JP2006270020A - Wiring board and method for manufacturing same - Google Patents

Wiring board and method for manufacturing same Download PDF

Info

Publication number
JP2006270020A
JP2006270020A JP2005181847A JP2005181847A JP2006270020A JP 2006270020 A JP2006270020 A JP 2006270020A JP 2005181847 A JP2005181847 A JP 2005181847A JP 2005181847 A JP2005181847 A JP 2005181847A JP 2006270020 A JP2006270020 A JP 2006270020A
Authority
JP
Japan
Prior art keywords
insulating layer
aqueous solution
wiring board
wiring
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005181847A
Other languages
Japanese (ja)
Other versions
JP4692096B2 (en
Inventor
Shin Takanezawa
伸 高根沢
Koji Morita
高示 森田
Takako Watanabe
貴子 渡辺
Yoshitoshi Kumakura
俊寿 熊倉
Yusuke Asakawa
雄介 淺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005181847A priority Critical patent/JP4692096B2/en
Publication of JP2006270020A publication Critical patent/JP2006270020A/en
Application granted granted Critical
Publication of JP4692096B2 publication Critical patent/JP4692096B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a wiring board which exhibits a high adhesive strength with a wiring conductor, even if a surface of an insulating layer is almost smooth, and provide the wiring board. <P>SOLUTION: The method for manufacturing the wiring board includes a step of forming an insulating layer composed of an insulating resin; a step of treating the insulating layer surface with an aqueous solution of pH 11 or more, a step of treating the insulating layer surface with an aqueous solution in which a compound is solved containing at least one carboxylic acid in structure; a step of desmear treatment; and a wiring forming step of forming a wiring layer on the insulating layer surface by plating. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,配線板の製造方法及び配線板に関する。   The present invention relates to a method for manufacturing a wiring board and a wiring board.

電子機器の高性能化に伴い、配線板は情報量を増やすために高密度化が必須となっている。また、最近の環境意識の高まりから、従来から使用されてきたはんだの鉛フリー化が実現化しつつある。このような背景において、高密度化に有利な配線板として、導体の厚みを任意に調整できるアディティブ法やセミアディティブ法が注目されている。アディティブ法やセミアディティブ法は、配線導体をめっきにより形成するため、導体の厚みを薄くすることが可能であり、高密度化に適している。   As electronic devices become more sophisticated, it is essential to increase the density of wiring boards in order to increase the amount of information. In addition, with the recent increase in environmental awareness, lead-free solder that has been used in the past is being realized. In such a background, an additive method and a semi-additive method capable of arbitrarily adjusting the thickness of the conductor are attracting attention as wiring boards advantageous for increasing the density. In the additive method and the semi-additive method, since the wiring conductor is formed by plating, it is possible to reduce the thickness of the conductor and is suitable for high density.

一方、配線板の絶縁材料は、鉛フリー化の面からはんだ温度が上昇し、従来以上の耐熱性が要求される様になってきた。このため、アディティブ法やセミアディティブ法の配線板用絶縁材料にTgが高いイミド系材料を使用する検討が盛んにされる様になってきた。しかし、イミド系材料は、酸化性のアルカリ溶液で処理してもめっき導体との接着力の確保に必要な凹凸形状が形成されないため、配線導体との接着力が全く発生しないという大きな課題がある。   On the other hand, the insulating material of the wiring board has been required to have higher heat resistance than the conventional one because the solder temperature is increased from the viewpoint of lead-free. For this reason, studies have been actively conducted on the use of an imide-based material having a high Tg as an insulating material for a wiring board in an additive method or a semi-additive method. However, the imide-based material has a big problem that the adhesive strength with the wiring conductor does not occur at all because the uneven shape necessary for securing the adhesive strength with the plating conductor is not formed even if it is treated with an oxidizing alkaline solution. .

したがって、エポキシ樹脂が従来より使用されている。しかしながら、酸化性のアルカリ処理で形成した絶縁樹脂の凹凸形状は、配線の高密度化のあい路となりつつあり、凹凸形状を小さく、あるいはほとんど平滑とする必要が生じてきている。このように、凹凸形状を小さく、あるいはほとんど平滑な状態とすると、エポキシ樹脂でも配線導体との接着力は、実用可能な領域よりも大幅に下回ってしまう。   Therefore, an epoxy resin has been used conventionally. However, the concavo-convex shape of the insulating resin formed by the oxidizing alkaline treatment is becoming a way to increase the density of wiring, and the concavo-convex shape needs to be small or almost smooth. As described above, when the uneven shape is small or almost smooth, even the epoxy resin has a much lower adhesive force with the wiring conductor than the practical area.

このような課題に対し、特開平3−6382号公報や特開平8−157692号公報では、ポリイミド表面をアルカリ水溶液で改質する提案がなされている。しかしながら、これらはアルカリで改質した表面にスパッタリングで銅を形成するため機械的な強度で接着力を発生する提案であり、コストを重視する配線板に流用することはできない。また、前記先行技術はいずれもポリイミドを対象にしたものであり、耐薬品性に優れるエポキシ樹脂などポリイミド以外への展開は困難である。
特開平3−6382号公報 特開平8−157692号公報 特開2002−322278号公報
In response to such a problem, Japanese Patent Application Laid-Open Nos. 3-6382 and 8-157692 propose a modification of the polyimide surface with an alkaline aqueous solution. However, these are proposals for generating adhesive strength with mechanical strength because copper is formed on the surface modified with alkali, and cannot be diverted to a wiring board in which cost is important. In addition, the above prior arts are all directed to polyimide, and it is difficult to develop to other than polyimide such as epoxy resin having excellent chemical resistance.
Japanese Patent Laid-Open No. 3-6382 Japanese Patent Laid-Open No. 8-157692 JP 2002-322278 A

本発明は、絶縁層の粗化凹凸形状がほとんど平滑な面でも、配線導体との高い接着強度を発現する配線板の製造方法及び配線板を提供することを目的とする。   An object of the present invention is to provide a method of manufacturing a wiring board and a wiring board that exhibit high adhesive strength with a wiring conductor even on a surface in which the roughened uneven shape of the insulating layer is almost smooth.

本発明は次のものに関する。
1.絶縁樹脂からなる絶縁層を形成する工程、絶縁層表面をpH11以上の水溶液で処理する工程、絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程、デスミア処理工程、及び絶縁層表面に配線層をめっきにより形成する配線形成工程、を含む配線板の製造方法。
2.基材を準備する工程、基材の片面または両面に絶縁樹脂からなる絶縁層を形成す
る工程、をさらに含む項1に記載の配線板の製造方法。
3.pH11以上の水溶液が、水酸化化合物を含む水溶液であり、かつカルボン酸を構造中に1つ以上含む化合物が、アミノ酸である項1または2に記載の配線板の製造方法。
4.水酸化化合物が、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化セシウム、水酸化マグネシウム、水酸化マンガンからなる群から選択され、かつアミノ酸が、アラニン、グルタミン、システイン、アルギニン、アスパラギン、セリン、グルタミン酸、トレオニン、フェニルアラニン、バリン、グリシン、トリプトファン、ヒスチジン、チロシン、イソロイシン、リジン、ロイシン、メチオニン、アスパラギン、プロリンからなる群から選択される項3に記載の配線板の製造方法。
5.pH11以上の水溶液の水酸化化合物の濃度が5〜40重量%であり、かつカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液のアミノ酸の濃度が0.1〜20重量%である項3または4に記載の配線板の製造方法。
6.絶縁層表面をpH11以上の水溶液で処理する工程が、デスミア処理工程の前で行われ、かつ絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程が、デスミア処理工程後であって、かつ絶縁層表面に配線層をめっきにより形成する配線形成工程の前で行われる項1〜5いずれかに記載の配線板の製造方法。
7.絶縁層をpH11以上の水溶液で処理する工程が、絶縁層表面をpH11以上の50〜85℃の水溶液で10〜60分間処理する工程であり、かつ絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程が、絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した10〜40℃の水溶液で1〜20分間処理する工程である項1〜6いずれかに記載の配線板の製造方法。
8.絶縁樹脂が、pH11以上の水溶液で処理することにより分子構造が変化する絶縁樹脂である項1〜7いずれかに記載の配線板の製造方法。
9.絶縁樹脂が、pH11以上の水溶液で処理することによりエーテル結合やエステル結合が増加する絶縁樹脂である項1〜7いずれかに記載の配線板の製造方法。
10.配線層が、銅層である項1〜9いずれかに記載の配線板の製造方法。
11.絶縁樹脂からなる絶縁層を形成する工程、絶縁層表面をpH11以上の水溶液で処理する工程、絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程、及び絶縁層表面に配線層をめっきにより形成する配線形成工程を複数回繰り返すことを特徴とする項1〜10いずれかに記載の配線板の製造方法。
12.項1〜11いずれかに記載の配線板の製造方法で製造された配線板。
The present invention relates to the following.
1. A step of forming an insulating layer made of an insulating resin, a step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more, a step of treating the surface of the insulating layer with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved, desmear treatment A method for manufacturing a wiring board, comprising: a step of forming a wiring layer on a surface of the insulating layer by plating.
2. Item 2. The method for manufacturing a wiring board according to Item 1, further comprising a step of preparing a base material and a step of forming an insulating layer made of an insulating resin on one or both surfaces of the base material.
3. Item 3. The method for producing a wiring board according to Item 1 or 2, wherein the aqueous solution having a pH of 11 or more is an aqueous solution containing a hydroxide compound, and the compound containing one or more carboxylic acids in the structure is an amino acid.
4). The hydroxide compound is selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, cesium hydroxide, magnesium hydroxide, manganese hydroxide, and the amino acid is alanine, glutamine, cysteine, arginine, asparagine, serine Item 4. A method for producing a wiring board according to Item 3, selected from the group consisting of glutamic acid, threonine, phenylalanine, valine, glycine, tryptophan, histidine, tyrosine, isoleucine, lysine, leucine, methionine, asparagine, and proline.
5). The term wherein the concentration of the hydroxylated compound in the aqueous solution having a pH of 11 or more is 5 to 40% by weight, and the concentration of the amino acid in the aqueous solution in which the compound containing one or more carboxylic acids in the structure is dissolved is 0.1 to 20% by weight A method for manufacturing a wiring board according to 3 or 4.
6). The step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more is performed before the desmear treatment step, and the step of treating the surface of the insulating layer with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved. Item 6. The method for manufacturing a wiring board according to any one of Items 1 to 5, which is performed after the treatment step and before the wiring formation step of forming the wiring layer on the surface of the insulating layer by plating.
7). The step of treating the insulating layer with an aqueous solution having a pH of 11 or more is a step of treating the surface of the insulating layer with an aqueous solution of 50 to 85 ° C. having a pH of 11 or more for 10 to 60 minutes, and one carboxylic acid is included in the structure of the insulating layer surface. Item 1 is a process in which the step of treating with an aqueous solution in which a compound containing the above is dissolved is a step of treating the insulating layer surface with an aqueous solution at 10 to 40 ° C. in which a compound containing one or more carboxylic acids in the structure is dissolved for 1 to 20 minutes. 6. A method for manufacturing a wiring board according to claim
8). Item 8. The method for producing a wiring board according to any one of Items 1 to 7, wherein the insulating resin is an insulating resin whose molecular structure is changed by treatment with an aqueous solution having a pH of 11 or more.
9. Item 8. The method for producing a wiring board according to any one of Items 1 to 7, wherein the insulating resin is an insulating resin in which an ether bond or an ester bond is increased by treatment with an aqueous solution having a pH of 11 or more.
10. Item 10. The method for producing a wiring board according to any one of Items 1 to 9, wherein the wiring layer is a copper layer.
11. A step of forming an insulating layer made of an insulating resin, a step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more, a step of treating the surface of the insulating layer with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved, and insulation Item 11. The method for manufacturing a wiring board according to any one of Items 1 to 10, wherein a wiring forming step of forming a wiring layer on the surface of the layer by plating is repeated a plurality of times.
12 Item 12. A wiring board manufactured by the method for manufacturing a wiring board according to any one of Items 1 to 11.

