JP2006269362A - Negative electrode for lithium ion secondary battery - Google Patents

Negative electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP2006269362A
JP2006269362A JP2005089208A JP2005089208A JP2006269362A JP 2006269362 A JP2006269362 A JP 2006269362A JP 2005089208 A JP2005089208 A JP 2005089208A JP 2005089208 A JP2005089208 A JP 2005089208A JP 2006269362 A JP2006269362 A JP 2006269362A
Authority
JP
Japan
Prior art keywords
negative electrode
copper foil
lithium ion
ion secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005089208A
Other languages
Japanese (ja)
Inventor
Hajime Sasaki
元 佐々木
Yuko Matsumoto
雄行 松本
Muneo Kodaira
宗男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005089208A priority Critical patent/JP2006269362A/en
Publication of JP2006269362A publication Critical patent/JP2006269362A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium ion secondary battery enhancing cycle characteristics by preventing separation or coming off of an active material from copper foil which is a negative current collector even if charge and discharge are repeated, and to provide its manufacturing method. <P>SOLUTION: Cu<SB>6</SB>Sn<SB>5</SB>acting as an active material is formed in such a way that irregularity treatment is conducted so as to form 1.5 times or more wider surface area than the smooth surface on the copper foil surface as the surface treatment of the copper foil, a diffusion barrier layer made of Ni or Co is formed on the surface of the copper foil, a copper or tin plating film is formed on the surface of the diffusion barrier layer, and then heat treatment is conducted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規なリチウムイオン二次電池用負極及びその製造方法に係り、特に、充放電を繰り返しても集電体である銅箔から活物質が剥離、脱落することなくサイクル特性に優れたリチウムイオン二次電池用負極及びその製造方法に関するものである。   The present invention relates to a novel negative electrode for a lithium ion secondary battery and a method for producing the same, and in particular, the active material is excellent in cycle characteristics without peeling and dropping from a copper foil as a current collector even after repeated charge and discharge. The present invention relates to a negative electrode for a lithium ion secondary battery and a method for producing the same.

リチウムイオン二次電池は現在モバイル機器用をはじめとして広く普及している。これらの負極としては、銅箔または銅合金箔(以下、本件明細書で「銅箔」と表記した場合は「銅合金箔」を含むものとする)からなる負極集電体の上にカーボン系の材料を活物質として形成したものである。   Lithium ion secondary batteries are now widely used for mobile devices. These negative electrodes include a carbon-based material on a negative electrode current collector made of copper foil or copper alloy foil (hereinafter referred to as “copper alloy foil” when referred to as “copper foil” in the present specification). Is formed as an active material.

このリチウムイオン二次電池用負極材は、一般的に、圧延銅箔または電解銅箔上にカーボン系の材料をバインダーと溶剤で溶いたものを塗布、乾燥し、熱ロールプレスを施して供される。カーボン系の材料ではカーボンとリチウムの化合物であるLiCが活物質として作用し、リチウムイオンを吸蔵・脱離することができる。このとき、LiCの単位重さ当たりの理論放電容量(最大容量)は372mAh/gと言われている。カーボン系の活物質ではこの値を超えて容量の増大を図ることはできないため、最近ではさらに放電容量の大きいSn系の活物質(Li4.4Snで約1000mAh/g)、Si系の活物質(Li4.4Siで約4000mAh/g)などの実用化検討が盛んに行われている。 This negative electrode material for lithium ion secondary batteries is generally provided by applying a carbon-based material dissolved in a binder and a solvent on a rolled copper foil or an electrolytic copper foil, drying, and applying a hot roll press. The In a carbon-based material, LiC 6 which is a compound of carbon and lithium acts as an active material, and can absorb and desorb lithium ions. At this time, the theoretical discharge capacity (maximum capacity) per unit weight of LiC 6 is said to be 372 mAh / g. Since the capacity cannot be increased beyond this value in the case of carbon-based active materials, recently, Sn-based active materials having a larger discharge capacity (approximately 1000 mAh / g in Li 4.4 Sn), Si-based active materials ( Li 4.4 Si (about 4000 mAh / g) has been actively studied.

Sn系の材料では、銅箔表面に電解めっきでSnを形成して200℃で24時間熱処理を行うと、めっき層がSn−CuSn−CuSnの多層構造に変化し、充放電時の活物質の膨張収縮による応力を緩和して剥離を抑制するため、サイクル特性が向上するという報告がある(非特許文献1参照)。 In Sn-based materials, when Sn is formed on the copper foil surface by electrolytic plating and heat treatment is performed at 200 ° C. for 24 hours, the plating layer changes to a multilayer structure of Sn—Cu 6 Sn 5 —Cu 3 Sn, and charge and discharge There is a report that cycle characteristics are improved in order to relieve stress due to expansion and contraction of the active material and suppress peeling (see Non-Patent Document 1).

また、金属箔からなる集電体表面を粗面化した後に活物質の薄膜を形成すると、金属箔と活物質の接触面積が大きくなり密着性を向上できるとされている(特許文献1参照)。
三洋電機技報,Vol.34,No.1,pp.87-93(2002) 特開2002−170554号公報
Moreover, when the active material thin film is formed after the current collector surface made of metal foil is roughened, the contact area between the metal foil and the active material is increased, and the adhesion can be improved (see Patent Document 1). .
Sanyo Electric Technical Report, Vol.34, No.1, pp.87-93 (2002) JP 2002-170554 A

カーボン系の材料はほぼ理論容量に近いところまで電池の開発が進んでおり、今後、放電容量の大幅な向上は困難である。このため前述したようにSn系やSi系の材料の開発が行われている。しかしながら、これらの材料はリチウムイオンを吸蔵したときの体積膨張が極めて大きいという欠点がある。具体的には、カーボン系材料の場合が1.5倍程度の体積膨張であるのに対し、Sn系は約3.5倍、Si系では約4倍もの体積膨張となる。この大きな体積変化のため、充放電サイクルに伴い集電体である銅箔から活物質が剥離、脱落し、電池特性が急激に低下してしまうという問題が生じ、これが実用化にあたっての最大の障害となっていた。   The development of batteries is progressing to a point where the carbon-based material is almost close to the theoretical capacity, and it is difficult to greatly improve the discharge capacity in the future. For this reason, as described above, Sn-based and Si-based materials have been developed. However, these materials have a drawback that volume expansion is extremely large when lithium ions are occluded. Specifically, the volume expansion of carbon material is about 1.5 times, whereas the volume expansion of Sn system is about 3.5 times and that of Si system is about 4 times. Due to this large volume change, the active material peels off from the copper foil that is the current collector during charge / discharge cycles, causing a problem that the battery characteristics deteriorate sharply. This is the biggest obstacle to practical use. It was.

