony-doped tin oxide is used. Thus, static electricity is generated on the display screen and the like so that the dust medium does not adhere (Patent Document 3).
Furthermore, as an electrode (conductor) used for the touch panel, a polyethylene terephthalate film deposited with a metal oxide such as ITO is used and used in ticket vending machines (Patent Document 4).
JP-A-5-335832 JP 2000-26760 A JP 2001-316504 A Japanese Patent Laid-Open No. 2-194943

このような抵抗膜、シールド用導電体、帯電防止導電体、電極などとして種々の製品に使用されている導電体は、該導電体を形成しているITOやカーボンナノチューブ塗膜や導電材含有塗膜などが外気環境に影響されて表面抵抗率が変化し、初期に設定した表面抵抗率を維持できない、という問題が内在していた。この変化は、初期表面抵抗率が小さな場合ほど変化割合が大きくなり、性能を発揮できなくなる恐れもあった。出願人はこの原因を追求した結果、空気中の湿気(水分)が大きな要因であろうと推測した。
本発明は、上記推測に基づき、表面抵抗率の変化を極めて少なくするためになされたものであって、初期の表面抵抗率を維持し得る導電体を提供することを目的とする。
Conductors used in various products such as resistance films, shielding conductors, antistatic conductors, electrodes, etc. include ITO, carbon nanotube coating films and conductive material-containing coatings that form the conductors. The problem is that the surface resistivity changes due to the influence of the outside air environment on the membrane, and the initially set surface resistivity cannot be maintained. This change has a possibility that the smaller the initial surface resistivity is, the larger the change ratio becomes and the performance cannot be exhibited. As a result of pursuing this cause, the applicant speculated that humidity (moisture) in the air would be a major factor.
The present invention has been made to extremely reduce the change in surface resistivity based on the above estimation, and an object thereof is to provide a conductor capable of maintaining the initial surface resistivity.

本発明に係る第一の導電体は、基材の少なくとも片面に導電膜が形成されていると共に、該導電膜の上面及び周囲が水分を含む外気から封止材にて封止されていることを特徴とするものである。
また、本発明に係る第二の導電体は、基材と導電膜と上面材とがこの順で形成されていると共に、導電膜の周囲が水分を含む外気から封止材にて封止されていることを特徴とするものである。
更に、本発明に係る第三の導電体は、基材と導電膜と上面材とがこの順で形成されていると共に、導電膜の周囲において基材と上面材とが接合されて水分を含む外気から封止されていることを特徴とするものである。
更に、本発明に係る第四の導電体は、導電膜の上下両面及び周囲が水分を含む外気から封止材にて封止されていることを特徴とするものである。
In the first conductor according to the present invention, a conductive film is formed on at least one surface of a base material, and the upper surface and the periphery of the conductive film are sealed with a sealing material from outside air containing moisture. It is characterized by.
In the second conductor according to the present invention, the base material, the conductive film, and the upper surface material are formed in this order, and the periphery of the conductive film is sealed with a sealing material from the outside air containing moisture. It is characterized by that.
Furthermore, in the third conductor according to the present invention, the base material, the conductive film, and the upper surface material are formed in this order, and the base material and the upper surface material are joined around the conductive film to contain moisture. It is sealed from the outside air.
Furthermore, the fourth conductor according to the present invention is characterized in that the upper and lower surfaces and the periphery of the conductive film are sealed with a sealing material from the outside air containing moisture.

本発明において、上面材が導電膜と空間を隔てて形成されていることが好ましく、また、導電膜が基材の上面に一体に形成されていることが好ましい。また、導電膜、基材、上面材のいずれもが透光性を有していることも好ましい。更に、導電膜の表面抵抗率が10Ω/□以下であることも好ましい。また、導電体に電極が設けられていて、該電極の一端が導電膜に接触していると共に他端が封止材の外側まで延出していることも好ましい。 In the present invention, the upper surface material is preferably formed with a space from the conductive film, and the conductive film is preferably formed integrally with the upper surface of the substrate. Moreover, it is also preferable that all of the conductive film, the base material, and the top surface material have translucency. Furthermore, the surface resistivity of the conductive film is preferably 10 4 Ω / □ or less. It is also preferable that an electrode is provided on the conductor, and that one end of the electrode is in contact with the conductive film and the other end extends to the outside of the sealing material.

本発明の第一の導電体は、基材の片面に導電膜が形成されていて、該導電膜の上面及び周囲が水分を含む外気から封止材にて封止されているので、導電膜の下面は基材で、導電膜の上面と周囲の側面とは封止材でそれぞれ水分を含む外気から封止され、導電膜は外気との接触が絶たれ水分と接することがない。そのため、導電膜の表面抵抗率の変化が極めて小さくなり、初期に設定した表面抵抗率とほぼ同じ表面抵抗率に維持することができる。そして、導電体の下面は基材で確実に封止されて導電膜全体の封止が容易に且つ確実に行なえる。このような導電体を、例えば電波吸収体の抵抗膜として使用すると、電波吸収性能が低下することがなくて、長期に亘り電波を吸収することができる。   In the first conductor of the present invention, the conductive film is formed on one side of the base material, and the upper surface and the periphery of the conductive film are sealed with a sealing material from the outside air containing moisture. The lower surface of the conductive film is a base material, and the upper surface of the conductive film and the surrounding side surfaces are sealed from outside air containing moisture by a sealing material, and the conductive film is disconnected from the outside air and is not in contact with moisture. Therefore, the change in the surface resistivity of the conductive film becomes extremely small, and the surface resistivity can be maintained substantially the same as the initially set surface resistivity. And the lower surface of a conductor is reliably sealed with a base material, and the whole electrically conductive film can be sealed easily and reliably. When such a conductor is used as, for example, a resistance film of a radio wave absorber, the radio wave absorption performance is not deteriorated and radio waves can be absorbed over a long period of time.

さらに、本発明の第二の導電体は、基材と導電膜と上面材とがこの順で形成されていて、導電膜の周囲が水分を含む外気から封止材にて封止されているので、上記効果に加えて、導電膜の下面が基材で、上面が上面材でそれぞれ覆われて封止が確実に行なえるし、周囲の側面は封止材で封止されていて、上下両面及び周囲側面と外気とを遮断する封止が確実に行なえ、表面抵抗率の変化を極めて小さくすることが容易である。   Furthermore, in the second conductor of the present invention, the base material, the conductive film, and the upper surface material are formed in this order, and the periphery of the conductive film is sealed with a sealing material from the outside air containing moisture. Therefore, in addition to the above effects, the lower surface of the conductive film is the base material and the upper surface is covered with the upper surface material so that the sealing can be performed reliably, and the surrounding side surfaces are sealed with the sealing material. Sealing that shuts off both sides and surrounding side surfaces and the outside air can be performed reliably, and the change in surface resistivity can be made extremely small.

また、本発明に係る第三の導電体は、基材と導電膜と上面材とがこの順で形成されていて、導電膜の周囲において基材と上面材とが接合されているので、導電膜の上下両面は基材と上面材とでそれぞれ覆われて封止され、周囲の側面はこれらを接合することのみで封止されて、導電膜を外気から封止することが容易に且つ確実に行なえて、表面抵抗率の変化を極めて小さくすることが容易である。   In the third conductor according to the present invention, the base material, the conductive film, and the upper surface material are formed in this order, and the base material and the upper surface material are joined around the conductive film. The upper and lower surfaces of the film are covered and sealed with a base material and an upper surface material, respectively, and the surrounding side surfaces are sealed only by joining them together, so that the conductive film can be easily and reliably sealed from the outside air. Therefore, it is easy to make the change in surface resistivity extremely small.

更に、本発明の第四の導電体は、導電膜の上下両面及び周囲が水分を含む外気から封止材にて封止されているので、上下両面と周囲側面とを同じ封止材で封止することができるので、封止が容易に行なえるし、確実に行なえる。   Furthermore, since the upper and lower surfaces and the periphery of the conductive film of the fourth conductor of the present invention are sealed with a sealing material from the outside air containing moisture, the upper and lower surfaces and the surrounding side surfaces are sealed with the same sealing material. Since it can stop, sealing can be performed easily and reliably.

本発明の導電体において、上面材が導電膜と空間を隔てて形成されていると、該空間に別部材を配置することもできるので、例えばタッチパネルの電極として使用するときには別部材として電極を配置しても、電極としての導電体と別部材としての電極との接触をなくすことができるし、電波吸収体の抵抗膜として使用するときは該空間が誘電体として働く。また、導電膜が基材の上面に一体に形成されていると、導電膜の形成が容易で、導電膜下面の封止は該基材で行なうことができる。また、導電膜、基材、上面材のいずれもが透光性を有していると、透光性の導電体にすることができ、透光性を必要とする製品の導電体に使用することが可能となる。更に、導電膜の表面抵抗率が10Ω/□以下であると、表面抵抗率の変化が小さい低抵抗率の導電体となるので、電波吸収体や電磁波シールド体やタッチパネルなどの低い表面抵抗率を経時的に維持することが要求される導電体にも使用することができる。また、導電体に電極が設けられていて、該電極の一端が導電膜に接触していると共に他端が封止材の外側まで延出されていると、導電膜に電極を通して導通させることができるし、電極も封止されるので電極の周囲を通して導電膜にまで湿気などの外気環境の影響が及ぶことがない。 In the conductor of the present invention, when the upper surface material is formed with a space from the conductive film, another member can be disposed in the space. For example, when the electrode is used as a touch panel electrode, the electrode is disposed as a separate member. Even so, contact between the conductor as the electrode and the electrode as the separate member can be eliminated, and when used as a resistance film of the radio wave absorber, the space acts as a dielectric. Further, when the conductive film is integrally formed on the upper surface of the base material, it is easy to form the conductive film, and the lower surface of the conductive film can be sealed with the base material. In addition, if any of the conductive film, the base material, and the upper surface material has translucency, it can be made a translucent conductor and used for a conductor of a product that requires translucency. It becomes possible. Further, when the surface resistivity of the conductive film is 10 4 Ω / □ or less, a low resistivity conductor with a small change in surface resistivity is obtained. Therefore, a low surface resistance such as a radio wave absorber, electromagnetic wave shield, touch panel, etc. It can also be used for conductors that are required to maintain the rate over time. Further, when an electrode is provided on the conductor, and one end of the electrode is in contact with the conductive film and the other end is extended to the outside of the sealing material, the conductive film can be conducted through the electrode. In addition, since the electrode is also sealed, there is no influence of the outside air environment such as moisture on the conductive film through the periphery of the electrode.

以下、本発明の具体的な実施形態を図面に基づいて詳述するが、本発明はこれらに限定されるものではない。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

図1は本発明の一実施形態の導電体の断面図、図2は同導電体の平面図、図9(a)(b)(c)は同導電体に用いられる導電膜に含まれるカーボンナノチューブの分散状態を示す模式断面図、図10はカーボンナノチューブの分散状態を示す模式平面図である。   1 is a cross-sectional view of a conductor according to an embodiment of the present invention, FIG. 2 is a plan view of the conductor, and FIGS. 9A, 9B, and 9C are carbons included in a conductive film used for the conductor. FIG. 10 is a schematic plan view showing a dispersion state of carbon nanotubes.

図1及び図2に示す本発明の導電体A(A1)は、基材1の片面に導電膜2が一体的に積層して形成され、該導電膜2の上面及び周囲の側面が封止材3にて封止されていて、導電膜2が基材1と封止材3とで水分を含む外気との接触を遮断されるようにしてある。そして、この導電体A1においては、電極4が設けられており、電極4の一側部41が導電膜2の相対する二側面に沿って接触して設けられ、電極4の他側部42が封止材3の外方にまで延出されて外部装置に接続できるようになされている。なお、本発明の導電体Aにおいて、電極4は必ずしも必要ではない。   The conductor A (A1) of the present invention shown in FIG. 1 and FIG. 2 is formed by integrally laminating a conductive film 2 on one surface of a base material 1, and the upper surface and the surrounding side surfaces of the conductive film 2 are sealed. The conductive film 2 is sealed with the material 3 and the contact between the base material 1 and the sealing material 3 with the outside air containing moisture is cut off. And in this conductor A1, the electrode 4 is provided, the one side part 41 of the electrode 4 is provided in contact along two opposing side surfaces of the conductive film 2, and the other side part 42 of the electrode 4 is provided. It extends to the outside of the sealing material 3 so that it can be connected to an external device. In the conductor A of the present invention, the electrode 4 is not always necessary.

上記の基材1は、メチルメタクリレートなどのアクリル樹脂、ポリエチレンやポリプロピレンやシクロポリオレフィンなどのオレフィン樹脂、ポリカーボネートやポリエチレンテレフタレートなどのポリエステル樹脂などの合成樹脂、或はガラスからなり、10μmから15mm程度の厚さに形成されている。この基材1の全光線透過率を60%以上とすることにより、透光性の導電体A1を作製することができる。特に、ヘーズが10%以下のものであると透視性、特に透明の透光性導電体A1を作製でき、光拡散剤などを添加したり或は表面に微細な凹凸を付与してヘーズを50%以上にすると光拡散性の透光性導電体A1を作製することができる。また、着色剤などの添加で不透明にすれば不透明の導電材A1とすることができる。このように、導電体A1に使用する基材1は、使用する用途に合わせて適宜選択される。   The substrate 1 is made of acrylic resin such as methyl methacrylate, olefin resin such as polyethylene, polypropylene or cyclopolyolefin, synthetic resin such as polyester resin such as polycarbonate or polyethylene terephthalate, or glass, and has a thickness of about 10 μm to 15 mm. Is formed. By setting the total light transmittance of the substrate 1 to 60% or more, a light-transmitting conductor A1 can be produced. In particular, when the haze is 10% or less, it is possible to produce a transparent, particularly transparent translucent conductor A1, and add haze to the surface by adding a light diffusing agent or the like or providing fine irregularities on the surface. If it is at least%, a light diffusable translucent conductor A1 can be produced. Further, if the material is made opaque by adding a colorant or the like, the opaque conductive material A1 can be obtained. Thus, the base material 1 used for the conductor A1 is appropriately selected according to the intended use.

