JP2006266080A - Method of manufacturing viscous quakeproof wall - Google Patents

Method of manufacturing viscous quakeproof wall Download PDF

Info

Publication number
JP2006266080A
JP2006266080A JP2006112186A JP2006112186A JP2006266080A JP 2006266080 A JP2006266080 A JP 2006266080A JP 2006112186 A JP2006112186 A JP 2006112186A JP 2006112186 A JP2006112186 A JP 2006112186A JP 2006266080 A JP2006266080 A JP 2006266080A
Authority
JP
Japan
Prior art keywords
viscous
sheet
steel plates
steel
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006112186A
Other languages
Japanese (ja)
Inventor
Takanori Sato
孝典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006112186A priority Critical patent/JP2006266080A/en
Publication of JP2006266080A publication Critical patent/JP2006266080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a viscous quakeproof wall which largely reduces earthquake vibrations. <P>SOLUTION: A viscous material is processed and formed into sheets 14 beforehand. Adhesives are applied to the both surfaces of the viscous sheet, which is then wound round into a roll with exfobiate paper placed between the adhesives applied surfaces. While peeling off the exfobiate pater, the viscous sheet is placed between steel plates to stick the steel plates together via the viscous sheet. Ball or other forms of spacers 15 are scattered in the viscous sheet to a certain space between the viscous sheet and the steel plate. A fastening bolt 16 is used to fasten the thickness of these viscous sheet and steel plate to fix their total thickness. When the viscous quakeproof wall is manufactured, a viscous material sheet is formed beforehand, and placed between steel plates, which are then stuck together via the viscous sheet. Spacers are scattered and mixed in the viscous sheet. The steel plates and viscous sheet are pressed together and thermally fused by heating. A fastening bolt is used to faster them in the direction of thickness. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、建物に設置される粘性耐震壁およびその製作方法に関する。   The present invention relates to a viscous earthquake-resistant wall installed in a building and a manufacturing method thereof.

近年、建物に設置する耐震要素として図4に示すような制震壁が開発され、実用化されている。これは、建物の躯体である柱1と梁2との間に壁として配置されるもので、複数枚の積層された鋼板3と、それらの間に介在する粘性体4からなるものである。図示例のものは、下側の梁2aに固定されて立ち上がる2枚の鋼板3aと、上側の梁2bに固定されて立ち下がる1枚の鋼板3bとの間に粘性体4を充填した構成とされている。このような構成の制震壁では、地震時に建物が変形した際に双方の鋼板3a,3bが面内で相対変位し、その際に生じる粘性体4の粘性抵抗力によって振動エネルギを吸収して建物の振動を減衰させるものである。   In recent years, a damping wall as shown in FIG. 4 has been developed and put into practical use as a seismic element to be installed in a building. This is arranged as a wall between the pillar 1 and the beam 2 which are the building frame, and is composed of a plurality of laminated steel plates 3 and a viscous body 4 interposed therebetween. In the illustrated example, a viscous body 4 is filled between two steel plates 3a that are fixed to the lower beam 2a and rise and one steel plate 3b that is fixed to the upper beam 2b and fall. Has been. In the damping wall having such a configuration, when the building is deformed during the earthquake, both the steel plates 3a and 3b are relatively displaced in the plane, and the vibration energy is absorbed by the viscous resistance force of the viscous body 4 generated at that time. It attenuates building vibration.

上記のような制震壁を製作するには、各鋼板3(3a,3b)をそれらの間に適正な間隙を確保して組み立てた後、その間隙に流動状態の粘性体4を注入するという方法が採用されることが一般的である(例えば、特許文献1参照)。
特開平1−97766号公報
In order to manufacture the above-mentioned damping wall, after assembling each steel plate 3 (3a, 3b) with an appropriate gap between them, a viscous material 4 in a fluid state is injected into the gap. The method is generally employed (see, for example, Patent Document 1).
JP-A-1-97766