この対策として、非特許文献1に示すようにSnめっき銅箔を熱処理する方法が挙げられるが、Snめっき膜をそのまま供した場合の剥離を抑制するに過ぎず、十分な対策とはいえなかった。   As this countermeasure, there is a method of heat-treating the Sn-plated copper foil as shown in Non-Patent Document 1, but it is merely a suppression of peeling when the Sn plating film is used as it is, and it cannot be said that it is a sufficient countermeasure. .

また、活物質と銅箔の密着性を保つために、特許文献1に示すように銅箔に予め粗化処理を施すことも考えられるが、熱処理に伴うSnとCuの相互拡散により銅箔表面の凹凸が失われてしまい、効果が認められなくなってしまうという不都合があった。   In order to maintain the adhesion between the active material and the copper foil, it is conceivable that the copper foil is preliminarily roughened as shown in Patent Document 1, but the surface of the copper foil is caused by mutual diffusion of Sn and Cu accompanying the heat treatment. There is a disadvantage that the unevenness of the film is lost and the effect is not recognized.

一方、カーボン系材料を用いた負極集電体としての銅箔には、通常、圧延銅箔(例えば、タフピッチ銅箔)または電解銅箔が使用されているが、これらの銅箔の引張強さは450N/mm程度以下である。しかしながら、タフピッチ銅箔や電解銅箔をSn系、Si系の活物質とともに使用すると、活物質の体積膨張のために銅箔が伸びて皺になったり破断したりする課題があった。さらに、タフピッチ銅箔の場合には軟化温度が150℃程度であるため、電池製造上のプロセスで熱を受けると容易に軟化し、活物質の膨張による銅箔の塑性変形(伸び)がますます大きくなってしまうという問題があった。 On the other hand, rolled copper foil (for example, tough pitch copper foil) or electrolytic copper foil is usually used as a copper foil as a negative electrode current collector using a carbon-based material, but the tensile strength of these copper foils. Is about 450 N / mm 2 or less. However, when a tough pitch copper foil or an electrolytic copper foil is used together with an Sn-based or Si-based active material, there is a problem that the copper foil is stretched due to volume expansion of the active material and becomes wrinkled or broken. Furthermore, in the case of tough pitch copper foil, the softening temperature is about 150 ° C, so it softens easily when subjected to heat in the battery manufacturing process, and plastic deformation (elongation) of the copper foil due to expansion of the active material increases. There was a problem of getting bigger.

従って、本発明の目的は、かかる問題点を解消し、充放電を繰り返しても集電体である銅箔から活物質が剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池用負極及びその製造方法を提供することにある。   Therefore, the object of the present invention is to eliminate such problems and for a lithium ion secondary battery having excellent cycle characteristics without causing the active material to peel off or drop off from the copper foil as a current collector even after repeated charging and discharging. It is providing the negative electrode and its manufacturing method.

上記課題を解決するため、本発明のリチウムイオン二次電池用負極は、銅箔からなる負極集電体上に活物質を形成したリチウムイオン二次電池用負極において、前記銅箔からなる負極集電体と前記活物質との間に、平滑面に対して1.5倍を超える表面積となるような凹凸面を有する拡散バリア層を平均厚さ0.1μm以上形成したことを特徴とする。   In order to solve the above problems, a negative electrode for a lithium ion secondary battery according to the present invention is a negative electrode for a lithium ion secondary battery in which an active material is formed on a negative electrode current collector made of a copper foil. A diffusion barrier layer having an uneven surface that has a surface area exceeding 1.5 times that of a smooth surface is formed between the electric material and the active material with an average thickness of 0.1 μm or more.

また、本発明のリチウムイオン二次電池用負極は、銅箔からなる負極集電体上に活物質を形成したリチウムイオン二次電池用負極において、前記銅箔は平滑面に対して1.5倍を超える表面積となるように粗化処理が施されており、かつ前記銅箔の表面に、凹凸面を有する拡散バリア層を平均厚さ0.1μm以上形成したことを特徴とする。   The negative electrode for a lithium ion secondary battery according to the present invention is a negative electrode for a lithium ion secondary battery in which an active material is formed on a negative electrode current collector made of a copper foil. A roughening treatment is performed so as to have a surface area exceeding twice, and a diffusion barrier layer having an uneven surface is formed on the surface of the copper foil with an average thickness of 0.1 μm or more.

前記拡散バリア層は、ニッケル薄膜またはコバルト薄膜であり、その平均厚みが0.1〜1μmであることが好ましい。   The diffusion barrier layer is a nickel thin film or a cobalt thin film, and preferably has an average thickness of 0.1 to 1 μm.

前記活物質は、銅−錫の金属間化合物CuSnからなることが好ましい。 The active material is preferably made of a copper-tin intermetallic compound Cu 6 Sn 5 .

前記銅箔は、破断伸びが2%以下であり、かつ引張強さが少なくとも700N/mm以上であることが好ましい。 The copper foil preferably has a breaking elongation of 2% or less and a tensile strength of at least 700 N / mm 2 or more.

また、上記課題を解決するために、本発明のリチウムイオン二次電池用負極の製造方法は、銅箔からなる負極集電体上に活物質を形成したリチウムイオン二次電池用負極の製造方法において、予め前記銅箔の下地処理として前記銅箔表面に平滑面に対して1.5倍を超える表面積となるように凹凸化処理を施し、次いで当該凹凸化処理を施した銅箔の表面に拡散バリア層を形成し、更に当該拡散バリア層の表面に最終的に前記活物質となるような組成のめっき膜を形成後、熱処理を施すことにより前記活物質を形成したことを特徴とする。   Moreover, in order to solve the said subject, the manufacturing method of the negative electrode for lithium ion secondary batteries of this invention is the manufacturing method of the negative electrode for lithium ion secondary batteries which formed the active material on the negative electrode electrical power collector which consists of copper foil. In the above, the surface of the copper foil is subjected to a roughening treatment so that the surface of the copper foil has a surface area exceeding 1.5 times the smooth surface, and then the surface of the copper foil subjected to the roughening treatment. The active material is formed by forming a diffusion barrier layer and further forming a plating film having a composition that finally becomes the active material on the surface of the diffusion barrier layer, followed by heat treatment.