そして、屋外で使用する透光性導電体A1である場合は、紫外線吸収剤を添加して耐候性を向上させたアクリルやポリカーボネートなどが好ましく用いられる。さらに、厚みの薄い導電体A1の場合は、厚さが10〜500μmのポリエチレンテレフタレートフィルム、トリアセチルセルロース、環状ポリオレフィンなどが好ましく用いられる。また、後述する導電膜がITOなどの蒸着膜である場合は、蒸着時の温度に耐えられるポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォンなどの耐熱性フィルムが好ましく用いられる。   And when it is the translucent conductor A1 used outdoors, the acrylic, polycarbonate, etc. which added the ultraviolet absorber and improved the weather resistance are used preferably. Furthermore, in the case of the thin conductor A1, a polyethylene terephthalate film, triacetyl cellulose, cyclic polyolefin, etc. having a thickness of 10 to 500 μm are preferably used. When the conductive film described later is a vapor deposition film such as ITO, a heat resistant film such as polyethylene terephthalate, polyethylene naphthalate, or polyethersulfone that can withstand the temperature during vapor deposition is preferably used.

上記の導電膜2は、1012Ω/□以下の導電性を有する導電性能乃至制電性能を有しており、ITOなどの金属酸化物の蒸着膜や、極細導電繊維や金属粒子や金属酸化物粒子などの導電材料を含む塗膜、或はポリピロール、ポリアセチレン、ポリアニリン、ポリエチレンジオキシチオフェンなどの導電性高分子などからなるものである。導電膜2の導電性は、導電体A1を使用する製品により異ならせる必要があり、導電体A1が電波吸収体用抵抗膜に使用される場合は表面抵抗率を377±30Ω/□に、電磁波シールド用導電体に使用される場合は10〜10Ω/□、好ましくは10〜10Ω/□に、画像表示装置用帯電防止導電体に使用される場合は10〜1012Ω/□、好ましくは10〜1010Ω/□に、タッチパネル用電極に使用される場合は10〜10Ω/□、好ましくは10〜10Ω/□となるように、蒸着膜や塗膜などの厚み、或は種類を選択して使用する。 The conductive film 2 has a conductive performance or anti-static performance having a conductivity of 10 12 Ω / □ or less, a vapor-deposited film of a metal oxide such as ITO, ultrafine conductive fiber, metal particles, or metal oxide. A coating film containing a conductive material such as physical particles, or a conductive polymer such as polypyrrole, polyacetylene, polyaniline, and polyethylenedioxythiophene. The conductivity of the conductive film 2 needs to be different depending on the product using the conductor A1, and when the conductor A1 is used as a resistance film for a radio wave absorber, the surface resistivity is 377 ± 30Ω / □, When used for a conductor for shielding, 10 0 to 10 4 Ω / □, preferably 10 0 to 10 3 Ω / □, and when used for an antistatic conductor for an image display device, 10 6 to 10 12. Vapor deposition so as to be Ω / □, preferably 10 6 to 10 10 Ω / □, and when used for a touch panel electrode, is 10 0 to 10 5 Ω / □, preferably 10 1 to 10 4 Ω / □. Select the thickness or type of film or coating film to use.

この導電膜2の表面抵抗率は、これが低抵抗率であれば変化率が僅かであっても大きく変化し、必要とする表面抵抗率を維持できなくなる恐れがある。例えば、表面抵抗率が377±30Ω/□必要な電波吸収体用の抵抗膜であれば、2倍に変化すると744Ω/□となり、電波吸収に必要な表面抵抗率の範囲を離脱してしまい、電波吸収ができなくなる。そして、3倍変化すれば一桁異なる大きな抵抗率となる。一方、表面抵抗率が10〜1012Ω/□と大きな抵抗率の範囲であればよい帯電防止用導電体であれば、例え3倍に変化しても1×10Ω/□が3×10Ω/□に変化するだけであり、同じ桁の範囲内に収まるので、ある程度の表面抵抗率の変化は許容できる。そのため、本発明は低い表面抵抗率の導電膜2に適用することが好ましく、特に10Ω/□以下の表面抵抗率を有する導電膜2であると効果が一層顕著になる。 If the surface resistivity of the conductive film 2 is low, it may change greatly even if the rate of change is small, and the required surface resistivity may not be maintained. For example, if the resistance film for a radio wave absorber requiring a surface resistivity of 377 ± 30Ω / □ is changed to 2 times, it becomes 744Ω / □, leaving the range of the surface resistivity necessary for radio wave absorption, It becomes impossible to absorb radio waves. And if it changes 3 times, it will become a big resistivity which is different by one digit. On the other hand, if the surface resistivity is 10 6 to 10 12 Ω / □ as long as it is in the range of a large resistivity, 1 × 10 7 Ω / □ is 3 even if it is changed 3 times. Since it only changes to × 10 7 Ω / □ and falls within the range of the same digit, a certain degree of change in surface resistivity is acceptable. For this reason, the present invention is preferably applied to the conductive film 2 having a low surface resistivity, and the effect becomes more remarkable when the conductive film 2 has a surface resistivity of 10 4 Ω / □ or less.

上記の蒸着膜からなる導電膜2は、ポリエチレンテレフタレートなどの耐熱性フィルムに酸化インジウム−酸化錫(ITO)や酸化錫や酸化亜鉛などを蒸着することで形成した薄膜であり、周知のITOが最も好ましく使用される。このITOは蒸着厚みを変えることで表面抵抗率、光学特性を変えることができ、通常10Ω/□以下の表面抵抗率を有し、全光線透過率が80%以上でヘーズが5%以下の透明導電膜2として使用される。 The conductive film 2 made of the above-described vapor-deposited film is a thin film formed by vapor-depositing indium oxide-tin oxide (ITO), tin oxide, zinc oxide, or the like on a heat-resistant film such as polyethylene terephthalate. Preferably used. This ITO can change the surface resistivity and optical characteristics by changing the deposition thickness, and usually has a surface resistivity of 10 3 Ω / □ or less, the total light transmittance is 80% or more, and the haze is 5% or less. The transparent conductive film 2 is used.

また、上記の極細導電繊維や金属粒子や金属酸化物粒子などの導電材料を含む塗膜は、これらの導電材料と樹脂と溶剤とからなる導電性樹脂塗液を基材1の片面に塗布・固化して得た塗膜であり、導電材料の種類、含有量、塗膜の厚み、分散状態などを調整して、必要な導電性を得ることができる。   Moreover, the coating film containing conductive materials such as the above-mentioned ultrafine conductive fibers, metal particles, and metal oxide particles is applied to one side of the base material 1 with a conductive resin coating solution composed of these conductive materials, a resin, and a solvent. It is a coating film obtained by solidification, and the necessary conductivity can be obtained by adjusting the type and content of the conductive material, the thickness of the coating film, the dispersion state, and the like.

上記金属粒子としては銅、金、銀、ニッケル、白金などが用いられ、金属酸化物粒子としては酸化錫、アンチモン、アンチモンドープ酸化錫、酸化亜鉛などが用いられる。また、極細導電繊維としては、カーボンナノチューブ、カーボンナノホーン、カーボンナノワイヤー、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、金属ナノワイヤーなどの極細長金属繊維、酸化亜鉛などの金属酸化物ナノチューブ、金属酸化物ナノワイヤーなどの金属酸化物などの極細長金属酸化物繊維などの、直径が0.3〜100nmで、長さが0.1〜20μm、好ましくは長さが0.1〜10μmの各繊維が用いられる。これらの導電材料は均一に分散されていることが好ましく、特に極細導電繊維は、凝集することなく分散して互いに接触して導電膜2のなかに含まれていることが好ましい。   Copper, gold, silver, nickel, platinum or the like is used as the metal particles, and tin oxide, antimony, antimony-doped tin oxide, zinc oxide or the like is used as the metal oxide particles. In addition, as ultrafine conductive fibers, carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, graphite fibrils and other ultrafine carbon fibers, platinum, gold, silver, nickel, silicon and other metal nanotubes, metal nanowires, etc. Extra-long metal fibers, ultra-long metal oxide fibers such as metal oxide nanotubes such as zinc oxide, metal oxides such as metal oxide nanowires, etc., have a diameter of 0.3 to 100 nm and a length of 0.1 Each fiber having a length of ˜20 μm, preferably 0.1 to 10 μm is used. These conductive materials are preferably dispersed uniformly. In particular, it is preferable that the ultrafine conductive fibers are dispersed without contacting each other and are in contact with each other and contained in the conductive film 2.

この極細導電繊維の中でも、カーボンナノチューブは繊維直径が0.3〜80nmと細いので、凝集することなく分散して互いに接触させることにより必要な導電性と透明性とを得ることができるので、好ましく用いられる。このカーボンナノチューブには、中心軸の周りに複数のカーボン壁を同心状に或は渦巻き状に有する多層カーボンナノチューブと、単数のカーボン壁を有する単層カーボンナノチューブとがある。前者の多層カーボンナノチューブは凝集することなく一本ずつ分離した状態で互いに接触させた状態で導電膜2に含まれるが、後者の単層カーボンナノチューブは一本ずつ分離した状態での分散は現時点では困難で、二本以上が集まって束になって、これらの束が凝集することなく一束ずつ分離して分散し互いに接触させた状態で抵抗膜2に含まれる。なお、二層ないし三層のカーボンナノチューブは一本ずつ分散している場合と束になって分散している場合とがある。さらに、単層カーボンナノチューブが一本ずつ分散している場合も本発明に含まれる。
ここで、「凝集することなく」とは、導電膜を顕微鏡で観察したときに0.5μm以上の凝集塊がないことを意味し、また、「接触」とは、極細導電繊維が現実に接触している場合と、極細導電繊維が導通可能な小間隙をあけて接近している場合の双方を意味する。
Among these ultrafine conductive fibers, since the carbon nanotube has a thin fiber diameter of 0.3 to 80 nm, the necessary conductivity and transparency can be obtained by dispersing and contacting each other without agglomeration. Used. The carbon nanotube includes a multi-walled carbon nanotube having a plurality of carbon walls concentrically or spirally around a central axis, and a single-walled carbon nanotube having a single carbon wall. The former multi-walled carbon nanotubes are contained in the conductive film 2 in a state where they are separated one by one without agglomerating, but the latter single-walled carbon nanotubes are currently dispersed one by one. It is difficult, and two or more pieces gather together to form a bundle, and these bundles are contained in the resistance film 2 in a state where the bundles are separated, dispersed and brought into contact with each other without agglomeration. The double-walled or triple-walled carbon nanotubes may be dispersed one by one or in a bundle. Furthermore, the present invention includes a case where single-walled carbon nanotubes are dispersed one by one.
Here, “without agglomeration” means that there is no agglomerate of 0.5 μm or more when the conductive film is observed with a microscope, and “contact” means that the ultrafine conductive fibers are actually in contact with each other. It means both the case where it is close and the case where the ultrafine conductive fiber is approaching with a small gap through which conduction is possible.

このカーボンナノチューブの導電膜2内における分散状態を模式的に図9、図10に示す。図に示すように、カーボンナノチューブ21は一本ずつ、或は、一束ずつ分離した状態で分散してお互いに接触している。そして、導電膜2がバインダーを含むと、図9(a)に示すように、バインダーの内部に上記の分散状態で分散して互いに接触しているか、或は、図9(b)に示すように、カーボンナノチューブ21の一部がバインダーの表面から突出乃至露出し、他の部分乃至他のカーボンナノチューブ21がバインダー内に入り込み上記分散状態で分散して互いに接触しているか、或は、一部のカーボンナノチューブ21は図9(a)のようにバインダーの内部に、他の一部は図9(b)に示すようにバインダーの表面から突出乃至露出して上記分散状態で分散して互いに接触している。また、導電膜2がバインダーを含まないと、図9(c)に示すように、カーボンナノチューブが上記分散状態で分散して互いに接触して、カーボンナノチューブの3次元構造の層となっている。   A dispersion state of the carbon nanotubes in the conductive film 2 is schematically shown in FIGS. As shown in the figure, the carbon nanotubes 21 are dispersed in contact with each other in a separated state, one by one or one bundle. When the conductive film 2 contains a binder, as shown in FIG. 9A, the conductive film 2 is dispersed in the above-mentioned dispersed state and in contact with each other, or as shown in FIG. 9B. In addition, part of the carbon nanotubes 21 protrudes or is exposed from the surface of the binder, and other parts or other carbon nanotubes 21 enter the binder and are dispersed in the above dispersed state and are in contact with each other. 9A is inside the binder as shown in FIG. 9A, and the other part is projected or exposed from the surface of the binder as shown in FIG. is doing. If the conductive film 2 does not contain a binder, as shown in FIG. 9C, the carbon nanotubes are dispersed in the above dispersed state and are in contact with each other to form a three-dimensional layer of carbon nanotubes.

そして、これらのカーボンナノチューブ21の分散状態を平面から見た状態を模式的に図10に示してある。この図10から理解できるように、カーボンナノチューブ21は多少湾曲した状態で、一本ずつ或は一束ずつ分散して分離し、互いに複雑に絡み合うことなく、即ち凝集することなく、単純に交差した状態で、導電膜2の内部乃至表面に分散し、互いに交差して導通している。このように、カーボンナノチューブ21が湾曲して接触しているので、このカーボンナノチューブ21を含む導電膜2は、曲げなどの二次加工を行なっても、曲がったカーボンナノチューブ21が伸びたり、或は接触しながらずれたりするので、曲率半径が1mm以下の極端に小さな曲率半径に曲げたり、成形倍率が10倍以上の極端な成形倍率にしなければ、その表面抵抗率は低下することがほとんどない。   And the state which looked at the dispersion state of these carbon nanotubes 21 from the plane is typically shown in FIG. As can be understood from FIG. 10, the carbon nanotubes 21 are slightly curved, separated and separated one by one or one bundle, and simply intersected without being intertwined with each other, that is, without agglomerating. In the state, the conductive film 2 is dispersed in the inside or the surface of the conductive film 2 and crosses each other to conduct. As described above, since the carbon nanotubes 21 are curved and in contact with each other, even if the conductive film 2 including the carbon nanotubes 21 is subjected to secondary processing such as bending, the bent carbon nanotubes 21 are stretched, or Since they are displaced while in contact with each other, the surface resistivity hardly decreases unless the radius of curvature is bent to an extremely small radius of curvature of 1 mm or less or the molding magnification is set to an extreme molding magnification of 10 times or more.