しかし、上記従来の製作方法では、鋼板3間のわずかな間隙に粘性体4を効率的に注入することは必ずしも容易ではなく、その作業に長時間を要してしまうのみならず、注入の際に空気が混入してしまう懸念があるので性能および信頼性確保の点で難がある。また、この種の制震壁では粘性体4の粘度を大きくし、かつ鋼板3の積層枚数を多くするほど減衰力を大きくできるが、上記のように粘性体4を注入するという製作方法では注入時の流動性を確保する必要性からその粘度をさほど大きくできず(4千pois程度が限度である)、また鋼板3の積層枚数を多くするとその全体に粘性体4を確実に注入することは困難になり、このため、建物の減衰を十分に抑制し得る程度の大減衰力を有するものとはなり得ないものであった。   However, in the above-described conventional manufacturing method, it is not always easy to efficiently inject the viscous body 4 into the slight gap between the steel plates 3, and not only a long time is required for the operation, but also during the injection. Since there is a concern that air may be mixed in, there is a difficulty in securing performance and reliability. Further, in this type of damping wall, the damping force can be increased as the viscosity of the viscous body 4 is increased and the number of laminated steel plates 3 is increased. However, in the manufacturing method in which the viscous body 4 is injected as described above, the injection is performed. The viscosity cannot be increased so much due to the necessity of securing fluidity at the time (about 4,000 pois is the limit), and if the number of laminated steel plates 3 is increased, the viscous material 4 can be reliably injected into the whole. For this reason, it is impossible to have a large damping force that can sufficiently suppress the attenuation of the building.

上記事情に鑑み、本発明は大減衰力が得られる粘性耐震壁の製作方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for producing a viscous earthquake-resistant wall that can obtain a large damping force.

上記の目的を達成するために、この発明は以下の手段を提供している。
本発明の粘性耐震壁の製作方法は、間隔をおいて積層した少なくとも一対の鋼板の間に粘性体を挟み込んだ構成とされ、建物の柱と梁とにより囲まれる空間に配置されて前記対の鋼板が上下の梁に対してそれぞれ固定されることにより、建物が変形した際に双方の鋼板が面内方向に相対変位して前記粘性体の粘性抵抗力により建物の変形を拘束しかつ振動エネルギーを吸収する構成の粘性耐震壁の制作方法であって、予め前記粘性体をシート状に加工して粘性体シートを形成するとともに、該粘性体シートの両面に離型紙を重ねて巻き取っておき、前記離型紙を剥ぎ取りながら前記粘性体シートを、予め加熱した前記鋼板の間に挟み込んでそれら粘性体シートと鋼鈑とを積層し、積層した前記鋼板と前記粘性体シートとをプレスして圧着させることにより、前記粘性体シートを介して前記鋼板どうしを貼り合わせることを特徴とする。前記鋼鈑を、梁に予め所定間隔をあけて固定した複数の取付用鋼鈑に差し込んで、前記鋼鈑と前記取付用鋼鈑とを締結することが好適である。また、前記対をなす鋼鈑が、それぞれ複数枚あってもよい。さらに、貼り合わせた鋼板と粘性体シートに対して締結ボルトをその厚み方向に貫通せしめて締め付けてもよい。
In order to achieve the above object, the present invention provides the following means.
The method for producing a viscous shear wall according to the present invention has a configuration in which a viscous body is sandwiched between at least a pair of steel plates laminated at intervals, and is disposed in a space surrounded by pillars and beams of a building. Since the steel plates are fixed to the upper and lower beams, both steel plates are relatively displaced in the in-plane direction when the building is deformed, and the deformation of the building is restrained by the viscous resistance force of the viscous body and vibration energy Is a method for producing a viscous earthquake-resistant wall configured to absorb the above, wherein the viscous material is previously processed into a sheet shape to form a viscous material sheet, and release paper is overlapped and wound on both sides of the viscous material sheet, While peeling off the release paper, the viscous sheet is sandwiched between the preheated steel sheets, the viscous sheet and steel sheet are laminated, and the laminated steel sheet and the viscous sheet are pressed and pressed together. It allows, characterized in that bonding the steel plate to each other via the viscous sheet. It is preferable that the steel plate is inserted into a plurality of mounting steel plates fixed in advance to the beam at predetermined intervals, and the steel plate and the mounting steel plate are fastened. Further, there may be a plurality of pairs of steel plates. Furthermore, a fastening bolt may be penetrated in the thickness direction with respect to the bonded steel sheet and the viscous sheet and tightened.