前記凹凸化処理は、銅または銅合金系の電気めっき等(材料を付加(付着)させる加工技術)、あるいはフォトエッチング等(材料を削除する加工技術)により行うことができる。   The roughening treatment can be performed by copper or copper alloy-based electroplating or the like (processing technique for adding (attaching) a material) or photoetching (processing technique for deleting the material).

前記拡散バリア層として、ニッケル薄膜またはコバルト薄膜をその平均厚みが0.1〜1μmとなるように形成し、前記活物質として、銅及び錫めっき膜を形成後、熱処理を施すことにより銅−錫の金属間化合物CuSnを形成することができる。 As the diffusion barrier layer, a nickel thin film or a cobalt thin film is formed so as to have an average thickness of 0.1 to 1 μm, and copper and tin plating films are formed as the active material, and then heat treatment is performed to form copper-tin. The intermetallic compound Cu 6 Sn 5 can be formed.

本発明によれば、充放電を繰り返しても集電体である銅箔から活物質が剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池用負極及びその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if it repeats charging / discharging, an active material does not peel from the copper foil which is a collector, and it can provide the negative electrode for lithium ion secondary batteries excellent in cycling characteristics, and its manufacturing method.

以下、図面を参照して、本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本実施形態に係るリチウムイオン二次電池用負極の模式図を示す。
このリチウムイオン二次電池用負極10は、凹凸面を有する銅箔1上に、凹凸面を有する拡散バリア層2を設け、更にその上に活物質3を形成したものである。
以下、それぞれの構成について詳しく説明する。
In FIG. 1, the schematic diagram of the negative electrode for lithium ion secondary batteries which concerns on this embodiment is shown.
In this negative electrode 10 for a lithium ion secondary battery, a diffusion barrier layer 2 having an uneven surface is provided on a copper foil 1 having an uneven surface, and an active material 3 is further formed thereon.
Hereinafter, each configuration will be described in detail.

(銅箔)
銅箔1は、活物質3が膨張しようとする応力に耐える機械的特性を有している必要がある。伸びが大きい(塑性変形が容易、耐力が小さい)銅箔では活物質の膨張に伴い一緒に伸び(塑性変形)を生じてしまい、皺や折れなどが発生してしまう。そのような不都合な塑性変形(伸び)を防ぐためには、耐力が大きく、破断伸びが2%程度以下であるような銅箔が好ましい。また、引張強さは高ければ高いほど良く、この点で電解銅箔より圧延銅合金箔であることが望ましく、少なくとも700N/mm以上が好ましい。この様な高強度の銅合金箔としては、例えばNiやSiを含有する、いわゆるコルソン系銅合金を用いた箔が挙げられる。
(Copper foil)
The copper foil 1 needs to have mechanical properties that can withstand the stress that the active material 3 tends to expand. A copper foil having a large elongation (easily plastic deformation and small proof stress) causes elongation (plastic deformation) together with the expansion of the active material, resulting in wrinkles and breakage. In order to prevent such inconvenient plastic deformation (elongation), a copper foil having a high yield strength and a breaking elongation of about 2% or less is preferable. Further, the higher the tensile strength, the better. In this respect, it is desirable to use a rolled copper alloy foil rather than an electrolytic copper foil, and at least 700 N / mm 2 or more is preferable. Examples of such a high-strength copper alloy foil include a foil using a so-called Corson copper alloy containing Ni or Si.

(銅箔の表面積と活物質の厚さの関係)
負極活物質がリチウムイオンと反応し体積変化(膨張、収縮)を繰り返すうちに剥離、脱落するという現象は、初期の活物質3の形成厚さによりその挙動(耐久性)が異なってくる。なぜならば、厚さが薄くなると活物質の体積変化(膨張、収縮)の絶対量が小さくなり、同じサイクルを繰り返しても剥離、脱落が起こりにくくなるためである。従って、活物質3を薄くすることが充放電のサイクル特性を向上させる対応策となりうる。しかし、単純に活物質3を薄くすれば、当然その分の充放電容量が低下してしまい電池としての有用性が失われてしまう。
そこで活物質3を形成すべき銅箔1の表面に凹凸化処理を施し、表面積を増大してやれば、これに伴って活物質3を薄くしても単位投影面積あたりの活物質量は同様に確保することが出来、全体的な充放電容量を維持させることが可能となる。例えば、表面積を2倍にすれば活物質3の厚さは2分の1ですみ、3倍にすれば3分の1で済むことになる。
(Relationship between copper foil surface area and active material thickness)
The phenomenon of peeling and dropping while the negative electrode active material reacts with lithium ions and repeats volume changes (expansion and contraction) varies in behavior (durability) depending on the initial formation thickness of the active material 3. This is because when the thickness is reduced, the absolute amount of volume change (expansion and contraction) of the active material is reduced, and even when the same cycle is repeated, peeling and dropping are less likely to occur. Therefore, thinning the active material 3 can be a countermeasure for improving the charge / discharge cycle characteristics. However, if the active material 3 is simply made thin, the charge / discharge capacity correspondingly decreases, and the usefulness as a battery is lost.
Therefore, if the surface of the copper foil 1 on which the active material 3 is to be formed is roughened and the surface area is increased, the amount of active material per unit projected area is similarly secured even if the active material 3 is made thinner accordingly. This makes it possible to maintain the overall charge / discharge capacity. For example, if the surface area is doubled, the thickness of the active material 3 is halved, and if it is tripled, only one third is sufficient.

(銅箔の凹凸化処理)
銅箔1の凹凸化処理としては、銅箔に電気めっき等の材料を付加(付着)させる加工技術やエッチング等の材料を削除する加工技術を施す方法が考えられる。凹凸化処理において、かぶせめっきの時間を変えたり、フォトエッチングの時間を変えたりすることにより、銅箔の表面積比を変化させることができる。また、いずれの方法でもフォトマスクなどを形成した後に行えば、より形の整った処理を行うことが出来る。
(Roughening of copper foil)
As the roughening treatment of the copper foil 1, a method of applying a processing technique for adding (attaching) a material such as electroplating to the copper foil or a processing technique for deleting a material such as etching can be considered. In the concavo-convex treatment, the surface area ratio of the copper foil can be changed by changing the time of covering plating or changing the time of photoetching. Further, if any method is used after forming a photomask or the like, a more uniform process can be performed.