カーボンナノチューブなどの導電材料を含む導電膜2に用いるバインダーとしては、透明な熱可塑性樹脂である塩化ビニル樹脂、アクリル樹脂、ニトロセルロース、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、フッ化ビニリデンなどが、また、熱や紫外線や電子線や放射線で硬化する硬化性樹脂であるメラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、アクリル変性シリケートなどのシリコーン樹脂などが使用される。   As the binder used for the conductive film 2 containing a conductive material such as carbon nanotube, a transparent thermoplastic resin such as vinyl chloride resin, acrylic resin, nitrocellulose, chlorinated polyethylene resin, chlorinated polypropylene resin, vinylidene fluoride, Moreover, silicone resins such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, fluororesin, and acrylic-modified silicate, which are curable resins that are cured by heat, ultraviolet rays, electron beams, or radiation, are used.

この導電膜2に含ませるカーボンナノチューブの含有量などを変えることにより、表面抵抗率や光学特性を変えることができる。例えば、透明の電波吸収体用抵抗膜に必要な表面抵抗率377±30Ω/□、全光線透過率70%以上、ヘーズ10%以下の導電膜2を得るためには、その目付け量を30〜450mg/mとなるように含有量や厚さを調整する。同様に、透明の電磁波シールド用電極に必要な表面抵抗率10Ω/□以下、全光線透過率40%以上、ヘーズ10%以下の導電膜2を得るためには目付け量を1〜450mg/mとなるように、透明の帯電防止用導電体に必要な表面抵抗率10〜1012Ω/□、全光線透過率70%以上、ヘーズ10%以下の導電膜2を得るためには目付け量を0.03〜450mg/mとなるように、透明のタッチパネル用電極に必要な表面抵抗率10〜10Ω/□、全光線透過率70%以上、ヘーズ10%以下の導電膜2を得るためには目付け量を3〜450mg/mとなるように、導電膜2に含まれるカーボンナノチューブの含有量や厚さを調整する。
なお、上記目付け量は、導電膜2を電子顕微鏡で観察し、その平面面積に占めるカーボンナノチューブの面積割合を測定し、これに電子顕微鏡で観察した厚みとカーボンナノチューブの比重(グラフィトの文献値2.1〜2.3の平均値2.2を採用)を掛けることで計算した値である。
By changing the content of carbon nanotubes contained in the conductive film 2, the surface resistivity and optical characteristics can be changed. For example, in order to obtain the conductive film 2 having a surface resistivity of 377 ± 30Ω / □, a total light transmittance of 70% or more and a haze of 10% or less, which is necessary for a transparent wave absorber resistive film, the basis weight is 30 to 30%. The content and thickness are adjusted to be 450 mg / m 2 . Similarly, in order to obtain the conductive film 2 having a surface resistivity of 10 4 Ω / □ or less, a total light transmittance of 40% or more, and a haze of 10% or less necessary for a transparent electromagnetic shielding electrode, the basis weight is 1 to 450 mg / square. In order to obtain a conductive film 2 having a surface resistivity of 10 6 to 10 12 Ω / □, a total light transmittance of 70% or more and a haze of 10% or less necessary for a transparent antistatic conductor so as to be m 2 Conductivity having a surface resistivity of 10 0 to 10 5 Ω / □, a total light transmittance of 70% or more, and a haze of 10% or less, which is necessary for a transparent touch panel electrode so that the basis weight is 0.03 to 450 mg / m 2. In order to obtain the film 2, the content and thickness of the carbon nanotubes contained in the conductive film 2 are adjusted so that the basis weight is 3 to 450 mg / m 2 .
The weight per unit area is determined by observing the conductive film 2 with an electron microscope, measuring the area ratio of the carbon nanotubes in the planar area, and measuring the thickness and the specific gravity of the carbon nanotubes (graphite literature value 2). It is a value calculated by multiplying the average value 2.2 of .1 to 2.3).

上記導電膜2の上面と周囲側面とを封止している封止材3は、導電膜2と水分を含む外気との接触を遮断して水分の進入を防止し、導電膜2の表面抵抗率の経時的な変化を抑制している。図1に示す導電膜2は、その下面が基材1で覆われているので該基材1が封止材を兼備して、下面からの水分の進入は防止されるので、別の封止材で封止する必要はない。しかし、導電膜2の上面と周囲側面は封止材3で封止して上面及び周囲側面からの水分の侵入を防止する必要がある。そのため、基材1及び封止材3にはガスバリヤー性に優れたものが好ましく用いられる。   The sealing material 3 that seals the upper surface and the peripheral side surface of the conductive film 2 blocks contact between the conductive film 2 and the outside air containing moisture to prevent moisture from entering, and the surface resistance of the conductive film 2. The rate change over time is suppressed. Since the lower surface of the conductive film 2 shown in FIG. 1 is covered with the base material 1, the base material 1 also serves as a sealing material, so that moisture can be prevented from entering from the lower surface. It is not necessary to seal with a material. However, it is necessary to seal the upper surface and the peripheral side surface of the conductive film 2 with the sealing material 3 to prevent moisture from entering from the upper surface and the peripheral side surface. Therefore, those having excellent gas barrier properties are preferably used for the substrate 1 and the sealing material 3.

このような封止材3としては、例えば、ポリウレタン系、エチレン−酢酸ビニル共重合体系、エチレン−モノカルボン酸ビニルエステル共重合体系、エチレン−アクリル酸ビニルエステル共重合体系などのホットメルトシートや、シリコーン系、エポキシ系、アクリル系、オルガノポリシロキサン系、カルバミン酸エステル系、ビニル系、加水分解性シリル系、シリル化ウレタン系、ポリオキシアルキレン重合体などの硬化性シーリング剤や、合成樹脂と溶剤などからなる樹脂塗液などが使用形成されてなるものである。これらよりなる封止材3の厚さは、限定されるものではないが、水分の浸透を防止できる0.1μm以上、好ましくは0.1μm〜5mm、更に好ましくは5μm〜2mm程度とされる。   As such a sealing material 3, for example, a hot melt sheet such as polyurethane, ethylene-vinyl acetate copolymer system, ethylene-monocarboxylic acid vinyl ester copolymer system, ethylene-acrylic acid vinyl ester copolymer system, Curable sealing agents such as silicone, epoxy, acrylic, organopolysiloxane, carbamate, vinyl, hydrolyzable silyl, silylated urethane, polyoxyalkylene polymer, synthetic resin and solvent The resin coating liquid etc. which consist of etc. are used and formed. The thickness of the sealing material 3 made of these is not limited, but is 0.1 μm or more, preferably 0.1 μm to 5 mm, more preferably about 5 μm to 2 mm, which can prevent moisture penetration.

上記の封止材3のうち、比較的穏やかな加熱条件で軟化溶融して粘着性ないし接着性を発現して封止性能に優れるポリウレタン系ホットメルトシート、或は室温から100℃未満の温度領域で粘着性ないし接着性を発現して硬化し優れた封止性能を発揮するシリコーン系シーリング剤、或は基材1と同じか相溶性を有する熱可塑性樹脂を含む樹脂塗液が好ましく使用される。そして、封止導電体A1に透明性乃至透光性を要求される場合は、導電膜表面の封止材3に無色透明乃至透光性のものが用いられるが、封止導電体A1が不透明であってもよい場合は透明でも半透明でも不透明でもよい。このような透明な封止材3は上記のポリウレタン系ホットメルトシートやシリコーン系シーリング剤や透明性熱可塑性樹脂塗液が好ましく用いられる。さらに、導電膜2の周囲側面の封止材3は、導電体A1が透明でも透光性でも不透明であっても、不透明なものを使用できるが、導電体A1が透明性乃至透光性であれば上記の無色透明なものを用いることが好ましい。   Of the above-described sealing material 3, a polyurethane hot melt sheet that softens and melts under relatively mild heating conditions to exhibit tackiness or adhesiveness and has excellent sealing performance, or a temperature range from room temperature to less than 100 ° C. Preferably, a silicone-based sealing agent that exhibits adhesiveness or adhesiveness and cures and exhibits excellent sealing performance, or a resin coating solution containing a thermoplastic resin that is the same as or compatible with the substrate 1 is used. . And when transparency or translucency is requested | required of sealing conductor A1, a colorless and transparent or translucent thing is used for the sealing material 3 of a conductive film surface, but sealing conductor A1 is opaque. May be transparent, translucent or opaque. Such a transparent sealing material 3 is preferably the above-mentioned polyurethane-based hot melt sheet, silicone-based sealing agent, or transparent thermoplastic resin coating liquid. Further, the sealing material 3 on the peripheral side surface of the conductive film 2 can be opaque regardless of whether the conductor A1 is transparent, translucent or opaque, but the conductor A1 is transparent or translucent. If present, it is preferable to use the above colorless and transparent one.

更に、電極4は銅やアルミニウムや金、銀、ステンレスなどの金属薄板、金属箔が使用される。電極4の一側部41は、例えば図2に示すように、導電膜2の相対する二側端(上下の側部)に重ね合せて接触接合させられている。そして、電極4の他側部42は封止材3から外方に延出されていて、外部装置に接続できるようになされている。この電極4の周囲も封止材3にて封止されていて、電極4と封止材3との界面からの水分の浸透を防止するようにしてある。この電極4は、外部装置と接続する必要のない場合は設ける必要はない。   Further, the electrode 4 is made of a thin metal plate such as copper, aluminum, gold, silver or stainless steel, or a metal foil. For example, as shown in FIG. 2, one side portion 41 of the electrode 4 is overlapped and contact-bonded with two opposite side ends (upper and lower side portions) of the conductive film 2. The other side portion 42 of the electrode 4 extends outward from the sealing material 3 so that it can be connected to an external device. The periphery of the electrode 4 is also sealed with the sealing material 3 so as to prevent moisture permeation from the interface between the electrode 4 and the sealing material 3. The electrode 4 need not be provided when it is not necessary to connect to an external device.

このようにして得られた導電体A1、特にカーボンナノチューブを含む塗膜からなる導電膜2が用いられた導電体A1は、その全光線透過率を30%以上とすることができるので、例えば、透光性を必要とする透光性電波吸収体用の抵抗膜として、また透光性電磁波シールド用の電極として、また透光性帯電防止用の導電体として、更には透明タッチパネル用の電極として用いることができる。   The conductor A1 obtained in this way, particularly the conductor A1 using the conductive film 2 made of a coating film containing carbon nanotubes, can have a total light transmittance of 30% or more. As a resistive film for a translucent radio wave absorber that requires translucency, as an electrode for a translucent electromagnetic wave shield, as a translucent antistatic conductor, and as an electrode for a transparent touch panel Can be used.

以上のような導電体A1は、例えば、以下の方法で製造することができる。まず、ポリエチレンテレフタレートフィルムなどの基材1の片面の四方周囲端部を除く中央箇所に、酸化インジウム−酸化錫を蒸着してITOの薄膜を形成するか、或は、カーボンナノチューブなどの導電材料を含む塗液を塗布して塗膜を形成して、必要とする表面抵抗率を有する導電膜2を作製する。そして、この導電膜2の相対する側端部の上面に銅箔などの電極4の一側部41を導電性接着剤で接着する。さらに、導電膜2の上面と当該導電膜2が形成されなかった基材1の四方周囲端部(周囲側面)を覆うようにホットメルトシートを重ね合せると共に、電極4と基材1との間にもホットメルトシートを重ね合せた後、加熱加圧することでホットメルトシートを軟化溶融させて、導電膜2の上面と周囲側面とをホットメルトシートの封止材3にて封止することで製造することができる。   The conductor A1 as described above can be manufactured, for example, by the following method. First, an indium oxide-tin oxide film is deposited on a central portion of the substrate 1 other than one side of the substrate 1 such as a polyethylene terephthalate film to form an ITO thin film, or a conductive material such as a carbon nanotube is used. A coating liquid is formed by applying the coating liquid containing the conductive film 2 to have the required surface resistivity. Then, one side portion 41 of the electrode 4 such as a copper foil is bonded to the upper surface of the opposite side end portion of the conductive film 2 with a conductive adhesive. Further, the hot melt sheet is overlapped so as to cover the upper surface of the conductive film 2 and the four-side peripheral edge (peripheral side surface) of the base material 1 where the conductive film 2 is not formed, and between the electrode 4 and the base material 1. In addition, after the hot melt sheets are superposed, the hot melt sheet is softened and melted by heating and pressurizing, and the upper surface and the peripheral side surface of the conductive film 2 are sealed with the sealing material 3 of the hot melt sheet. Can be manufactured.

他の方法は、上記のようにして得られた導電膜2の上面と周囲側面、及び電極とポリエチレンテレフタレートとの隙間にシーリング剤や樹脂塗液などを塗布或は注入して固化させ、導電膜2の上面と周囲側面とをシーリング剤や樹脂塗液などで形成された塗膜の封止材3にて封止することでも製造することができる。   Another method is to apply or inject a sealing agent or a resin coating solution into the upper surface and the peripheral side surface of the conductive film 2 obtained as described above and the gap between the electrode and polyethylene terephthalate to solidify the conductive film. It can also be produced by sealing the upper surface and the peripheral side surface of 2 with a sealing material 3 of a coating film formed with a sealing agent or a resin coating solution.