絶縁層の粗化凹凸形状がほとんど平滑な面でも、配線導体との高い接着強度を発現する配線板の製造方法及び配線板を提供することが可能となった。   It has become possible to provide a method for manufacturing a wiring board and a wiring board that exhibit high adhesive strength with a wiring conductor even on a surface in which the roughened uneven shape of the insulating layer is almost smooth.

以下、本発明の実施形態について詳細に説明する。
本発明の配線板の製造方法は、絶縁樹脂からなる絶縁層を形成する工程、絶縁層表面をpH11以上の水溶液で処理する工程、絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程、デスミア処理工程、及び絶縁層表面に配線層をめっきにより形成する配線形成工程を含んでいる。また基材を準備する工程、基材の片面または両面に絶縁樹脂からなる絶縁層を形成する工程をさらに含むことが好ましい。
Hereinafter, embodiments of the present invention will be described in detail.
The method for producing a wiring board of the present invention includes a step of forming an insulating layer made of an insulating resin, a step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more, and a compound containing one or more carboxylic acids in the structure of the insulating layer surface. It includes a step of treating with a dissolved aqueous solution, a desmear treatment step, and a wiring formation step of forming a wiring layer on the surface of the insulating layer by plating. Moreover, it is preferable to further include the process of preparing a base material, and the process of forming the insulating layer which consists of insulating resin in the single side | surface or both surfaces of a base material.

本発明の配線板の製造方法としては、基材等を使用せず配線板を製造してもよいが、基材等を用いることが好ましい。本発明に用いる基材としては、通常の配線板に用いられている公知の積層板、例えば、ガラス布エポキシ樹脂積層板、紙フェノール樹脂積層板、紙エポキシ樹脂積層板、ガラス布・ガラス紙エポキシ樹脂積層板等が使用でき特に制限はない。また、基材に回路層を形成してあっても良く、その回路形成法についても特に制限はなく、銅張積層板等を用いて、銅箔の不要な部分をエッチング除去するサブトラクティブ法や、前記基材の必要な個所に無電解めっきによって回路を形成するアディティブ法等、公知の配線板の製造法を用いることができる。   As a method for producing a wiring board of the present invention, a wiring board may be produced without using a substrate or the like, but it is preferable to use a substrate or the like. As a base material used for this invention, the well-known laminated board used for the normal wiring board, for example, a glass cloth epoxy resin laminated board, a paper phenol resin laminated board, a paper epoxy resin laminated board, glass cloth, glass paper epoxy Resin laminates can be used and are not particularly limited. In addition, a circuit layer may be formed on the base material, and the circuit forming method is not particularly limited, and a subtractive method in which unnecessary portions of the copper foil are removed by etching using a copper clad laminate or the like. A known method for manufacturing a wiring board, such as an additive method for forming a circuit by electroless plating at a necessary portion of the substrate, can be used.

例えばこの基材の両面または片面に絶縁樹脂からなる絶縁層を形成する。絶縁層の形成方法にもとくに制限がなく、予め絶縁層をプラスチック支持フィルム上に形成したものをラミネート若しくはプレスで基材表面に転写する方法、あるいは絶縁樹脂をディップ法、スプレー法、噴霧法、印刷法やカーテンコートまたはロールコートする方法などが挙げられる。また、絶縁層を金属箔上に形成し、ラミネートあるいはプレスで基材面上に形成した後、銅箔を化学的に全面溶解するなどの方法もある。そして本発明の配線板の製造方法には、前記の方法で得られた絶縁層付き基材を用いることが好ましい。   For example, an insulating layer made of an insulating resin is formed on both surfaces or one surface of the substrate. The method for forming the insulating layer is not particularly limited, and a method in which an insulating layer is previously formed on a plastic support film is transferred to a substrate surface by lamination or pressing, or an insulating resin is dipped, sprayed, sprayed, Examples thereof include a printing method, a curtain coat method, and a roll coat method. There is also a method in which an insulating layer is formed on a metal foil, formed on a substrate surface by lamination or press, and then the copper foil is chemically dissolved over the entire surface. And it is preferable to use the base material with an insulating layer obtained by the said method for the manufacturing method of the wiring board of this invention.

本発明の配線板の製造方法としては、例えば基材の片面または両面に絶縁樹脂からなる絶縁層を形成した後、絶縁層表面をpH11以上の水溶液で処理する工程、デスミア処理工程、及び絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程を行い、その後絶縁層表面に配線層をめっきにより形成し、更に前記配線層に所定の粗化処理を行い、その後、前記配線層表面に絶縁樹脂からなる絶縁層を形成、更に絶縁層表面をpH11以上の水溶液で処理する工程、デスミア処理工程、及び絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程を行い、その後絶縁層表面に配線層をめっきにより形成するなどを繰り返し、多層化してもよい。なお配線層の粗化処理としては、一般的な配線板の製造工程に用いられている粗化処理であれば特に制限はないが、亜塩素酸ナトリウム:50g/l,NaOH:20g/l、リン酸三ナトリウム:10g/lの水溶液に85℃20分間浸漬し、水洗して、80℃20分間乾燥し、配線層表面上に酸化銅の凹凸を形成する粗化処理が好ましい。   As a method for manufacturing a wiring board of the present invention, for example, after forming an insulating layer made of an insulating resin on one or both surfaces of a base material, a step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more, a desmear treatment step, and an insulating layer Performing a step of treating the surface with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved, then forming a wiring layer on the surface of the insulating layer by plating, and further performing a predetermined roughening treatment on the wiring layer; Thereafter, an insulating layer made of an insulating resin is formed on the surface of the wiring layer, a step of treating the insulating layer surface with an aqueous solution having a pH of 11 or more, a desmear treatment step, and a compound containing one or more carboxylic acids in the structure of the insulating layer surface A process of treating with an aqueous solution in which the solution is dissolved may be performed, and then a wiring layer may be formed by plating on the surface of the insulating layer to repeat the process. The wiring layer roughening treatment is not particularly limited as long as it is a roughening treatment used in a general wiring board manufacturing process, but sodium chlorite: 50 g / l, NaOH: 20 g / l, A roughening treatment in which copper oxide irregularities are formed on the wiring layer surface by immersing in an aqueous solution of trisodium phosphate: 10 g / l at 85 ° C. for 20 minutes, washing with water and drying at 80 ° C. for 20 minutes is preferable.