(負極活物質)
活物質3として、例えばCuSnを形成する場合には、一般的に、非特許文献1にあるように、銅箔1の表面にSnを電解めっき後、熱処理を施す。このとき、実用的な電池容量を確保するためには、Sn厚さに換算して5μm程度以上の厚みが必要であるが、この厚みでは充放電のサイクルを重ねる毎に活物質3が剥離して容量の低下が著しい。これに対し、厚みを半分の2.5μm程度以下にできれば、剥離(脱落)に起因する容量低下を大幅に低減できる。
(Negative electrode active material)
For example, when Cu 6 Sn 5 is formed as the active material 3, generally, as described in Non-Patent Document 1, Sn is electrolytically plated on the surface of the copper foil 1 and then heat treatment is performed. At this time, in order to secure a practical battery capacity, a thickness of about 5 μm or more is required in terms of Sn thickness. However, at this thickness, the active material 3 peels off every time the charge / discharge cycle is repeated. The capacity is drastically reduced. On the other hand, if the thickness can be reduced to about 2.5 μm, which is half of the thickness, a decrease in capacity due to peeling (dropping) can be greatly reduced.

(拡散バリア層)
活物質3と銅箔1との間の密着性を保つ目的で銅箔1に粗化処理を施してある場合、直接銅箔上にSnの電解めっきを施し熱処理を行うと、SnとCuの相互拡散により銅箔1表面の凹凸が失われてしまう。この対策として、銅箔1に粗化処理を施した後、拡散バリア層2を形成し、この上にCuおよびSnをめっきして両者を熱処理によりCuSnの活物質3とする。これにより、銅箔表面の凹凸が損なわれることなくこの上に活物質3を形成することができる。CuとSnの各々のめっき厚はCuSnを効率的に生成するため原子比で6:5とすることが好ましい。
(Diffusion barrier layer)
When the copper foil 1 is subjected to a roughening treatment for the purpose of maintaining the adhesion between the active material 3 and the copper foil 1, when Sn is electroplated directly on the copper foil and heat treatment is performed, the Sn and Cu Unevenness on the surface of the copper foil 1 is lost due to mutual diffusion. As a countermeasure, after the copper foil 1 is roughened, a diffusion barrier layer 2 is formed, Cu and Sn are plated thereon, and both are made into an active material 3 of Cu 6 Sn 5 by heat treatment. Thereby, the active material 3 can be formed on this, without impairing the unevenness | corrugation of the copper foil surface. The plating thickness of each of Cu and Sn is preferably 6: 5 in terms of atomic ratio in order to efficiently produce Cu 6 Sn 5 .

拡散バリア層2の材質は特に規定されるものではないが、NiまたはCoを薄くめっきしておくことで目的を達成することが出来る。その厚さは0.1μm未満ではバリア層としての効果が弱くなり過ぎ凹凸が失われるため、0.1μm以上とする必要がある。一方1μmを超えると銅箔1の粗化面の形状に影響を及ぼす。このため拡散バリア層2の厚さは0.1〜1μmとするのが好ましい。   The material of the diffusion barrier layer 2 is not particularly defined, but the object can be achieved by plating Ni or Co thinly. If the thickness is less than 0.1 μm, the effect as a barrier layer becomes too weak and the unevenness is lost, so it is necessary to make it 0.1 μm or more. On the other hand, when the thickness exceeds 1 μm, the shape of the roughened surface of the copper foil 1 is affected. Therefore, the thickness of the diffusion barrier layer 2 is preferably 0.1 to 1 μm.

従来のカーボン系の活物質の代わりに上記のようなリチウムイオン二次電池用負極を用いることにより、従来に比べエネルギー密度が高く、小型化が可能で、かつ充放電サイクル特性が良好なリチウムイオン二次電池が供給可能となる。   By using the negative electrode for a lithium ion secondary battery as described above instead of the conventional carbon-based active material, the lithium ion has higher energy density, can be miniaturized, and has good charge / discharge cycle characteristics. A secondary battery can be supplied.

(他の実施形態)
上記実施形態では、リチウムイオンを吸蔵、脱離する負極活物質3としてCuSnの例を挙げたが、これ以外の活物質、例えばSnを主成分とするSn合金皮膜、CuSb金属間化合物、Si等についても、同様に使用することができる。
(Other embodiments)
In the above embodiment, an example of Cu 6 Sn 5 was given as the negative electrode active material 3 that occludes and desorbs lithium ions. However, other active materials, for example, Sn alloy coatings containing Sn as a main component, Cu 2 Sb metal Intermetallic compounds, Si, and the like can be used similarly.

また、上記実施形態では、CuとSnを別々にめっきした後、熱処理を施してCuSnを形成したが、Cu−Sn合金めっきを行って直接CuSnを形成しても良い。この場合も組織安定化のために熱処理を施すことが好ましい。 In the above embodiment, after the plated separately Cu and Sn, has formed the Cu 6 Sn 5 is subjected to heat treatment, may be formed directly Cu 6 Sn 5 performs Cu-Sn alloy plating. In this case as well, it is preferable to perform heat treatment to stabilize the structure.

拡散バリア層2としてはNiまたはCoの薄膜としたが、製造工程上の熱処理プロセスにおいて、銅箔1と活物質3成分との拡散を抑制するものであれば他の材料を用いることもできる。   Although the diffusion barrier layer 2 is a Ni or Co thin film, other materials can be used as long as they suppress the diffusion of the copper foil 1 and the active material 3 component in the heat treatment process in the manufacturing process.

更に、図2に示すように、粗化処理を施していない銅箔1’の表面に拡散バリア層2’を形成すると同時に凹凸を付与し、その上に活物質3を形成すれば、事前の銅めっきによる粗化処理を省略したリチウムイオン二次電池用負極20とすることができる。   Furthermore, as shown in FIG. 2, if the diffusion barrier layer 2 ′ is formed on the surface of the copper foil 1 ′ that has not been subjected to the roughening treatment, an unevenness is simultaneously provided, and the active material 3 is formed thereon, in advance. It can be set as the negative electrode 20 for lithium ion secondary batteries which omitted the roughening process by copper plating.