以上のように、本発明の粘性耐震壁の製作方法は、予め粘性体をシート状に形成しておき、その粘性体シートを鋼板の間に挟み込んで積層することにより、粘性体シートを介して鋼板どうしを貼り合わせるようにしたから、上記粘性耐震壁を容易にかつ効率的に製作することができ、また従来のように粘性体中に空気が混入することもないから粘性耐震壁の性能と信頼性確保の点で有利である。また、積層した鋼板と粘性体シートとをプレスして圧着するから、それら鋼板と粘性体シートとを強固にかつ確実に貼り合わせて一体化させることができ、さらに締結ボルトにより厚さ方向に締め付ければより強固に一体化させることができるとともに減衰力の調節を行い得る。   As described above, the method for producing a viscous earthquake-resistant wall according to the present invention includes forming a viscous body in a sheet shape in advance, sandwiching the viscous sheet between steel plates, and laminating the viscous body sheet via the viscous body sheet. Since the steel plates are bonded together, the above-mentioned viscous earthquake-resistant wall can be manufactured easily and efficiently, and air is not mixed into the viscous material as in the past. This is advantageous in terms of ensuring reliability. In addition, since the laminated steel sheets and the viscous sheet are pressed and pressure-bonded, the steel sheets and the viscous sheet can be firmly and firmly bonded and integrated, and further tightened in the thickness direction by fastening bolts. Thus, it is possible to integrate more firmly and to adjust the damping force.

図1は本発明の粘性耐震壁の製作方法により製作される粘性耐震壁を示すものである。この粘性耐震壁は図4に示した従来の制震壁と同様に柱1と梁2との間に壁として配置されるものであるが、本例のものは全5枚の鋼板13(13a,13b)の間に予めシート状に加工した粘性体シート14を挟み込んだ構成とされている。すなわち、本例の粘性耐震壁は、下側の梁2aに固定された3枚の鋼板13aと、上側の梁2bに固定された2枚の鋼板13bとが交互に間隔をおいて積層され、それら鋼板13の間に予めシート状に加工されたゴムアスファルト系の粘性体シート14が挟み込まれて、その粘性体シート14により各鋼板13どうしが貼り合わされたものとなっている。そして、粘性体シート14には多数の同一径寸法の鋼球からなるスペーサ15が埋め込まれており、それらスペーサ15によって各鋼板13の間に適正な寸法の間隙が確保されるとともにその間隙が常時保持されるようになっている。   FIG. 1 shows a viscous earthquake-resistant wall manufactured by the method for manufacturing a viscous earthquake-resistant wall according to the present invention. This viscous shear wall is arranged as a wall between the column 1 and the beam 2 in the same manner as the conventional damping wall shown in FIG. 4, but this example has five steel plates 13 (13a). , 13b), a viscous sheet 14 processed in advance into a sheet shape is sandwiched. That is, in the viscous earthquake-resistant wall of the present example, the three steel plates 13a fixed to the lower beam 2a and the two steel plates 13b fixed to the upper beam 2b are alternately stacked. A rubber asphalt viscous material sheet 14 processed in advance into a sheet shape is sandwiched between the steel plates 13, and the steel plates 13 are bonded to each other by the viscous material sheet 14. The viscous sheet 14 is embedded with a large number of spacers 15 made of steel balls having the same diameter, and the spacers 15 ensure gaps with appropriate dimensions between the steel plates 13 and the gaps are always constant. It is supposed to be retained.