絶縁樹脂としては、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂やポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)などの熱可塑性樹脂を単独あるいは適宜混合したものを用いることができる。また、絶縁樹脂は、シリカ、溶融シリカ、タルク、アルミナ、水酸化アルミニウム、硫酸バリウム、水酸化カルシウム、エロジル、炭酸カルシウムなどの無機フィラーやNBR粒子やアクリルゴム粒子、これらをシェル構造にしたコアシェル粒子などの有機フィラーを含んでいても良い。   As the insulating resin, a thermosetting resin such as an epoxy resin or a phenol resin, or a thermoplastic resin such as polyimide (PI), polyamideimide (PAI), polyethersulfone (PES), or polyetherimide (PEI) is used alone or appropriately. A mixture can be used. Insulating resins include silica, fused silica, talc, alumina, aluminum hydroxide, barium sulfate, calcium hydroxide, erosyl, calcium carbonate, and other inorganic fillers, NBR particles, acrylic rubber particles, and core-shell particles with these shell structures Organic fillers such as may be included.

絶縁樹脂としては、pH11以上の水溶液で処理することにより分子構造が変化する絶縁樹脂であることが好ましい。またpH11以上の水溶液で処理することによりエーテル結合やエステル結合が増加する絶縁樹脂であることが好ましい。このような分子構造が変化する絶縁樹脂あるいは、エーテル結合やエステル結合が増加する絶縁樹脂としては、例えば特開2002−322278号公報に開示されている様なイミド化を終了した溶剤可溶型ポリイミドワニスを用いることがより好ましい。この溶剤可溶型ポリイミドワニスは以下の手法で作製する。例えば、撹拌器を取り付けた1000mlのセパラブル3つ口フラスコに、シリコンコック付きトラップを備えた玉付冷却管を取り付ける。そして、ビシクロ(2,2,2)オクト−7−エン−2,3,5,6−テトラカルボン酸ジ無水物9.93g、およびジアミノ安息香酸9.13g、さらに、γ−バレロラクトン1.2g、メチルモルフォリン2.4g、N−メチルピロリドン170g、トルエン34gを加え、常温で窒素雰囲気中で10分撹拌した後、180℃に昇温し、回転速度180rpmで1時間撹拌して反応させる。次いで、この反応液を空冷し、3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物23.54g、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン8.21g、ビスアニリンP13.78g、N−メチルピロリドン171g、トルエン34gを入れて、再び180℃に昇温し3時間反応させる。その際の回転数は180rpmとし、反応が進行するに従い回転数を100rpm,50rpmと適宜低下させる。さらに作製したワニスを、ガンマブチロラクトンで希釈して目的の溶剤可溶型ポリイミドワニスを得ることができる。   The insulating resin is preferably an insulating resin whose molecular structure is changed by treatment with an aqueous solution having a pH of 11 or more. Moreover, it is preferable that it is an insulating resin which an ether bond and an ester bond increase by processing with aqueous solution of pH11 or more. As an insulating resin having such a molecular structure change or an insulating resin having an increased ether bond or ester bond, for example, a solvent-soluble polyimide that has been imidized as disclosed in JP-A-2002-322278. It is more preferable to use a varnish. This solvent-soluble polyimide varnish is produced by the following method. For example, a condenser tube with a ball equipped with a trap with a silicon cock is attached to a 1000 ml separable three-necked flask equipped with a stirrer. Then, 9.93 g of bicyclo (2,2,2) oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 9.13 g of diaminobenzoic acid, and 1. 2 g, methylmorpholine 2.4 g, N-methylpyrrolidone 170 g, and toluene 34 g were added and stirred at room temperature for 10 minutes in a nitrogen atmosphere, then heated to 180 ° C. and stirred for 1 hour at a rotational speed of 180 rpm to react. . Then, this reaction solution was air-cooled, and 23.54 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane8. 21 g, Bisaniline P 13.78 g, N-methylpyrrolidone 171 g, and toluene 34 g are added, and the temperature is raised again to 180 ° C. and reacted for 3 hours. The rotation speed at that time is 180 rpm, and the rotation speed is appropriately reduced to 100 rpm and 50 rpm as the reaction proceeds. Furthermore, the produced varnish can be diluted with gamma butyrolactone to obtain a target solvent-soluble polyimide varnish.

また、この溶剤可溶型ポリイミドワニスにビフェニル系エポキシ樹脂NC3000S−H(日本化薬株式会社社製、商品名)と、アセチル型硬化剤DC−808(ジャパンエポキシレジン)を追加してなる絶縁樹脂を用いることもできる。あるいはビフェニル系エポキシ樹脂NC3000S−H(日本化薬株式会社社製、商品名)と、アセチル型硬化剤DC−808(ジャパンエポキシレジン)と、ポリエーテルイミドであるウルテム1000(日本GEプラスチック製、商品名)と、N−メチルピロリドン(BASFジャパン株式会社製)を混合してなる絶縁樹脂、あるいはビフェニル系エポキシ樹脂NC3000S−H(日本化薬株式会社社製、商品名)と、アセチル型硬化剤DC−808(ジャパンエポキシレジン)と、ポリアミドイミドCSD−130(日立化成工業株式会社製、商品名)と、N−メチルピロリドン(BASFジャパン株式会社製)を混合してなる絶縁樹脂などが挙げられる。   Further, an insulating resin obtained by adding biphenyl type epoxy resin NC3000S-H (manufactured by Nippon Kayaku Co., Ltd., trade name) and acetyl type curing agent DC-808 (Japan epoxy resin) to this solvent-soluble polyimide varnish. Can also be used. Or biphenyl type epoxy resin NC3000S-H (made by Nippon Kayaku Co., Ltd., trade name), acetyl type curing agent DC-808 (Japan epoxy resin), and Ultem 1000 which is polyetherimide (made by Japan GE Plastics, product) Name) and N-methylpyrrolidone (manufactured by BASF Japan Ltd.) or biphenyl epoxy resin NC3000S-H (manufactured by Nippon Kayaku Co., Ltd., trade name) and acetyl type curing agent DC Insulating resin formed by mixing -808 (Japan epoxy resin), polyamideimide CSD-130 (manufactured by Hitachi Chemical Co., Ltd., trade name) and N-methylpyrrolidone (manufactured by BASF Japan Ltd.).

絶縁樹脂は、溶剤に溶解した状態で使用するのが絶縁層の形成方法の選択度があがることから好ましい。溶剤は、メチルエチルケトン、メチルエチルイソブチルケトン、N−メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどを絶縁層の形成方法に合わせて適宜混合しながら使用する。絶縁樹脂は、加熱により硬化させる必要があり、その条件は150〜250℃、20〜90分で行うことが好ましい。また形成した絶縁層の厚みは特に制限しないが、10〜300μmが好ましく、20〜150μmがより好ましい。このようにして作製した絶縁層表面に配線層をめっきにより形成する。   It is preferable to use the insulating resin in a state dissolved in a solvent because the selectivity of the method for forming the insulating layer is increased. As the solvent, methyl ethyl ketone, methyl ethyl isobutyl ketone, N-methyl pyrrolidone, dimethylformamide, dimethyl sulfoxide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, or the like is used while appropriately mixing according to the method of forming the insulating layer. The insulating resin needs to be cured by heating, and the conditions are preferably 150 to 250 ° C. and 20 to 90 minutes. The thickness of the formed insulating layer is not particularly limited, but is preferably 10 to 300 μm, and more preferably 20 to 150 μm. A wiring layer is formed on the surface of the insulating layer thus produced by plating.

本発明の配線板の製造方法では、絶縁層表面をpH11以上の水溶液で処理する。このpH11以上の水溶液としては、水酸化化合物を含む水溶液であることが好ましい。更に水酸化化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化セシウム、水酸化マグネシウム、水酸化マンガンからなる群から選択される水酸化化合物であることがより好ましく、1種または2種以上用いる。   In the method for manufacturing a wiring board according to the present invention, the surface of the insulating layer is treated with an aqueous solution having a pH of 11 or more. The aqueous solution having a pH of 11 or higher is preferably an aqueous solution containing a hydroxide compound. Further, the hydroxide compound is more preferably a hydroxide compound selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, cesium hydroxide, magnesium hydroxide, and manganese hydroxide. Use two or more.

水溶液のpHを11以上とする理由は、絶縁樹脂の分子構造を変化させ、絶縁層表面にエーテル結合やエステル結合を増加させるために行う。このエーテル結合やエステル結合が不足すると、後のカルボン酸を構造中に1つ以上含む化合物の絶縁層表面への付着が充分ではなくなり、結果的に絶縁層と配線層導体との接着強度の低下を招く。pH11未満では絶縁層表面のエーテル結合やエステル結合の増加が不足するため不適切であり、このような観点からpHは高い程、エーテル結合やエステル結合を増加させることに関し効率的である。   The reason for setting the pH of the aqueous solution to 11 or more is to change the molecular structure of the insulating resin and increase the ether bond or ester bond on the surface of the insulating layer. If this ether bond or ester bond is insufficient, the compound containing one or more carboxylic acids in the structure will not adhere to the surface of the insulating layer, resulting in a decrease in the adhesive strength between the insulating layer and the wiring layer conductor. Invite. If the pH is less than 11, the increase in ether bonds and ester bonds on the surface of the insulating layer is insufficient, which is inappropriate. From this viewpoint, the higher the pH, the more efficient the ether bonds and ester bonds are increased.