このようにして得られた電極体A1は、導電膜2の下面はポリエチレンテレフタレートなどの基材1にて覆われて封止されると共に、上面と周囲側面はホットメルトシート、シーリング剤或は樹脂塗液などの塗膜からなる封止材3にて封止されているので、導電膜2の上下両面と周囲側面との全面・全周が封止されて、導電膜2が外気から封止されて外気中の水分の浸透などによる影響をなくし、表面抵抗率が経時的に変化することを抑制することができる。この経時的な表面抵抗率の変化は、帯電防止用導電体などのように10〜1012Ω/□であるときは100倍変化しても使用可能であるが、初期の表面抵抗率をできるだけ保持することが好ましく、10倍以下にすべきである。しかし、表面抵抗率が低くなればなるほど変化が大きく影響するので、できるだけ小さいことが必要である。例えば、10Ω/□以下の低抵抗の表面抵抗率が必要なときは、初期の表面抵抗率の±30%の範囲に抑制することが好ましく、更に好ましくは±10%、最も好ましくは±8%の範囲にすることが望ましい。また、カーボンナノチューブを含む導電膜2であると、これを曲げなどの二次加工しても表面抵抗率の低下が少ないので、基材1として屈曲可能な熱可塑性樹脂を用いることで、二次加工可能な導電体A1とすることができる。
この実施形態では、電極4を導電膜2の上面に接触接続したが、導電膜2の下面に接触接続してもよい。
In the electrode body A1 thus obtained, the lower surface of the conductive film 2 is covered and sealed with the base material 1 such as polyethylene terephthalate, and the upper surface and the peripheral side surface are hot melt sheet, sealing agent or resin. Since it is sealed with a sealing material 3 made of a coating film such as a coating solution, the entire upper and lower surfaces of the conductive film 2 and the entire peripheral surface are sealed, and the conductive film 2 is sealed from the outside air. As a result, it is possible to eliminate the influence of moisture permeation in the outside air and to prevent the surface resistivity from changing with time. This change in surface resistivity over time can be used even if it changes by a factor of 100 when it is 10 6 to 10 12 Ω / □, such as an antistatic conductor, but the initial surface resistivity can be changed. It is preferable to keep as much as possible, and it should be 10 times or less. However, the lower the surface resistivity, the greater the change, so it needs to be as small as possible. For example, when a surface resistivity with a low resistance of 10 4 Ω / □ or less is required, it is preferably suppressed to a range of ± 30% of the initial surface resistivity, more preferably ± 10%, most preferably ± A range of 8% is desirable. In addition, since the conductive film 2 containing carbon nanotubes has a small decrease in surface resistivity even when it is subjected to secondary processing such as bending, a secondary resin can be obtained by using a bendable thermoplastic resin as the substrate 1. It can be set as the processable conductor A1.
In this embodiment, the electrode 4 is contact-connected to the upper surface of the conductive film 2, but may be contact-connected to the lower surface of the conductive film 2.

図3は本発明の他の実施形態に係る導電体の断面図を示す。
この導電体A(A2)は、基材1と導電膜2と上面材5が一体に積層されて形成され、導電膜2の周囲の側面が水分を含む外気から封止材3にて封止されている。この図3においては、導電膜2の四周周囲に張り出している基材1と上面材5との隙間に封止材3が配置されて封止している。
FIG. 3 shows a cross-sectional view of a conductor according to another embodiment of the present invention.
The conductor A (A2) is formed by integrally laminating the base material 1, the conductive film 2, and the upper surface material 5, and the side surfaces around the conductive film 2 are sealed with the sealing material 3 from the outside air containing moisture. Has been. In FIG. 3, the sealing material 3 is disposed and sealed in the gap between the base material 1 and the upper surface material 5 that protrudes around the circumference of the conductive film 2.

上面材5としては、前記導電体A1の基材1と同じ可塑性樹脂や硬化性樹脂が用いられるが、特に透明樹脂が好ましく用いられる。そして、その厚さも基材1と同じとされている。しかし、基材1と異なる樹脂を用いたり、基材1と異なる厚さとしても勿論よい。そして、この上面材5は、基材1と同様に導電膜2よりも大きな大きさとされていて、導電膜2の四周から周囲にはみ出るようになされている。そのため、導電膜2から四周周囲にはみ出た基材1と上面材5との隙間に、封止材3が介在若しくは注入されて隙間を充填していて、導電膜2の四周側面を封止していると同時に、基材1と上面材5とを密着させている。
その他の構成である、基材1、導電膜2、封止材3、電極4は前記導電体A1と同じであるので、同一符号を付して説明を省略する。
As the upper surface material 5, the same plastic resin and curable resin as the base material 1 of the conductor A1 are used, but a transparent resin is particularly preferably used. The thickness is also the same as that of the substrate 1. However, it is of course possible to use a resin different from the base material 1 or a thickness different from that of the base material 1. The upper surface material 5 is larger than the conductive film 2 in the same manner as the base material 1, and protrudes from the periphery of the conductive film 2 to the periphery. Therefore, the sealing material 3 is interposed or injected into the gap between the base material 1 and the upper surface material 5 that protrudes from the conductive film 2 around the four circumferences to fill the gap, and the four sides of the conductive film 2 are sealed. At the same time, the base material 1 and the upper surface material 5 are brought into close contact with each other.
Since the base material 1, the conductive film 2, the sealing material 3, and the electrode 4, which are other configurations, are the same as the conductor A <b> 1, the same reference numerals are given and description thereof is omitted.

この導電体A2は、例えば、次のようにして製造される。
まず、基材1の片面の四周周囲端部を除く中央箇所に、前記と同様にして導電膜2を形成して、基材1が導電膜2の四周からはみ出るようにする。そして、電極4も同様に配置した後に当該電極4の下面にホットメルトシートを配置し、更に基材1の四方周囲の表面即ち当該導電膜2が形成されなかった基材1の四方周囲端部(周囲側面)の上面に幅狭のホットメルトシートを配置し、更に基材1と同じ大きさの上面材5で導電膜2を覆うと同時に該導電膜2からはみ出た基材1の四方周囲に重ね合わせた後、加熱加圧することでホットメルトシートを軟化溶融させて、導電膜2の周囲側面外方で、基材1と上面材5との間隙をホットメルトシートの封止材3にて封止することで製造することができる。
For example, the conductor A2 is manufactured as follows.
First, the conductive film 2 is formed in the same manner as described above at the central portion excluding the four-circumference peripheral edge on one side of the base material 1 so that the base material 1 protrudes from the four turns of the conductive film 2. And after arrange | positioning the electrode 4 similarly, a hot-melt sheet | seat is arrange | positioned to the lower surface of the said electrode 4, and also the surface of the surroundings of the base material 1, ie, the all-around edge part of the base material 1 in which the said electrically conductive film 2 was not formed. A narrow hot melt sheet is disposed on the upper surface of (surrounding side surface), and the conductive film 2 is covered with the upper surface material 5 having the same size as that of the base material 1, and at the same time the four-side periphery of the base material 1 protruding from the conductive film 2 The hot melt sheet is softened and melted by heating and pressurizing, and the gap between the base material 1 and the upper surface material 5 is formed in the sealing material 3 of the hot melt sheet outside the peripheral side surface of the conductive film 2. And can be manufactured by sealing.

また、ホットメルトシートに代えて、導電膜2を中央箇所に形成した基材1の上面に、上記と同様に表面材5を配置し、導電膜2の四周側面外方の隙間(基材1と上面材5との隙間)に、シーリング剤や樹脂塗液を注入して固化させ、導電膜2の周囲の側面外方で、基材1と上面材5との間隙をシーリング剤乃至樹脂塗液で形成された塗膜の封止材3にて封止すると同時に、基材1と上面材5とを密着することでも製造することができる。   Moreover, it replaces with a hot melt sheet, and the surface material 5 is arrange | positioned similarly to the above on the upper surface of the base material 1 which formed the electrically conductive film 2 in the center location, and the clearance gap (base material 1) of the four periphery side surface of the electrically conductive film 2 is carried out. The sealing agent or the resin coating liquid is injected into the gap between the base material 1 and the upper surface material 5 to solidify it, and the gap between the base material 1 and the upper surface material 5 is sealed outside the side surface around the conductive film 2 with a sealing agent or resin coating. It can also be produced by sealing the base material 1 and the upper surface material 5 at the same time as sealing with the sealing material 3 of the coating film formed of the liquid.

このようにして得られた電極材A2は、導電膜2の下面が基材1で覆われて封止され、また上面が上面材5で覆われて封止され、導電膜2の周囲側面がホットメルトシートやシーリング剤或は樹脂塗液などの塗膜の封止材3にて封止されているので、導電膜2が水分を含む外気から封止されていて水分の浸透などによる影響がなくなり、表面抵抗率が経時的に変化することを抑制することができる。また、カーボンナノチューブを含む導電膜2であると、これを曲げなどの二次加工しても表面抵抗率の低下が少ない導電体A2とすることができる。   In the electrode material A2 thus obtained, the lower surface of the conductive film 2 is covered and sealed with the base material 1, the upper surface is covered and sealed with the upper surface material 5, and the peripheral side surface of the conductive film 2 is Since it is sealed with a sealing material 3 of a coating film such as a hot melt sheet, a sealing agent or a resin coating solution, the conductive film 2 is sealed from the outside air containing moisture, and is affected by the penetration of moisture. It is possible to suppress the surface resistivity from changing over time. In addition, when the conductive film 2 includes carbon nanotubes, the conductor A2 can be obtained with a small decrease in surface resistivity even if it is subjected to secondary processing such as bending.

この実施形態において、導電膜2は基材1に塗布して形成されているが、上面材5の下面に形成し、この面に基材1を重ね合せて導電膜2の周囲を封止した導電体A2としてもよい。また、電極4を導電膜2の下面に接触接続してもよい。   In this embodiment, the conductive film 2 is formed by applying to the base material 1, but is formed on the lower surface of the upper surface material 5, and the periphery of the conductive film 2 is sealed by overlapping the base material 1 on this surface. The conductor A2 may be used. Further, the electrode 4 may be contact-connected to the lower surface of the conductive film 2.

図4は本発明の更に他の実施形態に係る導電体の断面図を示す。
この導電体A3は、基材1と導電膜2と上面材5とがこの順序で一体に積層されて形成され、導電膜2の周囲で基材1と上面材5とが接合されており、該接合部分15で導電膜2の周囲側面が封止されているものである。従って、この接合部分15が周囲側面の封止作用をなしている。
FIG. 4 shows a cross-sectional view of a conductor according to still another embodiment of the present invention.
The conductor A3 is formed by integrally laminating the base material 1, the conductive film 2, and the upper surface material 5 in this order, and the base material 1 and the upper surface material 5 are joined around the conductive film 2, The peripheral side surface of the conductive film 2 is sealed by the joint portion 15. Therefore, the joint portion 15 serves to seal the peripheral side surface.

基材1と上面材5とは、前記導電体A2に用いられたそれぞれの樹脂と同様の樹脂が用いられる。これらが共に熱可塑性樹脂であれば、加熱して溶着したり、熱溶接したり、接着剤で接着したりして、該溶着部分或は接着部分で接合することができる。また、両者が熱可塑性樹脂であっても相溶性が悪かったり、一方若しくは両方が硬化性樹脂或はガラスであれば、接着剤や粘着剤を用いたりして接合する。
その他の構成である導電膜2、電極4は、前記導電体A1に使用したものと同じものが使用されるので、同一符号を付して説明を省略する。
For the base material 1 and the upper surface material 5, the same resins as those used for the conductor A2 are used. If both of these are thermoplastic resins, they can be heated and welded, heat welded, or bonded with an adhesive, and bonded at the welded portion or the bonded portion. Further, even if both are thermoplastic resins, the compatibility is poor, or if one or both are curable resin or glass, bonding is performed using an adhesive or a pressure-sensitive adhesive.
Since the conductive film 2 and the electrode 4 which are other structures are the same as those used for the conductor A1, the same reference numerals are given and the description thereof is omitted.

この導電体A3は、例えば、次のようにして製造される。
まず、アクリル系フィルムなどの基材1の片面の四周周囲端部を除く中央箇所に、前記と同様にしてITO薄膜や導電材料塗膜の導電膜2を形成する。そして、該導電膜2の上面に、この導電膜2の四周からはみ出る大きさのアクリル系フィルムを配置し、上下のアクリル系フィルムの基材1と上面材5とを、導電膜2の四周周囲からはみ出た周囲同士を加熱や溶接や接着や粘着などして溶着接合或は粘接着接合したりすることで製造することができる。
For example, the conductor A3 is manufactured as follows.
First, an ITO thin film or a conductive film 2 made of a conductive material coating film is formed in the same manner as described above at the central portion excluding the four-circumferential peripheral edge of one side of the substrate 1 such as an acrylic film. Then, on the upper surface of the conductive film 2, an acrylic film having a size protruding from the four circumferences of the conductive film 2 is arranged, and the base 1 and the upper surface material 5 of the upper and lower acrylic films are arranged around the circumference of the conductive film 2. It can be manufactured by heating, welding, adhering or sticking the surroundings protruding from each other and performing welding or adhesive bonding.

このようにして得られた導電体A3は、導電膜2の下面が基材1により封止され、上面が上面材5により封止され、周囲側面が基材1と上面材5との接合部分15により封止されているので、導電膜2が水分を含む外気から封止されていて水分の浸透などによる影響がなくなり表面抵抗率が変化することが抑制される。また、カーボンナノチューブを含む導電膜2であると、これを曲げなどの二次加工しても表面抵抗率の低下がない。
この実施形態において、導電膜2は基材1に塗布して形成されているが、上面材5の下面に導電膜2を形成し、この導電膜下面に基材1を重ね合せて導電膜2の周囲を封止した導電体A3としてもよい。また、電極4を導電膜2の下面に接触接続してもよい。
In the conductor A3 thus obtained, the lower surface of the conductive film 2 is sealed with the base material 1, the upper surface is sealed with the upper surface material 5, and the peripheral side surface is a joint portion between the base material 1 and the upper surface material 5. 15, the conductive film 2 is sealed from the outside air containing moisture and is not affected by the penetration of moisture, and the surface resistivity is suppressed from changing. In addition, when the conductive film 2 includes carbon nanotubes, the surface resistivity does not decrease even if it is subjected to secondary processing such as bending.
In this embodiment, the conductive film 2 is formed by applying to the base material 1. However, the conductive film 2 is formed on the lower surface of the upper surface material 5, and the base material 1 is overlapped on the lower surface of the conductive film 2. It is good also as conductor A3 which sealed the circumference | surroundings. Further, the electrode 4 may be contact-connected to the lower surface of the conductive film 2.

図5は本発明の更に他の実施形態に係る導電体の断面図を示す。
この導電体A4は、基材1や上面材5を使用することなく、導電膜2の上下両面及び周囲側面が全て封止材3にて封止されているものである。該封止材3は前記のホットメルトシートや、シーリング剤又は樹脂塗液などによる塗膜などからなるもので、ホットメルトシートで上下両面及び周囲を封止したり、シーリング剤や樹脂塗液を導電膜2の上下と周囲に塗布・固化して塗膜を形成したりしたものである。
この導電膜2と封止材3は、前記導電体A1に使用したものと同じものが使用されるので、同一符号を付して説明を省略する。また電極4も同じであるので説明を省略する。
FIG. 5 shows a cross-sectional view of a conductor according to still another embodiment of the present invention.
In the conductor A4, the upper and lower surfaces and the surrounding side surfaces of the conductive film 2 are all sealed with the sealing material 3 without using the base material 1 or the upper surface material 5. The sealing material 3 is composed of the above-mentioned hot melt sheet, a coating film made of a sealing agent or a resin coating solution, etc., and seals the upper and lower surfaces and the periphery with a hot melt sheet, or a sealing agent or a resin coating solution. A coating film is formed by applying and solidifying the conductive film 2 above and below and around it.
Since the conductive film 2 and the sealing material 3 are the same as those used for the conductor A1, the same reference numerals are given and description thereof is omitted. Since the electrode 4 is the same, the description thereof is omitted.