厚さ0.018mmの圧延銅箔を準備し、まずCuの電析により粗化処理を行った。条件は硫酸銅150g/L,硫酸150g/Lの電解液で、液温30℃、電流密度20A/dmで電解を行った後、硫酸銅250g/L,硫酸100g/Lの電解液で、液温30℃、電流密度10A/dmでかぶせめっきを行い、表面粗さRa=0.2μmの粗化処理銅箔とした。なお、表面粗さRaは日本工業規格(JIS B 0601−1994)に定められており、表面粗さ計や走査型プローブ顕微鏡(SPM)などにより測定できる。また、レーザ顕微鏡を用いて粗化処理銅箔の表面積を測定し、粗化処理を施していない圧延箔の表面積を1とした場合の表面積比を算出した。 A rolled copper foil having a thickness of 0.018 mm was prepared and first subjected to a roughening treatment by electrodeposition of Cu. The conditions were an electrolytic solution of copper sulfate 150 g / L, sulfuric acid 150 g / L, and after electrolysis at a liquid temperature of 30 ° C. and a current density of 20 A / dm 2 , copper sulfate 250 g / L, sulfuric acid 100 g / L of electrolytic solution, Covering plating was performed at a liquid temperature of 30 ° C. and a current density of 10 A / dm 2 to obtain a roughened copper foil having a surface roughness Ra = 0.2 μm. The surface roughness Ra is defined in Japanese Industrial Standard (JIS B 0601-1994), and can be measured with a surface roughness meter, a scanning probe microscope (SPM), or the like. Further, the surface area of the roughened copper foil was measured using a laser microscope, and the surface area ratio when the surface area of the rolled foil not subjected to the roughening process was set to 1 was calculated.

次に、表1に示す電解液を用いて、NiまたはCoおよびCuとSnをめっきし、表2に示す試験片を作製した。   Next, using the electrolytic solution shown in Table 1, Ni or Co and Cu and Sn were plated to prepare test pieces shown in Table 2.

Figure 2006269362
Figure 2006269362

Figure 2006269362
Figure 2006269362

これらサンプルを真空中で200℃、20時間加熱処理しCuSnを生成させた。このようにして得た電極材と金属リチウムを対極とする試験セルを製作し、充放電特性の評価を行った。なお、セパレータにはポリプロピレン薄膜を使用し、電解液には1mol/LのLiPFを溶解したエチレンカーボネートとジエチルカーボネートの混合溶液(1:1)を用いた。充放電は0.01〜1Vの範囲で0.5mA/dmの定電流密度で行った。 These samples were heat-treated in vacuum at 200 ° C. for 20 hours to produce Cu 6 Sn 5 . A test cell having the electrode material thus obtained and metallic lithium as a counter electrode was manufactured, and the charge / discharge characteristics were evaluated. A polypropylene thin film was used as the separator, and a mixed solution (1: 1) of ethylene carbonate and diethyl carbonate in which 1 mol / L LiPF 6 was dissolved was used as the electrolyte. Charging / discharging was performed at a constant current density of 0.5 mA / dm 2 in the range of 0.01 to 1V.

表3に充放電試験10,20,30サイクル後の初期サイクルに対する放電容量維持率を示す。表3には、上記したRa(表面粗さ)及び表面積比も併せて示す。   Table 3 shows the discharge capacity retention ratio with respect to the initial cycle after the 10, 20, and 30 charge / discharge tests. Table 3 also shows the above-described Ra (surface roughness) and surface area ratio.

Figure 2006269362
Figure 2006269362

表3の結果より、拡散バリア層が無いサンプルNo.1−1、および拡散バリア層のNi層の厚さが0.05μmと薄いサンプルNo.1−2では30サイクル後の容量維持率がかなり低下しているのに対し、サンプルNo.1−3(Ni層0.3μm)および1−4(Co層0.3μm)では30サイクル後でも95%の維持率を示しておりサイクル特性が極めて良好であることが分かる。   From the results of Table 3, the capacity retention rate after 30 cycles is considerably large in sample No. 1-1 having no diffusion barrier layer and sample No. 1-2 having a thin Ni layer of 0.05 μm in the diffusion barrier layer. On the other hand, Sample Nos. 1-3 (Ni layer 0.3 μm) and 1-4 (Co layer 0.3 μm) showed a maintenance rate of 95% even after 30 cycles. It turns out that it is favorable.

図3にサンプルNo.1−1と1−3の充放電試験前の銅箔とCuSnの界面の部分の断面写真を示す。No.1−1では拡散バリア層となるNiやCoがないため、CuSnを形成するための200℃の熱処理により銅箔とめっきされたSnの拡散が進行し、界面部分が平滑になっていることが分かる。これに対し、No.1−3ではNiの拡散バリア層が存在するため、界面に粗化処理を行った際の凹凸がそのまま残っていることが分かる。従って、No.1−3,1−4では充放電サイクルでの活物質と銅箔の密着性が維持され、No.1−1,1−2に比べ優れた特性を示したものと考えられる。 Figure 3 shows the cross-sectional photograph of a portion of the interface of the sample No.1-1 and 1-3 of charge and discharge test before the copper foil and Cu 6 Sn 5. In No. 1-1, since there is no Ni or Co serving as a diffusion barrier layer, the diffusion of Sn plated with the copper foil proceeds by the heat treatment at 200 ° C. for forming Cu 6 Sn 5 , and the interface portion becomes smooth. You can see that On the other hand, in No. 1-3, since the diffusion barrier layer of Ni exists, it turns out that the unevenness | corrugation at the time of roughening processing remains in an interface as it is. Therefore, in Nos. 1-3 and 1-4, the adhesion between the active material and the copper foil in the charge / discharge cycle is maintained, and it is considered that the characteristics superior to those of Nos. 1-1 and 1-2 were exhibited. .

