JP2006269938A - Light emitting device, phosphor for light emitting element and its manufacturing method - Google Patents

Light emitting device, phosphor for light emitting element and its manufacturing method Download PDF

Info

Publication number
JP2006269938A
JP2006269938A JP2005088908A JP2005088908A JP2006269938A JP 2006269938 A JP2006269938 A JP 2006269938A JP 2005088908 A JP2005088908 A JP 2005088908A JP 2005088908 A JP2005088908 A JP 2005088908A JP 2006269938 A JP2006269938 A JP 2006269938A
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005088908A
Other languages
Japanese (ja)
Other versions
JP4760082B2 (en
Inventor
Shoji Hosokawa
昌治 細川
Hiroto Tamaoki
寛人 玉置
Yasunobu Noguchi
泰延 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2005088908A priority Critical patent/JP4760082B2/en
Publication of JP2006269938A publication Critical patent/JP2006269938A/en
Application granted granted Critical
Publication of JP4760082B2 publication Critical patent/JP4760082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high reliable light emitting device or the like which is excellent in a thermal resistance. <P>SOLUTION: The light emitting device is equipped with a light emitting element; and a phosphor arranged around the light emitting element so as to absorb at least a part of a light emitted from the light emitting element, and to convert the absorbed light into a distinct wavelength. The phosphor consists of a nitride system fluorescence material or an oxynitride system fluorescence material which contains nitrogen, and a front surface of the phosphor is processed by a compound containing phosphorus. This configuration makes it possible to prevent the phosphor made of a nitride and an oxynitride from oxidizing, and to suppress a deterioration of the phosphor and to stably use the phosphor for a long period of time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光素子と該発光素子の発する光の波長を変換する蛍光体を備える発光装置並びに発光素子用蛍光体及び該蛍光体の製造方法に関し、例えばLEDやLD等の半導体発光素子と、この半導体発光素子で発光された光の少なくとも一部を吸収すると共に、吸収した光とは異なる波長の光を発光する窒化物系蛍光体やその製造方法、該蛍光体を用いた発光装置に関する。   The present invention relates to a light emitting device including a light emitting element and a phosphor that converts the wavelength of light emitted from the light emitting element, a phosphor for the light emitting element, and a method for manufacturing the phosphor, for example, a semiconductor light emitting element such as an LED or an LD, The present invention relates to a nitride-based phosphor that absorbs at least a part of light emitted by the semiconductor light-emitting element and emits light having a wavelength different from that of the absorbed light, a manufacturing method thereof, and a light-emitting device using the phosphor.

発光素子に半導体素子を用いた発光装置は、小型で電力効率が良く鮮やかな色の発光をする。また、半導体素子である発光素子は球切れ等の心配がない。さらに初期駆動特性が優れ、振動やオン・オフ点灯の繰り返しに強いという特徴を有する。このような優れた特性を有するため、発光ダイオード(LED)、レーザーダイオード(LD)等の半導体発光素子を用いる発光装置は、各種の光源として利用されている。   A light-emitting device using a semiconductor element as a light-emitting element emits light with a small color, high power efficiency, and vivid colors. In addition, a light emitting element which is a semiconductor element does not have a concern about a broken ball. Further, it has excellent initial driving characteristics and is strong against vibration and repeated on / off lighting. Because of such excellent characteristics, light-emitting devices using semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) are used as various light sources.

特に、GaN系化合物半導体を利用した高輝度の青色発光のLEDが開発され、その輝度性を活用して白色発光の発光装置が実現されている。この白色発光の発光装置は、青色に発光する発光素子の周りを黄緑色に発光する蛍光物質を含む樹脂で被覆して、白色光を得るというものである。   In particular, a high-luminance blue light-emitting LED using a GaN-based compound semiconductor has been developed, and a white light-emitting device has been realized by utilizing the luminance. In this white light emitting device, a light emitting element that emits blue light is covered with a resin containing a fluorescent material that emits yellow green light to obtain white light.

発光素子の光の一部を蛍光体により波長変換し、波長変換された光と、波長変換されない発光素子の光とを混合等して放出することにより、発光素子の光と異なる発光色を発光する発光装置が開発されている。例えば、発光素子としてInGaN系材料を使った青色発光ダイオード(Light Emitting Diode、以下「LED」ともいう)を用い、その表面に(Y,Gd)3(Al,Ga)512:Ceの組成式で表されるYAG:Ce系蛍光体を含む、エポキシ樹脂等の透明性材料からなる蛍光部材をコーティングした白色LED発光装置が実用化されている。白色LED発光装置の発光色は、光の混色の原理によって得られる。発光素子から放出された青色光は、蛍光部材の中に入射した後、層内で吸収と散乱を繰り返した後、外部へ放出される。一方、蛍光体に吸収された青色光は励起源として働き、黄色もしくは黄緑色の光を発光する。この黄色光と青色光が混ぜ合わされて人間の目には白色として見える。このようなLEDを用いたLED発光装置は、小型で電力効率が高く鮮やかな色の発光をする。また、LEDは半導体素子であるために球切れなどの心配がない。更に初期駆動特性が優れ、オン・オフ点灯の繰り返しに強いという特長を有する。このような優れた特性を有するためLED発光装置は各種の光源として利用されている。
特開2002−223008号公報
A part of the light from the light-emitting element is wavelength-converted by the phosphor, and the wavelength-converted light and the light from the light-emitting element that is not wavelength-converted are mixed and emitted to emit light that is different from the light from the light-emitting element. A light emitting device has been developed. For example, a blue light-emitting diode (Light Emitting Diode, hereinafter also referred to as “LED”) using an InGaN-based material as a light-emitting element is used, and a composition of (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce is formed on the surface thereof. A white LED light-emitting device coated with a fluorescent member made of a transparent material such as an epoxy resin containing a YAG: Ce-based phosphor represented by the formula has been put into practical use. The emission color of the white LED light emitting device is obtained by the principle of light color mixing. The blue light emitted from the light emitting element is incident on the fluorescent member, and after being repeatedly absorbed and scattered in the layer, is emitted to the outside. On the other hand, the blue light absorbed by the phosphor serves as an excitation source and emits yellow or yellow-green light. This yellow light and blue light are mixed and appear as white to the human eye. An LED light emitting device using such an LED emits light with a small size, high power efficiency, and vivid colors. In addition, since the LED is a semiconductor element, there is no fear of a broken ball. Furthermore, it has excellent initial drive characteristics and is strong against repeated on / off lighting. Since it has such excellent characteristics, LED light-emitting devices are used as various light sources.
JP 2002-223008 A

しかしながら、上記の白色に発光する発光装置は、可視光領域の長波長側の発光が得られ難いため、赤み成分が不足したやや青白い白色の発光装置となっていた。特に、点灯のディスプレイ用の照明や、医療現場用の照明などにおいては、やや赤みを帯びた暖色系の白色の発光装置が求められている。また、発光素子は電球と比べて、一般的に寿命が長く、人の目にやさしいため、電球色に近い白色の発光装置が強く求められている。   However, since the light emitting device that emits white light does not easily emit light on the long wavelength side in the visible light region, the light emitting device has a slightly bluish white light that lacks a red component. In particular, a warm red light emitting device that is slightly reddish is required for lighting for lighting displays and lighting for medical sites. In addition, since light emitting elements generally have a longer life than human light bulbs and are easy on human eyes, a white light emitting device close to the color of a light bulb is strongly demanded.

通常、赤みが増すと、発光装置の発光特性が低下する。人間の目が感じる色味は、波長が380nm〜780nm領域の電磁波に明るさの感覚を生じる。これを表す指標の1つとしては、視感度特性が挙げられる。視感度特性は山型になっており、550nmがピークとなっている。赤み成分の領域である580nm〜680nm付近と550nm付近に同じ電磁波が入射してきた場合、赤み成分の波長域の方が暗く感じる。そのため、緑色、青色領域と同じ程度の明るさを感じるためには、赤色領域は、高密度の電磁波の入射が必要となる。   Usually, when redness increases, the light emission characteristics of the light emitting device deteriorate. The color perceived by human eyes produces a sense of brightness in electromagnetic waves having a wavelength in the range of 380 nm to 780 nm. One of the indexes representing this is the visibility characteristic. The visibility characteristic has a mountain shape, and has a peak at 550 nm. When the same electromagnetic wave is incident on the red component region near 580 nm to 680 nm and 550 nm, the red component wavelength region feels darker. Therefore, in order to feel the same level of brightness as the green and blue regions, the red region requires high-density electromagnetic wave incidence.

また、従来の赤色発光の蛍光体は、近紫外からの青色光励起による効率および耐久性が十分ではなく、更に高温になると急激に発光効率が低下するという問題があった。   Further, the conventional red light-emitting phosphor has a problem in that the efficiency and durability due to excitation of blue light from the near ultraviolet are not sufficient, and the light emission efficiency rapidly decreases at higher temperatures.

本発明は、このような問題点を解決するためになされたものである。本発明の主な目的は耐熱性に優れた信頼性の高い発光装置、発光素子用蛍光体及びその製造方法を提供することにある。   The present invention has been made to solve such problems. A main object of the present invention is to provide a highly reliable light-emitting device having excellent heat resistance, a phosphor for a light-emitting element, and a method for manufacturing the same.

以上の目的を達成するために本発明に係る発光装置は、発光素子と、発光素子の発する光の少なくとも一部を吸収し異なる波長に変換するよう、発光素子の周囲に配置された蛍光体とを備える発光装置であって、蛍光体が窒素を含有する窒化物系蛍光材料または酸窒化物系蛍光材料よりなり、かつ蛍光体の表面をリンを含む化合物で処理している。この構成により、窒化物や酸窒化物の蛍光体の酸化を防止し、蛍光体の劣化を抑制して長期にわたって安定した使用を可能とする。   In order to achieve the above object, a light-emitting device according to the present invention includes a light-emitting element and a phosphor disposed around the light-emitting element so as to absorb at least a part of light emitted from the light-emitting element and convert it to a different wavelength. The phosphor is made of a nitride-based fluorescent material or oxynitride-based fluorescent material containing nitrogen, and the surface of the phosphor is treated with a compound containing phosphorus. With this configuration, the phosphor of nitride or oxynitride is prevented from being oxidized, and deterioration of the phosphor is suppressed to enable stable use over a long period of time.

また、前記発光装置は、蛍光体表面を処理する化合物がリン酸塩であることが好ましい。この構成により、窒化物や酸窒化物の蛍光体の酸化を防止し、蛍光体の劣化を抑制して長期にわたって安定した使用を可能とする。リン含有化合物は、リン酸、リン酸塩、リン酸水素塩、リン酸二水素塩等の水溶液である。リン酸、リン酸塩には亜リン酸、次亜リン酸、オルトリン酸、ピロリン酸、トリポリリン酸、メタリン酸、ヘキサメタリン酸等のポリリン酸等が使用可能である。   In the light emitting device, the compound for treating the phosphor surface is preferably a phosphate. With this configuration, the phosphor of nitride or oxynitride is prevented from being oxidized, and deterioration of the phosphor is suppressed to enable stable use over a long period of time. The phosphorus-containing compound is an aqueous solution of phosphoric acid, phosphate, hydrogen phosphate, dihydrogen phosphate and the like. As phosphoric acid and phosphate, polyphosphoric acid such as phosphorous acid, hypophosphorous acid, orthophosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, metaphosphoric acid and hexametaphosphoric acid can be used.

さらに、前記発光装置は、蛍光体が透光性樹脂に含有されて発光素子の周囲に配置されていることが好ましい。この構成により、透光性樹脂との界面での水分や酸化による蛍光体の劣化の抑止し、信頼性高く使用できる。   Furthermore, in the light emitting device, it is preferable that a phosphor is contained in a light-transmitting resin and disposed around the light emitting element. With this configuration, deterioration of the phosphor due to moisture or oxidation at the interface with the translucent resin can be suppressed, and the phosphor can be used with high reliability.

さらにまた、本発明に係る発光素子用蛍光体は、発光素子の発する光の少なくとも一部を吸収し異なる波長に変換するための発光素子用蛍光体であって、蛍光体が窒素を含有する窒化物系蛍光材料または酸窒化物系蛍光材料よりなり、かつ蛍光体の表面をリンを含む化合物で処理している。この構成により、窒化物や酸窒化物の蛍光体の酸化を防止し、蛍光体の劣化を抑制して長期にわたって安定した使用を可能とする。   Furthermore, the phosphor for a light emitting device according to the present invention is a phosphor for a light emitting device for absorbing at least a part of light emitted from the light emitting device and converting it to a different wavelength, wherein the phosphor contains nitrogen. It is made of a material-based fluorescent material or an oxynitride-based fluorescent material, and the surface of the phosphor is treated with a compound containing phosphorus. With this configuration, the phosphor of nitride or oxynitride is prevented from being oxidized, and deterioration of the phosphor is suppressed to enable stable use over a long period of time.

さらにまた、前記発光素子用蛍光体は、蛍光体表面を処理する化合物がリン酸塩であることが好ましい。この構成により、窒化物や酸窒化物の蛍光体の酸化を防止し、蛍光体の劣化を抑制して長期にわたって安定した使用を可能とする。   Furthermore, in the phosphor for light emitting element, it is preferable that the compound for treating the phosphor surface is a phosphate. With this configuration, the phosphor of nitride or oxynitride is prevented from being oxidized, and deterioration of the phosphor is suppressed to enable stable use over a long period of time.

さらにまた、前記発光素子用蛍光体は、蛍光体が、L−M−N:R、L−J−M−N:R、またはL−M−O−N:R(LはBe、Mg、Ca、Sr、Ba、Znからなる群より選ばれる1種以上を含有し、MはC、Si、Ge、Sn、Ti、Zr、Hfからなる群より選ばれる1種以上を含有し、JはB、Al、Ga、In、Scからなる群より選ばれる1種類以上を含有し、Nは窒素、Oは酸素、Rは希土類元素である。)で表される窒化物系または酸窒化物系蛍光体である。   Furthermore, the phosphor for a light-emitting element has a phosphor of LMN: R, LJMN: R, or LMON: R (L is Be, Mg, Contains one or more selected from the group consisting of Ca, Sr, Ba, Zn, M contains one or more selected from the group consisting of C, Si, Ge, Sn, Ti, Zr, Hf, J is 1 or more selected from the group consisting of B, Al, Ga, In, and Sc, N is nitrogen, O is oxygen, and R is a rare earth element.) It is a phosphor.

さらにまた、前記発光素子用蛍光体は、蛍光体が、Lxy{(2/3)x+(4/3)y}:R、Lxwy{(2/3)x+w+(4/3)y}:R、またはLxyz{(2/3)x+(4/3)y-(2/3)z}:R(0.5≦x≦3、0.5≦y≦9、0.5≦w≦5、0<z≦3;LはBe、Mg、Ca、Sr、Ba、Znからなる群より選ばれる1種以上を含有し、MはC、Si、Ge、Sn、Ti、Zr、Hfからなる群より選ばれる1種以上を含有し、JはB、Al、Ga、In、Scからなる群より選ばれる1種類以上を含有し、Nは窒素、Oは酸素、Rは希土類元素である。)で表され、かつ結晶構造を有する。 Furthermore, the light emitting element for phosphors, phosphor, L x M y N {( 2/3) x + (4/3) y}: R, L x J w M y N {(2/3) x + w + (4/3) y }: R or L x M y O z N { (2/3) x + (4/3) y- (2/3) z},: R (0.5 ≦ x ≦ 3, 0.5 ≦ y ≦ 9, 0.5 ≦ w ≦ 5, 0 <z ≦ 3; L contains one or more selected from the group consisting of Be, Mg, Ca, Sr, Ba, Zn. , M contains one or more selected from the group consisting of C, Si, Ge, Sn, Ti, Zr, and Hf, and J contains one or more selected from the group consisting of B, Al, Ga, In, and Sc. And N is nitrogen, O is oxygen, and R is a rare earth element) and has a crystal structure.