この導電体A4は、例えば、次のようにして製造される。まず、ポリエチレンテレフタレートフィルムなどの剥離性フィルムの片面に導電材料含有塗膜を形成し、この塗膜を剥離することで導電膜2を作製する。そして、該導電膜2の上下両面に、この導電膜2の四周からはみ出る大きさのホットメルトシートをそれぞれ配置した後、加熱加圧してホットメルトシートを軟化溶融させて、導電膜2の上面及び下面をホットメルトシートの封止材3で封止すると共に、導電膜2の四周からはみ出た上下のホットメルトシート同士を溶着して導電膜2の周囲を溶着部分で封止することで製造することができる。   For example, the conductor A4 is manufactured as follows. First, a conductive material-containing coating film is formed on one surface of a peelable film such as a polyethylene terephthalate film, and the conductive film 2 is produced by peeling this coating film. And after arrange | positioning the hot-melt sheet of the magnitude | size which protrudes from the four circumferences of this electrically conductive film 2 on the upper and lower surfaces of this electrically conductive film 2, respectively, it heat-presses and softens and melts the hot-melt sheet, The lower surface is sealed with a hot melt sheet sealing material 3, and the upper and lower hot melt sheets protruding from the four circumferences of the conductive film 2 are welded together to seal the periphery of the conductive film 2 with a welded portion. be able to.

また、上記のようにして得られた導電膜2の片面に液状シーリング剤や樹脂塗液などを塗布し固化させて塗膜を形成した後、この塗膜付き導電膜を上下にひっくり返し、塗膜が形成されていない導電膜2の上面に液状シーリング剤や樹脂塗液などを塗布すると共に導電膜2よりもはみ出るように塗布し、固化させて塗膜を形成させることで、導電膜2の上下両面及び周囲側面に塗膜を形成し、この塗膜の封止材3にて封止しても製造することができる。   In addition, after applying a liquid sealing agent or a resin coating solution on one side of the conductive film 2 obtained as described above and solidifying it to form a coating film, the conductive film with a coating film is turned upside down and applied. A liquid sealing agent or a resin coating solution is applied to the upper surface of the conductive film 2 on which the film is not formed, and is applied so as to protrude beyond the conductive film 2 and solidified to form a coating film. It can also be produced by forming a coating film on the upper and lower surfaces and the peripheral side surface and sealing with the sealing material 3 of this coating film.

このようにして得られた導電体A4は、導電膜2の上下両面及び周囲側面がホットメルトシートや塗膜の封止材3で封止されているので、導電膜2が水分を含む外気から封止されていて水分の浸透などによる影響がなくなり表面抵抗率が変化することがない。また、カーボンナノチューブを含む導電膜2であると、これを曲げなどの二次加工しても表面抵抗率の低下がない。   In the conductive body A4 thus obtained, the upper and lower surfaces and the surrounding side surfaces of the conductive film 2 are sealed with the hot-melt sheet or the sealing material 3 for the coating film. It is sealed so that it is not affected by moisture penetration and the surface resistivity does not change. In addition, when the conductive film 2 includes carbon nanotubes, the surface resistivity does not decrease even if it is subjected to secondary processing such as bending.

図6は本発明の更に他の実施形態に係る導電体の断面図を示す。
この導電体A5は、基材1と導電膜2とが同じ大きさで一体に積層されて形成され、この基材1と導電膜2の上下両面及び周囲側面が、ホットメルトシートや熱可塑性樹脂シートや塗膜などの封止材3にて封止されているものである。
FIG. 6 shows a cross-sectional view of a conductor according to still another embodiment of the present invention.
The conductor A5 is formed by integrally laminating the base material 1 and the conductive film 2 with the same size, and the upper and lower surfaces and the peripheral side surfaces of the base material 1 and the conductive film 2 are hot melt sheets or thermoplastic resins. It is sealed with a sealing material 3 such as a sheet or a coating film.

基材1と導電膜2は、前記封止導電体A1に使用した基材1と導電膜2とが使用されるので説明を省略する。また、封止材3は、前記実施形態の導電体に使用されたホットメルトシートや熱可塑性樹脂シートやシーリング剤塗膜や樹脂塗液塗膜が使用されて、導電膜2と基材1の上下両面と周囲側面とがこれらのシートや塗膜で覆われて封止されている。なお、基材1と導電膜2とは必ずしも同じ大きさにする必要はなく、基材1が導電膜2より大きくても封止材3でこれらを覆って封止すればよい。   Since the base material 1 and the conductive film 2 used for the sealing conductor A1 are used for the base material 1 and the conductive film 2, the description thereof is omitted. Moreover, the sealing material 3 uses the hot-melt sheet, the thermoplastic resin sheet, the sealant coating film, or the resin coating film used for the conductor of the above-described embodiment. The upper and lower surfaces and the surrounding side surfaces are covered and sealed with these sheets and coating films. Note that the base material 1 and the conductive film 2 do not necessarily have the same size. Even if the base material 1 is larger than the conductive film 2, the base material 1 and the conductive film 2 may be covered and sealed with the sealing material 3.

この導電体A5は、例えば次のようにして製造される。
即ち、基材1の上面にITOを蒸着したり、導電材料含有塗液を塗布して、基材1と導電膜2とが同じ大きさの導電積層体を形成する。この導電積層体の上下両面に、これより大きくて四周側面からはみ出る大きさのホットメルトシートをそれぞれ重ね合わせ、これを加熱加圧して、導電積層体の上下をホットメルトシートでそれぞれ覆って封止すると共に導電積層体の周囲で且つはみ出た上下のホットメルトシート同士を溶着し該溶着部分で封止することにより、上下両面及び周囲側面が封止された導電体A5を製造することができる。
The conductor A5 is manufactured, for example, as follows.
That is, ITO is vapor-deposited on the upper surface of the base material 1 or a coating material containing a conductive material is applied, so that the base material 1 and the conductive film 2 form a conductive laminate having the same size. A hot melt sheet that is larger than this and that protrudes from the four sides is overlapped on both the upper and lower surfaces of this conductive laminate, and this is heated and pressurized, and the upper and lower sides of the conductive laminate are covered with a hot melt sheet and sealed. At the same time, the upper and lower hot melt sheets that protrude from the periphery of the conductive laminate are welded together and sealed at the welded portion, whereby the conductor A5 in which the upper and lower surfaces and the peripheral side surfaces are sealed can be manufactured.

また、上記ホットメルトシートに代えて、熱可塑性合成樹脂シートを用いて、導電膜2の周囲側面からはみ出た上下の熱可塑性合成樹脂シート同士を溶着乃至接着し該溶接着部分で封止することによっても製造することができる。
更に、上記ホットメルトシートに代えて、シーリング剤や樹脂塗液を塗布・固化して、導電膜2の上下両面及び周囲側面を封止することで製造してもよい。
Further, instead of the hot melt sheet, a thermoplastic synthetic resin sheet is used, and the upper and lower thermoplastic synthetic resin sheets protruding from the peripheral side surface of the conductive film 2 are welded or bonded together and sealed at the welded portion. Can also be manufactured.
Furthermore, instead of the hot melt sheet, a sealing agent or a resin coating solution may be applied and solidified to seal the upper and lower surfaces and the surrounding side surfaces of the conductive film 2.

このようにして得られた導電体A5においても、前記導電体A1、A2、A3、A4と同様に、水分の浸透などによる影響がなくなり表面抵抗率が変化することがないし、カーボンナノチューブを含む導電膜2であると、これを曲げなどの二次加工しても表面抵抗率の低下がない、という効果を有する。   Also in the conductor A5 obtained in this way, like the conductors A1, A2, A3, and A4, the surface resistivity does not change without being affected by the penetration of moisture and the like. The film 2 has an effect that the surface resistivity does not decrease even if the film 2 is subjected to secondary processing such as bending.

図7は本発明の更に他の実施形態に係る導電体の断面図を示す。
この導電体A6は、基材1と導電膜2と上面材5とがこの順序で重ね合せ若しくは一体に積層され、この四周側端面に封止材3が形成されていて、導電膜2の上下両面が上面材5と基材1とで封止されると共に周囲側面が封止材3にて封止されているものである。
FIG. 7 is a sectional view of a conductor according to still another embodiment of the present invention.
In the conductor A6, the base material 1, the conductive film 2, and the upper surface material 5 are superposed or integrally laminated in this order, and the sealing material 3 is formed on the end surface on the four circumference sides. Both surfaces are sealed with the upper surface material 5 and the base material 1, and the peripheral side surfaces are sealed with the sealing material 3.

この導電体A6において、基材1と導電膜2と上面材5とは同じ大きさに形成されていて、これらの四周側端面は略同じ面に位置している。そして、この同じ位置にある四周側端面に、ホットメルトシートやシーリング剤や樹脂塗液などを用いて封止材3を形成してあるので、封止材3は四周側端面に密着して形成され、導電膜2を水分を含む外気から封止することができる。なお、基材1と導電膜2と上面材5とは大きさが異なってもよいが、この場合は側端面に形成する封止材3を厚くするか、端面に沿って封止材3を形成すればよい。
その他の構成である、基材1、導電膜2、上面材5、電極4は前記導電体A2と同じであるので、同一符号を付して説明を省略する。
In this conductor A6, the base material 1, the conductive film 2, and the upper surface material 5 are formed in the same size, and the end surfaces on the four circumference sides are located on substantially the same surface. Since the sealing material 3 is formed on the four-side end surface at the same position by using a hot melt sheet, a sealing agent, a resin coating liquid, or the like, the sealing material 3 is formed in close contact with the four-side end surface. Thus, the conductive film 2 can be sealed from the outside air containing moisture. In addition, although the magnitude | sizes of the base material 1, the electrically conductive film 2, and the upper surface material 5 may differ, in this case, the sealing material 3 formed in a side end surface is thickened, or the sealing material 3 is made along an end surface. What is necessary is just to form.
Since the base material 1, the conductive film 2, the upper surface material 5, and the electrode 4 which are other configurations are the same as those of the conductor A2, the same reference numerals are given and description thereof is omitted.

この導電体A6は、例えば、次のようにして製造できる。
まず導電体A2の場合と同様にして製造する際に、基材1と導電膜2と上面材5とを同じ大きさとなるように作製する。そして、基材1と導電膜2と上面材5の略同じ面となっている各四周側端面にホットメルトシートを配置して加熱加圧して、導電体A6の周囲に封止材3を形成することで製造できる。また、ホットメルトシートに代えてシーリング剤や樹脂塗液を塗布、硬化して封止材3を形成することによっても製造できる。
For example, the conductor A6 can be manufactured as follows.
First, when manufacturing in the same manner as in the case of the conductor A2, the base material 1, the conductive film 2, and the upper surface material 5 are manufactured to have the same size. Then, a hot melt sheet is arranged on each of the four circumferential side end surfaces which are substantially the same surfaces of the base material 1, the conductive film 2, and the upper surface material 5, and heated and pressurized to form the sealing material 3 around the conductor A6. Can be manufactured. Moreover, it can manufacture also by apply | coating and hardening a sealing agent and resin coating liquid instead of a hot-melt sheet, and forming the sealing material 3. FIG.

このようにして得られた電極材A6は、導電膜2の上下両面が上面材5、基材1で覆われ、導電膜2の周囲側端面は封止材3にて封止されているので、水分を含む外気から封止されていて水分の浸透などの影響が作用せず、表面抵抗率が変化することが抑制される。また、カーボンナノチューブを含む導電膜2であると、これを曲げなどの二次加工しても表面抵抗率の低下がない。さらに、封止材3は導電体A6の四周側端面の全体を封止しているので、封止材3が側端面に形成されても剥離することがない。
なお、この実施形態では導電膜2を基材1に形成したが、上面材5の下面に形成してもよい。
In the electrode material A6 thus obtained, the upper and lower surfaces of the conductive film 2 are covered with the upper surface material 5 and the base material 1, and the peripheral side end surface of the conductive film 2 is sealed with the sealing material 3. In addition, since it is sealed from the outside air containing moisture, the influence of moisture penetration and the like does not act, and the change in surface resistivity is suppressed. In addition, when the conductive film 2 includes carbon nanotubes, the surface resistivity does not decrease even if it is subjected to secondary processing such as bending. Furthermore, since the sealing material 3 seals the entire four-side end surface of the conductor A6, the sealing material 3 does not peel off even if the sealing material 3 is formed on the side end surface.
In this embodiment, the conductive film 2 is formed on the base material 1, but may be formed on the lower surface of the upper surface material 5.

図8は本発明の更に他の実施形態に係る導電体の断面図を示す。
この導電体A7は、基材1と導電膜2と上面材5とからなり、基材1と上面材5とが、導電膜2の周囲で封止材3にて封止されて接合されている点は前記導電体A2と同じであるが、導電膜2と上面材5とが空間6を隔てて形成されている点で異なっている。
FIG. 8 shows a cross-sectional view of a conductor according to still another embodiment of the present invention.
The conductor A7 includes a base material 1, a conductive film 2, and a top surface material 5. The base material 1 and the top surface material 5 are sealed and sealed with a sealing material 3 around the conductive film 2. The conductive layer 2 is the same as the conductive material A2 except that the conductive film 2 and the upper surface material 5 are formed with a space 6 therebetween.