厚さ0.018mmの圧延銅箔(サンプルNo.2−1)を準備し、まずCuの電析により粗化処理を行った。条件は硫酸銅150g/L,硫酸150g/Lの電解液で、液温30℃、電流密度20A/dmで電解を行った後、硫酸銅250g/L,硫酸100g/Lの電解液で、液温30℃、電流密度10A/dmでかぶせめっきを行い、それぞれの処理時間を変えて表面粗さRa=0.12μmの粗化処理銅箔(サンプルNo.2−2)、及び表面粗さRa=0.26μmの粗化処理銅箔(サンプルNo.2−3)とした。また、厚さ0.035mmの圧延銅箔を準備し、通常のフォトエッチングプロセスにより箔表面にレジストを形成し、アルカリ系のエッチング液により処理することにより20μm角で深さ20μmの窪みを形成した。なお、この窪みは未エッチング部と平面上で交互になるように配置した(サンプルNo.2−4)。 A rolled copper foil (sample No. 2-1) having a thickness of 0.018 mm was prepared, and a roughening treatment was first performed by electrodeposition of Cu. The conditions were an electrolytic solution of copper sulfate 150 g / L, sulfuric acid 150 g / L, and after electrolysis at a liquid temperature of 30 ° C. and a current density of 20 A / dm 2 , copper sulfate 250 g / L, sulfuric acid 100 g / L of electrolytic solution, Covering plating is performed at a liquid temperature of 30 ° C. and a current density of 10 A / dm 2 , and a roughened copper foil (sample No. 2-2) having a surface roughness Ra = 0.12 μm and a surface roughness by changing each treatment time. It was set as the roughening copper foil (sample No. 2-3) of thickness Ra = 0.26 micrometer. In addition, a rolled copper foil having a thickness of 0.035 mm was prepared, a resist was formed on the foil surface by a normal photoetching process, and a 20 μm square and 20 μm deep recess was formed by treatment with an alkaline etching solution. . In addition, this hollow was arrange | positioned so that an unetched part and a plane may become alternate (sample No. 2-4).

次に、表4に示す電解液を用いて、NiまたはCoおよびCuと最外層にSnをめっきし、表5に示す試験片を作製した。また、表5には、表面粗さ(Ra)と粗化処理を施していない圧延面の表面積を1とした時の表面積比も併せて示した。なお、各々のサンプルの表面積はレーザ顕微鏡を用いて測定した。   Next, using the electrolytic solution shown in Table 4, Ni or Co and Cu and the outermost layer were plated with Sn to prepare test pieces shown in Table 5. Table 5 also shows the surface roughness (Ra) and the surface area ratio when the surface area of the rolled surface not subjected to the roughening treatment is 1. The surface area of each sample was measured using a laser microscope.

Figure 2006269362
Figure 2006269362

これらサンプルを真空中で200℃、20時間加熱処理し、CuSnを生成させた。このようにして得た電極材と金属リチウムを対極とする試験セルを製作、充放電特性の評価を行った。なお、セパレータにはポリプロピレン薄膜を使用し、電解液には1mol/LのLiPFを溶解したエチレンカーボネートとジエチルカーボネートの混合溶液(1:1)を用いた。充放電は0.01〜1Vの範囲で0.25mA/cmの定電流密度で行った。表5に充放電試験10,20,30サイクル後の初期サイクルに対する放電容量維持率を併せて示す。 These samples were heat-treated in vacuum at 200 ° C. for 20 hours to produce Cu 6 Sn 5 . A test cell having the electrode material thus obtained and metallic lithium as a counter electrode was manufactured, and the charge / discharge characteristics were evaluated. A polypropylene thin film was used as the separator, and a mixed solution (1: 1) of ethylene carbonate and diethyl carbonate in which 1 mol / L LiPF 6 was dissolved was used as the electrolyte. Charging / discharging was performed at a constant current density of 0.25 mA / cm 2 in the range of 0.01 to 1V. Table 5 also shows the discharge capacity maintenance ratio with respect to the initial cycle after the 10, 20, and 30 charge / discharge tests.

Figure 2006269362
Figure 2006269362

更に、図4にRaが0.2μmであるサンプルNo.1−1〜1−4(表3)の一例とRaが0.26μmであるサンプルNo.2−3(表5)の粗化面の走査型電子顕微鏡(SEM)写真を示す。   Further, in FIG. 1-1 to 1-4 (Table 3) and sample Nos. With Ra of 0.26 μm. The scanning electron microscope (SEM) photograph of the roughening surface of 2-3 (Table 5) is shown.

表5および図4の結果より、表面が平滑なサンプルNo.2−1に比べ表面積比が大きいサンプルほど30サイクル後での容量維持率が大きいことが分かる。しかし、サンプルNo.2−3で同じ表面積比を持つものでも、NiまたはCoの拡散バリア層のないものでは放電容量の低下が大きい。これは、前述したような活物質形成の熱処理による界面凹凸構造の平坦化(図3(a)参照)に加えて、銅箔に形成した凹凸構造に起因した負極活物質の局所的な厚みの肥大化等により充放電時に活物質の剥離、脱落が起こりやすくなるためと考えられる。   From the results of Table 5 and FIG. 4, it can be seen that the sample having a larger surface area ratio than Sample No. 2-1 having a smooth surface has a larger capacity retention rate after 30 cycles. However, even if the sample No. 2-3 has the same surface area ratio, the discharge capacity is greatly reduced without the Ni or Co diffusion barrier layer. This is because, in addition to the flattening of the uneven structure of the interface by the heat treatment for forming the active material as described above (see FIG. 3A), the local thickness of the negative electrode active material due to the uneven structure formed on the copper foil is reduced. This is thought to be due to the tendency of the active material to peel off or drop off during charge / discharge due to enlargement or the like.

本発明に係るリチウムイオン二次電池用負極の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the negative electrode for lithium ion secondary batteries which concerns on this invention. 本発明に係るリチウムイオン二次電池用負極の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the negative electrode for lithium ion secondary batteries which concerns on this invention. 実施例1におけるサンプルNo.1−1及びNo.1−3の試験前のサンプル断面を示す写真である。Sample No. 1 in Example 1 1-1 and No.1. It is a photograph which shows the sample cross section before the 1-3 test. 実施例1におけるサンプルNo.1−1〜1−4の粗化面の一例及び実施例2におけるNo.2−3の粗化面を示すSEM写真である。Sample No. 1 in Example 1 An example of roughened surfaces 1-1 to 1-4 and No. 2 in Example 2 were used. It is a SEM photograph which shows the roughening surface of 2-3.