例えば、発光素子用蛍光体は、Ca2Si58:Eu、Sr2Si58:Eu、(Sr0.5Ca0.52Sr58:Eu、Ca2Si50.17.9:Eu、Sr2Si50.17.9:Eu、(Sr0.5Ca0.52Sr50.17.9:Eu、BaSi222:Eu、SrSi222:Eu、CaSi222:Eu、CaAlSiN3:Eu、SrAlSiN3:Eu、(Ca0.5Sr0.5)AlSiN3:Eu、CaAlSiBx3+x:Eu、SrAlSiBx3+x:Eu、(Ca0.5Sr0.5)AlSiBx3+x:Eu等で表され、かつ結晶構造を有する。 For example, phosphors for light emitting elements are Ca 2 Si 5 N 8 : Eu, Sr 2 Si 5 N 8 : Eu, (Sr 0.5 Ca 0.5 ) 2 Sr 5 N 8 : Eu, Ca 2 Si 5 O 0.1 N 7.9 : Eu, Sr 2 Si 5 O 0.1 N 7.9 : Eu, (Sr 0.5 Ca 0.5 ) 2 Sr 5 O 0.1 N 7.9 : Eu, BaSi 2 O 2 N 2 : Eu, SrSi 2 O 2 N 2 : Eu, CaSi 2 O 2 N 2 : Eu, CaAlSiN 3 : Eu, SrAlSiN 3 : Eu, (Ca 0.5 Sr 0.5 ) AlSiN 3 : Eu, CaAlSiB x N 3 + x : Eu, SrAlSiB x N 3 + x : Eu, (Ca 0.5 Sr 0.5 ) AlSiB x N 3 + x : Eu or the like and has a crystal structure.

さらにまた、前記発光素子用蛍光体は、蛍光体の結晶構造が単斜晶または斜方晶である。また発光素子用蛍光体はB元素を含有してもよい。   Furthermore, in the phosphor for light emitting element, the crystal structure of the phosphor is monoclinic or orthorhombic. Moreover, the phosphor for light emitting element may contain B element.

また、本発明に係る発光素子用蛍光体の製造方法は、発光素子の発する光の少なくとも一部を吸収し異なる波長に変換するための発光素子用蛍光体の製造方法であって、リン含有溶液を窒素を含有する窒化物系蛍光材料または酸窒化物系蛍光材料よりなる蛍光体の表面に接触させる工程と、処理された蛍光体を熱処理する工程とを有する。これにより、窒化物や酸窒化物の蛍光体の酸化を防止し、蛍光体の劣化を抑制して長期にわたって安定した使用を可能とする。   The method for producing a phosphor for a light-emitting element according to the present invention is a method for producing a phosphor for a light-emitting element for absorbing at least part of light emitted from the light-emitting element and converting it to a different wavelength. With a surface of a phosphor made of a nitride-based fluorescent material or an oxynitride-based fluorescent material containing nitrogen, and a step of heat-treating the treated phosphor. This prevents oxidation of the nitride or oxynitride phosphor, suppresses deterioration of the phosphor, and enables stable use over a long period of time.

さらに、前記発光素子用蛍光体の製造方法は、熱処理が、酸素を含まない雰囲気中で100℃以上にて行われることが好ましい。これにより、リン含有化合物で処理された蛍光体を改質し、蛍光体をより緻密にして耐久性をさらに向上させることができる。   Furthermore, in the method for manufacturing the phosphor for a light emitting element, it is preferable that the heat treatment is performed at 100 ° C. or higher in an atmosphere not containing oxygen. Thereby, the phosphor treated with the phosphorus-containing compound can be modified to make the phosphor more dense and further improve the durability.

以上に述べたように、本発明の発光装置、発光素子用蛍光体及びその製造方法は、蛍光体の表面をリン含有化合物で処理することにより、蛍光体粒子表面にリン系化合物が付着し、熱酸化雰囲気での特性が改善された蛍光体を提供する。また、窒化物や酸窒化物の蛍光体は熱に対する安定性が高いため、青色発光ダイオード又は紫外線発光ダイオードを光源とする発光特性に極めて優れた白色の発光装置用の波長変換蛍光体として有効である。   As described above, the phosphor of the light emitting device, the phosphor for a light emitting element, and the manufacturing method thereof according to the present invention are obtained by treating the surface of the phosphor with a phosphorus-containing compound so that the phosphor compound is attached to the phosphor particle surface. Provided is a phosphor having improved characteristics in a thermal oxidation atmosphere. In addition, since nitride and oxynitride phosphors have high heat stability, they are effective as wavelength-converting phosphors for white light-emitting devices that have excellent light emission characteristics using blue light-emitting diodes or ultraviolet light-emitting diodes as light sources. is there.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための発光装置、発光素子用蛍光体及びその製造方法を例示するものであって、本発明は発光装置、発光素子用蛍光体及びその製造方法を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(発光装置)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a light emitting device, a phosphor for a light emitting element, and a manufacturing method thereof for embodying the technical idea of the present invention. The present invention is for a light emitting device and a light emitting element. The phosphor and its manufacturing method are not specified as follows. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, but are merely described. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
(Light emitting device)

本発明の実施の形態1に係る発光装置を図1に示す。図1(a)は発光装置の平面図を、図1(b)は模式断面図を、それぞれ示している。半導体発光装置は、パッケージ1中央の凹部に半導体発光素子2を取り付け、半導体発光素子2の電極とパッケージ1の電極はワイヤ4で接続されている。パッケージ1中央の凹部には、蛍光体を分散させたバインダーを所定の量だけ封入し、蛍光体層3を形成している。半導体発光素子2の発光は一部は蛍光体層3を透過し、一部は蛍光体層3によってより長波長の光に変換され、透過光と変換光が合わされて半導体発光装置の発光となる。蛍光体層3の調整により、白色を初めとする種々の色度の半導体発光装置が形成される。   A light-emitting device according to Embodiment 1 of the present invention is shown in FIG. 1A is a plan view of the light emitting device, and FIG. 1B is a schematic cross-sectional view. In the semiconductor light emitting device, a semiconductor light emitting element 2 is attached to a recess in the center of the package 1, and the electrode of the semiconductor light emitting element 2 and the electrode of the package 1 are connected by a wire 4. A predetermined amount of a binder in which a phosphor is dispersed is sealed in the central recess of the package 1 to form a phosphor layer 3. A part of the light emitted from the semiconductor light emitting element 2 is transmitted through the phosphor layer 3, and a part thereof is converted into light having a longer wavelength by the phosphor layer 3, and the transmitted light and the converted light are combined to emit light from the semiconductor light emitting device. . By adjusting the phosphor layer 3, semiconductor light emitting devices of various chromaticities including white are formed.

また、図2に本発明の実施の形態2に係る発光装置の模式断面図を示す。この図に示す発光装置は、蛍光体層3Bをパッケージ1Bの凹部全体に充填せず、半導体発光素子2Bの周囲のみを被覆するように配置している。これにより、半導体発光素子2Bの周囲で蛍光体をほぼ均一に配置して波長変換のむらを低減し、配光色度ムラを抑制できる。半導体発光素子2Bの電極とパッケージ1Bの電極は、図1(b)と同様にワイヤ4Bで接続される。   FIG. 2 shows a schematic cross-sectional view of the light emitting device according to Embodiment 2 of the present invention. In the light emitting device shown in this figure, the phosphor layer 3B is not filled in the entire recess of the package 1B, and is arranged so as to cover only the periphery of the semiconductor light emitting element 2B. As a result, the phosphors are arranged almost uniformly around the semiconductor light emitting element 2B to reduce wavelength conversion unevenness and suppress light distribution chromaticity unevenness. The electrode of the semiconductor light emitting element 2B and the electrode of the package 1B are connected by a wire 4B as in FIG.

さらにまた、図3に本発明の実施の形態3に係る発光装置の模式断面図を示す。この図に示す発光装置は、発光素子10と、窒化物系蛍光体と、窒化物系蛍光体を含む透光性材料からなる蛍光部材11とを備える。この図に示す発光素子10はLEDであり、マウントリード13a上部に配置されたカップのほぼ中央部にダイボンドすることで載置される。発光素子10に形成された電極は、導電性ワイヤ14によってリードフレーム13のマウントリード13aおよびインナーリード13bに導電接続される。発光素子10において発光された光の少なくとも一部を吸収するとともに、吸収した光とは異なる波長の光を発光する窒化物系蛍光材料およびN元素を含有するとともに、窒化物系蛍光材料を被覆する被覆材料とから構成される窒化物系蛍光体を、透光性材料に含む蛍光部材11が、発光素子10が載置されたカップに配置される。このように発光素子10および蛍光部材11を配置したリードフレーム13が、LEDチップや蛍光物質を外部応力、水分および塵芥などから保護する目的でモールド部材15によってモールドされ、発光装置が構成される。また発光素子10は、上述した第1の実施の形態に用いた発光素子と同じタイプが使用できる。
(発光素子)
本明細書において発光素子とは、LED、LD等の半導体発光素子の他、真空放電による発光、熱発光からの発光を得るための素子も含む。例えば真空放電による紫外線等も発光素子として使用できる。本発明の第1の実施の形態においては、発光素子として波長が550nm以下、好ましくは460nm以下、更に好ましくは410nm以下の発光素子を利用する。例えば紫外光として250nm〜365nmの波長の光を発する紫外光LEDや、波長253.7nmの高圧水銀灯を利用できる。特に、後述するように本発明の第1の実施の形態では蛍光体の耐久性が向上されるため、出力の高いパワー系発光素子にも利用できるという利点がある。
Furthermore, FIG. 3 shows a schematic cross-sectional view of a light emitting device according to Embodiment 3 of the present invention. The light-emitting device shown in this figure includes a light-emitting element 10, a nitride-based phosphor, and a fluorescent member 11 made of a translucent material containing the nitride-based phosphor. The light-emitting element 10 shown in this figure is an LED, and is mounted by die-bonding at a substantially central portion of a cup disposed on the mount lead 13a. The electrode formed on the light emitting element 10 is conductively connected to the mount lead 13 a and the inner lead 13 b of the lead frame 13 by the conductive wire 14. The light emitting element 10 absorbs at least a part of the light emitted and contains a nitride fluorescent material that emits light having a wavelength different from the absorbed light and an N element, and covers the nitride fluorescent material. A fluorescent member 11 containing a nitride-based phosphor composed of a coating material in a translucent material is placed in a cup on which the light emitting element 10 is placed. The lead frame 13 in which the light emitting element 10 and the fluorescent member 11 are arranged in this manner is molded by the molding member 15 for the purpose of protecting the LED chip and the fluorescent material from external stress, moisture, dust, and the like, thereby forming a light emitting device. The light emitting element 10 can be the same type as the light emitting element used in the first embodiment described above.
(Light emitting element)
In this specification, the light emitting element includes not only a semiconductor light emitting element such as an LED and an LD, but also an element for obtaining light emission by vacuum discharge and light emission from thermoluminescence. For example, ultraviolet light by vacuum discharge can be used as the light emitting element. In the first embodiment of the present invention, a light emitting element having a wavelength of 550 nm or less, preferably 460 nm or less, more preferably 410 nm or less is used as the light emitting element. For example, an ultraviolet light LED that emits light having a wavelength of 250 nm to 365 nm as ultraviolet light or a high-pressure mercury lamp having a wavelength of 253.7 nm can be used. In particular, as described later, in the first embodiment of the present invention, the durability of the phosphor is improved, so that there is an advantage that it can be used for a power-based light emitting device having a high output.

LEDやLDを構成する各半導体層としては、種々の窒化物半導体を用いることができる。具体的には、有機金属気相成長法(MOCVD)、ハイドライド気相成長法(HVPE)などにより基板上にInXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)等の半導体を複数形成させたものが好適に用いられる。また、その層構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。また、各層を超格子構造としたり、活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。 Various nitride semiconductors can be used as each semiconductor layer constituting the LED or LD. Specifically, the organic metal chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE) or the like on the substrate In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) A semiconductor in which a plurality of such semiconductors are formed is preferably used. In addition, the layer structure includes a homo structure having a MIS junction, a PIN junction or a PN junction, a hetero structure, or a double hetero structure. Each layer may have a superlattice structure, or may have a single quantum well structure or a multiple quantum well structure in which an active layer is formed in a thin film in which a quantum effect is generated.

LEDは、一般的には、特定の基板上に各半導体層を成長させて形成されるが、その際、基板としてサファイア等の絶縁性基板を用いその絶縁性基板を最終的に取り除かない場合、通常、p側電極およびn側電極はいずれも半導体層上の同一面側に形成されることになる。この場合、フェイスアップ実装、すなわち半導体層側を視認側に配置し、発光された光を半導体層側から取り出すことも可能であるし、あるいは実施の形態4として図4に示すようにフェイスダウン実装、すなわち基板側を視認側に配置し、発光された光を基板側から取り出すことも可能である。もちろん、最終的に基板を除去した上で、フェイスアップ実装或いはフェイスダウン実装することもできる。なお、基板はサファイアに限定されず、スピネル、SiC、GaN、GaAs等、公知の部材を用いることができる。
(フェイスダウン実装)
The LED is generally formed by growing each semiconductor layer on a specific substrate, but when an insulating substrate such as sapphire is used as the substrate and the insulating substrate is not finally removed, Usually, both the p-side electrode and the n-side electrode are formed on the same surface side on the semiconductor layer. In this case, face-up mounting, that is, it is possible to arrange the semiconductor layer side on the viewing side and take out emitted light from the semiconductor layer side, or face-down mounting as shown in FIG. That is, it is also possible to arrange the substrate side on the viewing side and take out the emitted light from the substrate side. Of course, it is also possible to mount the face up or face down after finally removing the substrate. The substrate is not limited to sapphire, and a known member such as spinel, SiC, GaN, or GaAs can be used.
(Face-down mounting)

フェイスダウン実装はフリップチップ実装とも呼ばれ、同一面側に正負両電極が設けられている半導体発光素子チップの電極形成面を支持基板等の導電パターンに対向させ、バンプなどの導電性部材を介して接合する実装方法である。したがってフリップチップ型の発光素子は、支持基板と接続する面に電極を形成している。図4に、半導体発光素子2Cをフリップチップ実装したパッケージ1Cの概略断面図を示す。この例において1Cはサブマウント部材を示しており、半導体発光素子2Cをサブマウント部材のリード電極上にフェイスダウン実装させた状態で、半導体発光素子2Cの上面及び側面は、蛍光物質を含む蛍光含有樹脂である蛍光体層3Cで被覆される。また半導体発光素子2Cは、サブマウント部材に設けられたリード電極をワイヤで、もしくはバンプを介して直接支持基板と電気的に接続される。なおサブマウント部材は、半導体発光素子を順方向・逆方向の過電圧から保護するための保護素子の機能を備えることもできる。またサブマウント部材を用いず、直接支持基板に半導体素子を実装することもできる。   Face-down mounting is also called flip-chip mounting, and the electrode forming surface of a semiconductor light-emitting element chip on which positive and negative electrodes are provided on the same side is made to face a conductive pattern such as a support substrate, and through a conductive member such as a bump. Mounting method. Therefore, the flip-chip light emitting element has electrodes formed on the surface connected to the support substrate. FIG. 4 shows a schematic cross-sectional view of a package 1C in which the semiconductor light emitting element 2C is flip-chip mounted. In this example, reference numeral 1C denotes a submount member. In a state where the semiconductor light emitting element 2C is mounted face-down on the lead electrode of the submount member, the upper surface and the side surface of the semiconductor light emitting element 2C include a fluorescent material containing a fluorescent material. It is covered with a phosphor layer 3C which is a resin. In the semiconductor light emitting element 2C, the lead electrode provided on the submount member is electrically connected to the support substrate directly with a wire or via a bump. The submount member can also have a function of a protective element for protecting the semiconductor light emitting element from forward and reverse overvoltages. Further, the semiconductor element can be directly mounted on the support substrate without using the submount member.