空間6には、当該空間部分に他部材を挿入/介在させることができ、例えば上面材5の下面に導電膜が形成されると、導電膜同士が対極するこことなるので、これらが接触しないように空間6を設けておくことが必要となる。また、該空間6自体を誘電体として利用することもできるので、電波吸収体用導電体と用いると他の誘電体の厚さを薄くすることができる。この空間6を設けるには、周囲の封止材3の厚みを厚くする必要があり、厚みの厚いホットメルトシートを使用したり、シーリング剤や樹脂塗液による塗膜を厚く塗布・形成したり、或は、スペーサを用いて接合或は接着したりして、導電膜2と上面材5とが間を隔てて形成されるようにする。そして、このような空間6があっても、当該空間6内の水分は導電膜2に浸透するかもしれないが、当該空間6は狭いので水分の量が少なくて、例え表面抵抗率が変化しても実質的な変化はない。そして、空間6は水分を含む外気から封止してあり、外気の水分が空間6へ、延いては導電膜2へ浸透することはない。そのため表面抵抗率の変化を抑制することができる。なお、空間6内に乾燥剤を内在させて湿気を取り除くこともできる。
その他の構成である基材1、導電膜2、上面材5、電極4は前記各導電体と同じであるので、同じ符号を付して説明を省略する。
In the space 6, other members can be inserted / intervened in the space portion. For example, when a conductive film is formed on the lower surface of the upper surface material 5, the conductive films are opposed to each other, so that they do not contact each other. It is necessary to provide the space 6 as described above. In addition, since the space 6 itself can be used as a dielectric, the thickness of other dielectrics can be reduced when used as a radio wave absorber conductor. In order to provide this space 6, it is necessary to increase the thickness of the surrounding sealing material 3, and use a thick hot melt sheet, or apply and form a coating film with a sealing agent or a resin coating solution. Alternatively, the conductive film 2 and the upper surface material 5 are formed at a distance from each other by bonding or bonding using a spacer. Even if such a space 6 exists, the water in the space 6 may permeate the conductive film 2, but since the space 6 is narrow, the amount of moisture is small and the surface resistivity changes, for example. But there is no substantial change. The space 6 is sealed from the outside air containing moisture, and the moisture in the outside air does not permeate into the space 6 and thus into the conductive film 2. Therefore, the change in surface resistivity can be suppressed. In addition, a desiccant can be included in the space 6 to remove moisture.
Since the base material 1, the conductive film 2, the upper surface material 5, and the electrode 4, which are other configurations, are the same as the respective conductors, the same reference numerals are given and description thereof is omitted.

この導電体A7は、例えば、次のようにして製造される。
即ち、基材1の片面の四方周囲端部を除く中央箇所に、前記と同様にしてITO薄膜や導電材料塗膜の導電膜2を形成する。そして、該導電膜2の周囲で且つ当該導電膜2が形成されなかった基材1の四方周囲端部に導電膜2より厚さの厚いスペーサを配置し、更に基材1と同じ大きさの上面材5を導電膜2とスペーサを覆うように覆い、スペーサの上面を上面材5に、また下面を基材1に接着させて、空間6を有するように導電膜2の周囲を封止することで製造できる。この場合、スペーサが封止材3となる。
また、スペーサに代えて、厚みの厚いホットメルトシートを用いて加熱溶着させてもよいし、シーリング剤或は樹脂塗液を厚く塗布して厚い塗膜を形成して、基材1と上面材5との間に空間6を有するように接合して封止してもよい。
このようにして得られた導電体A7においても、水分の浸透などによる影響がなくなり表面抵抗率が変化することがないし、カーボンナノチューブを含む導電膜2であると、これを曲げなどの二次加工しても表面抵抗率の低下がない、という効果を有する。
For example, the conductor A7 is manufactured as follows.
That is, the ITO thin film or the conductive film 2 made of a conductive material film is formed in the same manner as described above at the central portion excluding the four peripheral edges on one side of the substrate 1. Then, a spacer thicker than the conductive film 2 is disposed around the conductive film 2 and at the four peripheral edges of the base material 1 where the conductive film 2 is not formed. The upper surface material 5 is covered so as to cover the conductive film 2 and the spacer, the upper surface of the spacer is bonded to the upper surface material 5, and the lower surface is bonded to the base material 1, and the periphery of the conductive film 2 is sealed so as to have the space 6. Can be manufactured. In this case, the spacer becomes the sealing material 3.
In addition, instead of the spacer, a hot melt sheet having a large thickness may be used for heat welding, or a thick coating is formed by thickly applying a sealing agent or a resin coating solution to form the base material 1 and the upper surface material. 5 may be joined and sealed so as to have a space 6 between them.
The conductor A7 thus obtained is not affected by the penetration of moisture and the surface resistivity does not change. If the conductive film 2 contains carbon nanotubes, it is subjected to secondary processing such as bending. Even if it has the effect that there is no fall of surface resistivity.

図11は、本発明の導電体Aを用いた電波吸収体の断面図を示す。
この電波吸収体Bは、本発明の導電体Aの表面側に表面保護体B1を、裏面側に誘電体B2と電波反射体B3と裏面保護体B4とを積層一体化したものである。上記表面保護体B1、B4は合成樹脂で作製されて表面及び裏面を衝撃や紫外線から保護し、誘電体B2はガラスや合成樹脂で作製されてλ/4電波吸収体理論(λ:誘電体B2内の電波の波長)に基づく厚さを有し、電波反射体B3は導電メッシュ材、金属メッシュ材、導電膜で作製され電波を反射させるものである。
FIG. 11 shows a cross-sectional view of a radio wave absorber using the conductor A of the present invention.
In this radio wave absorber B, a surface protector B1 is laminated on the front surface side of the conductor A of the present invention, and a dielectric B2, a radio wave reflector B3, and a back surface protector B4 are laminated and integrated on the back surface side. The surface protectors B1 and B4 are made of a synthetic resin to protect the front and back surfaces from impact and ultraviolet rays, and the dielectric B2 is made of glass and a synthetic resin and has a λ / 4 wave absorber theory (λ: dielectric B2 The radio wave reflector B3 is made of a conductive mesh material, a metal mesh material, and a conductive film to reflect the radio wave.

このような構成の電波吸収体Bにおいて、導電体Aは377±30Ω/□の表面抵抗率を有する必要があり、この範囲の表面抵抗率を有しないと電波吸収しなくなる。そのため、設置後においても上記範囲の表面抵抗率を有する必要があるが、上記の如く本発明の導電体Aは上下両面及び周囲側面が封止材で封止されているので、水分を含む外気の影響を排除して表面抵抗率の変化をなくして377±30Ω/□に保ち、長期に亘り電波吸収性能が維持される。   In the radio wave absorber B having such a configuration, the conductor A needs to have a surface resistivity of 377 ± 30Ω / □, and the radio wave absorber cannot be absorbed unless it has a surface resistivity in this range. Therefore, it is necessary to have a surface resistivity within the above range even after installation. However, as described above, the conductor A of the present invention is sealed on both the upper and lower surfaces and the surrounding side surfaces with a sealing material. Thus, the change in surface resistivity is eliminated to maintain 377 ± 30Ω / □, and the radio wave absorption performance is maintained for a long time.

図12は、本発明の上記導電体Aを用いたタッチパネルの断面図を示す。
このタッチパネルCは、本発明の導電体A7を用いてあり、導電体A7の空間6となっている上面材5の下面に導電膜(電極)2を形成してなるものである。このようにすることにより、基材1とその上面の導電膜2とで下電極体C1を、表面材5とその下面の導電膜2とで上電極体C2とをそれぞれ構成し、これらをドッドスペーサC3で対極させ、下電極体C1の基材1と上電極体C2の表面材5との隙間周囲(導電膜2の周囲側端面)を封止材3にて封止してなるものである。
このような構成のタッチパネルであっても、抵抗膜2の表面抵抗率を10〜10Ω/□に保っておく必要があるが、この抵抗膜2は基材1と上面材5と封止材3にて封止されているので表面抵抗率が変化することがなくて、上記表面抵抗率を維持できて、タッチパネルとしての機能を有することができる。
FIG. 12 shows a cross-sectional view of a touch panel using the conductor A of the present invention.
This touch panel C uses the conductor A7 of the present invention, and is formed by forming a conductive film (electrode) 2 on the lower surface of the upper surface material 5 serving as the space 6 of the conductor A7. Thus, the lower electrode body C1 is constituted by the base material 1 and the conductive film 2 on the upper surface thereof, and the upper electrode body C2 is constituted by the surface material 5 and the conductive film 2 on the lower surface thereof. A counter electrode is formed with a spacer C3, and the periphery of the gap between the base material 1 of the lower electrode body C1 and the surface material 5 of the upper electrode body C2 (the end surface on the peripheral side of the conductive film 2) is sealed with the sealing material 3. is there.
Even with a touch panel having such a configuration, it is necessary to keep the surface resistivity of the resistance film 2 at 10 0 to 10 5 Ω / □. Since the sealing material 3 is sealed, the surface resistivity does not change, the surface resistivity can be maintained, and a function as a touch panel can be provided.

図13は、本発明の上記導電体Aを用いた画像表示装置の断面図を示す。
この画像表示装置Dは、液晶パネルD1と光源D2と筐体D3とからなり、本発明の導電体Aを液晶パネルD1の表面に配置すると共に、液晶パネルD1と光源D2との間にも配置しているものである。この画像表示装置Dの表面に配置した導電体Aが10〜1012Ω/□の表面抵抗率を有しておれば帯電防止機能を発揮して画像表示装置Dの画像表面に塵楳が付着せず、また10〜10Ω/□の表面抵抗率を有しておれば電磁波シールド機能を発揮して画像表示装置Dからの電磁波の放出を防止する。さらに、この導電体Aはその四周を内側に折り曲げて金属筐体D3に接触してアースなどを取り易くしている。このように四周を折り曲げても、導電膜2がカーボンナノチューブで作製されていると表面抵抗率の変化(増加)がなくて帯電防止性能を維持できる。
一方、液晶パネルD1と光源D2との間に配置した導電体Aも10〜10Ω/□の表面抵抗率を有しておれば電磁波シールド機能を発揮し、10〜1012Ω/□の表面抵抗率を有しておれば帯電防止機能を発揮する。更に、基材1若しくは上面材5が光拡散性を有すれば光拡散性帯電防止体或は光拡散性電磁波防止体となる。
FIG. 13 shows a cross-sectional view of an image display device using the conductor A of the present invention.
The image display device D includes a liquid crystal panel D1, a light source D2, and a casing D3. The conductor A of the present invention is disposed on the surface of the liquid crystal panel D1, and is also disposed between the liquid crystal panel D1 and the light source D2. It is what you are doing. If the conductor A disposed on the surface of the image display device D has a surface resistivity of 10 6 to 10 12 Ω / □, the antistatic function is exhibited and dust is formed on the image surface of the image display device D. If it does not adhere and has a surface resistivity of 10 0 to 10 4 Ω / □, the electromagnetic wave shielding function is exhibited and the emission of electromagnetic waves from the image display device D is prevented. Further, the conductor A is bent around the four sides inward to come into contact with the metal casing D3 to facilitate grounding or the like. Thus, even when the four sides are bent, if the conductive film 2 is made of carbon nanotubes, the surface resistivity does not change (increase) and the antistatic performance can be maintained.
On the other hand, if the conductor A arranged between the liquid crystal panel D1 and the light source D2 also has a surface resistivity of 10 0 to 10 4 Ω / □, it exhibits an electromagnetic wave shielding function, and 10 6 to 10 12 Ω / If it has a surface resistivity of □, it exhibits an antistatic function. Further, if the substrate 1 or the upper surface material 5 has light diffusibility, it becomes a light diffusing antistatic body or a light diffusing electromagnetic wave preventing body.

以上に詳述したように、本発明の導電体は上下両面と周囲が封止されているので、導電膜と水分を含む外気とが遮断されて水分の悪影響が作用せず、導電膜の表面抵抗率の変化(増加)を防止でき、初期に有した表面抵抗率を維持することができる。そのため、電波吸収体、タッチパネル、電磁波シールド体、帯電防止体などの抵抗膜、電極シールド用導電体、帯電防止導電体に使用でき、特に10Ω/□以下の表面抵抗率を必要とする導電膜として有用である。 As described in detail above, since the conductor of the present invention is sealed on both the upper and lower surfaces and the periphery, the conductive film and the outside air containing moisture are blocked, and the adverse effect of moisture does not act. The change (increase) in resistivity can be prevented, and the initial surface resistivity can be maintained. Therefore, it can be used for resistance films such as radio wave absorbers, touch panels, electromagnetic wave shields and antistatic bodies, conductors for electrode shields, and antistatic conductors, especially those requiring surface resistivity of 10 4 Ω / □ or less. Useful as a membrane.

以下実施例に基づいて具体的に説明する。
(実施例1)
溶媒としてのメチルアルコール/水混合物(混合比3:1)中に、極細導電繊維である単層カーボンナノチューブ(文献Chmical Physics Letters、323(2000)P580−585に基づき合成したもの、直径1.3〜1.8μm)と分散剤としてのポリアルキレンエチレン−ポリオキシプロピレン共重合体を加えて均一に混合、分散させ、単層カーボンナノチューブを0.003質量%、分散剤を0.05質量%含む塗液を調整した。
Hereinafter, specific description will be made based on examples.
Example 1
Single-walled carbon nanotubes, which are ultrafine conductive fibers (synthesized based on the literature Chemical Physics Letters, 323 (2000) P580-585), in a methyl alcohol / water mixture (mixing ratio 3: 1) as a solvent, diameter 1.3 ~ 1.8 μm) and a polyalkyleneethylene-polyoxypropylene copolymer as a dispersant are added and mixed and dispersed uniformly, and 0.003% by mass of single-walled carbon nanotubes and 0.05% by mass of a dispersant are contained. The coating solution was adjusted.

この塗液を、市販の厚さ100μmのポリメチルメタクリレートフィルム1の表面に、単層カーボンナノチューブの目付け量が約94mg/mとなるように塗布、乾燥して表面抵抗率が385Ω/□の透明な導電膜2をポリメチルメタクリレートフィルムの片面に備えた透明な導電膜形成フィルム12(図14(a)(b)参照)を作製した。そして、この導電膜形成フィルム12を100×110mmの大きさに切断し、その相対向する2辺に一対の帯状の銅箔の電極4(幅5mm,長さ150mm)を100mmの辺に沿って導電接着剤で接着して、導電膜の大きさが100×100mmの電極付き導電膜形成フィルムを作製した。 This coating solution is applied to the surface of a commercially available polymethylmethacrylate film 1 having a thickness of 100 μm so that the amount of single-walled carbon nanotubes is about 94 mg / m 2 and dried to have a surface resistivity of 385Ω / □. A transparent conductive film-forming film 12 (see FIGS. 14A and 14B) having a transparent conductive film 2 on one side of a polymethyl methacrylate film was produced. And this electrically conductive film formation film 12 is cut | disconnected to a magnitude | size of 100x110 mm, and a pair of strip | belt-shaped copper foil electrode 4 (width 5mm, length 150mm) is set along the 100mm edge | side on the two opposing sides. It adhered with the electrically conductive adhesive, and produced the electrically conductive film formation film with an electrode whose magnitude | size of an electrically conductive film is 100x100 mm.