符号の説明Explanation of symbols

1,1’ 銅箔
2,2’ 拡散バリア層
3 活物質
10,20 リチウムイオン二次電池用負極
1, 1 'copper foil 2, 2' diffusion barrier layer 3 active material 10, 20 negative electrode for lithium ion secondary battery

Claims (8)

銅箔からなる負極集電体上に活物質を形成したリチウムイオン二次電池用負極において、前記銅箔からなる負極集電体と前記活物質との間に、平滑面に対して1.5倍を超える表面積となるような凹凸面を有する拡散バリア層を平均厚さ0.1μm以上形成したことを特徴とするリチウムイオン二次電池用負極。   In a negative electrode for a lithium ion secondary battery in which an active material is formed on a negative electrode current collector made of copper foil, a 1.5% smooth surface is provided between the negative electrode current collector made of copper foil and the active material. A negative electrode for a lithium ion secondary battery, wherein a diffusion barrier layer having an uneven surface having a surface area exceeding double is formed with an average thickness of 0.1 μm or more. 銅箔からなる負極集電体上に活物質を形成したリチウムイオン二次電池用負極において、前記銅箔は平滑面に対して1.5倍を超える表面積となるように粗化処理が施されており、かつ前記銅箔の表面に、凹凸面を有する拡散バリア層を平均厚さ0.1μm以上形成したことを特徴とするリチウムイオン二次電池用負極。   In a negative electrode for a lithium ion secondary battery in which an active material is formed on a negative electrode current collector made of copper foil, the copper foil is subjected to a roughening treatment so as to have a surface area exceeding 1.5 times the smooth surface. A negative electrode for a lithium ion secondary battery, wherein a diffusion barrier layer having an uneven surface is formed on the surface of the copper foil with an average thickness of 0.1 μm or more. 前記拡散バリア層は、ニッケル薄膜またはコバルト薄膜であり、その平均厚みが0.1〜1μmであることを特徴とする請求項1又は2記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to claim 1 or 2, wherein the diffusion barrier layer is a nickel thin film or a cobalt thin film, and has an average thickness of 0.1 to 1 µm. 前記活物質は、銅−錫の金属間化合物CuSnからなることを特徴とする請求項1又は2記載のリチウムイオン二次電池用負極。 3. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the active material is made of a copper-tin intermetallic compound Cu 6 Sn 5 . 前記銅箔は、破断伸びが2%以下であり、かつ引張強さが少なくとも700N/mm以上であることを特徴とする請求項1又は2記載のリチウムイオン二次電池用負極。 3. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the copper foil has an elongation at break of 2% or less and a tensile strength of at least 700 N / mm 2 or more. 銅箔からなる負極集電体上に活物質を形成したリチウムイオン二次電池用負極の製造方法において、予め前記銅箔の下地処理として前記銅箔表面に平滑面に対して1.5倍を超える表面積となるように凹凸化処理を施し、次いで当該凹凸化処理を施した銅箔の表面に拡散バリア層を形成し、更に当該拡散バリア層の表面に最終的に前記活物質となるような組成のめっき膜を形成後、熱処理を施すことにより前記活物質を形成したことを特徴とするリチウムイオン二次電池用負極の製造方法。   In the method for manufacturing a negative electrode for a lithium ion secondary battery in which an active material is formed on a negative electrode current collector made of copper foil, the copper foil surface is preliminarily treated with 1.5 times the smooth surface as a base treatment of the copper foil. The surface of the copper foil that has been subjected to the unevenness treatment is formed with a diffusion barrier layer so as to have a surface area exceeding the surface area, and the diffusion barrier layer is finally formed on the surface of the diffusion barrier layer. A method for producing a negative electrode for a lithium ion secondary battery, wherein the active material is formed by performing a heat treatment after forming a plating film having a composition. 前記凹凸化処理が銅または銅合金系の電気めっき、あるいはフォトエッチング加工により行うことを特徴とする請求項6記載のリチウムイオン二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium ion secondary battery according to claim 6, wherein the roughening treatment is performed by copper or copper alloy electroplating or photoetching. 前記拡散バリア層として、ニッケル薄膜またはコバルト薄膜をその平均厚みが0.1〜1μmとなるように形成し、前記活物質として、銅及び錫めっき膜を形成後、熱処理を施すことにより銅−錫の金属間化合物CuSnを形成したことを特徴とする請求項6記載のリチウムイオン二次電池用負極の製造方法。 As the diffusion barrier layer, a nickel thin film or a cobalt thin film is formed so as to have an average thickness of 0.1 to 1 μm, and copper and tin plating films are formed as the active material, and then heat treatment is performed to form copper-tin. The method for producing a negative electrode for a lithium ion secondary battery according to claim 6, wherein the intermetallic compound Cu 6 Sn 5 is formed.
JP2005089208A 2005-03-25 2005-03-25 Negative electrode for lithium ion secondary battery Pending JP2006269362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089208A JP2006269362A (en) 2005-03-25 2005-03-25 Negative electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005089208A JP2006269362A (en) 2005-03-25 2005-03-25 Negative electrode for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006269362A true JP2006269362A (en) 2006-10-05