次に発光素子として、III属窒化物系半導体発光素子を使用する例を説明する。発光素子は、例えばサファイア基板上にGaNバッファ層を介して、Siがアンドープ又はSi濃度が低い第1のn型GaN層、Siがドープされ又はSi濃度が第1のn型GaN層よりも高いn型GaNからなるn型コンタクト層、アンドープ又はSi濃度がn型コンタクト層よりも低い第2のGaN層、多重量子井戸構造の発光層(GaN障壁層/InGaN井戸層の量子井戸構造)、Mgがドープされたp型GaNからなるp型GaNからなるpクラッド層、Mgがドープされたp型GaNからなるp型コンタクト層が順次積層された積層構造を有し、以下のように電極が形成されている。ただ、この構成と異なる発光素子も使用できることはいうまでもない。pオーミック電極は、p型コンタクト層上のほぼ全面に形成され、そのpオーミック電極上の一部にpパッド電極が形成される。また、n電極は、エッチングによりp型コンタクト層から第1のGaN層を除去してn型コンタクト層の一部を露出させ、その露出された部分に形成される。なお、第1の実施の形態では多重量子井戸構造の発光層を用いたが、本発明はこれに限定されるものではなく、例えばInGaNを利用した単一量子井戸構造や多重量子井戸構造としてもよいし、Si、Zn等がドープされたGaNを利用してもよい。   Next, an example in which a Group III nitride semiconductor light emitting device is used as the light emitting device will be described. The light emitting element is, for example, a first n-type GaN layer in which Si is undoped or has a low Si concentration via a GaN buffer layer on a sapphire substrate, Si is doped, or the Si concentration is higher than that in the first n-type GaN layer. An n-type contact layer made of n-type GaN, a second GaN layer having an undoped or Si concentration lower than that of the n-type contact layer, a light emitting layer having a multiple quantum well structure (GaN barrier layer / InGaN well layer quantum well structure), Mg A p-type cladding layer made of p-type GaN doped with p-type GaN and a p-type contact layer made of p-type GaN doped with Mg are sequentially stacked, and an electrode is formed as follows Has been. However, it goes without saying that a light-emitting element different from this configuration can also be used. The p ohmic electrode is formed on almost the entire surface of the p-type contact layer, and the p pad electrode is formed on a part of the p ohmic electrode. The n-electrode is formed on the exposed portion by removing the first GaN layer from the p-type contact layer by etching to expose a part of the n-type contact layer. In the first embodiment, the light emitting layer having a multiple quantum well structure is used. However, the present invention is not limited to this. For example, a single quantum well structure or a multiple quantum well structure using InGaN may be used. Alternatively, GaN doped with Si, Zn or the like may be used.

また、発光素子の発光層は、Inの含有量を変化させることにより、420nmから490nmの範囲において主発光ピークを変更することができる。また、発光波長は、上記範囲に限定されるものではなく、360〜550nmに発光波長を有しているものを使用することができる。特に、本発明の発光装置を紫外光LED発光装置に適用した場合、励起光の吸収変換効率を高めることができ、透過紫外光を低減することができる。
(蛍光体)
上記の実施の形態で使用される蛍光体は、発光素子から放出された可視光や紫外光を他の発光波長に変換する。吸収光の波長より長波長の光を放出する波長変換材料として蛍光体を使用し、発光素子の発光と蛍光体の変換光の混色により所望の光を外部に放出させることができる。蛍光体は透光性を備えており、例えばLEDの半導体発光層から発光された光で励起されて発光する。好ましい蛍光体としては、ユーロピウムが附括されたYAG系、銀とアルミニウムによって共附括された硫化亜鉛、アルカリ土類窒化珪素蛍光体等のナイトライド系、アルカリ土類酸化窒化珪素蛍光体等のオキシナイトライド系の蛍光体が利用できる。また紫外光により励起されて所定の色の光を発生する蛍光体を用いてもよい。
The light emitting layer of the light emitting element can change the main light emission peak in the range of 420 nm to 490 nm by changing the In content. The emission wavelength is not limited to the above range, and those having an emission wavelength of 360 to 550 nm can be used. In particular, when the light-emitting device of the present invention is applied to an ultraviolet LED light-emitting device, the absorption conversion efficiency of excitation light can be increased, and transmitted ultraviolet light can be reduced.
(Phosphor)
The phosphor used in the above embodiment converts visible light or ultraviolet light emitted from the light emitting element into another emission wavelength. A phosphor is used as a wavelength conversion material that emits light having a wavelength longer than the wavelength of the absorbed light, and desired light can be emitted to the outside by color mixture of light emitted from the light emitting element and converted light of the phosphor. The phosphor has translucency, and emits light when excited by light emitted from the semiconductor light emitting layer of the LED, for example. Preferred phosphors include YAG-based with europium, zinc sulfide with silver and aluminum, nitrides such as alkaline-earth silicon nitride phosphors, alkaline-earth silicon oxynitride phosphors, etc. Oxynitride phosphors can be used. Further, a phosphor that generates light of a predetermined color when excited by ultraviolet light may be used.

窒化物系の蛍光体は選択的に酸素を含有し、例えばL−M−N:R、L−J−M−N:R、あるいはL−M−O−N:R(LはBe、Mg、Ca、Sr、Ba、Znからなる群より選ばれる1種以上であり、MはC、Si、Ge、Sn、Ti、Zr、Hfからなる群より選ばれる1種以上であり、JはB、Al、Ga、In、Scからなる群より選ばれる1種類以上を含有し、かつNは窒素、Oは酸素であって、Rは希土類元素である)で簡易的に表される。   Nitride-based phosphors selectively contain oxygen, for example, LMN: R, LJMN: R, or LMON: R (L is Be, Mg). , Ca, Sr, Ba, Zn, one or more selected from the group consisting of Zn, M is one or more selected from the group consisting of C, Si, Ge, Sn, Ti, Zr, Hf, J is B And at least one selected from the group consisting of Al, Ga, In, and Sc, and N is nitrogen, O is oxygen, and R is a rare earth element).

また蛍光体には、Nを含み、Oを選択的に含み、かつBe、Mg、Ca、Sr、BaおよびZnから選択された少なくとも1つの元素と、C、Si、Ge、Sn、Ti、ZrおよびHfから選択された少なくとも1の元素とを含み、Euおよび/または希土類元素で付活された窒化物系蛍光体が好適に使用される。さらに蛍光体はB、Al、Ga、In、Scを含んでいてもよい。すなわち、簡易的にL−M−N:R、L−J−M−N:R、またはL−M−O−N:Rで構成元素が表される結晶質の蛍光体である。結晶構造は、例えば、Ca2Si58は単斜晶、Sr2Si58、(Sr0.5Ca0.52Sr58は斜方晶、Ba2Si58は単斜晶をとる。またCaAlSiN3:Euは斜方晶、BaSi222:Eu、SrSi222:Eu、CaSi222:Eu、は斜方晶をとる。 The phosphor includes N, O selectively, and at least one element selected from Be, Mg, Ca, Sr, Ba, and Zn, and C, Si, Ge, Sn, Ti, Zr. And a nitride-based phosphor containing at least one element selected from Hf and activated with Eu and / or rare earth elements is preferably used. Further, the phosphor may contain B, Al, Ga, In, and Sc. That is, it is a crystalline phosphor in which the constituent elements are simply represented by LMN: R, LJMN: R, or LMON: R. The crystal structures are, for example, Ca 2 Si 5 N 8 is monoclinic, Sr 2 Si 5 N 8 , (Sr 0.5 Ca 0.5 ) 2 Sr 5 N 8 is orthorhombic, and Ba 2 Si 5 N 8 is monoclinic. Take. CaAlSiN 3 : Eu is orthorhombic, BaSi 2 O 2 N 2 : Eu, SrSi 2 O 2 N 2 : Eu, and CaSi 2 O 2 N 2 : Eu is orthorhombic.

より詳しくは、一般的にLxy{(2/3)x+(4/3)y}:R、Lxwy{(2/3)x+w+(4/3)y}:R、またはLxyz{(2/3)x+(4/3)y-(2/3)z}:Rで表され、LはBe、Mg、Ca、Sr、Ba、Znからなる群より選ばれる1種以上であり、MはC、Si、Ge、Sn、Ti、Zr、Hfからなる群より選ばれる1種以上であり、JはB、Al、Ga、In、Scからなる群より選ばれる1種類以上であり、かつNは窒素、Oは酸素であって、Rは希土類元素で表される蛍光体であって、さらにその組成中にはEuの他、Mg、B、Mn、Cr、Ni等を含んでもよい。 More specifically, generally L x M y N {(2/3 ) x + (4/3) y}: R, L x J w M y N {(2/3) x + w + (4/3) y}: R or L x M y O z N, {(2/3) x + (4/3) y- (2/3) z}: is represented by R, L is be, Mg, Ca, Sr, One or more selected from the group consisting of Ba and Zn; M is one or more selected from the group consisting of C, Si, Ge, Sn, Ti, Zr, and Hf; and J is B, Al, Ga, It is at least one selected from the group consisting of In and Sc, N is nitrogen, O is oxygen, R is a phosphor represented by a rare earth element, and in addition to Eu, Mg, B, Mn, Cr, Ni, etc. may be included.

さらにこの蛍光体は、その組成中60%以上、好ましくは80%以上が結晶質となっている。一般的にはx=2、y=5またはx=1、y=7、あるいはx=1、y=1、w=1またはx=1、y=2、z=2であることが望ましいが、任意の値が使用できる。   Further, the phosphor is crystalline in 60% or more, preferably 80% or more in the composition. In general, it is desirable that x = 2, y = 5 or x = 1, y = 7, or x = 1, y = 1, w = 1 or x = 1, y = 2, z = 2. Any value can be used.

微量の添加物中、Bなどは発光特性を減ずることなく結晶性を上げることが可能であり、またMn、Cuなども同様な効果を示す。またLa、Prなども発光特性を改良する効果がある。その他Mg、Cr、Niなどは残光を短くする効果があり、適宜使用される。その他、本明細書に示されていない元素であっても、10〜1000ppm程度ならば、輝度を著しく減ずることなく添加できる。   Among trace amounts of additives, B and the like can increase the crystallinity without deteriorating the light emission characteristics, and Mn, Cu and the like have the same effect. La, Pr, etc. also have the effect of improving the light emission characteristics. In addition, Mg, Cr, Ni and the like have an effect of shortening afterglow and are used as appropriate. In addition, even elements that are not shown in the present specification can be added without significantly reducing the luminance if they are about 10 to 1000 ppm.

Rに含まれる希土類元素は、Y、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luのうち1種以上が含有されていることが好ましいが、Sc、Sm、Tm、Ybが含有されていてもよい。また上記元素以外にも、B、Mn等は輝度を改善する効果があり、含有されていてもよい。これらの希土類元素は、単体の他、酸化物、イミド、アミド等の状態で原料中に混合する。希土類元素は、主に安定な3価の電子配置を有するが、Yb、Sm等は2価、Ce、Pr、Tb等は4価の電子配置も有する。酸化物の希土類元素を用いた場合、酸素の関与が蛍光体の発光特性に影響を及ぼす。つまり酸素を含有することにより発光輝度の低下を生じる場合もある。ただしMnを用いた場合は、MnとOとのフラックス効果により粒径を大きくし、発光輝度の向上を図ることができる。   The rare earth element contained in R preferably contains one or more of Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, but Sc, Sm, Tm, Yb may be contained. In addition to the above elements, B, Mn, and the like have an effect of improving luminance and may be contained. These rare earth elements are mixed in the raw material in the form of oxides, imides, amides, etc. in addition to simple substances. Rare earth elements mainly have a stable trivalent electron configuration, but Yb, Sm, etc. also have a bivalent configuration, and Ce, Pr, Tb, etc. also have a tetravalent electron configuration. When the rare earth element of the oxide is used, the involvement of oxygen affects the light emission characteristics of the phosphor. In other words, the emission luminance may be reduced by containing oxygen. However, when Mn is used, the particle size can be increased by the flux effect of Mn and O, and the emission luminance can be improved.

発光中心として希土類元素であるユウロピウムEuを好適に用いる。ユウロピウムは、主に2価と3価のエネルギー準位を持つ。本発明の蛍光体は、母体のアルカリ土類金属系窒化ケイ素に対して、Eu2+を付活剤として用いる。Eu2+は、酸化されやすく、3価のEu23の組成で通常使用されている。しかし、このEu23ではOの関与が大きく、良好な蛍光体が得られにくい。そのため、Eu23からOを、系外へ除去したものを使用することがより好ましい。例えば、ユウロピウム単体、窒化ユウロピウムを用いることが好ましい。但し、Mnを添加した場合は、その限りではない。 Europium Eu, which is a rare earth element, is preferably used as the emission center. Europium mainly has bivalent and trivalent energy levels. The phosphor of the present invention uses Eu 2+ as an activator for the base alkaline earth metal silicon nitride. Eu 2+ is easily oxidized and is usually used in the composition of trivalent Eu 2 O 3 . However, in this Eu 2 O 3 , O is greatly involved and it is difficult to obtain a good phosphor. For this reason, it is more preferable to use a material obtained by removing O from Eu 2 O 3 . For example, it is preferable to use europium alone or europium nitride. However, this is not the case when Mn is added.