なお、上記のスペーサ15は必ずしも図示しているように等間隔で整然と並べる必要はなく、それらの相互間隔が適度であればランダムに配置しても支障がない。またスペーサ15としては鋼球に限らず所望の硬度、強度が得られるものであれば他の素材のものも採用可能であり、たとえばスペーサ15の素材としてその比重が粘性体シート14の素材である粘性体の比重と同等のものを用いれば、スペーサ15が粘性体シート14中において沈下してしまうことを防止できる。さらに、スペーサ15を上記のように同一径寸法の球状とすれば鋼板13間の間隔が自ずと一定に保持されるから最も好ましいが、場合によってはスペーサ15を他の形状たとえば円筒状とすることを妨げるものではない。   The spacers 15 do not necessarily need to be arranged regularly at regular intervals as shown in the drawing, and there is no problem even if the spacers 15 are randomly arranged as long as their mutual intervals are appropriate. The spacer 15 is not limited to a steel ball, and any other material can be used as long as desired hardness and strength can be obtained. For example, the specific gravity of the spacer 15 is the material of the viscous sheet 14. If a thing equivalent to the specific gravity of a viscous body is used, it can prevent that the spacer 15 sinks in the viscous body sheet | seat 14. FIG. Furthermore, if the spacer 15 is spherical with the same diameter as described above, it is most preferable because the distance between the steel plates 13 is naturally kept constant. However, in some cases, the spacer 15 may have another shape such as a cylindrical shape. It does not prevent it.

また、本例の粘性体耐震壁では所定間隔(たとえば500mmピッチ)で締結ボルト16が厚み方向に貫通し、それらの締結ボルト16により厚み方向に締め付けられるようになっており、そのため、各鋼板13には上記締結ボルト16が緩挿する孔(図示略)が形成されている。それらの孔は各鋼板13の面内方向の相対変位を見込んで変位方向に長い長穴として形成されるか、もしくは締結ボルト16の外径よりも十分に大きなものとして形成されており、締結ボルト16による鋼板13の相対変位が拘束されることがないようにされていることは勿論である。なお、後述するように粘性体シート14自体による十分な貼り合わせ強度が確保できる場合には、締結ボルト16による締結は省略することも可能である。   Further, in the viscous earthquake-resistant wall of the present example, the fastening bolts 16 penetrate in the thickness direction at a predetermined interval (for example, 500 mm pitch), and are tightened in the thickness direction by the fastening bolts 16. Is formed with a hole (not shown) into which the fastening bolt 16 is loosely inserted. These holes are formed as elongated holes that are long in the displacement direction in anticipation of the relative displacement in the in-plane direction of each steel plate 13, or are formed as being sufficiently larger than the outer diameter of the fastening bolt 16, Of course, the relative displacement of the steel plate 13 by 16 is not restrained. As will be described later, when the sufficient bonding strength by the viscous sheet 14 itself can be secured, the fastening by the fastening bolt 16 can be omitted.

以上のような粘性耐震壁の躯体に対する取付は適宜行えば良く、たとえば図1に示しているように粘性耐震壁の上下を取付用の鋼板18を介して上下の梁2a,2bに対して締結あるいは溶接して固定すれば良い。あるいは図2に示すように、梁2に対して複数の取付用鋼板19を間隔をおいて予め溶接しておき、それら鋼板19の間に粘性耐震壁の鋼板13を差し込んで締結することも考えられる。その場合、取付用鋼板19の先端部をクサビ状に形成しておくと、粘性耐震壁の差し込みを容易に行い得る。   The above-mentioned viscous earthquake-resistant wall may be appropriately attached to the frame. For example, as shown in FIG. 1, the upper and lower sides of the viscous earthquake-resistant wall are fastened to the upper and lower beams 2a and 2b via the steel plate 18 for attachment. Alternatively, it may be fixed by welding. Alternatively, as shown in FIG. 2, a plurality of mounting steel plates 19 may be preliminarily welded to the beam 2, and a viscous earthquake-resistant wall steel plate 13 may be inserted between the steel plates 19 to be fastened. It is done. In this case, if the tip of the mounting steel plate 19 is formed in a wedge shape, the viscous earthquake-resistant wall can be easily inserted.