また、水酸化化合物としては、少量で強アルカリ側へ移行しやすいものであれば特に限定しないが、水への溶解性の点から、水酸化ナトリウム、水酸化カリウムを用いることが特に好ましい。さらに、その濃度としては、5〜40重量%が好ましく、より好ましくは15〜30重量%である。水酸化化合物の濃度が5重量%未満では、絶縁層表面のエーテル結合やエステル結合を増加させる効果が少なく、40重量%を超えると絶縁層表面の改質が強すぎるため、絶縁層に脆弱層の発生が懸念されるため好ましくない。また、処理条件は、50〜85℃で10〜60分間が好ましく、より好ましくは50〜70℃で20〜45分である。温度が低く、処理時間も短い場合、エーテル結合やエステル結合を増加させる効果が少なく、温度が高すぎて処理時間も長すぎる場合は、絶縁層に脆弱層が発生し、機械的や熱的なストレスで脆弱層間が破壊の基点となりやすいことから好ましくない。   Further, the hydroxide compound is not particularly limited as long as it is easily transferred to the strong alkali side in a small amount, but sodium hydroxide and potassium hydroxide are particularly preferably used from the viewpoint of solubility in water. Furthermore, the concentration is preferably 5 to 40% by weight, more preferably 15 to 30% by weight. If the concentration of the hydroxide compound is less than 5% by weight, the effect of increasing the ether bond or ester bond on the surface of the insulating layer is small, and if it exceeds 40% by weight, the surface of the insulating layer is modified too strongly. This is not preferable because of concern about the occurrence of The treatment conditions are preferably 50 to 85 ° C. for 10 to 60 minutes, and more preferably 50 to 70 ° C. for 20 to 45 minutes. When the temperature is low and the treatment time is short, the effect of increasing the ether bond or ester bond is small, and when the temperature is too high and the treatment time is too long, a fragile layer is generated in the insulating layer, resulting in mechanical or thermal effects. It is not preferable because the fragile layer easily becomes a starting point of destruction due to stress.

また絶縁層表面をpH11以上の水溶液で処理する工程が、デスミア処理工程の前で行われることが好ましい。一般的にはデスミア処理工程は、酸化性水溶液を用い処理する。この酸化性水溶液は、過マンガン酸ナトリウム、過マンガン酸カリウムを水酸化ナトリウムで強アルカリにした水溶液が一般的である。また、クロム酸や重クロム酸ナトリウムを硫酸水溶液とした酸化性水溶液も使用可能であるが、過マンガン酸ナトリウム、過マンガン酸カリウムを水酸化ナトリウムで強アルカリにした水溶液が好ましい。   In addition, the step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more is preferably performed before the desmear treatment step. In general, the desmear treatment process is performed using an oxidizing aqueous solution. This oxidizing aqueous solution is generally an aqueous solution in which sodium permanganate or potassium permanganate is made strong alkali with sodium hydroxide. An oxidizing aqueous solution in which chromic acid or sodium dichromate is used as a sulfuric acid aqueous solution can also be used, but an aqueous solution in which sodium permanganate or potassium permanganate is made strong alkali with sodium hydroxide is preferable.

例えば過マンガン酸ナトリウム、過マンガン酸カリウムを水酸化ナトリウムで強アルカリにした水溶液で処理する場合、60〜85℃で5〜20分間処理するのが通常であり、好ましくは、70〜80℃で10〜15分間処理する。例えばクロム酸や重クロム酸ナトリウムを硫酸水溶液の場合は、30〜50℃で5〜20分間処理するのが通常であり、好ましくは、35〜45℃で10〜15分間処理する。なお、この酸化性水溶液で処理する前に、スウェラーと呼ばれてる、ジエチレングリコールモノブチルエーテルと水酸化ナトリウムの水溶液で処理しても良い。このスウェラーは、絶縁樹脂に層間接続のためのビアホールをレーザやドリルで形成した際の樹脂残渣除去に有効である。その条件は、例えば60〜85℃で2〜20分間処理するのが通常であり、好ましくは、70〜80℃で5〜15分間処理する。   For example, in the case of treatment with an aqueous solution in which sodium permanganate and potassium permanganate are made strong alkali with sodium hydroxide, the treatment is usually carried out at 60 to 85 ° C. for 5 to 20 minutes, preferably at 70 to 80 ° C. Process for 10-15 minutes. For example, when chromic acid or sodium dichromate is an aqueous sulfuric acid solution, it is usually treated at 30 to 50 ° C. for 5 to 20 minutes, preferably at 35 to 45 ° C. for 10 to 15 minutes. In addition, before processing with this oxidizing aqueous solution, you may process with the aqueous solution of diethylene glycol monobutyl ether and sodium hydroxide called a sweller. This sweller is effective for removing resin residues when via holes for interlayer connection are formed in an insulating resin by a laser or a drill. For example, the treatment is usually performed at 60 to 85 ° C. for 2 to 20 minutes, and preferably at 70 to 80 ° C. for 5 to 15 minutes.

酸化性水溶液で処理した後は、酸化性水溶液中成分のマンガンやクロムを中和する必要がある。中和液としては、例えばマンガンの場合、硫酸ヒドロキシルアミン水溶液、硫酸/過酸化水素水水溶液を用いて、40〜45℃で3〜10分間処理するか、あるいはSnCl/HClの水溶液に室温(25℃)で3〜10分間処理する。また例えばクロムの場合は、亜硫酸水素ナトリウムで室温(25℃)、5〜10分間処理する。 After the treatment with the oxidizing aqueous solution, it is necessary to neutralize manganese and chromium as components in the oxidizing aqueous solution. As the neutralizing solution, for example, in the case of manganese, a hydroxylamine sulfate aqueous solution or a sulfuric acid / hydrogen peroxide aqueous solution is used and treated at 40 to 45 ° C. for 3 to 10 minutes, or a SnCl 2 / HCl aqueous solution at room temperature ( 25 ° C.) for 3 to 10 minutes. For example, in the case of chromium, it is treated with sodium hydrogen sulfite at room temperature (25 ° C.) for 5 to 10 minutes.

また絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程が、デスミア処理工程後であって、かつ絶縁層表面に配線層をめっきにより形成する配線形成工程の前で行われることが好ましい。特にデスミア処理工程の中和処理後、配線形成工程のめっき用金属触媒の付与工程の前に行われることが好ましい。   Further, the step of treating the surface of the insulating layer with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved is after the desmear treatment step, and a wiring forming step of forming a wiring layer on the surface of the insulating layer by plating It is preferred to be done before. In particular, it is preferably performed after the neutralization treatment in the desmear treatment step and before the plating metal catalyst application step in the wiring formation step.

本発明の配線板の製造方法は、絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程を含んでいる。カルボン酸を構造中に1つ以上含む化合物としては、水溶性であれば特に制限はなく、例えばアミノ酸、乳酸、リンゴ酸、クエン酸、酢酸、蟻酸、プロピオン酸、安息香酸、オレイン酸、ラウリン酸、リノール酸、リノレン酸などのカルボン酸、それらの誘導体であるアミド、エステルなどが挙げられるが、アミノ酸が好ましい。アミノ酸としては、アラニン、グルタミン、システイン、アルギニン、アスパラギン、セリン、グルタミン酸、トレオニン、フェニルアラニン、バリン、グリシン、トリプトファン、ヒスチジン、チロシン、イソロイシン、リジン、ロイシン、メチオニン、アスパラギン、プロリンからなる群から選択されるアミノ酸であることがより好ましく、1種または2種以上用いる。これらのアミノ酸として、アミノ酸構造中の末端カルボキシル基までの炭素数が短い方がさらに接着強度の向上効果があり、特に好ましい。   The method for producing a wiring board of the present invention includes a step of treating the surface of the insulating layer with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved. The compound containing one or more carboxylic acids in the structure is not particularly limited as long as it is water soluble. For example, amino acids, lactic acid, malic acid, citric acid, acetic acid, formic acid, propionic acid, benzoic acid, oleic acid, lauric acid , Carboxylic acids such as linoleic acid and linolenic acid, amides and esters that are derivatives thereof, and amino acids are preferred. The amino acid is selected from the group consisting of alanine, glutamine, cysteine, arginine, asparagine, serine, glutamic acid, threonine, phenylalanine, valine, glycine, tryptophan, histidine, tyrosine, isoleucine, lysine, leucine, methionine, asparagine, proline. More preferred are amino acids, and one or more are used. As these amino acids, it is particularly preferred that the number of carbon atoms up to the terminal carboxyl group in the amino acid structure is further improved in the adhesive strength.