具体的に基本構成元素の例を挙げると、Eu、Bが添加されたCa2Si58:Eu、Sr2Si58:Eu、(Sr0.5Ca0.52Sr58:Eu、Ca2Si50.17.9:Eu、Sr2Si50.17.9:Eu、(CaaSr1-a2Si50.17.9:Eu、BaSi222:Eu、CaSi222:Eu、さらには希土類が添加されたCa2Si50.37.8:Eu、Sr2Si50.37.8:Eu、(CaaSr1-a2Si50.17.9:Eu、さらにCaAlSiN3:Eu、SrAlSiN3:Eu、(Ca0.5Sr0.5)AlSiN3:Eu、CaAlSiBx3+x:Eu、SrAlSiBx3+x:Eu、(Ca0.5Sr0.5)AlSiBx3:Eu等がある。 Specific examples of basic constituent elements include Ca 2 Si 5 N 8 : Eu, Eu, B added, Sr 2 Si 5 N 8 : Eu, (Sr 0.5 Ca 0.5 ) 2 Sr 5 N 8 : Eu Ca 2 Si 5 O 0.1 N 7.9 : Eu, Sr 2 Si 5 O 0.1 N 7.9 : Eu, (Ca a Sr 1-a ) 2 Si 5 O 0.1 N 7.9 : Eu, BaSi 2 O 2 N 2 : Eu, CaSi 2 O 2 N 2 : Eu, and Ca 2 Si 5 O 0.3 N 7.8 : Eu, rare earth added, Sr 2 Si 5 O 0.3 N 7.8 : Eu, (Ca a Sr 1-a ) 2 Si 5 O 0.1 N 7.9 : Eu, CaAlSiN 3 : Eu, SrAlSiN 3 : Eu, (Ca 0.5 Sr 0.5 ) AlSiN 3 : Eu, CaAlSiB x N 3 + x : Eu, SrAlSiB x N 3 + x : Eu, (Ca 0.5 Sr 0.5 ) AlSiB x N 3 : Eu and the like.

さらにSr2Si58:Eu,Pr、Ba2Si58:Eu,Pr、Mg2Si58:Eu,Pr、Zn2Si58:Eu,Pr、SrSi710:Eu,Pr、BaSi710:Eu,Ce、MgSi710:Eu,Ce、ZnSi710:Eu,Ce、Sr2Ge58:Eu,Ce、Ba2Ge58:Eu,Pr、Mg2Ge58:Eu,Pr、Zn2Ge58:Eu,Pr、SrGe710:Eu,Ce、BaGe710:Eu,Pr、MgGe710:Eu,Pr、ZnGe710:Eu,Ce、Sr1.8Ca0.2Si58:Eu,Pr、Ba1.8Ca0.2Si58:Eu,Ce、Mg1.8Ca0.2Si58:Eu,Pr、Zn1.8Ca0.2Si58:Eu,Ce、Sr0.8Ca0.2Si710:Eu,La、Ba0.8Ca0.2Si710:Eu,La、Mg0.8Ca0.2Si710:Eu,Nd、Zn0.8Ca0.2Si710:Eu,Nd、Sr0.8Ca0.2Ge710:Eu,Tb、Ba0.8Ca0.2Ge710:Eu,Tb、Mg0.8Ca0.2Ge710:Eu,Pr、Zn0.8Ca0.2Ge710:Eu,Pr、Sr0.8Ca0.2Si6GeN10:Eu,Pr、Ba0.8Ca0.2Si6GeN10:Eu,Pr、Mg0.8Ca0.2Si6GeN10:Eu,Y、Zn0.8Ca0.2Si6GeN10:Eu,Y、Sr2Si58:Pr、Ba2Si58:Pr、Sr2Si58:Tb、BaGe710:Ceなどが製造できるが、これに限定されない。同様に、これらの一般式で記載された蛍光体に、所望に応じて第3成分、第4成分、第5成分等適宜、好適な元素を含有させることも当然考えられるものである。 Further, Sr 2 Si 5 N 8 : Eu, Pr, Ba 2 Si 5 N 8 : Eu, Pr, Mg 2 Si 5 N 8 : Eu, Pr, Zn 2 Si 5 N 8 : Eu, Pr, SrSi 7 N 10 : Eu, Pr, BaSi 7 N 10 : Eu, Ce, MgSi 7 N 10: Eu, Ce, ZnSi 7 N 10: Eu, Ce, Sr 2 Ge 5 N 8: Eu, Ce, Ba 2 Ge 5 N 8: Eu , Pr, Mg 2 Ge 5 N 8: Eu, Pr, Zn 2 Ge 5 N 8: Eu, Pr, SrGe 7 N 10: Eu, Ce, BaGe 7 N 10: Eu, Pr, MgGe 7 N 10: Eu, Pr, ZnGe 7 N 10: Eu , Ce, Sr 1.8 Ca 0.2 Si 5 N 8: Eu, Pr, Ba 1.8 Ca 0.2 Si 5 N 8: Eu, Ce, Mg 1.8 Ca 0.2 Si 5 N 8: Eu, Pr, Zn 1.8 Ca 0.2 Si 5 N 8 : Eu, Ce, Sr 0.8 Ca 0.2 Si 7 N 10: Eu, L , Ba 0.8 Ca 0.2 Si 7 N 10: Eu, La, Mg 0.8 Ca 0.2 Si 7 N 10: Eu, Nd, Zn 0.8 Ca 0.2 Si 7 N 10: Eu, Nd, Sr 0.8 Ca 0.2 Ge 7 N 10: Eu , Tb, Ba 0.8 Ca 0.2 Ge 7 N 10 : Eu, Tb, Mg 0.8 Ca 0.2 Ge 7 N 10 : Eu, Pr, Zn 0.8 Ca 0.2 Ge 7 N 10 : Eu, Pr, Sr 0.8 Ca 0.2 Si 6 GeN 10 : Eu, Pr, Ba 0.8 Ca 0.2 Si 6 GeN 10 : Eu, Pr, Mg 0.8 Ca 0.2 Si 6 GeN 10 : Eu, Y, Zn 0.8 Ca 0.2 Si 6 GeN 10 : Eu, Y, Sr 2 Si 5 N 8 : Pr, Ba 2 Si 5 N 8 : Pr, Sr 2 Si 5 N 8 : Tb, BaGe 7 N 10 : Ce and the like can be produced, but are not limited thereto. Similarly, it is naturally conceivable that the phosphors described by these general formulas appropriately contain suitable elements such as the third component, the fourth component, and the fifth component as desired.

以上説明した窒化物系蛍光体は、発光素子によって発光された青色光の一部を吸収して黄色から赤色領域の光を発光する。この蛍光体を上記の構成を有する発光装置に使用して、発光素子により発光された青色光と、蛍光体の赤色光とが混色により暖色系の白色に発光する発光装置を提供することができる。特に白色発光装置においては、窒化物系蛍光体と、希土類アルミン酸塩蛍光体であるセリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質が含有されていることが好ましい。前記イットリウム・アルミニウム酸化物蛍光物質を含有することにより、所望の色度に調節することができるからである。セリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質は、発光素子により発光された青色光の一部を吸収して黄色領域の光を発光することができる。ここで、発光素子により発光された青色系光と、イットリウム・アルミニウム酸化物蛍光物質の発色光とが混色により青白い白色に発光することができる。したがって、このイットリウム・アルミニウム酸化物蛍光物質と前記蛍光体とを透光性部材と一緒に混合した蛍光体と、発光素子により発光された青色光とを組み合わせることにより暖色系の白色の発光装置を提供することができる。この暖色系の白色の発光装置は、平均演色評価数Raが75乃至95であり色温度が2000乃至8000Kとすることができる。特に好ましいのは、平均演色評価数Raが高く、色温度が色度図における黒体放射の軌跡上に位置する白色の発光装置である。但し、所望の色温度および平均演色評価数の発光装置を提供するため、イットリウム・アルミニウム酸化物蛍光物質および蛍光体の配合量や各蛍光体の組成比を、適宜変更することもできる。この暖色系の白色の発光装置は、特に特殊演色評価数R9の改善を図っている。従来の青色発光素子とセリウムで付括されたイットリウム・アルミニウム酸化物蛍光物質との組合せの白色に発光する発光装置は、特殊演色評価数R9が低く、赤み成分が不足していた。そのため特殊演色評価数R9を高めることが解決課題となっていたが、本発明に係る蛍光体をセリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質中に含有することにより、特殊演色評価数R9を40乃至70まで高めることができる。   The nitride-based phosphor described above absorbs part of the blue light emitted by the light emitting element and emits light in the yellow to red region. By using this phosphor in the light emitting device having the above-described configuration, it is possible to provide a light emitting device that emits warm white light by mixing the blue light emitted from the light emitting element and the red light of the phosphor. . In particular, the white light emitting device preferably contains a nitride-based phosphor and an yttrium-aluminum oxide phosphor activated by cerium, which is a rare-earth aluminate phosphor. This is because it can be adjusted to a desired chromaticity by containing the yttrium aluminum oxide phosphor. The yttrium / aluminum oxide phosphor activated with cerium can absorb part of the blue light emitted by the light emitting element and emit light in the yellow region. Here, the blue light emitted from the light emitting element and the colored light of the yttrium / aluminum oxide fluorescent material can be emitted into pale white by mixing colors. Accordingly, a warm white light-emitting device can be obtained by combining the phosphor obtained by mixing the yttrium / aluminum oxide phosphor and the phosphor together with the translucent member and the blue light emitted from the light-emitting element. Can be provided. This warm white light emitting device can have an average color rendering index Ra of 75 to 95 and a color temperature of 2000 to 8000K. Particularly preferred is a white light-emitting device having a high average color rendering index Ra and a color temperature located on the locus of black body radiation in the chromaticity diagram. However, in order to provide a light emitting device having a desired color temperature and average color rendering index, the blending amount of the yttrium / aluminum oxide phosphor and the phosphor and the composition ratio of each phosphor can be appropriately changed. This warm-colored white light-emitting device particularly improves the special color rendering index R9. A conventional light emitting device that emits white light in a combination of a blue light emitting element and an yttrium aluminum oxide fluorescent material attached with cerium has a low special color rendering index R9 and lacks a red component. For this reason, increasing the special color rendering index R9 has been a problem to be solved, but by including the phosphor according to the present invention in the yttrium aluminum oxide phosphor activated with cerium, the special color rendering index R9. Can be increased to 40-70.

蛍光体は、平均粒径が3μm以上、好ましくは5μm〜15μmとする。微細な蛍光体は分級などの手段で分別し排除し、粒径が2μm以下の粒径の粒子は体積分布で10%以下となるようにする。これによって発光輝度の向上を図ることができるとともに、2μm以下の粒径の粒子数を低減することによって光の配向方向の色度ばらつきを低減することができる。
(蛍光含有樹脂)
The average particle diameter of the phosphor is 3 μm or more, preferably 5 μm to 15 μm. Fine phosphors are classified and removed by means of classification or the like, and particles having a particle size of 2 μm or less are made to have a volume distribution of 10% or less. As a result, the luminance of emitted light can be improved, and the chromaticity variation in the alignment direction of light can be reduced by reducing the number of particles having a particle size of 2 μm or less.
(Fluorescent resin)

蛍光体を波長変換部材として蛍光含有樹脂に混入し、波長変換層を構成する。蛍光含有樹脂には熱硬化性樹脂が利用できる。蛍光体は、蛍光含有樹脂中にほぼ均一の割合で混合されていることが好ましい。ただ、蛍光物質が部分的に偏在するように配合することもできる。例えば、蛍光含有樹脂の外面側に蛍光体が多く含まれるよう偏在させ、発光素子と蛍光含有樹脂との接触面から離間させることにより、発光素子で発生した熱が蛍光体に伝達し難くして蛍光体の劣化を抑制できる。蛍光含有樹脂は、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることもできる。また蛍光含有樹脂中には、顔料、拡散剤等を混入することもできる。   A wavelength conversion layer is formed by mixing the phosphor as a wavelength conversion member into the fluorescence-containing resin. A thermosetting resin can be used as the fluorescent resin. It is preferable that the phosphor is mixed in the fluorescence-containing resin at a substantially uniform ratio. However, it can also mix | blend so that a fluorescent material may be unevenly distributed. For example, the phosphor-containing resin is unevenly distributed so that a large amount of phosphor is contained on the outer surface side, and is separated from the contact surface between the light-emitting element and the phosphor-containing resin, thereby making it difficult for heat generated in the light-emitting element to be transmitted to the phosphor. Deterioration of the phosphor can be suppressed. As the fluorescent-containing resin, it is preferable to use a silicone resin composition, a modified silicone resin composition, etc., but an insulating resin composition having translucency such as an epoxy resin composition, a modified epoxy resin composition, an acrylic resin composition, etc. Can also be used. In addition, a pigment, a diffusing agent, or the like can be mixed in the fluorescent-containing resin.

蛍光含有樹脂は、硬化後でも軟質であることが好ましい。硬化前は、発光素子の周囲に蛍光含有樹脂を行き渡らせ、かつ、フェイスダウン実装させる発光素子とリード電極とを電気的に接続する部分以外の隙間部分へ蛍光含有樹脂を浸入させるため、粘度の低い液状のものが好ましい。また蛍光含有樹脂は、接着性を有していることが好ましい。蛍光含有樹脂に接着性を持たせることにより、発光素子と台座との固着性を高めることができる。接着性は、常温で接着性を示すものだけでなく、蛍光含有樹脂に所定の熱と圧力を加えることにより接着するものも含む。また蛍光含有樹脂は、固着強度を高めるために温度や圧力を加えたり乾燥させたりすることもできる。
(拡散剤)
The fluorescent-containing resin is preferably soft even after curing. Before curing, the fluorescent-containing resin is spread around the light-emitting element, and the fluorescent-containing resin is infiltrated into a gap portion other than the portion where the light-emitting element to be face-down mounted and the lead electrode are electrically connected. A low liquid is preferable. Moreover, it is preferable that fluorescence containing resin has adhesiveness. By giving adhesiveness to the fluorescence-containing resin, the adhesion between the light emitting element and the pedestal can be enhanced. The adhesiveness includes not only those exhibiting adhesiveness at room temperature but also those that are bonded by applying predetermined heat and pressure to the fluorescent resin. In addition, the fluorescent-containing resin can be applied with temperature or pressure or dried in order to increase the fixing strength.
(Diffusion agent)

さらに、蛍光含有樹脂中に蛍光体の他に拡散剤を含有させてもよい。具体的な拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等が好適に用いられる。これによって良好な指向特性を有する発光装置が得られる。   Furthermore, in addition to the phosphor, a diffusing agent may be contained in the fluorescence-containing resin. As a specific diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide or the like is preferably used. As a result, a light emitting device having good directivity can be obtained.