上記構成の粘性耐震壁は、全体として薄肉でありながら高剛性と高靱性とを併せて有するものであって、非破壊的に大変形可能、しかも復元可能なものである。たとえば上記のものにおいて各鋼板13の厚さを16mmとし、直径2mmの鋼球をスペーサ15として用いることで各鋼板13の間の間隙を2mmとし、粘性体シート14として厚さ2mmのシート状のゴムアスファルト(粘度6万〜100万pois程度)を用いて鋼板13どうしを貼り合わせた場合には、全体の厚さがわずか88mmでありながら厚さ500mmの鉄筋コンクリート造耐震壁と同等程度の剛性を有するものとすることができ、かつ鉄筋コンクリートでは望むべくもない高靱性を有するものである。   The viscous earthquake-resistant wall having the above-described configuration has both high rigidity and high toughness while being thin as a whole, and can be deformed in a nondestructive manner and can be restored. For example, in the above, the thickness of each steel plate 13 is 16 mm, a steel ball having a diameter of 2 mm is used as the spacer 15, the gap between each steel plate 13 is 2 mm, and the viscous sheet 14 is a sheet-like material having a thickness of 2 mm. When the steel plates 13 are bonded together using rubber asphalt (viscosity 60,000 to 1 million pois), the overall thickness is only 88 mm, but the rigidity is equivalent to that of a 500 mm thick reinforced concrete earthquake resistant wall. It has a high toughness that can be expected in reinforced concrete.

そして、この粘性耐震壁は、粘性体をシート状として用いることから、流動性を有する粘性体を鋼板の間に注入することで製作される従来の制震壁のように粘性体の粘度を小さくする必要はなく、したがってその粘性体シート14の粘度を上記のように6万pois以上と十分に大きくでき、かつ、上記のように5枚あるいはそれ以上の多数の鋼板13を支障なく積層し得るものであるから、従来一般のこの種の制震壁に比較して格段に大きな減衰力を確保することができるものである。しかも、この粘性耐震壁は十分に高剛性であることからその振動特性は自ずと短周期となり、したがってその復元力特性は縦長ループを呈するものとなって単位時間当りのエネルギー吸収量が極めて大きなものとなる。勿論、粘性体シート14の種類や鋼板13の積層枚数、その寸法、締結ボルト16による締結力等を調節することにより減衰力を自由に設定できるものである。なお、粘性のみならず弾性を併せて有する粘弾性体も粘性体シート14の素材として同様に使用できることは当然である。   Since this viscous shear wall uses a viscous material as a sheet, the viscosity of the viscous material is reduced as in the case of a conventional damping wall manufactured by injecting a fluid viscous material between steel plates. Therefore, the viscosity of the viscous sheet 14 can be sufficiently increased to 60,000 pois or more as described above, and a large number of five or more steel plates 13 can be laminated without any trouble as described above. Therefore, it is possible to secure a much greater damping force than this type of conventional damping wall. Moreover, since this viscous shear wall is sufficiently rigid, its vibration characteristics naturally have a short period, and therefore its restoring force characteristics exhibit a long loop, and the amount of energy absorbed per unit time is extremely large. Become. Of course, the damping force can be freely set by adjusting the type of the viscous sheet 14, the number of laminated steel plates 13, the dimensions thereof, the fastening force by the fastening bolt 16, and the like. Of course, a viscoelastic body having not only viscosity but also elasticity can be used as a material for the viscous sheet 14 as well.