これらのアミノ酸の濃度は0.1〜20重量%が好ましく、より好ましくは1〜10重量%である。0.1重量%未満では絶縁層と配線層との接着強度が不足し、20重量%を超えると絶縁層表面にアミノ酸が必要以上に付着するため電気特性が低下する。また、処理条件は、10〜40℃で1〜20分間が好ましく、より好ましくは15〜30℃で2〜10分間である。温度が低く、処理時間も短い場合、アミノ酸の絶縁層表面への付着量が不足するため、接着強度が低下し、また温度が高すぎて処理時間も長すぎても接着強度が低下する。温度が高すぎて、処理時間も長すぎる場合に接着強度が低下するのは、絶縁層に脆弱層が発生し、機械的や熱的なストレスで脆弱層間が破壊の基点となっているためである。   The concentration of these amino acids is preferably 0.1 to 20% by weight, more preferably 1 to 10% by weight. If it is less than 0.1% by weight, the adhesive strength between the insulating layer and the wiring layer is insufficient, and if it exceeds 20% by weight, amino acids adhere more than necessary on the surface of the insulating layer, resulting in a decrease in electrical characteristics. The treatment conditions are preferably 10 to 40 ° C. for 1 to 20 minutes, more preferably 15 to 30 ° C. for 2 to 10 minutes. When the temperature is low and the treatment time is short, the adhesion amount of amino acids to the surface of the insulating layer is insufficient, so that the adhesive strength is lowered. Also, the adhesive strength is lowered even if the temperature is too high and the treatment time is too long. The adhesive strength decreases when the temperature is too high and the processing time is too long, because a fragile layer is generated in the insulating layer, and the fragile layer is the starting point of destruction due to mechanical and thermal stress. is there.

本発明の配線板の製造方法は、絶縁層表面に配線層をめっきにより形成する配線形成工程を含んでいる。例えば絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理した後、無電解めっき反応に必要な、めっき用金属触媒である金属パラジウムを付着しやすくさせるための工程(コンディショナー処理工程)へ移行する。さらに、金属パラジウムを付着する工程へと移行して最終的に無電解めっき工程に至る。よって本発明の配線板の製造方法におけるめっきとは、無電解めっきであることが好ましい。めっきにより形成される配線層の金属は、めっき可能な金属であれば特に制限がなく、銅、ニッケル、金などの通常の配線板で使用する金属を用いてもよいが、作業性、経済性を考慮すれば銅が好ましい。   The method for manufacturing a wiring board of the present invention includes a wiring forming step of forming a wiring layer on the surface of the insulating layer by plating. For example, after the surface of the insulating layer is treated with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved, a process for making metal palladium, which is a metal catalyst for plating, necessary for electroless plating reaction easily attached ( Move to conditioner processing step. Furthermore, the process proceeds to a process of attaching metallic palladium, and finally reaches an electroless plating process. Therefore, the plating in the method for manufacturing a wiring board of the present invention is preferably electroless plating. The metal of the wiring layer formed by plating is not particularly limited as long as it is a metal that can be plated, and a metal used for a normal wiring board such as copper, nickel, or gold may be used. In consideration of copper, copper is preferable.

絶縁層表面に配線層をめっきにより形成する配線形成工程において、配線層は、通常のアディティブ法、セミアディティブ法、テンティング法などの工程を利用し作製すれば良く、特に制限はない。なお配線形成工程における処理液等は、例えば、日立化成工業株式会社から販売しているコンディショナー液(商品名CLC−501)、プリディップ液(商品名PD−201)、金属パラジウム液(商品名HS−202B)、活性化処理液(商品名ADP−501)、厚付け無電解銅めっき液(商品名L−59)、無電解めっき液Cust−4600(日立化成工業株式会社製、商品名)、無電解銅めっき液(商品名Cust−201)等が適用できる。   In the wiring forming step of forming a wiring layer on the surface of the insulating layer by plating, the wiring layer may be produced using a process such as a normal additive method, semi-additive method, tenting method, etc., and there is no particular limitation. The treatment liquid in the wiring formation step is, for example, a conditioner liquid (trade name CLC-501), a pre-dip liquid (trade name PD-201), a metal palladium liquid (trade name HS, sold by Hitachi Chemical Co., Ltd.). -202B), activation treatment solution (trade name ADP-501), thick electroless copper plating solution (trade name L-59), electroless plating solution Cust-4600 (trade name, manufactured by Hitachi Chemical Co., Ltd.), An electroless copper plating solution (trade name Cust-201) or the like can be applied.

例えばアディティブ法の場合、絶縁層表面にめっきレジストを形成し、更に厚付け無電解銅めっき液(商品名L−59,日立化成工業株式会社製)により配線層を形成する。また例えばセミアディティブ法の場合、絶縁層表面に薄付け無電解銅めっき液(商品名Cust−201)により下地銅めっき層を形成し、さらにその表面にめっきレジストを形成し、電気銅めっきにより、必要な厚みまでめっきアップし、めっきレジストを剥離後、下地銅めっき層をエッチングで除去し、配線層を形成する。また例えばテンティング法の場合、絶縁層表面に薄付け無電解銅めっき液(商品名Cust−201)により下地銅めっき層を形成し、さらに電気銅めっきにより、必要な厚みまでめっきアップし、その表面にエッチングレジストを形成、不要な銅をエッチングし、配線層を形成する。また本発明の配線板は、前記した配線板の製造方法を用い、得ることができ、例えば多層配線板とすることも可能である。   For example, in the case of the additive method, a plating resist is formed on the surface of the insulating layer, and further a wiring layer is formed with a thick electroless copper plating solution (trade name L-59, manufactured by Hitachi Chemical Co., Ltd.). Further, for example, in the case of the semi-additive method, a base copper plating layer is formed on the insulating layer surface with a thin electroless copper plating solution (trade name Cust-201), a plating resist is further formed on the surface, and electrolytic copper plating is performed. After plating up to the required thickness and stripping the plating resist, the underlying copper plating layer is removed by etching to form a wiring layer. For example, in the case of the tenting method, a base copper plating layer is formed on the insulating layer surface with a thin electroless copper plating solution (trade name Cust-201), and further plated up to a required thickness by electrolytic copper plating. An etching resist is formed on the surface, unnecessary copper is etched, and a wiring layer is formed. The wiring board of the present invention can be obtained by using the above-described method for manufacturing a wiring board. For example, it can be a multilayer wiring board.

以下、本発明の好適な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
ガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.8mmt、両面粗化箔を両面に有する日立化成工業株式会社製商品名MCL−E−679)に、エッチングを施して片面に回路層(以下、第1回路層とする)を有する回路板を作製し、基材とした。絶縁樹脂として、イミド化を終了した溶剤可溶型ポリイミドワニスを用いた。
EXAMPLES Hereinafter, although the suitable Example of this invention is described, this invention is not limited to these Examples.
(Example 1)
Etching into glass cloth base epoxy resin double-sided copper-clad laminate (Hitachi Kasei Kogyo Co., Ltd., trade name MCL-E-679, having copper foil thickness 18μm, substrate thickness 0.8mmt, double-sided roughened foil on both sides) A circuit board having a circuit layer (hereinafter referred to as a first circuit layer) on one side was prepared and used as a substrate. As the insulating resin, a solvent-soluble polyimide varnish after imidization was used.

この溶剤可溶型ポリイミドワニスは、撹拌器を取り付けた1000mlのセパラブル3つ口フラスコに、シリコンコック付きトラップを備えた玉付冷却管を取り付け、ビシクロ(2,2,2)オクト−7−エン−2,3,5,6−テトラカルボン酸ジ無水物9.93g、およびジアミノ安息香酸9.13g、さらに、γ−バレロラクトン1.2g、メチルモルフォリン2.4g、N−メチルピロリドン170g、トルエン34gを加え、常温で窒素雰囲気中で10分撹拌した後、180℃に昇温し、回転速度180rpmで1時間撹拌して反応させる。次いで、この反応液を空冷し、3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物23.54g、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン8.21g、ビスアニリンP13.78g、N−メチルピロリドン171g、トルエン34gを入れて、再び180℃に昇温し3時間反応させる。その際の回転数は180rpmとし、反応が進行するに従い回転数を100rpm,50rpmと適宜低下させる。さらに作製したワニスを、ガンマブチロラクトンで希釈したものを用いた。この溶剤可溶型ポリイミドワニスを、ロールコータで前記回路板上の両面に絶縁層を形成した。次いで、溶剤の揮発及び硬化するため、200℃60分間熱処理を施し、厚み30μmの絶縁層を形成し、絶縁層付き回路板(基材)とした。以下、「絶縁層付き回路板(基材)」を、「回路板」と略す。   This solvent-soluble polyimide varnish is attached to a 1000 ml separable three-necked flask equipped with a stirrer, and a ball condenser equipped with a trap with a silicon cock is attached to the bicyclo (2,2,2) oct-7-ene. -2,3,5,6-tetracarboxylic dianhydride 9.93 g, and diaminobenzoic acid 9.13 g, 1.2 g of γ-valerolactone, 2.4 g of methylmorpholine, 170 g of N-methylpyrrolidone, After adding 34 g of toluene and stirring in a nitrogen atmosphere at room temperature for 10 minutes, the temperature is raised to 180 ° C., and the reaction is performed by stirring for 1 hour at a rotation speed of 180 rpm. Then, this reaction solution was air-cooled, and 23.54 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane8. 21 g, Bisaniline P 13.78 g, N-methylpyrrolidone 171 g, and toluene 34 g are added, and the temperature is raised again to 180 ° C. and reacted for 3 hours. The rotation speed at that time is 180 rpm, and the rotation speed is appropriately reduced to 100 rpm and 50 rpm as the reaction proceeds. Furthermore, the varnish produced was diluted with gamma butyrolactone. The solvent-soluble polyimide varnish was formed with an insulating layer on both sides of the circuit board by a roll coater. Next, in order to volatilize and cure the solvent, a heat treatment was performed at 200 ° C. for 60 minutes to form an insulating layer having a thickness of 30 μm, and a circuit board (substrate) with an insulating layer was obtained. Hereinafter, the “circuit board with an insulating layer (base material)” is abbreviated as “circuit board”.