ここで本明細書において拡散剤とは、中心粒径が1nm以上5μm未満のものをいう。1μm以上5μm未満の拡散剤は、発光素子及び蛍光体からの光を良好に乱反射させ、大きな粒径の蛍光物質を用いることによって生じやすい色ムラを抑制することができるので、好適に使用できる。また、発光スペクトルの半値幅を狭めることができ、色純度の高い発光装置が得られる。一方、1nm以上1μm未満の拡散剤は、発光素子からの光波長に対する干渉効果が低い反面、透明度が高く、光度を低下させることなく樹脂粘度を高めることができる。
(フィラー)
Here, in this specification, the diffusing agent refers to those having a center particle diameter of 1 nm or more and less than 5 μm. A diffusing agent having a particle size of 1 μm or more and less than 5 μm can be preferably used because it diffuses light from the light emitting element and the phosphor well and can suppress color unevenness that tends to occur when a fluorescent material having a large particle size is used. In addition, the half width of the emission spectrum can be narrowed, and a light emitting device with high color purity can be obtained. On the other hand, a diffusing agent having a wavelength of 1 nm or more and less than 1 μm has a low interference effect on the light wavelength from the light emitting element, but has a high transparency and can increase the resin viscosity without reducing the luminous intensity.
(Filler)

さらに、蛍光含有樹脂中に蛍光体の他にフィラーを含有させてもよい。具体的な材料としては、拡散剤と同様のものが使用できる。ただ、拡散剤とフィラーとは中心粒径が異なり、本明細書においてはフィラーの中心粒径は5μm以上100μm以下とすることが好ましい。このような粒径のフィラーを透光性樹脂中に含有させると、光散乱作用により発光装置の色度バラツキが改善される他、透光性樹脂の耐熱衝撃性を高めることができる。これにより、高温下での使用においても、発光素子と外部電極とを電気的に接続しているワイヤの断線や発光素子底面とパッケージの凹部底面と剥離等を防止可能な信頼性の高い発光装置とできる。さらには樹脂の流動性を長時間一定に調整することが可能となり、所望とする場所内に封止部材を形成することができ歩留まり良く量産することが可能となる。
(リン酸処理)
Furthermore, you may contain a filler other than fluorescent substance in fluorescent containing resin. As a specific material, the same material as the diffusing agent can be used. However, the center particle size of the diffusing agent and the filler are different, and in this specification, the center particle size of the filler is preferably 5 μm or more and 100 μm or less. When the filler having such a particle size is contained in the translucent resin, the chromaticity variation of the light emitting device is improved by the light scattering action, and the thermal shock resistance of the translucent resin can be enhanced. As a result, a highly reliable light-emitting device that can prevent disconnection of the wire that electrically connects the light-emitting element and the external electrode, and peeling between the bottom surface of the light-emitting element and the bottom surface of the recess of the package, even when used at high temperatures. And can. Furthermore, the fluidity of the resin can be adjusted to be constant for a long time, and a sealing member can be formed in a desired location, enabling mass production with a high yield.
(Phosphoric acid treatment)

窒化物蛍光体又は酸窒化物蛍光体にリンを含む化合物によって処理されることで熱酸化雰囲気(ベーク)による劣化が改善され、発光特性の低下が防ぐことができる。蛍光体を発光素子と組み合わせて使用する場合は、蛍光体が発光素子の強い光に晒されて劣化するという問題があった。特にLEDなどの半導体発光素子の近傍に透光性樹脂などを介して配置された蛍光体は、その蛍光体粒子表面が強い光に晒されるため酸化が進行する。本発明者等はこの問題を解決するた様々な方法を検討した結果、窒化物蛍光体や酸窒化物蛍光体の粒子をリン含有化合物の溶液で処理し、蛍光体の粒子表面にリン系化合物が付着することで耐久性、特に熱酸化雰囲気での特性を改善できることを見出した。すなわち、窒化物又は酸窒化物蛍光体の粒子表面をリン含有化合物の溶液で処理することにより、蛍光体表面を保護し、蛍光体の耐久性を向上させることができる。これにより蛍光体を耐熱性を改善できる。   By treating the nitride phosphor or the oxynitride phosphor with a compound containing phosphorus, deterioration due to a thermal oxidation atmosphere (baking) can be improved, and deterioration in light emission characteristics can be prevented. When a phosphor is used in combination with a light emitting element, there is a problem that the phosphor is exposed to strong light from the light emitting element and deteriorates. In particular, the phosphor disposed in the vicinity of a semiconductor light emitting element such as an LED via a translucent resin or the like undergoes oxidation because the phosphor particle surface is exposed to strong light. As a result of studying various methods for solving this problem, the present inventors have treated nitride phosphor and oxynitride phosphor particles with a solution of a phosphorus-containing compound, and phosphorous compounds are formed on the phosphor particle surfaces. It has been found that the durability, particularly the characteristics in a thermal oxidation atmosphere, can be improved by adhering. That is, by treating the particle surface of the nitride or oxynitride phosphor with a solution of a phosphorus-containing compound, the phosphor surface can be protected and the durability of the phosphor can be improved. Thereby, the heat resistance of the phosphor can be improved.

リン含有化合物の溶液で処理する工程においては、窒化物蛍光体のスラリーにリン酸と反応が可能であり、硝酸塩、塩化物、硫酸塩等の水溶性を有するマグネシウム化合物、カルシウム化合物、ストロンチウム化合物、バリウム化合物、亜鉛化合物、ホウ素化合物、アルミニウム化合物、ガリウム化合物、インジウム化合物、スカンジウム化合物、イットリウム化合物、ランタン化合物、希土類系化合物(Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)、アンチモン化合物、ビスマス化合物等を1種、あるいは複数を同時に加えておき、窒化物蛍光体の粒子表面にリン酸塩を形成させる。さらにリン含有化合物の溶液で処理する工程においては、窒化物蛍光体あるいは酸窒化物蛍光体の粒子表面にリン酸塩を形成させるために、窒化物蛍光体のスラリーのpHを調整することも可能である。またリンの含有量は、好ましくは窒化物蛍光体100重量部に対してP(リン)を0.0001〜20重量部含有させる。0.0001重量部よりも少ないと効果が少なく、逆に20重量部よりも多いと蛍光体の発光特性が低下する。   In the step of treating with a solution of a phosphorus-containing compound, the nitride phosphor slurry can react with phosphoric acid, and water-soluble magnesium compounds such as nitrates, chlorides, sulfates, calcium compounds, strontium compounds, Barium compounds, zinc compounds, boron compounds, aluminum compounds, gallium compounds, indium compounds, scandium compounds, yttrium compounds, lanthanum compounds, rare earth compounds (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , Tm, Yb, Lu), one or more of antimony compounds, bismuth compounds, etc. are added at the same time to form phosphates on the surface of the nitride phosphor particles. Furthermore, in the step of treating with a solution of a phosphorus-containing compound, it is possible to adjust the pH of the nitride phosphor slurry in order to form phosphate on the particle surface of the nitride phosphor or oxynitride phosphor. It is. The phosphorus content is preferably 0.0001 to 20 parts by weight of P (phosphorus) with respect to 100 parts by weight of the nitride phosphor. If the amount is less than 0.0001 parts by weight, the effect is small. On the other hand, if the amount is more than 20 parts by weight, the light emission characteristics of the phosphor deteriorate.

窒化物蛍光体又は酸窒化物蛍光体にリンを含む化合物が形成された後は、一般的な分離方法により、粉末を回収する。回収した蛍光体粉末は、水分を蒸発させるために乾燥させる。乾燥は室温で行うこともできるが、より確実な乾燥を行うために、窒化物蛍光体又は酸窒化物蛍光体が大気で酸化されない程度に熱を加えて乾燥させることが好ましい。なお従来は、乾燥工程は大気中で行われており、温度条件によっては蛍光体自身が酸化劣化してしまうことがあった。そこで本実施の形態においては酸化による劣化を防ぐために、窒素雰囲気などの酸素を含まない還元雰囲気中で熱処理を行う。これにより処理されたリン含有化合物の状態を改質することができる。熱処理の温度は、好ましくは100℃〜500℃、より好ましくは200℃〜400℃とする。これにより、蛍光体から水分を確実に除去できると共に、熱処理の際に酸化されて劣化されることを回避できる。   After the phosphor containing compound is formed on the nitride phosphor or the oxynitride phosphor, the powder is recovered by a general separation method. The collected phosphor powder is dried to evaporate moisture. Although drying can be performed at room temperature, in order to perform more reliable drying, it is preferable to dry by applying heat to the extent that the nitride phosphor or oxynitride phosphor is not oxidized in the atmosphere. Conventionally, the drying process is performed in the air, and the phosphor itself may be oxidized and deteriorated depending on temperature conditions. Therefore, in this embodiment, in order to prevent deterioration due to oxidation, heat treatment is performed in a reducing atmosphere containing no oxygen such as a nitrogen atmosphere. Thereby, the state of the treated phosphorus-containing compound can be modified. The temperature of the heat treatment is preferably 100 ° C to 500 ° C, more preferably 200 ° C to 400 ° C. Thereby, moisture can be reliably removed from the phosphor, and it can be avoided that the phosphor is oxidized and deteriorated during the heat treatment.

得られた蛍光体を水中に懸濁させた後、リン酸またはリン酸塩等の水溶液を加えて処理液とする。この処理液を攪拌するとリン酸カルシウム等の化合物が蛍光体粒子表面に形成される。リン含有化合物で処理された蛍光体は、その後の工程の乾燥工程で水分を除去する。蛍光体に含まれるアルカリ土類等の成分とリン酸イオンの反応により蛍光体粒子表面にリン含有化合物が形成される。   After suspending the obtained phosphor in water, an aqueous solution such as phosphoric acid or phosphate is added to obtain a treatment liquid. When this treatment liquid is stirred, a compound such as calcium phosphate is formed on the surface of the phosphor particles. The phosphor treated with the phosphorus-containing compound removes moisture in the subsequent drying step. A phosphorus-containing compound is formed on the surface of the phosphor particles by the reaction of phosphate ions and components such as alkaline earth contained in the phosphor.

蛍光体に処理されるリン含有化合物の処理液を攪拌しながら、マグネシウム化合物、カルシウム化合物等の水溶液を加えて、蛍光体粒子表面に処理化合物を形成することもできる。各種金属塩の溶液を用いることにより、様々な種類のリン含有化合物を蛍光体粒子表面に形成させることも可能である。   An aqueous solution of a magnesium compound, a calcium compound, or the like can be added while stirring a treatment liquid of a phosphorus-containing compound to be treated by the phosphor to form a treatment compound on the surface of the phosphor particles. By using various metal salt solutions, various types of phosphorus-containing compounds can be formed on the surface of the phosphor particles.

蛍光体に処理されるリン含有化合物の処理液を攪拌しながら、pHを調整して、蛍光体粒子表面に処理化合物を形成することもできる。pHの調整にはNH3、NaOH、KOHなどのアルカリ成分やHCl、HNO3、H2SO4、CH3COOHなどの酸成分を用いることができる。
(窒化物系蛍光体の製造方法)
The pH of the phosphor-containing compound treated with the phosphor can be adjusted while stirring to form a treatment compound on the surface of the phosphor particles. For the adjustment of pH, an alkaline component such as NH 3 , NaOH, or KOH, or an acid component such as HCl, HNO 3 , H 2 SO 4 , or CH 3 COOH can be used.
(Nitride-based phosphor manufacturing method)

以下、窒化物系蛍光体として好適な(Sra,Ca1-axSiyz{(2/3)x+(4/3)y-(2/3)z}:Euでx=2、y=5の製造方法を説明する。ただ、本発明に用いられる窒化物系蛍光体はこの製造方法に限定されない。上記の蛍光体には、より好適にはMnが含まれる。 Hereinafter, (Sr a , Ca 1-a ) x Si y O z N {(2/3) x + (4/3) y- (2/3) z} : Eu x A manufacturing method of = 2 and y = 5 will be described. However, the nitride-based phosphor used in the present invention is not limited to this manufacturing method. The phosphor preferably contains Mn.

まず、原料のCa,Srを粉砕する。原料のSr,Caは単体を使用することが好ましいが、イミド化合物、アミド化合物などの化合物を使用することもできる。粉砕により得られたSr,Caは平均粒径が約0.1μmから15μmであることが好ましいが、この範囲に限定されない。またSr,Caの純度は2Nであることが好ましいが、これに限定されない。   First, raw materials Ca and Sr are pulverized. The raw materials Sr and Ca are preferably used alone, but compounds such as imide compounds and amide compounds can also be used. Sr and Ca obtained by pulverization preferably have an average particle diameter of about 0.1 μm to 15 μm, but are not limited to this range. The purity of Sr and Ca is preferably 2N, but is not limited thereto.

一方、原料のSiを粉砕する。原料のSiは、単体を使用することが好ましいが、窒化物化合物、イミド化合物、アミド化合物などを使用することもできる。酸化マンガン、H3BO3、B23、Cu2O、CuOなどの化合物が含有されていても良い。Siも原料のSr,Caと同様にアルゴンの雰囲気中、もしくは窒素雰囲気中のグローブボックス内で粉砕を行なう。Si化合物の平均粒径は約0.1μmから15μmであることが好ましい。 On the other hand, the raw material Si is pulverized. The raw material Si is preferably a simple substance, but a nitride compound, an imide compound, an amide compound, or the like can also be used. A compound such as manganese oxide, H 3 BO 3 , B 2 O 3 , Cu 2 O, or CuO may be contained. Si is pulverized in a glove box in an argon atmosphere or a nitrogen atmosphere in the same manner as the raw materials Sr and Ca. The average particle size of the Si compound is preferably about 0.1 μm to 15 μm.

次に原料のSr,Caを窒素雰囲気中で窒化する。Sr,Caは、混合して窒化してもよいし、それぞれ個々に窒化してもよい。これによりSr,Caの窒化物を得ることができる。Sr,Caの窒化物は高純度のものが好ましいが、市販のものも使用することができる。   Next, the raw materials Sr and Ca are nitrided in a nitrogen atmosphere. Sr and Ca may be mixed and nitrided, or may be individually nitrided. Thereby, a nitride of Sr and Ca can be obtained. Sr and Ca nitrides preferably have high purity, but commercially available ones can also be used.

原料のSiを窒素雰囲気中で窒化する。Siも窒素雰囲気中、800〜1200℃、約5時間、窒化する。これにより窒化珪素を得る。本発明で使用する窒化珪素は、高純度のものが好ましいが、市販のものも使用することができる。   The raw material Si is nitrided in a nitrogen atmosphere. Si is also nitrided in a nitrogen atmosphere at 800 to 1200 ° C. for about 5 hours. Thereby, silicon nitride is obtained. The silicon nitride used in the present invention is preferably high-purity, but commercially available products can also be used.

Sr,CaもしくはSr−Caの窒化物を粉砕する。Sr,Ca,Sr−Caの窒化物をアルゴン雰囲気中、もしくは、窒素雰囲気中、グローブボックス内で粉砕を行なう。同様にSiの窒化物を粉砕する。   Sr, Ca or Sr—Ca nitride is pulverized. Sr, Ca, and Sr—Ca nitrides are pulverized in a glove box in an argon atmosphere or a nitrogen atmosphere. Similarly, Si nitride is pulverized.

また、同様にEuの化合物Eu23を粉砕する。粉砕後のアルカリ土類金属の窒化物、窒化珪素および酸化ユウロピウムの平均粒径は、約0.1μmから15μmであることが好ましい。 Similarly, Eu compound Eu 2 O 3 is pulverized. The average particle diameter of the alkaline earth metal nitride, silicon nitride and europium oxide after pulverization is preferably about 0.1 μm to 15 μm.

上記の原料中には、特性を損なわない程度の、および/もしくは結晶性を上げる効果のある少量の不純物元素が含まれていても良い。上記粉砕を行なった後、Sr,Ca,Sr−Caの窒化物、Siの窒化物、Euの化合物Eu23、Mn化合物を添加し、混合する。 The raw material may contain a small amount of an impurity element that does not impair the characteristics and / or has an effect of improving crystallinity. After the pulverization, Sr, Ca, Sr—Ca nitride, Si nitride, Eu compound Eu 2 O 3 and Mn compound are added and mixed.