上記粘性耐震壁の製作方法を図3により説明する。本方法では粘性体としてゴムアスファルト系粘性体を用いることとし、それを予め(a)に示すようにシート状に形成して粘性体シート14としておき、かつ、それに多数のスペーサ15を所定間隔で埋め込んでおくこととする。その粘性体シート14の両面には鋼板13に対して接着するための接着材を塗布しておき、そこに離型紙17を重ねて巻き取っておく。なお、粘性体シート14自体が鋼板13に対する十分な粘着力を有する場合には接着剤は省略することも可能である。   A method for manufacturing the above-mentioned viscous earthquake-resistant wall will be described with reference to FIG. In this method, a rubber asphalt-based viscous material is used as the viscous material, which is previously formed into a sheet shape as shown in (a) and is formed as a viscous material sheet 14, and a number of spacers 15 are provided at predetermined intervals. I will embed it. An adhesive for adhering to the steel plate 13 is applied to both surfaces of the viscous sheet 14, and a release paper 17 is stacked thereon and wound up. Note that the adhesive may be omitted when the viscous sheet 14 itself has a sufficient adhesive force to the steel plate 13.

一方、鋼板13(13a,13b)を予め所望の形状、寸法に加工しておき、(b)に示すように、それら鋼板13と上記離型紙を剥ぎ取った粘性体シート14とを交互に順次積層して貼り合わせる。それらを貼り合わせるには、(c)に示すように積層した鋼板13と粘性体シート14とを両面側から高圧プレスすれば良い。もしくは、高圧プレスすることに代えて、あるいはそれに加えて、その全体を高温に加熱して粘性体シート14自体を鋼板13に対して熱溶着させることも考えられる。さらに、鋼板13と粘性体シート14とを積層するに先立ち、鋼板13のみを加熱しておくことで熱溶着させることも考えられる。   On the other hand, the steel plates 13 (13a, 13b) are processed into desired shapes and dimensions in advance, and as shown in (b), the steel plates 13 and the viscous sheet 14 from which the release paper has been peeled off are alternately and sequentially. Laminate and paste together. In order to bond them together, as shown in (c), the laminated steel sheet 13 and the viscous sheet 14 may be high-pressure pressed from both sides. Alternatively, instead of or in addition to high-pressure pressing, it is also conceivable to heat the entire body to a high temperature and thermally weld the viscous sheet 14 itself to the steel plate 13. Furthermore, prior to laminating the steel plate 13 and the viscous sheet 14, it is also conceivable that only the steel plate 13 is heated for thermal welding.

以上のようにして鋼板13と粘性体シート14とを貼り合わせたら、鋼板13に予め形成しておいた孔に締結ボルト16を挿通させて締結する。ただし、鋼板13と粘性体シート14とを圧着ないし熱溶着することのみで十分に強固に一体化できる場合には締結ボルト16による締結は省略することも可能である。   When the steel plate 13 and the viscous sheet 14 are bonded together as described above, the fastening bolts 16 are inserted into the holes formed in the steel plate 13 in advance and fastened. However, when the steel plate 13 and the viscous sheet 14 can be integrated sufficiently firmly only by pressure bonding or heat welding, the fastening with the fastening bolts 16 can be omitted.

以上の製作方法によれば、予めシート状とした粘性体シート14を鋼板13の間に挟み込むので、流動性を有する粘性体を鋼板の間に注入するという従来の製作方法に比較して格段に容易かつ効率良く製作を行い得るものであり、製作コストを十分に削減できるものである。また、鋼板13と粘性体シート14とを積層する際に空気が混入してしまう懸念もないから性能及び信頼性確保の点でも有利である。そして、上記の製作方法によれば、従来のように注入によるものではないことから粘性体の粘度を小さくする必要はなく、したがって粘性体シート14の粘度を従来のものより遥かに大きくでき、かつ、多数の鋼板13を支障なく積層し得るものであり、そのため、従来のこの種の制震壁に比較して格段に大きな減衰力を有する極めて有効な粘性耐震壁を製作することができるものである。   According to the above manufacturing method, since the viscous sheet 14 made into a sheet shape is sandwiched between the steel plates 13, it is markedly compared with the conventional manufacturing method in which a viscous material having fluidity is injected between the steel plates. Manufacturing can be performed easily and efficiently, and manufacturing costs can be sufficiently reduced. Moreover, since there is no fear that air will mix in laminating | stacking the steel plate 13 and the viscous sheet | seat 14, it is advantageous also at the point of performance and reliability ensuring. According to the above manufacturing method, it is not necessary to reduce the viscosity of the viscous body because it is not due to injection as in the prior art. Therefore, the viscosity of the viscous sheet 14 can be made much higher than the conventional one, and A large number of steel plates 13 can be laminated without hindrance. Therefore, an extremely effective viscous earthquake-resistant wall having a remarkably large damping force as compared with this type of conventional damping wall can be produced. is there.