図14(a)(b)に示すように、この電極付き導電膜形成フィルムの上下両面に、ポリウレタンよりなる120mm角のホットメルトシート3、3(厚さ1mm)を重ね、更にその上下に133mm角のポリカーボネート板10、50(厚さ2mm)を重ねて、これを200mm角の艶板で上下から挟み、125℃で加熱することにより、ホットメルトシートを軟化溶融させて電極付き導電膜形成フィルムの周囲及び上下両面をホットメルトシート3、3の封止材で封止すると共に、ポリカーボネート板10、50で被覆・封止した実施例1の導電体を作製した。
この導電体について、導電膜の表面抵抗率の経時的変化を室温23℃、湿度50%の恒温恒室の室内にて調べた。その結果を図15に示す。
As shown in FIGS. 14 (a) and 14 (b), 120 mm square hot-melt sheets 3 and 3 (thickness 1 mm) made of polyurethane are stacked on the upper and lower surfaces of the conductive film with electrode, and 133 mm is further formed on the upper and lower sides. Stacked square polycarbonate plates 10 and 50 (thickness 2 mm), sandwiched between 200 mm square gloss plates from above and below, and heated at 125 ° C. to soften and melt the hot melt sheet to form a conductive film with electrode The conductor of Example 1 was prepared by sealing the periphery and both upper and lower surfaces with a sealing material for hot melt sheets 3 and 3 and covering and sealing with polycarbonate plates 10 and 50.
With respect to this conductor, the change over time in the surface resistivity of the conductive film was examined in a constant temperature and constant temperature room at 23 ° C. and a humidity of 50%. The result is shown in FIG.

(実施例2)
実施例1で調製した塗液を、単層カーボンナノチューブの目付け量が約94mg/mとなるように、100×110mmの大きさのポリメチルメタクリレートフィルム(厚さ0.1mm)の片面に塗布、乾燥して、表面抵抗率が375Ω/□の透明な導電膜を形成し、この導電膜の上面に実施例1で使用した銅箔の電極を接着して電極付き導電膜形成フィルムを作製した。
(Example 2)
The coating liquid prepared in Example 1 was applied to one side of a polymethyl methacrylate film (thickness: 0.1 mm) having a size of 100 × 110 mm so that the basis weight of single-walled carbon nanotubes was about 94 mg / m 2. And dried to form a transparent conductive film having a surface resistivity of 375 Ω / □, and the electrode of the copper foil used in Example 1 was adhered to the upper surface of the conductive film to prepare a conductive film with electrode. .

この電極付き導電膜形成フィルムを、133mm角のポリカーボネートシート板(厚さ2mm)の上に市販のセロファンテープで固定した後、電極付き導電膜形成フィルムの周りに、高さが10mm、一辺の長さが120mmの方形枠をセロファンテープで作り、この方形枠で囲まれた電極付き導電膜形成フィルムの導電膜の上に、シリコーン系のポッティング用液状シーリング剤(GE東芝シリコーン(株)製のTSE3033)を滴下し、80℃で3時間硬化させて、電極付き導電膜形成フィルムの周囲と導電膜の上面を厚さ0.2mmの粘着性のあるゴム状のシリコーン系シーリング剤で封止した実施例2の導電体を得た。
この導電体について、実験1と同様に、導電膜の表面抵抗率の経時的変化を調べた。その結果を図15に示す。
After fixing this electrically conductive film with an electrode on a 133 mm square polycarbonate sheet plate (thickness 2 mm) with a commercially available cellophane tape, a height of 10 mm is formed around the electrically conductive film with an electrode. A rectangular frame with a length of 120 mm is made of cellophane tape, and a silicone-based liquid sealing agent for potting (TSE3033 manufactured by GE Toshiba Silicone Co., Ltd.) is formed on the conductive film of the conductive film with electrode surrounded by the rectangular frame. ) Was dropped and cured at 80 ° C. for 3 hours, and the periphery of the conductive film with electrode and the top surface of the conductive film were sealed with an adhesive rubber-like silicone sealant having a thickness of 0.2 mm. The conductor of Example 2 was obtained.
With respect to this conductor, the change with time in the surface resistivity of the conductive film was examined in the same manner as in Experiment 1. The result is shown in FIG.

(比較例1)
比較のために、実施例2で作製した電極付き導電膜形成フィルム(表面抵抗率375Ω/□)について、実施例1と同様に、その導電膜の表面抵抗率の経時的変化を調べた。その結果を図15に示す。
(Comparative Example 1)
For comparison, the conductive film-forming film with electrode (surface resistivity 375Ω / □) produced in Example 2 was examined for changes in the surface resistivity of the conductive film over time in the same manner as in Example 1. The result is shown in FIG.

図15のグラフからわかるように、封止していない比較例1の導電膜形成フィルムは、表面抵抗率が日数の経過にしたがって漸増し、5日経過で30Ω/□増加し、11日経過で50Ω/□増加し、20日経過で90Ω/□増加し、26日経過では110Ω/□も増加していていることがわかった。これが電波吸収体用の抵抗膜であれば、11日経過後には425Ω/□となり、これ以降には電波が吸収されないこととなる。これに対して、導電膜形成フィルムの表面と周囲をホットメルトシートにて封止した実施例1、導電膜形成フィルムの表面と周囲をシーリング剤にて封止した実施例2の各導電体は、日数が経過しても表面抵抗率が10Ω/□以下の範囲で増減していて、略一定していて変化することが極めて少なく、封止により表面抵抗率の変化(増加)が確実に防止できていることがわかった。従って、表面抵抗率が変化しても361〜385Ω/□の範囲であり電波吸収体用導電体として使用しても機能が発揮することがわかった。   As can be seen from the graph of FIG. 15, the conductive film-forming film of Comparative Example 1 that was not sealed gradually increased in surface resistivity with the passage of days, increased by 30 Ω / □ after 5 days, and passed after 11 days. It increased by 50Ω / □, increased by 90Ω / □ after 20 days, and increased by 110Ω / □ after 26 days. If this is a resistance film for a radio wave absorber, it becomes 425 Ω / □ after 11 days, and radio waves will not be absorbed thereafter. In contrast, each conductor of Example 1 in which the surface and periphery of the conductive film forming film were sealed with a hot melt sheet, and Example 2 in which the surface and periphery of the conductive film forming film were sealed with a sealing agent was The surface resistivity has increased or decreased within the range of 10Ω / □ or less even after the days have passed, it is almost constant and hardly changes, and the change (increase) in the surface resistivity is reliably prevented by sealing. I understood that it was made. Therefore, it was found that even if the surface resistivity was changed, it was in the range of 361 to 385 Ω / □, and the function was exhibited even when used as a conductor for a radio wave absorber.

(実施例3)
実施例1で調製した塗液を、単層カーボンナノチューブの目付け量が約94mg/mとなるように、80×70mmの大きさのポリカーボネートシート(厚さ2mm)の片面に塗布・乾燥して、表面抵抗率が372Ω/□の透明な導電膜を形成し、この導電膜の上面に長さ90mm、幅5mmの銅箔の電極を70mmの辺に沿って導電接着剤で接着して、導電膜の大きさが70×70mmの電極付き導電膜形成シートを作製した。
(Example 3)
The coating liquid prepared in Example 1 was applied and dried on one side of a polycarbonate sheet (thickness 2 mm) having a size of 80 × 70 mm so that the basis weight of single-walled carbon nanotubes was about 94 mg / m 2. A transparent conductive film having a surface resistivity of 372 Ω / □ is formed, and a copper foil electrode having a length of 90 mm and a width of 5 mm is adhered to the upper surface of the conductive film along a side of 70 mm with a conductive adhesive. A conductive film forming sheet with an electrode having a film size of 70 × 70 mm was prepared.

この電極付き導電膜形成シートの上に、前記と同じ大きさのポリカーボネートシート(厚さ2mm)を重ね合せ、この重ね合せ体の四周側端面に東レ・ダウコーニング・シリコーン株式会社製シリコーン系シーリング剤(SE960)を塗布、硬化して、導電膜の上下両面がポリカーボネートシートで封止されると共に周囲側面がシリコーン系シーリング剤の封止材で封止、接合された実施例3の導電体を得た。   A polycarbonate sheet (thickness 2 mm) of the same size as above is overlaid on the conductive film-formed sheet with electrodes, and a silicone-based sealing agent manufactured by Toray Dow Corning Silicone Co., Ltd. is formed on the four circumferential side end surfaces of the laminated body. (SE960) is applied and cured to obtain the conductor of Example 3 in which the upper and lower surfaces of the conductive film are sealed with a polycarbonate sheet, and the peripheral side surfaces are sealed and bonded with a sealing material of a silicone sealant. It was.

この実施例3の導電体を、温度60℃、湿度90%と一定に保たれた恒温恒湿器(タバイエスペック社製EY−101)の中に放置して、表面抵抗率の変化を調べた。その結果、表面抵抗率は略一定し、500時間経過後においても375Ω/□と、3Ω/□の増加しかみられなかった。   The conductor of Example 3 was left in a constant temperature and humidity chamber (EY-101 manufactured by Tabai Espec Co., Ltd.) kept constant at a temperature of 60 ° C. and a humidity of 90%, and the change in surface resistivity was examined. . As a result, the surface resistivity was substantially constant, and only an increase of 375Ω / □ and 3Ω / □ was observed even after 500 hours.

(比較例2)
比較のために、実施例3で作製した電極付き導電膜形成シート(表面抵抗率372Ω/□)について、実施例3と同様に、恒温恒湿器中で表面抵抗率の経時的変化を調べた。その結果、表面抵抗率は時間経過と共に増加し、500時間経過後には1320Ω/□となり、948Ω/□も増加していた。
(Comparative Example 2)
For comparison, with respect to the conductive film-formed sheet with electrode (surface resistivity 372Ω / □) produced in Example 3, the temporal change of the surface resistivity was examined in a thermo-hygrostat as in Example 3. . As a result, the surface resistivity increased with time, and after 500 hours, it became 1320Ω / □, and 948Ω / □ also increased.

このように、温度60℃、湿度90%と過酷な条件下においても、上下面と周囲を封止した実施例3の導電体は表面抵抗率が略一定していたが、封止していない比較例2の導電体は表面抵抗率が増加することがわかった。また、この実施例3から、その周囲側面を封止することによっても、表面抵抗率の変化を抑制できることがわかった。   As described above, the surface resistivity of the conductor of Example 3 in which the upper and lower surfaces and the periphery were sealed was also constant even under severe conditions of a temperature of 60 ° C. and a humidity of 90%, but was not sealed. It was found that the conductor of Comparative Example 2 has an increased surface resistivity. Further, from Example 3, it was found that the change in the surface resistivity can be suppressed also by sealing the peripheral side surface.

本発明の一実施形態に係る導電体の断面図である。It is sectional drawing of the conductor which concerns on one Embodiment of this invention. 上記実施形態の平面図である。It is a top view of the said embodiment. 本発明の他の実施形態を示す導電体の断面図である。It is sectional drawing of the conductor which shows other embodiment of this invention. 本発明の更に他の実施形態を示す導電体の断面図である。It is sectional drawing of the conductor which shows other embodiment of this invention. 本発明の更に他の実施形態を示す導電体の断面図である。It is sectional drawing of the conductor which shows other embodiment of this invention. 本発明の更に他の実施形態を示す導電体の断面図である。It is sectional drawing of the conductor which shows other embodiment of this invention. 本発明の更に他の実施形態を示す導電体の断面図である。It is sectional drawing of the conductor which shows other embodiment of this invention. 本発明の更に他の実施形態を示す導電体の断面図である。It is sectional drawing of the conductor which shows other embodiment of this invention. (a)(b)(c)は導電膜内のカーボンナノチューブの分散状態を示す模式断面図である。(A) (b) (c) is a schematic cross section which shows the dispersion state of the carbon nanotube in a electrically conductive film. 導電膜のカーボンナノチューブの分散を平面から見た模式平面図である。It is the model top view which looked at dispersion | distribution of the carbon nanotube of an electrically conductive film from the plane. 本発明の導電体を使用した電波吸収体の断面図である。It is sectional drawing of the electromagnetic wave absorber using the conductor of this invention. 本発明の導電体を使用したタッチパネルの断面図である。It is sectional drawing of the touchscreen using the conductor of this invention. 本発明の導電体を使用した画像表示装置の断面図である。It is sectional drawing of the image display apparatus using the conductor of this invention. (a)は実施例の電極付き導電膜形成フィルムの分解側面図であり、(b)は同電極付き導電膜形成フィルムの平面図である。(A) is a decomposition | disassembly side view of the electrically conductive film formation film with an electrode of an Example, (b) is a top view of the electrically conductive film formation film with an electrode. 導電膜の表面抵抗率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the surface resistivity of an electrically conductive film.