最後にSr,Ca,Sr−Caの窒化物、Siの窒化物、Euの化合物Eu23の混合物をアンモニア雰囲気中で焼成する。焼成により、Mnが添加されたSr−Ca−Si−O−N:Euで表される蛍光体を得ることができる。このときMn含有量は100ppm以下である。 Finally, a mixture of Sr, Ca, Sr—Ca nitride, Si nitride, and Eu compound Eu 2 O 3 is fired in an ammonia atmosphere. A phosphor represented by Sr—Ca—Si—O—N: Eu to which Mn is added can be obtained by firing. At this time, the Mn content is 100 ppm or less.

ただし、各原料の配合比率を変更することにより、目的とする蛍光体の組成を変更することができる。   However, the composition of the target phosphor can be changed by changing the blending ratio of each raw material.

焼成は1200℃〜1700℃の範囲で行なうことができるが、1400℃〜1700℃の焼成温度が好ましい。   Firing can be performed in the range of 1200 ° C to 1700 ° C, but a firing temperature of 1400 ° C to 1700 ° C is preferred.

以上のように蛍光体を形成することにより、凝集した蛍光耐組成物が得られ、これを粉砕することで窒化物系蛍光体が得られる。粉砕後の蛍光体をふるい、あるいは沈降特性の違い等により分級し、平均粒径3μm以上とし、かつ粒度分布測定で2μm以下の粒径の粒子が体積分布で10%以下とすることが好ましい。   By forming the phosphor as described above, an aggregated fluorescence resistant composition is obtained, and by pulverizing this, a nitride-based phosphor is obtained. It is preferable to classify the phosphor after pulverization or classify it according to the difference in sedimentation characteristics, etc. so that the average particle size is 3 μm or more, and the particle size of 2 μm or less by particle size distribution measurement is 10% or less by volume distribution.

上記の窒化物蛍光体は耐水性、耐薬品性に優れているものの、酸化劣化する傾向にある。そのために本発明の実施形態に係る窒化物系蛍光体はリンを含む化合物で処理する。
(実施例)
The nitride phosphors described above are excellent in water resistance and chemical resistance, but tend to be oxidized and deteriorated. For this purpose, the nitride-based phosphor according to the embodiment of the present invention is treated with a compound containing phosphorus.
(Example)

次に実施例1〜13として、上記の方法で窒化物系蛍光体を作製し、P含有化合物で処理を行った後、耐久試験を行った。またP含有化合物で処理を行わない状態の窒化物系蛍光体を比較例として作製し、同様に耐久試験を行った。これらの結果を表1に示す。表1は、以下の各実施例及び比較例の窒化物蛍光体につき、PO4換算のP重量部、色度座標上のx、y、相対輝度を各々測定した値を示している。またベーク後輝度として、各蛍光体の耐久性を評価するために300℃の空気中で加熱(ベーク)を行って意図的に蛍光体を劣化させた状態での輝度の低下を、加熱前における輝度と対比した相対輝度として測定した。耐久性の評価には本来は半導体素子を用いた発光装置化(例えばLED)することが好ましいが、蛍光体自体の簡易的な耐久(耐熱、耐酸化)性の評価として、空気中で加熱処理、つまり蛍光体のみを強制的に酸化させ、評価することでも確認できる。加熱条件は300℃、65時間としている。なお蛍光体の輝度の測定は、460nmの波長で励起させて測定を行ったものである。表中の各輝度は、全く処理していない状態(比較例1)の窒化物系蛍光体(Ca,Sr)2Si58:Euを基準とした相対値を示す。
Next, as Examples 1 to 13, nitride-based phosphors were produced by the above-described method, treated with a P-containing compound, and then subjected to a durability test. In addition, a nitride-based phosphor that was not treated with a P-containing compound was prepared as a comparative example, and the durability test was similarly performed. These results are shown in Table 1. Table 1 shows values obtained by measuring P parts by weight in terms of PO 4 , x, y on the chromaticity coordinates, and relative luminance for the nitride phosphors of the following examples and comparative examples. In addition, as a post-baking luminance, a decrease in luminance in a state in which the phosphor is intentionally deteriorated by heating (baking) in air at 300 ° C. in order to evaluate the durability of each phosphor. It was measured as relative luminance compared to luminance. Originally, it is preferable to make a light emitting device (for example, LED) using a semiconductor element for evaluation of durability, but as a simple evaluation of durability (heat resistance, oxidation resistance) of the phosphor itself, heat treatment is performed in the air. That is, it can also be confirmed by forcibly oxidizing and evaluating only the phosphor. The heating conditions are 300 ° C. and 65 hours. The luminance of the phosphor was measured by exciting with a wavelength of 460 nm. Each luminance in the table, the nitride phosphor of state not at all treated (Comparative Example 1) (Ca, Sr) 2 Si 5 N 8: shows reference the relative values of Eu.

Figure 2006269938
(比較例1)
Figure 2006269938
(Comparative Example 1)

まず比較例として、窒化物蛍光体である(Ca,Sr)2Si58:EuをP含有化合物で処理しないで作製し、酸化雰囲気で加熱して意図的に劣化させた。300℃で65時間加熱したところ、輝度は加熱前に比べて48.7%低下した。 First, as a comparative example, (Ca, Sr) 2 Si 5 N 8 : Eu, which is a nitride phosphor, was produced without being treated with a P-containing compound, and was intentionally deteriorated by heating in an oxidizing atmosphere. When heated at 300 ° C. for 65 hours, the brightness decreased by 48.7% compared to before heating.

次に実施例1として、上記の方法で合成された窒化物系蛍光体(Ca,Sr)2Si58:Euを用い、蛍光体100gに対して脱イオン水400gを加えて、攪拌させた。その分散溶液に、リン酸ナトリウム溶液(リン酸含量2.25%)を44.44g滴下し、次いで硝酸マグネシウム溶液(Mg含量2.06%)を36.41g滴下した。更にKOH溶液を用いてpHを調整した。そして反応が終了した分散溶液のろ過を行い、分離乾燥し、P含有化合物で処理された(Ca,Sr)2Si58蛍光体を得た。この蛍光体は、PO4換算で0.51%のP含有化合物が検出された。さらに300℃空気中で加熱(ベーク)を行い、耐久性を評価したところ、P含有化合物で処理していない比較例1は、輝度がベークによって48.7%に低下した。これ対して、実施例1のP含有化合物で処理した蛍光体は、ベーク後の輝度は61.5%であり、熱酸化雰囲気による劣化が改善され、発光特性の低下を防ぐことが確認された。 Next, as Example 1, using the nitride-based phosphor (Ca, Sr) 2 Si 5 N 8 : Eu synthesized by the above method, 400 g of deionized water is added to 100 g of the phosphor and stirred. It was. 44.44 g of a sodium phosphate solution (phosphoric acid content 2.25%) was added dropwise to the dispersion, and then 36.41 g of a magnesium nitrate solution (Mg content 2.06%) was added dropwise. Further, the pH was adjusted using a KOH solution. Then, the dispersion solution after the reaction was filtered, separated and dried, and a (Ca, Sr) 2 Si 5 N 8 phosphor treated with a P-containing compound was obtained. In this phosphor, 0.51% of a P-containing compound was detected in terms of PO 4 . Further, the durability was evaluated by heating (baking) in air at 300 ° C. As a result, the brightness of Comparative Example 1 not treated with the P-containing compound was reduced to 48.7% by baking. On the other hand, the phosphor treated with the P-containing compound of Example 1 has a luminance after baking of 61.5%, and it was confirmed that the deterioration due to the thermal oxidation atmosphere was improved and the deterioration of the light emission characteristics was prevented. .

実施例2として、実施例1のリン酸ナトリウム溶液を133.32g、硝酸マグネシウム溶液を109.23gに変更する以外は、実施例1と同じ条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。この蛍光体は、PO4換算で1.8%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価した結果、実施例2のP含有化合物で処理した蛍光体は、ベーク後の輝度が81.4%に維持されていた。 As Example 2, the treatment was performed under the same conditions as in Example 1 except that the sodium phosphate solution of Example 1 was changed to 133.32 g and the magnesium nitrate solution was changed to 109.23 g. A Ca, Sr) 2 Si 5 N 8 : Eu phosphor was obtained. In this phosphor, 1.8% of a P-containing compound was detected in terms of PO 4 . Furthermore, as a result of heating in 300 degreeC air and evaluating durability, the brightness | luminance after baking of the fluorescent substance processed with the P containing compound of Example 2 was maintained at 81.4%.

実施例3として、実施例1のリン酸ナトリウム溶液を6.2g、硝酸マグネシウムに換わって硝酸カルシウム溶液を5.1gに変更する以外は実施例1と同じ条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58蛍光体を得た。この蛍光体は、PO4換算で32ppmのP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例3のP含有化合物で処理した蛍光体は、ベーク後の輝度は53.8%であった。 As Example 3, the treatment was performed under the same conditions as in Example 1 except that the sodium phosphate solution of Example 1 was changed to 6.2 g, and the calcium nitrate solution was changed to 5.1 g instead of magnesium nitrate. A treated (Ca, Sr) 2 Si 5 N 8 phosphor was obtained. In this phosphor, 32 ppm of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in the air at 300 ° C., the phosphor treated with the P-containing compound of Example 3 had a brightness after baking of 53.8%.

実施例4として、実施例3のリン酸ナトリウム溶液を24.89g、硝酸カルシウム溶液を20.39gに変更する以外は実施例3と同様の条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58蛍光体を得た。この蛍光体は、PO4換算で0.49%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例4のP含有化合物で処理した蛍光体は、ベーク後の輝度が84.9%であった。 As Example 4, the treatment was performed under the same conditions as in Example 3 except that the sodium phosphate solution of Example 3 was changed to 24.89 g and the calcium nitrate solution was 20.39 g, and the P-containing compound was treated ( A Ca, Sr) 2 Si 5 N 8 phosphor was obtained. In this phosphor, 0.49% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 4 had a luminance after baking of 84.9%.

実施例5として、実施例3のリン酸ナトリウム溶液を99.56g、硝酸カルシウム溶液を81.55gに変更する以外は実施例3と同様の条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。この蛍光体は、PO4換算で2.1%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例5のP含有化合物で処理した蛍光体は、ベーク後の輝度が90.7%であった。 As Example 5, except that the sodium phosphate solution of Example 3 was changed to 99.56 g and the calcium nitrate solution was changed to 81.55 g, the treatment was performed under the same conditions as in Example 3 and the P-containing compound was treated ( A Ca, Sr) 2 Si 5 N 8 : Eu phosphor was obtained. In this phosphor, 2.1% of P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 5 had a luminance after baking of 90.7%.

以上の実施例1〜5及び比較例1について、加熱の前後で相対輝度がどの程度低下したかを図5のグラフに示す。このグラフに示すように、P含有化合物で処理された蛍光体はいずれもP含有化合物で処理しない比較例よりも輝度の低下が少なかった。中でも、実施例2〜5は、加熱後の相対輝度が80%程度で劣化が抑制されており、これらの蛍光体に対してP含有化合物の処理が効果的であることが確認された。   About the above Examples 1-5 and Comparative Example 1, how much relative luminance fell before and after the heating is shown in the graph of FIG. As shown in this graph, the phosphor treated with the P-containing compound was less decreased in luminance than the comparative example not treated with the P-containing compound. Among them, in Examples 2 to 5, the relative luminance after heating was about 80%, and the deterioration was suppressed, and it was confirmed that the treatment of the P-containing compound was effective for these phosphors.

また同様に実施例1〜5及び比較例1について、P含有化合物の検出量をPO4量に換算した結果に基づき、P含有化合物処理に用いたリン酸の種類及び量と、加熱後の相対強度の関係を図6のグラフに示す。なおP含有化合物処理をしていない蛍光体については、P量を0としている。このグラフに示すように、処理に用いたリン酸の量が多い程相対輝度は高くなる。また実施例3〜5に係るPO4及びCaを用いたP含有化合物処理では、蛍光体100重量部に対してP量が0.5重量部程度でも高い相対輝度を得られる。一方、実施例1〜2に係るPO4及びMgを用いたP含有化合物処理は、P量の増加と共に相対輝度も増加傾向を示しており、蛍光体100重量部に対してP量が2重量部程度で80%程度の高い相対輝度を示した。このように、P含有化合物処理によって蛍光体が耐熱性を向上させており、輝度の低下を抑制できることが確認された。 Similarly, for Examples 1 to 5 and Comparative Example 1, based on the result of converting the detected amount of P-containing compound to PO 4 amount, the type and amount of phosphoric acid used for the treatment of P-containing compound and the relative value after heating The relationship of intensity is shown in the graph of FIG. In addition, about the phosphor which is not processed with a P containing compound, P amount is set to 0. As shown in this graph, the relative luminance increases as the amount of phosphoric acid used in the treatment increases. In addition, in the P-containing compound treatment using PO 4 and Ca according to Examples 3 to 5, high relative luminance can be obtained even when the P amount is about 0.5 parts by weight with respect to 100 parts by weight of the phosphor. On the other hand, the P-containing compound treatment using PO 4 and Mg according to Examples 1 and 2 shows an increasing tendency of the relative luminance as the amount of P increases, and the amount of P is 2% with respect to 100 parts by weight of the phosphor. The relative luminance was as high as about 80%. Thus, it was confirmed that the phosphor has improved heat resistance due to the P-containing compound treatment, and the reduction in luminance can be suppressed.

実施例6として、実施例3のリン酸ナトリウム溶液を199.12g、硝酸カルシウム溶液を163.1gに変更する以外は実施例3と同様の条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。この蛍光体は、PO4換算で4.0%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例6のP含有化合物で処理した蛍光体は、ベーク後の輝度が88.5%であった。 As Example 6, the treatment was performed under the same conditions as in Example 3 except that the sodium phosphate solution of Example 3 was changed to 199.12 g and the calcium nitrate solution was changed to 163.1 g, and the P-containing compound was treated ( A Ca, Sr) 2 Si 5 N 8 : Eu phosphor was obtained. In this phosphor, 4.0% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 6 had a brightness after baking of 88.5%.

実施例7として、実施例3のリン酸ナトリウム溶液を373.3g、硝酸カルシウム溶液を305.8gに変更する以外は実施例3と同様の条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。この蛍光体は、PO4換算で4.9%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例7のP含有化合物で処理した蛍光体は、ベーク後の輝度が76.6%であった。 As Example 7, the treatment was performed under the same conditions as in Example 3 except that the sodium phosphate solution of Example 3 was changed to 373.3 g and the calcium nitrate solution was changed to 305.8 g. A Ca, Sr) 2 Si 5 N 8 : Eu phosphor was obtained. In this phosphor, 4.9% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 7 had a luminance after baking of 76.6%.

実施例8として、実施例3のリン酸ナトリウム溶液を622.2g、硝酸カルシウム溶液を509.7gに変更する以外は実施例3と同様の条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。この蛍光体は、PO4換算で10.0%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例8のP含有化合物で処理した蛍光体は、ベーク後の輝度が67.9%であった。 As Example 8, the treatment was performed under the same conditions as in Example 3 except that the sodium phosphate solution of Example 3 was changed to 622.2 g and the calcium nitrate solution was changed to 509.7 g, and the P-containing compound was treated ( A Ca, Sr) 2 Si 5 N 8 : Eu phosphor was obtained. In this phosphor, 10.0% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 8 had a luminance after baking of 67.9%.