本発明の粘性耐震壁の製作方法によって製作された粘性耐震壁を示す側断面図であるIt is a sectional side view which shows the viscous earthquake-resistant wall manufactured by the manufacturing method of the viscous earthquake-resistant wall of this invention. 同粘性耐震壁の躯体に対する設置形態の他の例を示す図である。It is a figure which shows the other example of the installation form with respect to the frame of the same viscous earthquake-resistant wall. 同粘性耐震壁の製作手順を示す図である。It is a figure which shows the manufacture procedure of the same viscous earthquake-resistant wall. 従来一般の制震壁を示す図であり、(a)は正面図、(b)は側断面図である。It is a figure which shows the conventional general damping wall, (a) is a front view, (b) is a sectional side view.

符号の説明Explanation of symbols

1 柱、2 梁、13(13a、13b) 鋼鈑、14 粘性体シート、 15 スペーサ、16 締結ボルト、17 離型紙、19 取付用鋼鈑。
1 pillar, 2 beams, 13 (13a, 13b) steel plate, 14 viscous sheet, 15 spacer, 16 fastening bolt, 17 release paper, 19 steel plate for mounting.

Claims (4)

間隔をおいて積層した少なくとも一対の鋼板の間に粘性体を挟み込んだ構成とされ、建物の柱と梁とにより囲まれる空間に配置されて前記対の鋼板が上下の梁に対してそれぞれ固定されることにより、建物が変形した際に双方の鋼板が面内方向に相対変位して前記粘性体の粘性抵抗力により建物の変形を拘束しかつ振動エネルギーを吸収する構成の粘性耐震壁の制作方法であって、
予め前記粘性体をシート状に加工して粘性体シートを形成するとともに、該粘性体シートの両面に離型紙を重ねて巻き取っておき、
前記離型紙を剥ぎ取りながら前記粘性体シートを前記鋼板の間に挟み込んでそれら粘性体シートと鋼鈑とを積層し、
積層した前記鋼板と前記粘性体シートとをプレスして圧着させることにより、前記粘性体シートを介して前記鋼板どうしを貼り合わせることを特徴とする粘性耐震壁の製作方法。
A viscous material is sandwiched between at least a pair of steel plates laminated at intervals, and the pair of steel plates are fixed to the upper and lower beams, respectively, in a space surrounded by the pillars and beams of the building. When the building is deformed, both steel plates are relatively displaced in the in-plane direction and the viscous resistance force of the viscous body restrains the deformation of the building and absorbs vibration energy. Because
The viscous material is processed into a sheet in advance to form a viscous material sheet, and release paper is stacked on both sides of the viscous material sheet,
While peeling off the release paper, sandwiching the viscous sheet between the steel plates, laminating the viscous sheet and steel sheet,
A method for producing a viscous earthquake-resistant wall, wherein the steel plates and the viscous sheet are laminated and pressed together to bond the steel plates together via the viscous sheet.
前記鋼鈑を、梁に予め所定間隔をあけて固定した複数の取付用鋼鈑に差し込んで、前記鋼鈑と前記取付用鋼鈑とを締結することを特徴とする請求項1記載の粘性耐震壁の製作方法。   2. The viscous seismic resistance according to claim 1, wherein the steel plate is inserted into a plurality of mounting steel plates fixed to the beam at predetermined intervals, and the steel plate and the mounting steel plate are fastened. How to make a wall. 前記対をなす鋼鈑が、それぞれ複数枚あることを特徴とする請求項2記載の粘性耐震壁の製作方法。   3. The method of manufacturing a viscous earthquake-resistant wall according to claim 2, wherein there are a plurality of pairs of steel plates. 貼り合わせた前記鋼板と前記粘性体シートに対して締結ボルトをその厚み方向に貫通せしめ、該締結ボルトにより厚み方向に締め付けることを特徴とする請求項1,2または3記載の粘性耐震壁の製作方法。   4. The production of a viscous earthquake-resistant wall according to claim 1, wherein a fastening bolt is penetrated in the thickness direction of the bonded steel sheet and the viscous sheet, and is tightened in the thickness direction by the fastening bolt. Method.
JP2006112186A 2006-04-14 2006-04-14 Method of manufacturing viscous quakeproof wall Pending JP2006266080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112186A JP2006266080A (en) 2006-04-14 2006-04-14 Method of manufacturing viscous quakeproof wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112186A JP2006266080A (en) 2006-04-14 2006-04-14 Method of manufacturing viscous quakeproof wall