この絶縁層に層間接続用のビアホールを、日立ビアメカニクス製COレーザ加工機(LCO−1B21型)を使用し、ビーム径80μm、周波数500Hzでパルス幅5μsec、ショット数7の条件で、加工して作製した。次いで、ビアホールが形成された絶縁層表面を、pH11以上の水溶液として、純水に水酸化カリウムを20重量%溶解した水溶液を作製し、この水溶液に処理条件として60℃30分間回路板を浸漬し、絶縁層表面を処理した。 The via holes for interlayer connection in the insulating layer, Hitachi used Via Mechanics, Ltd. CO 2 laser processing machine (LCO-1B21 type), the beam diameter 80 [mu] m, pulse width 5μsec at frequencies 500 Hz, in the conditions of shot number 7, processed Made. Next, the surface of the insulating layer in which the via hole is formed is made into an aqueous solution having a pH of 11 or more, and an aqueous solution in which 20% by weight of potassium hydroxide is dissolved in pure water is prepared, and the circuit board is immersed in this aqueous solution at 60 ° C. for 30 minutes. The surface of the insulating layer was treated.

次にデスミア処理工程として、膨潤液であるジエチレングリコールモノブチルエーテル:200ml/L、NaOH:5g/Lの水溶液を作製し、70℃に加温して5分間回路板を浸漬し、絶縁層表面を膨潤処理した。次に、酸化性水溶液として、KMnO:60g/L、NaOH:40g/Lの水溶液を作製し、80℃に加温して10分間回路板を浸漬し、絶縁層表面をデスミア処理した。引き続き、中和液(SnCl:30g/L、HCl:300ml/L)の水溶液に室温(25℃)で5分間回路板を浸漬処理して、絶縁層表面を中和処理した。 Next, as a desmear treatment step, an aqueous solution of diethylene glycol monobutyl ether: 200 ml / L, NaOH: 5 g / L, which is a swelling liquid, is prepared, heated to 70 ° C. and immersed in the circuit board for 5 minutes to swell the insulating layer surface Processed. Next, an aqueous solution of KMnO 4 : 60 g / L and NaOH: 40 g / L was prepared as an oxidizing aqueous solution, heated to 80 ° C. and immersed in the circuit board for 10 minutes, and the insulating layer surface was desmeared. Subsequently, the surface of the insulating layer was neutralized by immersing the circuit board in an aqueous solution of a neutralizing solution (SnCl 2 : 30 g / L, HCl: 300 ml / L) at room temperature (25 ° C.) for 5 minutes.

そして、カルボン酸を構造中に1つ以上含む化合物としてアミノ酸であるシステインを選択した。システインを純水に5重量%溶解した水溶液に、前記中和処理まで行った回路板を25℃10分間の処理条件で浸漬した。次いで、配線形成工程として、界面活性剤を含んだコンディショナーのCLC−501(日立化成工業株式会社製、商品名)に、60℃5分間浸漬処理し、水洗し、さらに、PdClを含む無電解めっき用触媒であるHS−202B(日立化成工業株式会社製、商品名)で23℃10分間浸漬処理し、水洗し、無電解銅めっきであるCust−201めっき液(日立化成工業株式会社製、商品名)に室温(25℃)15分間浸漬し、さらに硫酸銅電解めっきを行った。その後、アニールを180℃30分間行い絶縁層表面上に厚さ20μmの銅導体層を形成した。 Then, cysteine, which is an amino acid, was selected as a compound containing one or more carboxylic acids in the structure. The circuit board that had been subjected to the neutralization treatment was immersed in an aqueous solution in which 5% by weight of cysteine was dissolved in pure water under the treatment conditions of 25 ° C. for 10 minutes. Next, as a wiring formation step, a conditioner-containing CLC-501 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is immersed in 60 ° C. for 5 minutes, washed with water, and further electroless containing PdCl 2. Cust-201 plating solution (manufactured by Hitachi Chemical Co., Ltd.), which is an electroless copper plating, immersed in HS-202B (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a catalyst for plating, at 23 ° C. for 10 minutes, washed with water. (Product Name) was immersed for 15 minutes at room temperature (25 ° C.) and further subjected to copper sulfate electrolytic plating. Thereafter, annealing was performed at 180 ° C. for 30 minutes to form a copper conductor layer having a thickness of 20 μm on the surface of the insulating layer.

次に、めっき銅導体の不要な箇所をエッチング除去するために銅表面の酸化皮膜を#600のバフロール研磨で除去した後、エッチングレジストを形成し、エッチングし、その後エッチングレジストを除去して、第1の回路と接続したバイアホールを含む配線層(第2の回路導体)を形成した。   Next, in order to remove unnecessary portions of the plated copper conductor by etching, the oxide film on the copper surface is removed by # 600 buffol polishing, an etching resist is formed and etched, and then the etching resist is removed. A wiring layer (second circuit conductor) including a via hole connected to the circuit of 1 was formed.

さらに、多層化するために、前記配線層(第2の回路導体)表面を、亜塩素酸ナトリウム:50g/l,NaOH:20g/l、リン酸三ナトリウム:10g/lの水溶液に処理条件として85℃20分間浸漬し、水洗して、80℃20分間乾燥して前記配線層(第2の回路導体)表面上に酸化銅の凹凸を形成した。更に前記と同様の方法により、前記配線層(第2の回路導体)表面上に絶縁層を形成した。更に前記と同様に、層間接続用のビアホール形成、pH11以上の水溶液による処理、デスミア処理、カルボン酸を構造中に1つ以上含む化合物を溶解した水溶液による処理、めっきによる配線(第3の回路導体)形成を行い、3層の多層配線板を作製した。   Furthermore, in order to increase the number of layers, the surface of the wiring layer (second circuit conductor) is treated with an aqueous solution of sodium chlorite: 50 g / l, NaOH: 20 g / l, trisodium phosphate: 10 g / l. It was immersed in 85 ° C. for 20 minutes, washed with water, and dried at 80 ° C. for 20 minutes to form copper oxide irregularities on the surface of the wiring layer (second circuit conductor). Further, an insulating layer was formed on the surface of the wiring layer (second circuit conductor) by the same method as described above. Further, in the same manner as described above, formation of via holes for interlayer connection, treatment with an aqueous solution of pH 11 or higher, desmear treatment, treatment with an aqueous solution in which a compound containing one or more carboxylic acids is dissolved, wiring by plating (third circuit conductor) ) To form a three-layer multilayer wiring board.

(実施例2)
絶縁樹脂を下記の様な絶縁樹脂に変更した以外は、実施例1と同様にして多層配線板を作製した。
ビフェニル系エポキシ樹脂NC3000S−H(日本化薬株式会社社製、商品名)20重量部と、アセチル型硬化剤DC−808(ジャパンエポキシレジン)5重量部と、実施例1で作製した溶剤可溶型ポリイミドワニス75重量部と、溶剤としてN−メチルピロリドン(BASFジャパン株式会社製)30重量部とを混合し、絶縁樹脂とした。
(Example 2)
A multilayer wiring board was produced in the same manner as in Example 1 except that the insulating resin was changed to the following insulating resin.
20 parts by weight of biphenyl-based epoxy resin NC3000S-H (manufactured by Nippon Kayaku Co., Ltd., trade name), 5 parts by weight of acetyl-type curing agent DC-808 (Japan epoxy resin), and the solvent solubility produced in Example 1 Type polyimide varnish 75 parts by weight and 30 parts by weight of N-methylpyrrolidone (BASF Japan Ltd.) as a solvent were mixed to obtain an insulating resin.