実施例9として、実施例3のリン酸ナトリウム溶液を1244.4g、硝酸カルシウム溶液を1019.4gに変更する以外は実施例3と同様の条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。この蛍光体は、PO4換算で18.0%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例9のP含有化合物で処理した蛍光体は、ベーク後の輝度が76.0%であった。 As Example 9, the treatment was carried out under the same conditions as in Example 3 except that the sodium phosphate solution of Example 3 was changed to 1244.4 g and the calcium nitrate solution was changed to 1019.4 g, and treated with a P-containing compound ( A Ca, Sr) 2 Si 5 N 8 : Eu phosphor was obtained. In this phosphor, 18.0% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in the air at 300 ° C., the phosphor treated with the P-containing compound of Example 9 had a luminance after baking of 76.0%.

実施例10として、実施例1のリン酸ナトリウム溶液を66.65g、硝酸マグネシウムに換わって硝酸アルミニウム溶液を32.0gとし、それ以外は実施例1と同じ条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58蛍光体を得た。この蛍光体は、PO4換算で1.4%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例10のP含有化合物で処理したところ、この蛍光体のベーク後の輝度が64.4%であった。 As Example 10, 66.65 g of the sodium phosphate solution of Example 1 was used and 32.0 g of the aluminum nitrate solution was substituted for magnesium nitrate. Otherwise, the treatment was performed under the same conditions as in Example 1, and the P-containing compound was used. A treated (Ca, Sr) 2 Si 5 N 8 phosphor was obtained. In this phosphor, 1.4% of a P-containing compound was detected in terms of PO 4 . Furthermore, when it heated in 300 degreeC air and evaluated durability, when it processed with the P containing compound of Example 10, the brightness | luminance after baking of this fluorescent substance was 64.4%.

実施例11として、実施例1のリン酸ナトリウム溶液を66.65g、硝酸マグネシウムに換わって硝酸ガリウム溶液を71.75gとしそれ以外は実施例1と同じ条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58蛍光体を得た。この蛍光体は、PO4換算で1.3%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例11のP含有化合物で処理した蛍光体は、ベーク後の輝度が58.0%であった。 As Example 11, 66.65 g of the sodium phosphate solution of Example 1 was used, and 71.75 g of the gallium nitrate solution was substituted for magnesium nitrate, and the treatment was performed under the same conditions as in Example 1 except that the P-containing compound was used. The obtained (Ca, Sr) 2 Si 5 N 8 phosphor was obtained. In this phosphor, 1.3% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 11 had a luminance after baking of 58.0%.

実施例12として、実施例1のリン酸ナトリウム溶液を66.65g、硝酸マグネシウムに換わって硝酸イットリウム溶液を75.65gとし、それ以外の条件は実施例1と同じ条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58蛍光体を得た。この蛍光体は、PO4換算で1.3%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例12のP含有化合物で処理した蛍光体は、ベーク後の輝度が69.9%であった。 As Example 12, 66.65 g of the sodium phosphate solution of Example 1 was used, and 75.65 g of the yttrium nitrate solution was substituted for magnesium nitrate. A (Ca, Sr) 2 Si 5 N 8 phosphor treated with the compound was obtained. In this phosphor, 1.3% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 12 had a luminance after baking of 69.9%.

実施例13として、実施例1のリン酸ナトリウム溶液を66.65g、硝酸マグネシウムに換わって硝酸ランタン溶液を56.25gとしそれ以外は実施例1と同じ条件で処理を行い、P含有化合物で処理された(Ca,Sr)2Si58蛍光体を得た。この蛍光体は、PO4換算で1.3%のP含有化合物が検出された。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例13のP含有化合物で処理した蛍光体は、ベーク後の輝度が68.3%であった。 As Example 13, 66.65 g of the sodium phosphate solution of Example 1 was replaced with 56.25 g of lanthanum nitrate solution instead of magnesium nitrate, and the other conditions were the same as in Example 1, and the P-containing compound was used. The obtained (Ca, Sr) 2 Si 5 N 8 phosphor was obtained. In this phosphor, 1.3% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 13 had a brightness after baking of 68.3%.

次に、実施例14〜17として、蛍光体を300℃の不活性ガス(N2)中でアニール処理を行い、P含有化合物で処理した後、上記と同様のベーク試験を行い、相対輝度を測定した。この結果を表2に示す。 Next, as Examples 14 to 17, the phosphor was annealed in an inert gas (N 2 ) at 300 ° C. and treated with a P-containing compound, and then a baking test similar to the above was performed to determine the relative luminance. It was measured. The results are shown in Table 2.

Figure 2006269938
Figure 2006269938

実施例14として、実施例1で作製される蛍光体をアニール処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例14のP含有化合物で処理した蛍光体は、ベーク後の輝度が68.6%であった。 As Example 14, the phosphor produced in Example 1 was annealed to obtain a (Ca, Sr) 2 Si 5 N 8 : Eu phosphor treated with a P-containing compound. Furthermore, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 14 had a brightness after baking of 68.6%.

実施例15として、実施例2で作製される蛍光体をアニール処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例15のP含有化合物で処理した蛍光体は、ベーク後の輝度が84.6%であった。 As Example 15, the phosphor produced in Example 2 was annealed to obtain a (Ca, Sr) 2 Si 5 N 8 : Eu phosphor treated with a P-containing compound. Further, when the durability was evaluated by heating in air at 300 ° C., the phosphor treated with the P-containing compound of Example 15 had a luminance after baking of 84.6%.

実施例16として、実施例4で作製される蛍光体をアニール処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。さらに300℃空気中で加熱を行い、耐久性を評価したところ、実施例16のP含有化合物で処理した蛍光体は、ベーク後の輝度が88.1%であった。 As Example 16, the phosphor produced in Example 4 was annealed to obtain a (Ca, Sr) 2 Si 5 N 8 : Eu phosphor treated with a P-containing compound. Further, the durability was evaluated by heating in air at 300 ° C. As a result, the phosphor treated with the P-containing compound of Example 16 had a brightness after baking of 88.1%.

実施例17として、実施例5で作製される蛍光体をアニール処理を行い、P含有化合物で処理された(Ca,Sr)2Si58:Eu蛍光体を得た。さらに300℃空気中で加熱を行い、耐久性を評価したところ。実施例17のP含有化合物で処理した蛍光体は、ベーク後の輝度は92.6%であった。
(実施例18〜21)
As Example 17, the phosphor produced in Example 5 was annealed to obtain a (Ca, Sr) 2 Si 5 N 8 : Eu phosphor treated with a P-containing compound. Furthermore, when it heated in 300 degreeC air and evaluated durability. The phosphor treated with the P-containing compound of Example 17 had a luminance after baking of 92.6%.
(Examples 18 to 21)

次に、実施例18〜21に係る蛍光体の耐久性を評価した結果を、表3に示す。耐久性の評価には本来は半導体素子を用いた発光装置として、例えばLEDを作製して評価することが好ましいが、蛍光体自体の簡易的な耐久(耐熱、耐酸化)性の評価として、空気中で加熱処理、つまり蛍光体のみを強制的に酸化させ、評価することでも確認できる。加熱条件は450℃、2時間としている。なお蛍光体の輝度の測定は、460nmの波長で励起させて測定を行ったものである。表中の各輝度は、比較例2として、全く処理していない状態の窒化物系蛍光体CaAlSiN3:Euを作製し、これを基準とした相対値で示す。 Next, Table 3 shows the results of evaluating the durability of the phosphors according to Examples 18 to 21. For evaluation of durability, it is originally preferable to produce and evaluate an LED, for example, as a light emitting device using a semiconductor element. However, as a simple evaluation of durability (heat resistance and oxidation resistance) of the phosphor itself, It can also be confirmed by heat treatment, that is, forcibly oxidizing and evaluating only the phosphor. The heating conditions are 450 ° C. and 2 hours. The luminance of the phosphor was measured by exciting with a wavelength of 460 nm. Each luminance in the table is shown as a relative value based on a nitride phosphor CaAlSiN 3 : Eu that was not treated at all as Comparative Example 2.

Figure 2006269938
(比較例2)
Figure 2006269938
(Comparative Example 2)

上記実施例17までで使用した蛍光体と異なる蛍光体CaAlSiN3:Euを用い、比較例として、窒化物蛍光体であるCaAlSiN3:EuをP含有化合物で処理しないで作製し、酸化雰囲気で加熱して意図的に劣化させた。450℃で2時間加熱したところ、輝度は加熱前に比べて91.1%低下した。 A phosphor CaAlSiN 3 : Eu different from the phosphor used in Example 17 was used, and as a comparative example, CaAlSiN 3 : Eu, which is a nitride phosphor, was produced without being treated with a P-containing compound and heated in an oxidizing atmosphere. And intentionally deteriorated. When heated at 450 ° C. for 2 hours, the brightness decreased by 91.1% compared to before heating.

次に実施例18として、この蛍光体CaAlSiN3:Euを用い、実施例1と同じ処理を行い、P含有化合物で処理されたCaAlSiN3:Eu蛍光体を得た。この蛍光体は、PO4換算で0.02%のP含有化合物が検出された。さらに450℃空気中で加熱を行い、耐久性を評価したところ、実施例18のP含有化合物で処理した蛍光体は、ベーク後の輝度が93.5%であった。 Next, as Example 18, using this phosphor CaAlSiN 3 : Eu, the same treatment as in Example 1 was performed to obtain a CaAlSiN 3 : Eu phosphor treated with a P-containing compound. In this phosphor, 0.02% of P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating at 450 ° C. in air, the phosphor treated with the P-containing compound of Example 18 had a luminance after baking of 93.5%.

さらに実施例19として、蛍光体CaAlSiN3:Euを用い、実施例2と同じ処理を行い、P含有化合物で処理されたCaAlSiN3:Eu蛍光体を得た。この蛍光体は、PO4換算で0.11%のP含有化合物が検出された。さらに450℃空気中で加熱を行い、耐久性を評価したところ、実施例19のP含有化合物で処理した蛍光体は、ベーク後の輝度が98.4%であった。 Furthermore, as Example 19, using the phosphor CaAlSiN 3 : Eu, the same treatment as in Example 2 was performed to obtain a CaAlSiN 3 : Eu phosphor treated with a P-containing compound. In this phosphor, 0.11% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 450 ° C., the phosphor treated with the P-containing compound of Example 19 had a luminance after baking of 98.4%.

実施例20として、蛍光体CaAlSiN3:Euを用い、実施例4と同じ処理を行い、P含有化合物で処理されたCaAlSiN3:Eu蛍光体を得た。この蛍光体は、PO4換算で0.026%のP含有化合物が検出された。さらに450℃空気中で加熱を行い、耐久性を評価したところ、実施例18のP含有化合物で処理した蛍光体は、ベーク後の輝度が97.2%であった。 As Example 20, a phosphor CaAlSiN 3 : Eu was used, and the same treatment as in Example 4 was performed to obtain a CaAlSiN 3 : Eu phosphor treated with a P-containing compound. In this phosphor, 0.026% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 450 ° C., the phosphor treated with the P-containing compound of Example 18 had a luminance after baking of 97.2%.

実施例21として、蛍光体CaAlSiN3:Euを用い、実施例5と同じ処理を行い、P含有化合物で処理されたCaAlSiN3:Eu蛍光体を得た。この蛍光体は、PO4換算で0.11%のP含有化合物が検出された。さらに450℃空気中で加熱を行い、耐久性を評価したところ、実施例19のP含有化合物で処理した蛍光体は、ベーク後の輝度が98.8%であった。 As Example 21, a phosphor CaAlSiN 3 : Eu was used, and the same treatment as in Example 5 was performed to obtain a CaAlSiN 3 : Eu phosphor treated with a P-containing compound. In this phosphor, 0.11% of a P-containing compound was detected in terms of PO 4 . Furthermore, when the durability was evaluated by heating in air at 450 ° C., the phosphor treated with the P-containing compound of Example 19 had a luminance after baking of 98.8%.

本発明の発光装置、発光素子用蛍光体及びその製造方法は、蛍光表示管、ディスプレイ、PDP、CRT、FL、FEDおよび投射管等、特に青色発光ダイオード又は紫外線発光ダイオードを光源とする発光特性に極めて優れた白色の照明用光源、LEDデイスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The light-emitting device, the phosphor for light-emitting element, and the method for manufacturing the same according to the present invention have a light emission characteristic using a blue light-emitting diode or an ultraviolet light-emitting diode as a light source, such as a fluorescent display tube, a display, a PDP, CRT, FL, FED, and a projection tube. It can be suitably used for an extremely excellent white illumination light source, LED display, backlight light source, traffic light, illumination switch, various sensors, various indicators, and the like.

本発明の実施の形態1に係る発光装置を示す平面図及び模式断面図である。It is the top view and schematic sectional drawing which show the light-emitting device concerning Embodiment 1 of this invention. 本発明の実施の形態2に係る発光装置を示す模式断面図である。It is a schematic cross section which shows the light-emitting device which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る発光装置を示す模式断面図である。It is a schematic cross section which shows the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る発光装置を示す模式断面図である。It is a schematic cross section which shows the light-emitting device which concerns on Embodiment 4 of this invention. 本発明の実施例1〜5及び比較例1に係る窒化物系蛍光体の相対輝度と加熱処理の関係を示すグラフである。It is a graph which shows the relationship between the relative brightness | luminance of the nitride type phosphor which concerns on Examples 1-5 of this invention, and the comparative example 1, and heat processing. 本発明の実施例1〜5及び比較例1に係る窒化物蛍光体の加熱処理前後のP量と相対輝度の関係を示すグラフである。It is a graph which shows the relationship between the amount of P before and behind heat processing of the nitride fluorescent substance which concerns on Examples 1-5 of this invention, and the comparative example 1, and relative luminance.