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32006497A Division JPH11152932A (en) 1997-11-20 1997-11-20 Viscous earthquake resisting wall and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2006266080A true JP2006266080A (en) 2006-10-05

Family

ID=37202323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112186A Pending JP2006266080A (en) 2006-04-14 2006-04-14 Method of manufacturing viscous quakeproof wall

Country Status (1)

Country Link
JP (1) JP2006266080A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001700A (en) * 2008-06-23 2010-01-07 Shimizu Corp Vibration control damper
KR100943156B1 (en) 2009-11-10 2010-02-22 현대엠코 주식회사 Hybrid vibration-controlling dampers
KR100943155B1 (en) 2009-11-10 2010-02-22 현대엠코 주식회사 Compressed high dampimg rubber damper
CN107620397A (en) * 2017-07-26 2018-01-23 同济大学 Displacement equations type viscous damping wall based on lever

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001700A (en) * 2008-06-23 2010-01-07 Shimizu Corp Vibration control damper
KR100943156B1 (en) 2009-11-10 2010-02-22 현대엠코 주식회사 Hybrid vibration-controlling dampers
KR100943155B1 (en) 2009-11-10 2010-02-22 현대엠코 주식회사 Compressed high dampimg rubber damper
CN107620397A (en) * 2017-07-26 2018-01-23 同济大学 Displacement equations type viscous damping wall based on lever

Similar Documents

Publication Publication Date Title
TWI613352B (en) Joint structure between members
JP2009256885A (en) Exposed column base structure
TW200918782A (en) Damper equipment
JP2006266080A (en) Method of manufacturing viscous quakeproof wall
JP2008138833A (en) Damper device, method of designing damper device, vibration control structure, vibration control method
JP2015025257A (en) Damper and damper construction method
JPH11152932A (en) Viscous earthquake resisting wall and manufacture thereof
JP4563872B2 (en) Seismic wall
JP4370731B2 (en) Composite vibration brace
JP2016125312A (en) Connection structure between members
JP2018204397A (en) Wood-steel hybrid structure and method for constructing the same
JP2015105482A (en) Buckling restrained brace
JP5609028B2 (en) Steel panel joint structure, steel panel, and building provided with a steel frame material and one or more thin steel plate folded plates
JP3931944B2 (en) Damping damper and its installation structure
JP4220919B2 (en) Seismic reinforcement structure
JP5984012B2 (en) Laminated rubber support
JP5516933B2 (en) Reinforcement structure for beam-column joints
JP4861792B2 (en) Pressure bonding method and pressure bonding structure for precast concrete column / beam joint
JP5314203B1 (en) Structure connection structure
JP2011032666A (en) Rubber bearing device
Williamson et al. Design and cyclic experiments of a mass timber frame with a timber buckling restrained brace
JP4732552B1 (en) Water stop for gaps and water stop for gaps using the same
JP2002276035A (en) Vibration control brace
JP2020094454A (en) Joining structure of steel materials
JP6731728B2 (en) Precast concrete components with stone tip for structural members

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Effective date: 20080513

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924