(実施例3)
絶縁樹脂を下記の様な絶縁樹脂に変更した以外は、実施例1と同様にして多層配線板を作製した。
ビフェニル系エポキシ樹脂NC3000S−H(日本化薬株式会社社製、商品名)20重量部と、アセチル型硬化剤DC−808(ジャパンエポキシレジン)5重量部と、ポリエーテルイミドであるウルテム1000(日本GEプラスチック製、商品名)75重量部と、溶剤としてN−メチルピロリドン(BASFジャパン株式会社製)30重量部とを混合し、絶縁樹脂とした。
(Example 3)
A multilayer wiring board was produced in the same manner as in Example 1 except that the insulating resin was changed to the following insulating resin.
Biphenyl type epoxy resin NC3000S-H (Nippon Kayaku Co., Ltd., trade name) 20 parts by weight, acetyl type curing agent DC-808 (Japan epoxy resin) 5 parts by weight, and Ultem 1000 (Japan) 75 parts by weight made of GE Plastics (trade name) and 30 parts by weight of N-methylpyrrolidone (BASF Japan Ltd.) as a solvent were mixed to obtain an insulating resin.

(実施例4)
絶縁樹脂を下記の様な絶縁樹脂に変更した以外は、実施例1と同様にして多層配線板を作製した。
ビフェニル系エポキシ樹脂NC3000S−H(日本化薬株式会社社製、商品名)20重量部と、アセチル型硬化剤DC−808(ジャパンエポキシレジン)5重量部と、ポリアミドイミドCSD−130(日立化成工業株式会社製、商品名)75重量部と、溶剤としてN−メチルピロリドン(BASFジャパン株式会社製)30重量部とを混合し、絶縁樹脂とした。
(Example 4)
A multilayer wiring board was produced in the same manner as in Example 1 except that the insulating resin was changed to the following insulating resin.
20 parts by weight of biphenyl-based epoxy resin NC3000S-H (trade name, manufactured by Nippon Kayaku Co., Ltd.), 5 parts by weight of acetyl-type curing agent DC-808 (Japan epoxy resin), and polyamideimide CSD-130 (Hitachi Chemical Industries) 75 parts by weight manufactured by Co., Ltd. and 30 parts by weight of N-methylpyrrolidone (BASF Japan Ltd.) as a solvent were mixed to obtain an insulating resin.

(実施例5)
水酸化カリウムに換えて水酸化ナトリウムに変更し、その濃度を30重量%とした以外は、実施例1と同様にして多層配線板を作製した。
(Example 5)
A multilayer wiring board was produced in the same manner as in Example 1 except that sodium hydroxide was used instead of potassium hydroxide and the concentration was changed to 30% by weight.

(実施例6)
システインに換えて、濃度は同一のままメチオニンに変更した以外は、実施例1と同様にして多層配線板を作製した。
(Example 6)
A multilayer wiring board was produced in the same manner as in Example 1 except that the concentration was changed to methionine while maintaining the same concentration instead of cysteine.

(実施例7)
システインに換えて、濃度は同一のままリジンに変更した以外は、実施例1と同様にして多層配線板を作製した。
(Example 7)
A multilayer wiring board was produced in the same manner as in Example 1 except that cysteine was used instead of cysteine and the concentration was changed to lysine.

(実施例8)
システインに換えて、濃度は同一のままグルタミン酸に変更した以外は、実施例1と同様にして多層配線板を作製した。
(Example 8)
A multilayer wiring board was produced in the same manner as in Example 1 except that instead of cysteine, the concentration was changed to glutamic acid with the same concentration.

(実施例9)
システインに換えて、濃度は同一のままアルギニンに変更した以外は、実施例1と同様にして多層配線板を作製した。
Example 9
A multilayer wiring board was produced in the same manner as in Example 1 except that the concentration was changed to arginine while maintaining the same concentration instead of cysteine.

(実施例10)
Cust−201に換えて、ニッケルを含有するCust−4600(日立化成工業株式会社製、商品名)に置き換えた以外は、実施例1と同様にして多層配線板を作製した。
(Example 10)
A multilayer wiring board was produced in the same manner as in Example 1 except that instead of Cust-201, Cust-4600 (trade name, manufactured by Hitachi Chemical Co., Ltd.) containing nickel was used.

(比較例1)
カルボン酸を構造中に1つ以上含む化合物であるシステイン(アミノ酸)を溶解した水溶液による処理を行なわなかった以外は、実施例1と同様にして多層配線板を作製した。
(Comparative Example 1)
A multilayer wiring board was produced in the same manner as in Example 1 except that treatment with an aqueous solution in which cysteine (amino acid), which is a compound containing one or more carboxylic acids in the structure, was dissolved was not performed.

実施例1〜10及び比較例1で作製した多層配線板について、以下に示す配線層との接着強度測定、絶縁層の表面粗さ測定、288℃はんだ耐熱性試験を行った。その結果を表1、2に示した。   About the multilayer wiring board produced in Examples 1-10 and Comparative Example 1, the adhesive strength measurement with the wiring layer shown below, the surface roughness measurement of an insulating layer, and a 288 degreeC solder heat resistance test were done. The results are shown in Tables 1 and 2.

(配線層との接着強度測定)
最外層の配線層(第3の回路導体)の一部に幅10mm、長さ100mmの部分を形成し、この一端を剥がしてつかみ具でつかみ、垂直方向に約50mm室温(25℃)中で引き剥がした時の荷重を測定した。
(Measurement of adhesive strength with wiring layer)
A part of the outermost wiring layer (third circuit conductor) having a width of 10 mm and a length of 100 mm is formed. One end of the wiring layer is peeled off and gripped with a gripping tool, and the vertical direction is about 50 mm at room temperature (25 ° C.). The load at the time of peeling was measured.

(絶縁層の表面粗さ)
最外層の配線層(第3の回路導体)をエッチングにより銅を除去した試験片を作製する。この試験片を2mm角程度に切断し、株式会社キーエンス社製超深度形状測定顕微鏡VK−8500型を用いて、試験片中の異なる箇所3点について、測定長さ149μm、倍率2000倍、分解能0.05μmの条件で測定し、測定長さ149μm中の粗さの最大部から最小部を引いた値を絶縁層の表面粗さとし、3箇所の平均値を算出した。
(Insulation layer surface roughness)
A test piece is prepared by removing copper from the outermost wiring layer (third circuit conductor) by etching. This test piece is cut to about 2 mm square, and using a Keyence Co., Ltd. ultra deep shape measurement microscope VK-8500, three different points in the test piece are measured with a measurement length of 149 μm, a magnification of 2000 times, and a resolution of 0. The measurement was performed under the condition of .05 μm, and the value obtained by subtracting the minimum portion from the maximum portion of the roughness in the measurement length of 149 μm was defined as the surface roughness of the insulating layer, and the average value at three locations was calculated.

(288℃はんだ耐熱性)
作製した多層配線板を25mm角に切断し、288℃±2℃に調整したはんだ浴に浮かべ、ふくれが発生するまでの時間を測定した。
(288 ° C solder heat resistance)
The produced multilayer wiring board was cut into 25 mm squares, floated in a solder bath adjusted to 288 ° C. ± 2 ° C., and the time until blistering was measured.

Figure 2006270020
Figure 2006270020

Figure 2006270020
Figure 2006270020

表1,2から明らかな様に、本発明の手法を用いた配線板は、絶縁層の表面粗さが小さく比較的平滑な領域でも配線層との接着強度が良好で、微細配線化に適しており、また288℃はんだ耐熱性にも優れている。このような結果から、本発明の配線板の製造方法により、配線の微細化や環境対応性に優れた配線板を得ることができる。




As is clear from Tables 1 and 2, the wiring board using the method of the present invention has good adhesion strength with the wiring layer even in a relatively smooth region where the surface roughness of the insulating layer is small and suitable for miniaturization. It also has excellent 288 ° C. solder heat resistance. From such a result, the wiring board excellent in refinement | miniaturization of wiring and environmental compatibility can be obtained with the manufacturing method of the wiring board of this invention.




Claims (12)