符号の説明Explanation of symbols

1、1B、1C…パッケージ
2、2B、2C…半導体発光素子
3、3B、3C…蛍光体層
4、4B…ワイヤ
10…発光素子
11…蛍光部材
13…リードフレーム
13a…マウントリード
13b…インナーリード
14…導電性ワイヤ
15…モールド部材
DESCRIPTION OF SYMBOLS 1, 1B, 1C ... Package 2, 2B, 2C ... Semiconductor light emitting element 3, 3B, 3C ... Phosphor layer 4, 4B ... Wire 10 ... Light emitting element 11 ... Fluorescent member 13 ... Lead frame 13a ... Mount lead 13b ... Inner lead 14 ... Conductive wire 15 ... Mold member

Claims (10)

発光素子と、
前記発光素子の発する光の少なくとも一部を吸収し異なる波長に変換するよう、前記発光素子の周囲に配置された蛍光体とを備える発光装置であって、
前記蛍光体が窒素を含有する窒化物系蛍光材料または酸窒化物系蛍光材料よりなり、かつ
前記蛍光体の表面をリンを含む化合物で処理してなることを特徴とする発光装置。
A light emitting element;
A light-emitting device comprising: a phosphor disposed around the light-emitting element so as to absorb and convert at least part of light emitted from the light-emitting element to a different wavelength;
A light-emitting device, wherein the phosphor is made of a nitride-based fluorescent material or an oxynitride-based fluorescent material containing nitrogen, and the surface of the phosphor is treated with a compound containing phosphorus.
請求項1に記載の発光装置であって、
前記蛍光体表面を処理する化合物がリン酸塩であることを特徴とする発光装置。
The light-emitting device according to claim 1,
The compound for treating the phosphor surface is a phosphoric acid salt.
請求項1に記載の発光装置であって、
前記蛍光体が透光性樹脂に含有されて前記発光素子の周囲に配置されてなることを特徴とする発光装置。
The light-emitting device according to claim 1,
A light-emitting device, wherein the phosphor is contained in a translucent resin and disposed around the light-emitting element.
発光素子の発する光の少なくとも一部を吸収し異なる波長に変換するための発光素子用蛍光体であって、
前記蛍光体が窒素を含有する窒化物系蛍光材料または酸窒化物系蛍光材料よりなり、かつ
前記蛍光体の表面をリンを含む化合物で処理してなることを特徴とする発光素子用蛍光体。
A phosphor for a light emitting element for absorbing at least a part of light emitted from the light emitting element and converting it to a different wavelength,
A phosphor for a light-emitting element, wherein the phosphor is made of a nitride-based phosphor material or an oxynitride-based phosphor material containing nitrogen, and the surface of the phosphor is treated with a compound containing phosphorus.
請求項4に記載の発光素子用蛍光体であって、
前記蛍光体表面を処理する化合物がリン酸塩であることを特徴とする発光素子用蛍光体。
The phosphor for a light emitting device according to claim 4,
The phosphor for a light emitting device, wherein the compound for treating the phosphor surface is a phosphate.
請求項4または5に記載の発光素子用蛍光体であって、
前記蛍光体が、L−M−N:R、L−J−M−N:R、またはL−M−O−N:R(LはBe、Mg、Ca、Sr、Ba、Znからなる群より選ばれる1種以上を含有し、MはC、Si、Ge、Sn、Ti、Zr、Hfからなる群より選ばれる1種以上を含有し、JはB、Al、Ga、In、Scからなる群より選ばれる1種類以上を含有し、Nは窒素、Oは酸素、Rは希土類元素である。)で表される窒化物系または酸窒化物系蛍光体であることを特徴とする発光素子用蛍光体。
The phosphor for light emitting device according to claim 4 or 5,
The phosphor is LMN: R, LJMN: R, or LMON: R (L is a group consisting of Be, Mg, Ca, Sr, Ba, Zn). 1 or more selected from the group consisting of C, Si, Ge, Sn, Ti, Zr, and Hf, and J includes B, Al, Ga, In, and Sc. A light emission characterized by being a nitride-based or oxynitride-based phosphor represented by the formula (1) including at least one selected from the group consisting of N, nitrogen, O, oxygen, and R: a rare earth element. Phosphor for device.
請求項4から6のいずれかに記載の発光素子用蛍光体であって、
前記蛍光体が、Lxy{(2/3)x+(4/3)y}:R、Lxwy{(2/3)x+w+(4/3)y}:R、またはLxyz{(2/3)x+(4/3)y-(2/3)z}:R(0.5≦x≦3、0.5≦y≦9、0.5≦w≦5、0<z≦3;LはBe、Mg、Ca、Sr、Ba、Znからなる群より選ばれる1種以上を含有し、MはC、Si、Ge、Sn、Ti、Zr、Hfからなる群より選ばれる1種以上を含有し、JはB、Al、Ga、In、Scからなる群より選ばれる1種類以上を含有し、Nは窒素、Oは酸素、Rは希土類元素である。)で表され、かつ結晶構造を有することを特徴とする発光素子用蛍光体。
The phosphor for a light emitting device according to any one of claims 4 to 6,
Said phosphor, L x M y N {( 2/3) x + (4/3) y}: R, L x J w M y N {(2/3) x + w + (4/3) y} : R or L x M y O z N { (2/3) x + (4/3) y- (2/3) z},: R (0.5 ≦ x ≦ 3,0.5 ≦ y ≦ 9 0.5 ≦ w ≦ 5, 0 <z ≦ 3; L contains one or more selected from the group consisting of Be, Mg, Ca, Sr, Ba, Zn, and M is C, Si, Ge, Sn 1 or more selected from the group consisting of Ti, Zr and Hf, J contains one or more selected from the group consisting of B, Al, Ga, In and Sc, N is nitrogen and O is oxygen , R is a rare earth element), and has a crystal structure.
請求項4から7のいずれかに記載の発光素子用蛍光体であって、
前記蛍光体の結晶構造が単斜晶または斜方晶であることを特徴とする発光素子用蛍光体。
The phosphor for light emitting device according to any one of claims 4 to 7,
A phosphor for a light-emitting element, wherein the phosphor has a monoclinic or orthorhombic crystal structure.
発光素子の発する光の少なくとも一部を吸収し異なる波長に変換するための発光素子用蛍光体の製造方法であって、
リン含有溶液を窒素を含有する窒化物系蛍光材料または酸窒化物系蛍光材料よりなる蛍光体の表面に接触させる工程と、
処理された蛍光体を熱処理する工程と、
を有することを特徴とする発光素子用蛍光体の製造方法。
A method for producing a phosphor for a light-emitting element for absorbing at least a part of light emitted from the light-emitting element and converting it to a different wavelength,
Bringing the phosphorus-containing solution into contact with the surface of a phosphor made of a nitride-based fluorescent material or an oxynitride-based fluorescent material containing nitrogen;
Heat treating the treated phosphor;
The manufacturing method of the fluorescent substance for light emitting elements characterized by having.
請求項9に記載の発光素子用蛍光体の製造方法であって、前記熱処理が、酸素を含まない雰囲気中で100℃以上にて行われることを特徴とする発光素子用蛍光体。
The method for manufacturing a phosphor for a light-emitting element according to claim 9, wherein the heat treatment is performed at 100 ° C or higher in an oxygen-free atmosphere.
JP2005088908A 2005-03-25 2005-03-25 Light emitting device, phosphor for light emitting element, and method for manufacturing the same Active JP4760082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088908A JP4760082B2 (en) 2005-03-25 2005-03-25 Light emitting device, phosphor for light emitting element, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088908A JP4760082B2 (en) 2005-03-25 2005-03-25 Light emitting device, phosphor for light emitting element, and method for manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010229653A Division JP5234080B2 (en) 2010-10-12 2010-10-12 Light emitting device, phosphor for light emitting element, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006269938A true JP2006269938A (en) 2006-10-05
JP4760082B2 JP4760082B2 (en) 2011-08-31

Family

ID=37205539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088908A Active JP4760082B2 (en) 2005-03-25 2005-03-25 Light emitting device, phosphor for light emitting element, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4760082B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169452A (en) * 2005-12-21 2007-07-05 Dowa Holdings Co Ltd Fluorescent substance and production method thereof, as well as light emitting device
JP2009132916A (en) * 2007-11-09 2009-06-18 Mitsubishi Chemicals Corp Fluorescent substance and its preparing method
WO2010137533A1 (en) * 2009-05-28 2010-12-02 住友化学株式会社 Process for producing surface-treated fluorescent-substance particles, and surface-treated fluorescent-substance particles
RU2459855C2 (en) * 2007-02-06 2012-08-27 Конинклейке Филипс Электроникс Н.В. Red emitting luminescent materials
JP2012234891A (en) * 2011-04-28 2012-11-29 Sharp Corp Nitride semiconductor light-emitting diode element
JP2012532819A (en) * 2009-07-11 2012-12-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Co-doped silicon oxynitride
WO2013183620A1 (en) 2012-06-08 2013-12-12 電気化学工業株式会社 Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device
JP2014103391A (en) * 2012-11-21 2014-06-05 Shogen Koden Kofun Yugenkoshi Light-emitting device having a plurality of light-emitting stack layers
WO2014156201A1 (en) * 2013-03-29 2014-10-02 株式会社 東芝 Phosphor, method for producing same and light emitting device using same
WO2015083814A1 (en) * 2013-12-06 2015-06-11 堺化学工業株式会社 Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body
WO2019188632A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 Red fluorescent body and light-emitting device
WO2019188631A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 β-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
WO2019188630A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 α-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
WO2020203488A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Phosphor particles, composite body and light emitting device
JP2022007882A (en) * 2020-03-26 2022-01-13 日亜化学工業株式会社 Light-emitting device
US11773323B2 (en) 2022-01-27 2023-10-03 Nichia Corporation Fluorescent material and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315485A (en) * 1988-03-17 1989-12-20 Sumitomo Chem Co Ltd Fluorescent substance coated with phosphate for el illuminant and production thereof
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
JP2002309247A (en) * 2001-04-16 2002-10-23 Nichia Chem Ind Ltd Gallium nitride luminescent substance and method for producing the same
JP2004161807A (en) * 2002-11-08 2004-06-10 Nichia Chem Ind Ltd Nitride phosphor and light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315485A (en) * 1988-03-17 1989-12-20 Sumitomo Chem Co Ltd Fluorescent substance coated with phosphate for el illuminant and production thereof
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
JP2002309247A (en) * 2001-04-16 2002-10-23 Nichia Chem Ind Ltd Gallium nitride luminescent substance and method for producing the same
JP2004161807A (en) * 2002-11-08 2004-06-10 Nichia Chem Ind Ltd Nitride phosphor and light-emitting device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169452A (en) * 2005-12-21 2007-07-05 Dowa Holdings Co Ltd Fluorescent substance and production method thereof, as well as light emitting device
RU2459855C2 (en) * 2007-02-06 2012-08-27 Конинклейке Филипс Электроникс Н.В. Red emitting luminescent materials
JP2009132916A (en) * 2007-11-09 2009-06-18 Mitsubishi Chemicals Corp Fluorescent substance and its preparing method
JP2013177619A (en) * 2007-11-09 2013-09-09 Mitsubishi Chemicals Corp Method for manufacturing fluorescent substance
WO2010137533A1 (en) * 2009-05-28 2010-12-02 住友化学株式会社 Process for producing surface-treated fluorescent-substance particles, and surface-treated fluorescent-substance particles
JP2012532819A (en) * 2009-07-11 2012-12-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Co-doped silicon oxynitride
JP2012234891A (en) * 2011-04-28 2012-11-29 Sharp Corp Nitride semiconductor light-emitting diode element
JPWO2013183620A1 (en) * 2012-06-08 2016-02-01 デンカ株式会社 Phosphor surface treatment method, phosphor, light emitting device, and illumination device
WO2013183620A1 (en) 2012-06-08 2013-12-12 電気化学工業株式会社 Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device
TWI582213B (en) * 2012-06-08 2017-05-11 Denka Company Ltd Phosphor surface treatment method, phosphor, illuminating device and illuminating device
CN104350127A (en) * 2012-06-08 2015-02-11 电气化学工业株式会社 Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device
CN104350127B (en) * 2012-06-08 2017-02-22 电化株式会社 Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device
JP2014103391A (en) * 2012-11-21 2014-06-05 Shogen Koden Kofun Yugenkoshi Light-emitting device having a plurality of light-emitting stack layers
JP5989775B2 (en) * 2013-03-29 2016-09-07 株式会社東芝 Phosphor, method for manufacturing the same, and light emitting device using the same
JPWO2014156201A1 (en) * 2013-03-29 2017-02-16 株式会社東芝 Phosphor, method for manufacturing the same, and light emitting device using the same
WO2014156201A1 (en) * 2013-03-29 2014-10-02 株式会社 東芝 Phosphor, method for producing same and light emitting device using same
JP5743044B1 (en) * 2013-12-06 2015-07-01 堺化学工業株式会社 Stress luminescent material, method for producing stress luminescent material, stress luminescent coating composition, resin composition, and stress luminescent material
WO2015083814A1 (en) * 2013-12-06 2015-06-11 堺化学工業株式会社 Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body
WO2019188632A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 Red fluorescent body and light-emitting device
JP7280866B2 (en) 2018-03-29 2023-05-24 デンカ株式会社 α-type sialon phosphor and light-emitting device
WO2019188630A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 α-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
KR102659883B1 (en) 2018-03-29 2024-04-24 덴카 주식회사 β-type sialon phosphor and light-emitting device
US11932792B2 (en) 2018-03-29 2024-03-19 Denka Company Limited Red fluorescent body and light-emitting device
KR20200135864A (en) * 2018-03-29 2020-12-03 덴카 주식회사 β-sialon phosphor and light emitting device
JPWO2019188630A1 (en) * 2018-03-29 2021-04-01 デンカ株式会社 α-type Sialon phosphor and light emitting device
JPWO2019188631A1 (en) * 2018-03-29 2021-04-01 デンカ株式会社 β-type sialone phosphor and light emitting device
JPWO2019188632A1 (en) * 2018-03-29 2021-04-08 デンカ株式会社 Red phosphor and light emitting device
JP7282745B2 (en) 2018-03-29 2023-05-29 デンカ株式会社 Red phosphor and light-emitting device
US11236269B2 (en) 2018-03-29 2022-02-01 Denka Company Limited Alpha-Sialon fluorescent body and light-emitting device
JP7282744B2 (en) 2018-03-29 2023-05-29 デンカ株式会社 β-type sialon phosphor and light-emitting device
WO2019188631A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 β-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
US11359139B2 (en) 2019-03-29 2022-06-14 Denka Company Limited Phosphor powder, composite, and light-emitting device
JP2020164754A (en) * 2019-03-29 2020-10-08 デンカ株式会社 Fluorescent powder, complex and light emitting device
WO2020203488A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Phosphor particles, composite body and light emitting device
JP7121312B2 (en) 2020-03-26 2022-08-18 日亜化学工業株式会社 light emitting device
JP2022007882A (en) * 2020-03-26 2022-01-13 日亜化学工業株式会社 Light-emitting device
US11773323B2 (en) 2022-01-27 2023-10-03 Nichia Corporation Fluorescent material and method for producing same

Also Published As

Publication number Publication date
JP4760082B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4760082B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
KR101065522B1 (en) Light-emitting device
JP4667803B2 (en) Light emitting device
JP3956972B2 (en) Light emitting device using fluorescent material
EP1837386B1 (en) Nitride phosphor, method for producing same and light-emitting device using nitride phosphor
JP4529349B2 (en) Nitride-based phosphor and light emitting device
JP4222017B2 (en) Light emitting device
JP4725008B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing phosphor for light emitting element
US20060001352A1 (en) Light emitting device, phosphor, and method for preparing phosphor
US7733002B2 (en) Semiconductor light emitting device provided with an alkaline earth metal boric halide phosphor for luminescence conversion
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP2004071726A (en) Light emitting device
JP5421205B2 (en) Light emitting device
JP2005082788A5 (en)
JP2006306981A (en) Nitride phosphor and light emitting device using the same
JP5592764B2 (en) Light emitting device
JP2005093912A (en) Light-emitting device
JP2005298721A (en) Oxynitride phosphor and light emitting device using the same
WO2006117984A1 (en) Nitride phosphor and light-emitting device using same
JP4187033B2 (en) Light emitting device
JP5234080B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP4009868B2 (en) Nitride phosphor and light emitting device using the same
JP4613546B2 (en) Light emitting device
JP4492189B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110318

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4760082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250