Family

ID=37205079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089208A Pending JP2006269362A (en) 2005-03-25 2005-03-25 Negative electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006269362A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054376A (en) * 2007-08-24 2009-03-12 Sanyo Electric Co Ltd Method and device for manufacturing lithium secondary battery, and lithium secondary battery
JP2009187878A (en) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The Copper foil for negative electrode of lithium-ion secondary battery
JP2009295422A (en) * 2008-06-05 2009-12-17 Sony Corp Anode collector, anode and secondary battery
JP2011514630A (en) * 2008-02-22 2011-05-06 コロラド ステイト ユニバーシティ リサーチ ファウンデーション Lithium ion battery
US8221918B2 (en) 2008-05-27 2012-07-17 Kobe Steel, Ltd. Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
WO2013080988A1 (en) * 2011-11-29 2013-06-06 古河電気工業株式会社 Collector for electrodes, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2014096382A (en) * 2014-01-20 2014-05-22 Sony Corp Negative electrode collector, negative electrode, and secondary battery
US9844302B2 (en) 2011-05-16 2017-12-19 Vita-Mix Management Corporation Blender base
JP2018063930A (en) * 2016-10-14 2018-04-19 東洋鋼鈑株式会社 Current collector for battery and battery
CN114023925A (en) * 2021-11-03 2022-02-08 合肥国轩高科动力能源有限公司 Preparation method of lithium-copper composite metal negative electrode
US11412893B2 (en) 2016-11-01 2022-08-16 Vita-Mix Management Corporation Blending volume reducing device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282800A (en) * 1994-04-04 1995-10-27 Mitsubishi Cable Ind Ltd Negative electrode, manufacture thereof, and lithium secondary battery
JPH0837000A (en) * 1994-07-21 1996-02-06 Mitsubishi Cable Ind Ltd Negative electrode, its manufacturing method, and lithium secondary battery
WO2001084654A1 (en) * 2000-04-26 2001-11-08 Sanyo Electric Co., Ltd. Lithium secondary battery-use electrode and lithium secondary battery
JP2002319408A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2002319407A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2003007305A (en) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd Electrode for secondary lithium battery and secondary lithium battery
JP2004022306A (en) * 2002-06-14 2004-01-22 Fukuda Metal Foil & Powder Co Ltd Negative electrode for lithium battery, and manufacturing method of same
JP2004095474A (en) * 2002-09-03 2004-03-25 Sanyo Electric Co Ltd Method for manufacturing lithium secondary battery
JP2004335256A (en) * 2003-05-07 2004-11-25 Sanyo Electric Co Ltd Lithium secondary cell electrode and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282800A (en) * 1994-04-04 1995-10-27 Mitsubishi Cable Ind Ltd Negative electrode, manufacture thereof, and lithium secondary battery
JPH0837000A (en) * 1994-07-21 1996-02-06 Mitsubishi Cable Ind Ltd Negative electrode, its manufacturing method, and lithium secondary battery
WO2001084654A1 (en) * 2000-04-26 2001-11-08 Sanyo Electric Co., Ltd. Lithium secondary battery-use electrode and lithium secondary battery
JP2003007305A (en) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd Electrode for secondary lithium battery and secondary lithium battery
JP2002319408A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2002319407A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2004022306A (en) * 2002-06-14 2004-01-22 Fukuda Metal Foil & Powder Co Ltd Negative electrode for lithium battery, and manufacturing method of same
JP2004095474A (en) * 2002-09-03 2004-03-25 Sanyo Electric Co Ltd Method for manufacturing lithium secondary battery
JP2004335256A (en) * 2003-05-07 2004-11-25 Sanyo Electric Co Ltd Lithium secondary cell electrode and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054376A (en) * 2007-08-24 2009-03-12 Sanyo Electric Co Ltd Method and device for manufacturing lithium secondary battery, and lithium secondary battery
JP2009187878A (en) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The Copper foil for negative electrode of lithium-ion secondary battery
JP2011514630A (en) * 2008-02-22 2011-05-06 コロラド ステイト ユニバーシティ リサーチ ファウンデーション Lithium ion battery
US8221918B2 (en) 2008-05-27 2012-07-17 Kobe Steel, Ltd. Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
JP2009295422A (en) * 2008-06-05 2009-12-17 Sony Corp Anode collector, anode and secondary battery
US9844302B2 (en) 2011-05-16 2017-12-19 Vita-Mix Management Corporation Blender base
WO2013080988A1 (en) * 2011-11-29 2013-06-06 古河電気工業株式会社 Collector for electrodes, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2014096382A (en) * 2014-01-20 2014-05-22 Sony Corp Negative electrode collector, negative electrode, and secondary battery
JP2018063930A (en) * 2016-10-14 2018-04-19 東洋鋼鈑株式会社 Current collector for battery and battery
WO2018070302A1 (en) * 2016-10-14 2018-04-19 東洋鋼鈑株式会社 Current collector for battery, and battery
KR20190069485A (en) * 2016-10-14 2019-06-19 도요 고한 가부시키가이샤 Battery collectors and batteries
JP2021184400A (en) * 2016-10-14 2021-12-02 東洋鋼鈑株式会社 Current collector for battery and battery
US20210376331A1 (en) * 2016-10-14 2021-12-02 Toyo Kohan Co., Ltd. Current collector for battery, and battery
JP7187633B2 (en) 2016-10-14 2022-12-12 東洋鋼鈑株式会社 Current collectors for batteries and batteries
KR102486559B1 (en) * 2016-10-14 2023-01-10 도요 고한 가부시키가이샤 Battery collector and battery
US11412893B2 (en) 2016-11-01 2022-08-16 Vita-Mix Management Corporation Blending volume reducing device
CN114023925A (en) * 2021-11-03 2022-02-08 合肥国轩高科动力能源有限公司 Preparation method of lithium-copper composite metal negative electrode
CN114023925B (en) * 2021-11-03 2023-02-28 合肥国轩高科动力能源有限公司 Preparation method of lithium-copper composite metal negative electrode

Similar Documents

Publication Publication Date Title
JP2006269362A (en) Negative electrode for lithium ion secondary battery
WO2012005355A1 (en) Copper-clad steel foil, anode collector, method for producing same, and battery
JP4823384B1 (en) Copper foil for current collector of lithium secondary battery
KR20160138321A (en) Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
RU2336603C2 (en) Secondary storage battery electrode, method of its production and secondary storage battery
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
EP3404755A1 (en) Copper foil, method for manufacturing same, electrode comprising same, and secondary battery comprising same
JP2008171788A (en) Collector for lithium ion cells and method for manufacturing it
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
JP5306549B2 (en) Method for producing electrode for negative electrode of lithium ion secondary battery
JPWO2014112619A1 (en) Electrolytic copper foil, negative electrode for lithium ion battery, and lithium ion secondary battery
JP2006269361A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP6256913B2 (en) Method for manufacturing battery electrode
JP4438541B2 (en) Composite foil for negative electrode current collector of non-aqueous electrolyte secondary battery and manufacturing method thereof, and negative electrode current collector, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the composite foil
JP2010103061A (en) Negative electrode copper alloy foil of secondary battery and manufacturing method for the same
TWI359525B (en) Electrode for secondary battery, process of produc
US20060147801A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method
JP4413552B2 (en) Electrolytic copper foil and electrolytic copper foil for secondary battery current collector
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same
JP2012142214A (en) Lithium ion secondary battery anode manufacturing method and lithium ion secondary battery anode
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same
JP2006228512A (en) Anode for nonaqueous electrolyte secondary battery
JP2008010364A (en) Anode for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705