符号の説明Explanation of symbols

1 基材
2 導電膜
3 封止材
4 電極
5 上面材
6 空間
A 導電体
B 電波吸収体
C タッチパネル
D 画像表示装置
DESCRIPTION OF SYMBOLS 1 Base material 2 Conductive film 3 Sealing material 4 Electrode 5 Top surface material 6 Space A Conductor B Radio wave absorber C Touch panel D Image display device

Claims (9)

基材の少なくとも片面に導電膜が形成されていると共に、該導電膜の上面及び周囲が水分を含む外気から封止材にて封止されていることを特徴とする導電体。   A conductor characterized in that a conductive film is formed on at least one surface of a base material, and the upper surface and the periphery of the conductive film are sealed with a sealing material from outside air containing moisture. 基材と導電膜と上面材とがこの順で形成されていると共に、導電膜の周囲が水分を含む外気から封止材にて封止されていることを特徴とする導電体。   A conductor characterized in that a base material, a conductive film and a top surface material are formed in this order, and the periphery of the conductive film is sealed with a sealing material from outside air containing moisture. 基材と導電膜と上面材とがこの順で形成されていると共に、導電膜の周囲において基材と上面材とが接合されて、水分を含む外気から封止されていることを特徴とする導電体。   The base material, the conductive film, and the upper surface material are formed in this order, and the base material and the upper surface material are joined around the conductive film and sealed from the outside air containing moisture. conductor. 導電膜の上下両面及び周囲が水分を含む外気から封止材にて封止されていることを特徴とする導電体。   A conductor characterized in that the upper and lower surfaces and the periphery of the conductive film are sealed with a sealing material from outside air containing moisture. 上面材が導電膜と空間を隔てて形成されていることを特徴とする請求項1ないし請求項3のいずれかに記載の導電体。   The conductor according to any one of claims 1 to 3, wherein the upper surface material is formed with a space from the conductive film. 導電膜が基材の上面に一体に形成されていることを特徴とする請求項1ないし請求項5のいずれかに記載の導電体。   The conductor according to any one of claims 1 to 5, wherein the conductive film is integrally formed on the upper surface of the substrate. 導電膜、基材、上面材のいずれもが透光性を有していることを特徴とする請求項1ないし請求項6のいずれかに記載の導電体。   The conductor according to any one of claims 1 to 6, wherein any of the conductive film, the base material, and the upper surface material has translucency. 導電膜の表面抵抗率が10Ω/□以下であることを特徴とする請求項1ないし請求項7のいずれかに記載の導電体。 The conductor according to any one of claims 1 to 7, wherein the conductive film has a surface resistivity of 10 4 Ω / □ or less. 導電体に電極が設けられていて、該電極の一端が導電膜に接触していると共に他端が封止材の外側まで延出していることを特徴とする請求項1ないし請求項8のいずれかに記載の導電体。   9. The electrode according to claim 1, wherein an electrode is provided on the conductor, and one end of the electrode is in contact with the conductive film and the other end extends to the outside of the sealing material. A conductor according to any one of the above.
JP2005098994A 2005-03-30 2005-03-30 Electroconductive element Pending JP2006272876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098994A JP2006272876A (en) 2005-03-30 2005-03-30 Electroconductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098994A JP2006272876A (en) 2005-03-30 2005-03-30 Electroconductive element

Publications (1)

Publication Number Publication Date
JP2006272876A true JP2006272876A (en) 2006-10-12

Family

ID=37208068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098994A Pending JP2006272876A (en) 2005-03-30 2005-03-30 Electroconductive element

Country Status (1)

Country Link
JP (1) JP2006272876A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147193A (en) * 2006-12-08 2008-06-26 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission type lamp
JP2008153222A (en) * 2006-12-13 2008-07-03 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission type lamp
JP2008166279A (en) * 2006-12-27 2008-07-17 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission lamp and its manufacturing method
JP2009138199A (en) * 2007-12-10 2009-06-25 Boeing Co:The Metal impregnated composite and method of manufacturing the same
JP2009163959A (en) * 2007-12-28 2009-07-23 Toray Ind Inc Transparent conductive film, and manufacturing method thereof
JP2009277736A (en) * 2008-05-12 2009-11-26 Hokkaido Univ Electromagnetic wave shielding material and manufacturing method therefor
JP2010245498A (en) * 2009-03-31 2010-10-28 Top Engineering Co Ltd Anti-static treated work stage
JP2010254571A (en) * 2009-04-27 2010-11-11 Qinghua Univ Carbon nanotube film and method for manufacturing the same, and light-emitting device
JP2010267395A (en) * 2009-05-12 2010-11-25 Konica Minolta Holdings Inc Transparent conductive film and method for manufacturing transparent conductive film and transparent electrode for electronic device
JP2011049101A (en) * 2009-08-28 2011-03-10 Sony Corp Laminate, manufacturing method for laminate, and electronic element and electronic device having the laminate
JP2011175890A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Conductive film
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP2012503299A (en) * 2008-09-23 2012-02-02 コーロン インダストリーズ インク Transparent electrode
JP2013045746A (en) * 2011-08-26 2013-03-04 Toshiro Kuji Transparent conductive film and manufacturing method of the same
JP2015524883A (en) * 2013-04-10 2015-08-27 ▲ホア▼▲ウェイ▼技術有限公司 Graphene fiber and method for forming the same
KR20150119255A (en) * 2013-02-15 2015-10-23 캄브리오스 테크놀로지즈 코포레이션 Methods to incorporate silver nanowire-based transparent conductors in electronic devices
JPWO2014050440A1 (en) * 2012-09-27 2016-08-22 東レフィルム加工株式会社 Transparent conductive laminate
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
WO2017010394A1 (en) * 2015-07-10 2017-01-19 富士フイルム株式会社 Laminated film and method for producing laminated film
JP2017034000A (en) * 2015-07-29 2017-02-09 ダイニック株式会社 Resistive film for radio wave absorber
JP2019012631A (en) * 2017-06-30 2019-01-24 東洋インキScホールディングス株式会社 Conductive wiring sheet and method for producing wiring sheet
US10720257B2 (en) 2013-02-15 2020-07-21 Cambrios Film Solutions Corporation Methods to incorporate silver nanowire-based transparent conductors in electronic devices
JP2020181998A (en) * 2020-07-28 2020-11-05 ダイニック株式会社 Electromagnetic wave absorber
JPWO2020149283A1 (en) * 2019-01-16 2021-11-25 日本電気株式会社 Carbon nano brush antistatic paint
TWI786086B (en) * 2013-02-15 2022-12-11 英屬維京群島商天材創新材料科技股份有限公司 Optical stacks

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234391A (en) * 1989-03-07 1990-09-17 Hitachi Maxell Ltd Distributed el element
JPH04112482A (en) * 1989-12-26 1992-04-14 Ppg Ind Inc Transparent laminate capable of being heated and manufacture thereof
JPH06275741A (en) * 1993-03-19 1994-09-30 Toppan Printing Co Ltd Semiconductor device
JPH10112597A (en) * 1996-10-04 1998-04-28 Mitsui Petrochem Ind Ltd Electromagnetic wave shielding body
JP2001011344A (en) * 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001032645A (en) * 1999-07-23 2001-02-06 Central Glass Co Ltd Electromagnetic shielding glass
JP2003300716A (en) * 2001-11-14 2003-10-21 Toray Ind Inc Method for treatment of carbonaceous material and method for obtaining carbon nanotube dispersion and solution
JP2004202948A (en) * 2002-12-26 2004-07-22 Research Laboratory Of Plastics Technology Co Ltd Laminate
JP2004230690A (en) * 2003-01-30 2004-08-19 Takiron Co Ltd Antistatic transparent resin sheet
JP2004526838A (en) * 2001-03-26 2004-09-02 エイコス・インコーポレーテッド Carbon nanotube-containing coating
JP2004281365A (en) * 2002-10-03 2004-10-07 Seiko Epson Corp Display panel and electronic device having display panel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234391A (en) * 1989-03-07 1990-09-17 Hitachi Maxell Ltd Distributed el element
JPH04112482A (en) * 1989-12-26 1992-04-14 Ppg Ind Inc Transparent laminate capable of being heated and manufacture thereof
JPH06275741A (en) * 1993-03-19 1994-09-30 Toppan Printing Co Ltd Semiconductor device
JPH10112597A (en) * 1996-10-04 1998-04-28 Mitsui Petrochem Ind Ltd Electromagnetic wave shielding body
JP2001011344A (en) * 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001032645A (en) * 1999-07-23 2001-02-06 Central Glass Co Ltd Electromagnetic shielding glass
JP2004526838A (en) * 2001-03-26 2004-09-02 エイコス・インコーポレーテッド Carbon nanotube-containing coating
JP2003300716A (en) * 2001-11-14 2003-10-21 Toray Ind Inc Method for treatment of carbonaceous material and method for obtaining carbon nanotube dispersion and solution
JP2004281365A (en) * 2002-10-03 2004-10-07 Seiko Epson Corp Display panel and electronic device having display panel
JP2004202948A (en) * 2002-12-26 2004-07-22 Research Laboratory Of Plastics Technology Co Ltd Laminate
JP2004230690A (en) * 2003-01-30 2004-08-19 Takiron Co Ltd Antistatic transparent resin sheet
JP2006517485A (en) * 2003-01-30 2006-07-27 タキロン株式会社 Molded body having dispersed conductive layer

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
JP2014212117A (en) * 2005-08-12 2014-11-13 カンブリオステクノロジーズ コーポレイション Nanowire-based transparent conductor
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US8618531B2 (en) 2005-08-12 2013-12-31 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8174667B2 (en) 2006-10-12 2012-05-08 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP2008147193A (en) * 2006-12-08 2008-06-26 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission type lamp
JP2008153222A (en) * 2006-12-13 2008-07-03 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission type lamp
US7986084B2 (en) 2006-12-27 2011-07-26 Tsinghua University Field emission lamp
JP2008166279A (en) * 2006-12-27 2008-07-17 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission lamp and its manufacturing method
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
JP2009138199A (en) * 2007-12-10 2009-06-25 Boeing Co:The Metal impregnated composite and method of manufacturing the same
JP2009163959A (en) * 2007-12-28 2009-07-23 Toray Ind Inc Transparent conductive film, and manufacturing method thereof
JP2009277736A (en) * 2008-05-12 2009-11-26 Hokkaido Univ Electromagnetic wave shielding material and manufacturing method therefor
JP2012503299A (en) * 2008-09-23 2012-02-02 コーロン インダストリーズ インク Transparent electrode
JP2010245498A (en) * 2009-03-31 2010-10-28 Top Engineering Co Ltd Anti-static treated work stage
JP2010254571A (en) * 2009-04-27 2010-11-11 Qinghua Univ Carbon nanotube film and method for manufacturing the same, and light-emitting device
JP2010267395A (en) * 2009-05-12 2010-11-25 Konica Minolta Holdings Inc Transparent conductive film and method for manufacturing transparent conductive film and transparent electrode for electronic device
JP2011049101A (en) * 2009-08-28 2011-03-10 Sony Corp Laminate, manufacturing method for laminate, and electronic element and electronic device having the laminate
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
JP2011175890A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Conductive film
WO2013031688A1 (en) * 2011-08-26 2013-03-07 Kuji Toshiro Transparent electroconductive film and method for manufacturing same
JP2013045746A (en) * 2011-08-26 2013-03-04 Toshiro Kuji Transparent conductive film and manufacturing method of the same
JPWO2014050440A1 (en) * 2012-09-27 2016-08-22 東レフィルム加工株式会社 Transparent conductive laminate
KR102185129B1 (en) * 2013-02-15 2020-12-02 캄브리오스 필름 솔루션스 코포레이션 Methods to incorporate silver nanowire-based transparent conductors in electronic devices
KR20150119255A (en) * 2013-02-15 2015-10-23 캄브리오스 테크놀로지즈 코포레이션 Methods to incorporate silver nanowire-based transparent conductors in electronic devices
JP2016515280A (en) * 2013-02-15 2016-05-26 カンブリオス テクノロジーズ コーポレイション Method for incorporating silver nanowire-based transparent conductors into electronic devices
US10720257B2 (en) 2013-02-15 2020-07-21 Cambrios Film Solutions Corporation Methods to incorporate silver nanowire-based transparent conductors in electronic devices
TWI786086B (en) * 2013-02-15 2022-12-11 英屬維京群島商天材創新材料科技股份有限公司 Optical stacks
US10145029B2 (en) 2013-04-10 2018-12-04 Huawei Technologies Co., Ltd. Graphene fiber and prepartion method thereof
JP2015524883A (en) * 2013-04-10 2015-08-27 ▲ホア▼▲ウェイ▼技術有限公司 Graphene fiber and method for forming the same
WO2017010394A1 (en) * 2015-07-10 2017-01-19 富士フイルム株式会社 Laminated film and method for producing laminated film
JPWO2017010394A1 (en) * 2015-07-10 2018-06-07 富士フイルム株式会社 LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
JP2017034000A (en) * 2015-07-29 2017-02-09 ダイニック株式会社 Resistive film for radio wave absorber
JP2019012631A (en) * 2017-06-30 2019-01-24 東洋インキScホールディングス株式会社 Conductive wiring sheet and method for producing wiring sheet
JP7013693B2 (en) 2017-06-30 2022-02-01 東洋インキScホールディングス株式会社 Conductive wiring sheet and manufacturing method of wiring sheet
JPWO2020149283A1 (en) * 2019-01-16 2021-11-25 日本電気株式会社 Carbon nano brush antistatic paint
JP7230928B2 (en) 2019-01-16 2023-03-01 日本電気株式会社 Carbon nanobrush antistatic paint
JP2020181998A (en) * 2020-07-28 2020-11-05 ダイニック株式会社 Electromagnetic wave absorber

Similar Documents

Publication Publication Date Title
JP2006272876A (en) Electroconductive element
EP2473902B1 (en) Touch screen and method for manufacturing a touch screen
US20140360757A1 (en) Transparent conductive film having anisotropic electrical conductivity
JP2007199670A (en) Electrophoretic display device and electronic apparatus
JP2006519712A (en) Molded body having protruding conductive layer
JP2007112133A (en) Electroconductive shaped article
WO2004097466A1 (en) Electromagnetic-shielding light diffusion sheet
JP2006310353A (en) Radio wave absorber
CN107977103B (en) Transparent electrode film and touch panel including the same
WO2018214842A1 (en) Color film substrate, manufacturing method therefor, and display device
JP2006049843A (en) Antistatic molding for image display apparatus
TW201215982A (en) Electrophoretic display structure
JP2008124154A (en) Radio wave absorber
CN101414020A (en) Filter for display device and method for fabricating the same
JP2008124155A (en) Radio wave absorber
KR101415569B1 (en) Electrophoretic display unit and display device using the same and method of manufacturing for the same
JP6944475B2 (en) Touch sensor
JP2009094639A (en) Optical filter for plasma display panel
JP4795780B2 (en) Antistatic resin molding
US20110005819A1 (en) Conductive plate and method for making the same
JP6839515B2 (en) Plate-like structure with dimming function
KR102444806B1 (en) Display apparatus and manufacturing method of the same
CN212322577U (en) Display module and display device
CN215162332U (en) Three proofings silica gel protection film
TWI747646B (en) Electronic curtain and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110914