絶縁樹脂からなる絶縁層を形成する工程、絶縁層表面をpH11以上の水溶液で処理する工程、絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程、デスミア処理工程、及び絶縁層表面に配線層をめっきにより形成する配線形成工程、を含む配線板の製造方法。   A step of forming an insulating layer made of an insulating resin, a step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more, a step of treating the surface of the insulating layer with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved, desmear treatment A method for manufacturing a wiring board, comprising: a step of forming a wiring layer on a surface of the insulating layer by plating. 基材を準備する工程、基材の片面または両面に絶縁樹脂からなる絶縁層を形成する工程、をさらに含む請求項1に記載の配線板の製造方法。   The manufacturing method of the wiring board of Claim 1 which further includes the process of forming the base material and the process of forming the insulating layer which consists of insulating resin in the single side | surface or both surfaces of a base material. pH11以上の水溶液が、水酸化化合物を含む水溶液であり、かつカルボン酸を構造中に1つ以上含む化合物が、アミノ酸である請求項1または2に記載の配線板の製造方法。   The method for producing a wiring board according to claim 1 or 2, wherein the aqueous solution having a pH of 11 or more is an aqueous solution containing a hydroxide compound, and the compound containing one or more carboxylic acids in the structure is an amino acid. 水酸化化合物が、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化セシウム、水酸化マグネシウム、水酸化マンガンからなる群から選択され、かつアミノ酸が、アラニン、グルタミン、システイン、アルギニン、アスパラギン、セリン、グルタミン酸、トレオニン、フェニルアラニン、バリン、グリシン、トリプトファン、ヒスチジン、チロシン、イソロイシン、リジン、ロイシン、メチオニン、アスパラギン、プロリンからなる群から選択される請求項3に記載の配線板の製造方法。   The hydroxide compound is selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, cesium hydroxide, magnesium hydroxide, manganese hydroxide, and the amino acid is alanine, glutamine, cysteine, arginine, asparagine, serine The method for producing a wiring board according to claim 3, wherein the wiring board is selected from the group consisting of glutamic acid, threonine, phenylalanine, valine, glycine, tryptophan, histidine, tyrosine, isoleucine, lysine, leucine, methionine, asparagine, and proline. pH11以上の水溶液の水酸化化合物の濃度が5〜40重量%であり、かつカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液のアミノ酸の濃度が0.1〜20重量%である請求項3または4に記載の配線板の製造方法。   The concentration of the hydroxylated compound in the aqueous solution having a pH of 11 or more is 5 to 40% by weight, and the concentration of the amino acid in the aqueous solution in which the compound containing one or more carboxylic acids in the structure is dissolved is 0.1 to 20% by weight. Item 5. A method for manufacturing a wiring board according to Item 3 or 4. 絶縁層表面をpH11以上の水溶液で処理する工程が、デスミア処理工程の前で行われ、かつ絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程が、デスミア処理工程後であって、かつ絶縁層表面に配線層をめっきにより形成する配線形成工程の前で行われる請求項1〜5いずれかに記載の配線板の製造方法。   The step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more is performed before the desmear treatment step, and the step of treating the surface of the insulating layer with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved. The manufacturing method of the wiring board in any one of Claims 1-5 performed after the process process and before the wiring formation process which forms a wiring layer in the insulating layer surface by plating. 絶縁層をpH11以上の水溶液で処理する工程が、絶縁層表面をpH11以上の50〜85℃の水溶液で10〜60分間処理する工程であり、かつ絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程が、絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した10〜40℃の水溶液で1〜20分間処理する工程である請求項1〜6いずれかに記載の配線板の製造方法。   The step of treating the insulating layer with an aqueous solution having a pH of 11 or more is a step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more at 50 to 85 ° C. for 10 to 60 minutes, and the insulating layer surface has one carboxylic acid in the structure. The step of treating with an aqueous solution in which the compound containing the above is dissolved is a step of treating the surface of the insulating layer with an aqueous solution at 10 to 40 ° C in which a compound containing one or more carboxylic acids in the structure is dissolved for 1 to 20 minutes. The manufacturing method of the wiring board in any one of -6. 絶縁樹脂が、pH11以上の水溶液で処理することにより分子構造が変化する絶縁樹脂である請求項1〜7いずれかに記載の配線板の製造方法。   The method for manufacturing a wiring board according to any one of claims 1 to 7, wherein the insulating resin is an insulating resin whose molecular structure is changed by treatment with an aqueous solution having a pH of 11 or more. 絶縁樹脂が、pH11以上の水溶液で処理することによりエーテル結合又はエステル結合が増加する絶縁樹脂である請求項1〜7いずれかに記載の配線板の製造方法。   The method for manufacturing a wiring board according to any one of claims 1 to 7, wherein the insulating resin is an insulating resin in which an ether bond or an ester bond is increased by treatment with an aqueous solution having a pH of 11 or more. 配線層が、銅層である請求項1〜9いずれかに記載の配線板の製造方法。   The method for manufacturing a wiring board according to claim 1, wherein the wiring layer is a copper layer. 絶縁樹脂からなる絶縁層を形成する工程、絶縁層表面をpH11以上の水溶液で処理する工程、絶縁層表面をカルボン酸を構造中に1つ以上含む化合物を溶解した水溶液で処理する工程、及び絶縁層表面に配線層をめっきにより形成する配線形成工程を複数回繰り返すことを特徴とする請求項1〜10いずれかに記載の配線板の製造方法。   A step of forming an insulating layer made of an insulating resin, a step of treating the surface of the insulating layer with an aqueous solution having a pH of 11 or more, a step of treating the surface of the insulating layer with an aqueous solution in which a compound containing one or more carboxylic acids in the structure is dissolved, and insulation The method for manufacturing a wiring board according to any one of claims 1 to 10, wherein a wiring forming step of forming a wiring layer on the surface of the layer by plating is repeated a plurality of times. 請求項1〜11いずれかに記載の配線板の製造方法で製造された配線板。



The wiring board manufactured with the manufacturing method of the wiring board in any one of Claims 1-11.



JP2005181847A 2005-02-22 2005-06-22 Wiring board manufacturing method and wiring board Expired - Fee Related JP4692096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181847A JP4692096B2 (en) 2005-02-22 2005-06-22 Wiring board manufacturing method and wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005045558 2005-02-22
JP2005045558 2005-02-22
JP2005181847A JP4692096B2 (en) 2005-02-22 2005-06-22 Wiring board manufacturing method and wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010249175A Division JP2011023771A (en) 2005-02-22 2010-11-05 Method for manufacturing wiring board and wiring board

Publications (2)

Publication Number Publication Date
JP2006270020A true JP2006270020A (en) 2006-10-05
JP4692096B2 JP4692096B2 (en) 2011-06-01

Family

ID=37205601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181847A Expired - Fee Related JP4692096B2 (en) 2005-02-22 2005-06-22 Wiring board manufacturing method and wiring board

Country Status (1)

Country Link
JP (1) JP4692096B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124281A (en) * 1990-09-13 1992-04-24 Hitachi Chem Co Ltd Electroless copper plating method
JPH09258442A (en) * 1996-03-26 1997-10-03 Hitachi Ltd Photosensitive resin composition
JP2000133936A (en) * 1998-10-23 2000-05-12 Fuji Photo Film Co Ltd Manufacture of multilayer wiring board
JP2002293965A (en) * 2001-03-29 2002-10-09 Ube Ind Ltd Method for treating surface and polyimide film having metal thin film
JP2002322278A (en) * 2001-04-26 2002-11-08 Hitachi Cable Ltd Solvent-soluble polyimide composition
JP2004009485A (en) * 2002-06-06 2004-01-15 Toppan Printing Co Ltd Polyimide resin film, multilayer circuit board using the same and its manufacturing process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124281A (en) * 1990-09-13 1992-04-24 Hitachi Chem Co Ltd Electroless copper plating method
JPH09258442A (en) * 1996-03-26 1997-10-03 Hitachi Ltd Photosensitive resin composition
JP2000133936A (en) * 1998-10-23 2000-05-12 Fuji Photo Film Co Ltd Manufacture of multilayer wiring board
JP2002293965A (en) * 2001-03-29 2002-10-09 Ube Ind Ltd Method for treating surface and polyimide film having metal thin film
JP2002322278A (en) * 2001-04-26 2002-11-08 Hitachi Cable Ltd Solvent-soluble polyimide composition
JP2004009485A (en) * 2002-06-06 2004-01-15 Toppan Printing Co Ltd Polyimide resin film, multilayer circuit board using the same and its manufacturing process

Also Published As

Publication number Publication date
JP4692096B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
TWI437937B (en) Copper wiring polyimine film manufacturing method and copper wiring polyimide film
JP2004189981A (en) Thermoplastic polyimide resin material and laminated body, and manufacturing method of printed wiring board
JP2007109982A (en) Method for manufacturing copper wired polyimide film
JP5870550B2 (en) Manufacturing method of flexible printed circuit board
JP2006278371A (en) Manufacturing method of polyimide-metal layer laminate, and the polyimide-metal layer laminate obtained thereby
JP5345116B2 (en) Copper-clad laminate, manufacturing method thereof, and wiring board including the copper-clad laminate
JP5077840B2 (en) Coverlay
JP2007288152A (en) Laminate
JP2006108174A (en) Polyamideimide film with circuit board metal and its manufacturing method
JP3929925B2 (en) Method for producing metal-clad liquid crystal polyester substrate
KR100656246B1 (en) Manufacturing method of flexible copper clad laminate using surface modification of polyimide film and its product thereby
JP4692096B2 (en) Wiring board manufacturing method and wiring board
JP2009283528A (en) Polyimide base printed wiring board and method of manufacturing the same
JP2000286546A (en) Production of printed wiring board
JP2011023771A (en) Method for manufacturing wiring board and wiring board
JP4274824B2 (en) Resin film, laminate, printed wiring board using the same, and manufacturing method thereof
JP2004273744A (en) Thermoplastic resin material and manufacturing method of printed circuit board
JP2004014611A (en) Insulation film with supports, multilayer printed circuit board, and its manufacturing method
JP2005135985A (en) Manufacturing method for printed wiring board
JP4677703B2 (en) POLYIMIDE RESIN FILM AND METHOD FOR PRODUCING MULTILAYER WIRING BOARD USING SAME
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP2007262481A (en) Surface metallizing method of polyimide resin material
JP4019800B2 (en) Insulating resin composition manufacturing method, insulating resin composition, multilayer wiring board and manufacturing method thereof
JP4618969B2 (en) Manufacturing method of multilayer printed wiring board
JP2003198122A (en) Method of manufacturing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A131 Notification of reasons for refusal

Effective date: 20100909

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20140304

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20140304

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees