JP2006249195A - Surface modifying method - Google Patents

Surface modifying method Download PDF

Info

Publication number
JP2006249195A
JP2006249195A JP2005066053A JP2005066053A JP2006249195A JP 2006249195 A JP2006249195 A JP 2006249195A JP 2005066053 A JP2005066053 A JP 2005066053A JP 2005066053 A JP2005066053 A JP 2005066053A JP 2006249195 A JP2006249195 A JP 2006249195A
Authority
JP
Japan
Prior art keywords
tubular member
plasma
modification method
gas
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005066053A
Other languages
Japanese (ja)
Inventor
Hiroaki Kasai
広明 葛西
Takashi Magara
敬 真柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005066053A priority Critical patent/JP2006249195A/en
Publication of JP2006249195A publication Critical patent/JP2006249195A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface modifying method capable of modifying the surface of a fluororesin to a surface having high wetting properties. <P>SOLUTION: The surface modifying method comprises generating plasma at atmospheric pressure or its neighboring pressure to modify the open end (surface to be treated) 12A of a tubular member (fluororesin member) 12, and the open end 12A is arranged in the treating region 17 within a radius of the plasma generation region 18 plus less than 10 mm and is subjected to modification. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フッ素樹脂の表面改質方法に関する。   The present invention relates to a method for surface modification of a fluororesin.

フッ素樹脂はその表面エネルギーが低いという化学的安定性から、耐熱性、耐薬品性、摺動性等に優れ、医療、化学、電子等の様々な分野で活用されている。
しかし、その表面エネルギーが低いため、一方で接着剤や塗料等のぬれ性、密着性が非常に悪い。そこで、フッ素樹脂の使用に際してはぬれ性を向上させる前処理が不可欠である。
Fluororesin is excellent in heat resistance, chemical resistance, slidability, etc. due to its chemical stability that its surface energy is low, and is used in various fields such as medicine, chemistry, and electronics.
However, because of its low surface energy, wettability and adhesion of adhesives and paints are very poor. Therefore, pretreatment for improving wettability is indispensable when using a fluororesin.

従来、フッ素樹脂のぬれ性を向上させるための手段として、ナトリウム−ナフタレン等の薬液処理が知られているが、近年ではより簡便でクリーンな改質方法として、大気圧プラズマに被処理物を晒すことによる表面改質が研究されている。   Conventionally, chemical treatment of sodium naphthalene or the like is known as a means for improving the wettability of a fluororesin. However, in recent years, an object to be treated is exposed to atmospheric pressure plasma as a simpler and cleaner modification method. Surface modification by this has been studied.

このような方法として、被処理物を電極間の放電部分から10mm以上離れた位置に配置して処理を行う方法が提案されている(例えば、特許文献1参照。)。
特に、チューブ内面を処理する方法としては、チューブ内にプラズマ生成ガスを導入し、チューブ外に設置した電極によってチューブ内にプラズマを発生して改質する方法が提案されている(例えば、特許文献2参照。)。
As such a method, a method has been proposed in which an object to be processed is disposed at a position 10 mm or more away from the discharge portion between the electrodes (for example, see Patent Document 1).
In particular, as a method for treating the inner surface of the tube, a method of introducing a plasma generating gas into the tube and generating plasma in the tube with an electrode installed outside the tube has been proposed (for example, Patent Documents). 2).

これらの方法は、プラズマ中のイオンやラジカルといった粒子が、その運動エネルギーによって被処理物表面の化学結合を切断したり、或いは、結合解離エネルギーの差によって原子を引き抜き、そこに活性な官能基を導入する作用によって表面を改質するものである。   In these methods, particles such as ions and radicals in the plasma break the chemical bond on the surface of the object to be processed by their kinetic energy, or pull out atoms by the difference in bond dissociation energy, and then add active functional groups there. The surface is modified by the action of introduction.

しかしながら、上記従来の改質方法は、例えば、PET(ポリエチレンテレフタレート)等の材料には極めて大きな効果を発揮するが、フッ素樹脂の場合、C(炭素)−F(フッ素)結合の結合解離エネルギーが128kcal/molと高いため、Fの引き抜きや置換効率がそもそも低いことから、フッ素樹脂には効果が低く、特にPTFE(ポリテトラフルオロエチレン)に対しては実用的な効果を得ることができない。即ち、プラズマ中に被処理物を晒す方法や、上記特許文献2に記載の方法のように、外部電極によってチューブ内にプラズマを発生させる方法では、プラズマ中において官能基自体の再引き抜きやFの再結合等が発生しやすくなる。そのため、被処理物表面における官能基の置換効率と置換した官能基の再引き抜き効率との差と考えられる表面改質効率が極端に低くなる。   However, the above-described conventional modification method is extremely effective for materials such as PET (polyethylene terephthalate), but in the case of a fluororesin, the bond dissociation energy of the C (carbon) -F (fluorine) bond is low. Since it is as high as 128 kcal / mol, the extraction of F and the substitution efficiency are low in the first place. Therefore, the effect is low for a fluororesin, and a practical effect cannot be obtained particularly for PTFE (polytetrafluoroethylene). That is, in the method of exposing the object to be processed in the plasma or the method of generating plasma in the tube by the external electrode like the method described in Patent Document 2, the functional group itself is re-extracted in the plasma or the F Recombination is likely to occur. Therefore, the surface modification efficiency considered to be the difference between the functional group substitution efficiency on the surface of the object to be treated and the re-extraction efficiency of the substituted functional group becomes extremely low.

また、上記特許文献1に記載の方法では、イオンや電子衝突により置換した官能基の引き抜きを抑制するために、被処理物をプラズマ生成領域から10mm以上離して処理を行うため、上述のように置換効率が極めて低いフッ素樹脂に適用しても改質効果がほとんど期待できない。
特開平7−132554号公報 特開平8−183107号公報
Further, in the method described in Patent Document 1, in order to suppress the extraction of the functional group substituted by ion or electron collision, the object to be processed is processed 10 mm or more away from the plasma generation region. Even when applied to a fluororesin having a very low substitution efficiency, almost no modification effect can be expected.
JP-A-7-132554 JP-A-8-183107

本発明は上記事情に鑑みて成されたものであり、フッ素樹脂の表面をぬれ性の高い表面に改質することができる表面改質方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a surface modification method capable of modifying the surface of a fluororesin to a surface with high wettability.

本発明は、上記課題を解決するため、以下の手段を採用する。
本発明に係る表面改質方法は、大気圧又はその近傍の圧力下でプラズマを生成してフッ素樹脂部材の被処理表面を改質する表面改質方法であって、前記被処理表面が、前記プラズマの生成領域を越えて該生成領域の周囲10mm未満の距離で囲まれる処理領域内に配されて行われることを特徴とする。
The present invention employs the following means in order to solve the above problems.
A surface modification method according to the present invention is a surface modification method for modifying a surface to be treated of a fluororesin member by generating plasma under atmospheric pressure or a pressure in the vicinity thereof, wherein the surface to be treated is It is characterized in that it is carried out in a processing region that is surrounded by a distance of less than 10 mm around the generation region beyond the plasma generation region.

この表面改質方法は、プラズマイオンは存在しないがラジカルが濃度の高い状態で存在する処理領域で処理を行うので、非常に活性なラジカルによってフッ素樹脂表面からF(フッ素)やC−Fといった原子、分子或いは分子鎖を引き抜き又はC−C結合を切断して、官能基に容易に置換させることができる。このとき、被処理表面がプラズマ生成領域に直接接していないので、イオンや電子の衝突による置換された官能基の再引き抜きを抑えることができる。   In this surface modification method, since processing is performed in a processing region in which plasma ions do not exist but radicals exist in a high concentration state, atoms such as F (fluorine) and C—F are generated from the surface of the fluororesin by extremely active radicals. The molecule or molecular chain can be withdrawn or the C—C bond can be cleaved to be easily substituted with a functional group. At this time, since the surface to be processed is not in direct contact with the plasma generation region, re-extraction of the substituted functional group due to collision of ions or electrons can be suppressed.

また、本発明に係る表面改質方法は、前記表面改質方法であって、前記フッ素樹脂部材が管状部材とされ、前記プラズマが前記管状部材の管内に向かって形成され、前記管状部材の開口端が、前記被処理表面として前記処理領域内に配されていることを特徴とする。   The surface modification method according to the present invention is the surface modification method, wherein the fluororesin member is a tubular member, the plasma is formed into a tube of the tubular member, and the opening of the tubular member is formed. An end is disposed in the processing region as the surface to be processed.

この表面改質方法は、改質に必要なラジカルを被処理面である管状部材の内面に高濃度で誘導することができる。その結果、開口端及びその近傍の管状部材内面までFやC−Fといった原子、分子或いは分子鎖を引き抜き又はC−C結合を切断して、高い効率で官能基に置換させることができる。   In this surface modification method, radicals necessary for modification can be induced at a high concentration on the inner surface of the tubular member which is the surface to be treated. As a result, atoms, molecules, or molecular chains such as F and C—F can be pulled out to the open end and the inner surface of the tubular member in the vicinity thereof, or a C—C bond can be cleaved and replaced with a functional group with high efficiency.

また、本発明に係る表面改質方法は、前記表面改質方法であって、前記フッ素樹脂部材が管状部材とされ、前記プラズマの生成領域が、前記管状部材の内径よりも小さい外径にて前記管状部材の管内に形成され、前記管状部材の内面が、前記被処理表面として前記処理領域内に配されていることを特徴とする。   The surface modification method according to the present invention is the surface modification method, wherein the fluororesin member is a tubular member, and the plasma generation region has an outer diameter smaller than the inner diameter of the tubular member. It is formed in the pipe | tube of the said tubular member, The inner surface of the said tubular member is distribute | arranged in the said process area | region as the said to-be-processed surface, It is characterized by the above-mentioned.

この表面改質方法は、プラズマの生成領域の外径を管状部材の内径よりも小さく形成させるので、改質に必要なラジカルを被処理面である管状部材の内面にわたって高濃度で誘導することができ、プラズマの生成領域を管状部材の内部で移動することができる。従って長尺の管状部材であっても、連続的にプラズマを生成することによってその内面を連続的に処理することができ、かつ、断続的に生成することによって部分的な改質を行うことができる。また、プラズマイオンが管状部材の内面に直接接触することがないので、置換された官能基の再引き抜きを抑え、表面改質効率を高めることができる。   In this surface modification method, the outer diameter of the plasma generation region is formed smaller than the inner diameter of the tubular member, so that radicals necessary for the modification can be induced at a high concentration over the inner surface of the tubular member that is the surface to be treated. The plasma generation region can be moved inside the tubular member. Therefore, even if it is a long tubular member, the inner surface can be processed continuously by generating plasma continuously, and partial modification can be performed by generating intermittently. it can. Further, since the plasma ions do not directly contact the inner surface of the tubular member, it is possible to suppress the redrawing of the substituted functional group and increase the surface modification efficiency.

また、本発明に係る表面改質方法は、前記表面改質方法であって、前記プラズマを生成するための供給ガスが、水素及び酸素のうちの少なくとも一つを備えて供給されることを特徴とする。   The surface modification method according to the present invention is the surface modification method, wherein the supply gas for generating the plasma is supplied with at least one of hydrogen and oxygen. And

この表面改質方法は、C−F結合の結合解離エネルギーが128kcal/molであるのに対し、H(水素)−F結合の結合解離エネルギーが135kcal/molであるため、ラジカルによって引き抜き又は切断されたFが、プラズマを生成するガス中に含まれるHとより強力な結合を形成することができ、Fのフッ素樹脂への再結合を抑えることができる。また、プラズマを生成するガス中に含まれるO(酸素)が、FやC−Fが引き抜かれた後の未結合手と結合を形成することができる。そこへ大気圧プラズマに含まれる水分中のOやOHが結合してOH基やCOOH基を形成することができ、より効率的に親水化を図ることができる。   In this surface modification method, the bond dissociation energy of the C—F bond is 128 kcal / mol, whereas the bond dissociation energy of the H (hydrogen) -F bond is 135 kcal / mol. Further, F can form a stronger bond with H contained in the gas that generates plasma, and recombination of F with the fluororesin can be suppressed. In addition, O (oxygen) contained in the plasma generating gas can form a bond with the dangling bond after F or C—F is extracted. O and OH in the moisture contained in the atmospheric pressure plasma can be bonded there to form an OH group and a COOH group, so that hydrophilicity can be achieved more efficiently.

本発明によれば、フッ素樹脂中のFやC−Fと官能基との置換効率を向上して、ぬれ性の高い表面に改質することができる。   According to the present invention, the substitution efficiency between F and C—F in a fluororesin and a functional group can be improved, and the surface can be modified with high wettability.

本発明に係る第1の実施形態について、図1を参照して説明する。
本実施形態に係る表面改質方法は、図1に示す処理装置1によって行う。
この処理装置1は、プラズマ生成ガスを導入するガス導入口10と内部で発生したプラズマの少なくとも一部を外部に放出するプラズマ開口3とが配されたプラズマ発生部5と、プラズマ発生部5に電気的に接続される電源6とを備えている。
A first embodiment according to the present invention will be described with reference to FIG.
The surface modification method according to this embodiment is performed by the processing apparatus 1 shown in FIG.
The processing apparatus 1 includes a plasma generation unit 5 in which a gas introduction port 10 for introducing a plasma generation gas and a plasma opening 3 for discharging at least a part of plasma generated inside to the outside are disposed; And a power source 6 that is electrically connected.

プラズマ発生部5のプラズマ開口3には、フッ素樹脂のPTFEからなる管状部材(フッ素樹脂部材)12を装着可能な接続部13が配されている。なお、プラズマ発生部5内は、ガス導入口10とプラズマ開口3とによって大気開放状態とされる。
接続部13は、内径が管状部材12の外径と略同一とされて円筒状に突出して形成されている。
この接続部13の突出高さは、表面を改質する処理領域17をプラズマ生成領域(生成領域)18を越えてプラズマ生成領域18の周囲10mm未満の距離で囲まれる領域とするとき、管状部材12の開口端12Aとその近傍の内表面(被処理表面)12Bとが処理領域17内に配されるように調整されている。
A connecting portion 13 to which a tubular member (fluororesin member) 12 made of PTFE made of fluororesin can be attached is disposed in the plasma opening 3 of the plasma generating portion 5. Note that the inside of the plasma generation unit 5 is opened to the atmosphere by the gas inlet 10 and the plasma opening 3.
The connecting portion 13 has an inner diameter that is substantially the same as the outer diameter of the tubular member 12 and is formed to protrude in a cylindrical shape.
The protruding height of the connecting portion 13 is such that when the processing region 17 for modifying the surface is a region surrounded by a distance of less than 10 mm around the plasma generation region 18 beyond the plasma generation region (generation region) 18. 12 open ends 12 </ b> A and an inner surface (surface to be processed) 12 </ b> B in the vicinity thereof are adjusted so as to be arranged in the processing region 17.

次に、この処理装置1により、例えば、内径4.4mm、外径5.3mmの管状部材12の内表面を改質する方法、及び、作用・効果について説明する。
まず、ガス導入口10からAr(アルゴン)ガスを、例えば、3l/minの流量で連続的に導入し、続いて、大気圧近傍の圧力下で電源6からプラズマ発生部5に例えば10kHzの交流電圧を印加する。
Next, a method for modifying the inner surface of the tubular member 12 having an inner diameter of 4.4 mm and an outer diameter of 5.3 mm by this processing apparatus 1, and the operation and effect will be described.
First, Ar (argon) gas is continuously introduced from the gas inlet 10 at a flow rate of, for example, 3 l / min, and then, for example, an alternating current of 10 kHz is supplied from the power source 6 to the plasma generating unit 5 under a pressure near atmospheric pressure. Apply voltage.

これにより、プラズマ発生部5内で放電が安定的に生じ、管状部材12の管内に向かうプラズマが形成される。
このとき、プラズマ生成領域18の周囲の処理領域17には、大気中の水分が分解されて生じるH(水素)原子やO(酸素)原子等を有するラジカルが生じる。
As a result, discharge is stably generated in the plasma generation unit 5, and plasma is formed toward the inside of the tubular member 12.
At this time, radicals having H (hydrogen) atoms, O (oxygen) atoms, and the like generated by decomposition of moisture in the atmosphere are generated in the processing region 17 around the plasma generation region 18.

この際、管状部材12の開口端12Aとその近傍の内表面12Bが配される処理領域17のラジカルは非常に活性であるので、管状部材12のフッ素樹脂表面からFやC−Fといった原子、分子或いは分子鎖が引き抜かれ又はC−C結合が切断されて、H基やOH基を含む官能基と置換する。一方、被処理表面がプラズマ生成領域18に直接接していないので、イオンや電子の衝突による上記置換された官能基の再引き抜きは抑えられる。   At this time, since radicals in the treatment region 17 where the open end 12A of the tubular member 12 and the inner surface 12B in the vicinity thereof are arranged are very active, atoms such as F and C—F from the fluororesin surface of the tubular member 12, Molecules or molecular chains are withdrawn or C—C bonds are cleaved to replace functional groups including H and OH groups. On the other hand, since the surface to be processed is not in direct contact with the plasma generation region 18, re-extraction of the substituted functional group due to collision of ions or electrons can be suppressed.

こうして、例えば、上記交流電圧を10分間印加することによって、表面が改質された管状部材12が得られる。
この表面改質方法によれば、プラズマ生成領域18内に大量に見られるプラズマイオンが存在せず、かつ、プラズマ生成領域18から10mm未満の濃度の高い状態のラジカルが存在する処理領域17で処理を行うので、非常に活性なラジカルによって管状部材12の内表面を官能基に容易に置換させることができる。このとき、開口端12Aがプラズマ生成領域18に直接接していないので、イオンや電子の衝突による置換された官能基の再引き抜きを抑えることができる。
Thus, for example, by applying the AC voltage for 10 minutes, the tubular member 12 whose surface is modified is obtained.
According to this surface modification method, the treatment is performed in the treatment region 17 in which a large amount of plasma ions are not present in the plasma generation region 18 and radicals having a high concentration of less than 10 mm exist from the plasma generation region 18. Therefore, the inner surface of the tubular member 12 can be easily substituted with a functional group by a very active radical. At this time, since the open end 12A is not in direct contact with the plasma generation region 18, re-extraction of the substituted functional group due to collision of ions or electrons can be suppressed.

なお、上述の条件にて表面改質した管状部材12に対して、水との接触角、及び、エポキシ系接着剤を用いて10mm長の接着長にてSUS棒と接着したものを引張り試験機に保持して鉛直方向に引っ張った際の引張り強度とを測定した。結果を表1に示す。   A tensile tester for the tubular member 12 whose surface was modified under the above-mentioned conditions, which was bonded to a SUS rod with a contact angle with water and an adhesive length of 10 mm using an epoxy adhesive. And the tensile strength when pulled in the vertical direction was measured. The results are shown in Table 1.

Figure 2006249195
Figure 2006249195

プラズマ生成領域18内、或いは、これから10mm以上離間した位置での処理に比べて、接触角を減少させ、引張り強度を向上させることができ、被処理表面の親水化を確認することができた。   Compared with the treatment in the plasma generation region 18 or at a position separated by 10 mm or more, the contact angle can be reduced, the tensile strength can be improved, and the treatment surface can be confirmed to be hydrophilic.

次に、第2の実施形態について図2を参照しながら説明する。
なお、上述した第1の実施形態と同様の構成要素には同一符号を付すとともに説明を省略する。
第2の実施形態と第1の実施形態との異なる点は、本実施形態に係る表面改質方法を行う処理装置20が、Arガスと他のガスとを混合したガスを導入可能な混合ガス配管21を備えているとした点である。
Next, a second embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the component similar to 1st Embodiment mentioned above, and description is abbreviate | omitted.
The difference between the second embodiment and the first embodiment is that the processing apparatus 20 that performs the surface modification method according to the present embodiment can introduce a mixed gas in which Ar gas and other gas are mixed. This is the point that the pipe 21 is provided.

混合ガス配管21は、Arガスが流通される第一ガス配管22とその他のガスが流通される第二ガス配管23とを備えており、それぞれ第一流量調整機構25と第二流量調整機構26とによって流量が調整される。
この際、供給するその他のガスとして、水素及び酸素のうちの少なくとも一つを備えるガスを供給する。
The mixed gas pipe 21 includes a first gas pipe 22 through which Ar gas is circulated and a second gas pipe 23 through which other gases are circulated, and a first flow rate adjustment mechanism 25 and a second flow rate adjustment mechanism 26, respectively. And the flow rate is adjusted.
At this time, as another gas to be supplied, a gas including at least one of hydrogen and oxygen is supplied.

この処理装置20にて表面改質を行う場合、上記第1の実施形態と同様の方法によって行う。
この際、第一流量調整機構25及び第二流量調整機構26のそれぞれを操作することによって、混合ガス配管21にて所定の割合でArガスと上述のその他のガスとを混合し、得られた混合ガスをガス導入口10からプラズマ発生部5内に導入する。
When the surface modification is performed by the processing apparatus 20, it is performed by the same method as in the first embodiment.
At this time, by operating each of the first flow rate adjusting mechanism 25 and the second flow rate adjusting mechanism 26, Ar gas and the above-mentioned other gases were mixed at a predetermined ratio in the mixed gas pipe 21, and obtained. A mixed gas is introduced into the plasma generation unit 5 from the gas inlet 10.

こうして、第1の実施形態と同様に改質された管状部材12を得る。
この表面改質方法によれば、第1の実施形態と同様の作用・効果を奏することができる。
ここで、C−F結合の結合解離エネルギーが128kcal/molであるのに対し、H−F結合の結合解離エネルギーが135kcal/molであるため、プラズマを生成するガス中にHを第1の実施形態の場合よりも多く含ませることによって、ラジカルによって引き抜き又は切断されたFが、プラズマを生成するガス中に含まれるHとより強力な結合を形成することができ、Fの管状部材12への再結合を抑えることができる。
Thus, the modified tubular member 12 is obtained in the same manner as in the first embodiment.
According to this surface modification method, the same operations and effects as in the first embodiment can be achieved.
Here, since the bond dissociation energy of the C—F bond is 128 kcal / mol, whereas the bond dissociation energy of the HF bond is 135 kcal / mol, the first implementation of H in the gas generating plasma is performed. By including more than in the case of the form, F extracted or cut by radicals can form a stronger bond with H contained in the gas that generates the plasma, and the F to the tubular member 12 can be formed. Recombination can be suppressed.

また、プラズマを生成するガス中にOを第1の実施形態の場合よりも多く含ませることによって、FやC−Fが引き抜かれた後の未結合手と大気圧プラズマに含まれる水分中のOやOHが結合してOH基やCOOH基を形成することができ、より効率的に親水化を図ることができる。   Further, by containing more O in the gas that generates plasma than in the case of the first embodiment, the unbonded hands after F and C-F are extracted and the moisture contained in the atmospheric pressure plasma O and OH can be combined to form an OH group and a COOH group, and thus hydrophilicity can be achieved more efficiently.

なお、混合ガスとして(1)空気ガスにArガスを混合して10l/minとした混合ガス、(2)Arガス(3l/min)と空気(4l/min)にHOガスを供給したガスとの混合ガスを供給して混合したガス、及び、(3)空気(6l/min)と空気(4l/min)にHOガスを供給したガスとの混合ガスをそれぞれガス導入口10から導入してプラズマ生成して処理を行ったそれぞれの管状部材12に対して、水との接触角及びエポキシ系接着剤を用いて10mm長の接着長にてSUS棒と接着したものを引張り試験機に保持して鉛直方向に引っ張った際の引張り強度とを測定した。結果を表1に示す。 As a mixed gas, (1) a mixed gas in which Ar gas was mixed with air gas to 10 l / min, and (2) H 2 O gas was supplied to Ar gas (3 l / min) and air (4 l / min). A gas mixed with a gas mixed with a gas mixed with the gas, and (3) a gas mixed with air (6 l / min) and a gas supplied with H 2 O gas into air (4 l / min), respectively. Tensile test of each tubular member 12 that has been introduced from plasma and processed by plasma generation and bonded to a SUS rod with a contact angle with water and an adhesive length of 10 mm using an epoxy adhesive The tensile strength was measured when it was held in a machine and pulled in the vertical direction. The results are shown in Table 1.

第1の実施形態の場合よりも接触角を減少させ、引張り強度を向上させることができ、被処理表面の親水化を確認することができた。
なお、内径0.6mm、外径1.5mmの内視鏡用部品で用いられるPTFEチューブを上記と同様の条件にて処理した結果をそれぞれ表2に示す。
この場合も上述と同様の結果を得ることができた。
The contact angle can be reduced and the tensile strength can be improved as compared with the case of the first embodiment, and the treatment surface can be confirmed to be hydrophilic.
Table 2 shows the results of treating PTFE tubes used in endoscope parts having an inner diameter of 0.6 mm and an outer diameter of 1.5 mm under the same conditions as described above.
In this case, the same result as described above could be obtained.

Figure 2006249195
Figure 2006249195

次に、第3の実施形態について図3を参照しながら説明する。
なお、上述した他の実施形態と同様の構成要素には同一符号を付すとともに説明を省略する。
第3の実施形態と第2の実施形態との異なる点は、本実施形態に係る表面改質方法を行う処理装置30により生じるプラズマ生成領域31が管状部材12の内径よりも小さい外径にて管状部材32の管内に形成され、かつ、管状部材32の内表面32A全体が被処理表面として処理領域33内に配されるように、プラズマ発生部35の外径が管状部材32の内径よりも小さく形成されて管状部材32内に挿入可能とされている点である。
Next, a third embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the component similar to other embodiment mentioned above, and description is abbreviate | omitted.
The difference between the third embodiment and the second embodiment is that the plasma generation region 31 generated by the processing apparatus 30 that performs the surface modification method according to the present embodiment has an outer diameter smaller than the inner diameter of the tubular member 12. The outer diameter of the plasma generator 35 is larger than the inner diameter of the tubular member 32 so that the entire inner surface 32A of the tubular member 32 is formed in the processing region 33 as a surface to be processed. It is a point that it is formed small and can be inserted into the tubular member 32.

この場合、プラズマ発生部35には第2の実施形態にあるような接続部13は配されておらず、管状部材32は、管状部材操作機構36によって中心軸線方向に移動可能とされている。   In this case, the plasma generating portion 35 is not provided with the connecting portion 13 as in the second embodiment, and the tubular member 32 is movable in the central axis direction by the tubular member operating mechanism 36.

この処理装置30にて、上記第1の実施形態と同様の条件による改質処理を行う。
この際、管状部材操作機構36を操作してプラズマ発生部35に対して管状部材32を先端32Bから末端32Cまでプラズマ生成を行いながら移動する。
In the processing apparatus 30, a reforming process is performed under the same conditions as in the first embodiment.
At this time, the tubular member operating mechanism 36 is operated to move the tubular member 32 with respect to the plasma generator 35 while generating plasma from the tip 32B to the end 32C.

この処理装置30にて、例えば、20cmの長さの管状部材32を管状部材操作機構36によって5mm/分の速度で移動して改質を行い、処理後の管状部材32と水との接触角の測定を行った。未処理の場合との比較結果を表3に示す。
この結果、接触角の減少が見られ、親水化を確認することができた。
In this processing apparatus 30, for example, a tubular member 32 having a length of 20 cm is reformed by moving the tubular member operating mechanism 36 at a speed of 5 mm / min, and the contact angle between the treated tubular member 32 and water is changed. Was measured. Table 3 shows the result of comparison with the untreated case.
As a result, a decrease in contact angle was observed, and hydrophilicity could be confirmed.

Figure 2006249195
Figure 2006249195

この表面改質方法によれば、プラズマ生成領域31の外径を管状部材32の内径よりも小さく形成させるので、改質に必要なラジカルを管状部材32の内表面32A全体にわたって高濃度で誘導することができ、プラズマ生成領域31を管状部材32の内部で移動することができる。従って長尺の管状部材32であっても、連続的にプラズマを生成することによってその内面を連続的に処理することができ、かつ、断続的に生成することによって部分的な改質を行うことができる。   According to this surface modification method, since the outer diameter of the plasma generation region 31 is formed smaller than the inner diameter of the tubular member 32, radicals necessary for the modification are induced at a high concentration over the entire inner surface 32A of the tubular member 32. The plasma generation region 31 can be moved inside the tubular member 32. Therefore, even in the case of the long tubular member 32, the inner surface thereof can be continuously processed by generating plasma continuously, and partial modification is performed by generating intermittently. Can do.

次に、第4の実施形態について図4を参照しながら説明する。
なお、上述した他の実施形態と同様の構成要素には同一符号を付すとともに説明を省略する。
第4の実施形態と第2の実施形態との異なる点は、本実施形態に係る表面改質方法が、シート状部材(フッ素樹脂部材)40の表面(被処理表面)40Aを被処理面表面として改質処理するものとした点である。
Next, a fourth embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the component similar to other embodiment mentioned above, and description is abbreviate | omitted.
The difference between the fourth embodiment and the second embodiment is that the surface modification method according to this embodiment uses the surface (surface to be processed) 40A of the sheet-like member (fluororesin member) 40A as the surface to be processed. This is the point that the modification treatment is performed.

この場合、処理装置41における接続部42の突出高さは、処理領域17をプラズマ生成領域18を越えてプラズマ生成領域18の周囲10mm未満の距離で囲まれる領域とするとき、シート状部材40の表面40Aが処理領域17内に配されるように調整されている。   In this case, the protrusion height of the connecting portion 42 in the processing apparatus 41 is such that when the processing region 17 exceeds the plasma generation region 18 and is surrounded by a distance of less than 10 mm around the plasma generation region 18, the sheet-like member 40 The surface 40 </ b> A is adjusted so as to be disposed in the processing region 17.

この接続部42の先端42Aにシート状部材40を近づけて上記第1の実施形態の場合と同様の条件にて改質処理を行う。
例えば、シート状部材40を25mm×100mm、厚さ0.4mmのものとして表面40Aの改質処理を行い、処理後のシート状部材40と水との接触角の測定を行った。未処理の場合との比較結果を表4に示す。
この結果、接触角の減少が見られ、親水化を確認することができた。
The sheet-like member 40 is brought close to the tip 42A of the connecting portion 42, and the reforming process is performed under the same conditions as in the first embodiment.
For example, the modification of the surface 40A was performed with the sheet-like member 40 having a size of 25 mm × 100 mm and a thickness of 0.4 mm, and the contact angle between the treated sheet-like member 40 and water was measured. Table 4 shows the result of comparison with the untreated case.
As a result, a decrease in contact angle was observed, and hydrophilicity could be confirmed.

Figure 2006249195
Figure 2006249195

この表面改質方法によれば、シート状部材40であっても、管状部材12と同様に表面の改質を行うことができ、上記他の実施形態と同様の作用・効果を奏することができる。   According to this surface modification method, even the sheet-like member 40 can be modified on the surface in the same manner as the tubular member 12, and the same actions and effects as in the other embodiments can be obtained. .

次に、第5の実施形態について図5を参照しながら説明する。
なお、上述した他の実施形態と同様の構成要素には同一符号を付すとともに説明を省略する。
第5の実施形態と第4の実施形態との異なる点は、本実施形態に係る表面改質方法を行う処理装置50におけるプラズマ発生部51が、内部で陽極52と陰極53とが互いに対向して平行に配された硝子管54を備えているとした点である。
Next, a fifth embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the component similar to other embodiment mentioned above, and description is abbreviate | omitted.
The difference between the fifth embodiment and the fourth embodiment is that the plasma generating unit 51 in the processing apparatus 50 that performs the surface modification method according to the present embodiment has the anode 52 and the cathode 53 facing each other. The glass tubes 54 are arranged in parallel with each other.

この処理装置50にて、例えば、上記第4の実施形態と同様のシート状部材40の表面を改質する方法、及び、作用・効果について説明する。
まず、上記第1の実施形態と同様の条件にて、第一流量調整機構25及び第二流量調整機構26を開閉操作してガス導入口10からArガス又は混合ガスを連続的に導入し、続いて、電源6から交流電圧を印加する。
In this processing apparatus 50, for example, a method for modifying the surface of the sheet-like member 40 similar to that in the fourth embodiment, and actions and effects will be described.
First, under the same conditions as in the first embodiment, the first flow rate adjusting mechanism 25 and the second flow rate adjusting mechanism 26 are opened and closed to continuously introduce Ar gas or a mixed gas from the gas introduction port 10, Subsequently, an AC voltage is applied from the power source 6.

これにより、陽極52と陰極53との間で放電が安定的に生じ、プラズマが形成される。
このとき、ガス導入口10から硝子管54内に流れるガスの流れによってプラズマ生成領域18の周囲の処理領域17が、接続部42の方向に向かって流れてプラズマ開口3から硝子管54の外へ放出され、処理領域17内のラジカルにて改質を行う。
Thereby, discharge is stably generated between the anode 52 and the cathode 53, and plasma is formed.
At this time, the processing region 17 around the plasma generation region 18 flows in the direction of the connecting portion 42 by the flow of gas flowing from the gas inlet 10 into the glass tube 54 and out of the glass tube 54 from the plasma opening 3. After being released, the radicals in the processing region 17 are modified.

この処理装置50にて、上記第4の実施形態と同様の条件による改質処理を行う。
そして、処理後のシート状部材40と水との接触角の測定を行った。未処理の場合との比較結果を表5に示す。
この結果、上記他の実施形態と同様に接触角の減少が見られ、親水化を確認することができた。
In the processing apparatus 50, a reforming process is performed under the same conditions as in the fourth embodiment.
And the contact angle of the sheet-like member 40 after processing and water was measured. Table 5 shows the result of comparison with the untreated case.
As a result, a decrease in the contact angle was observed as in the other embodiments, and hydrophilicity could be confirmed.

Figure 2006249195
Figure 2006249195

次に、第6の実施形態について図6を参照しながら説明する。
なお、上述した他の実施形態と同様の構成要素には同一符号を付すとともに説明を省略する。
第6の実施形態と第5の実施形態との異なる点は、本実施形態に係る表面改質方法を管状部材12に対して行うとした点である。
この場合、処理装置55の接続部13は、第1の実施形態に係る処理装置1のものと同様とされている。
Next, a sixth embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the component similar to other embodiment mentioned above, and description is abbreviate | omitted.
The difference between the sixth embodiment and the fifth embodiment is that the surface modification method according to this embodiment is performed on the tubular member 12.
In this case, the connection unit 13 of the processing device 55 is the same as that of the processing device 1 according to the first embodiment.

この表面改質方法を第5の実施形態と同様の条件にて行い、処理後の管状部材12と水との接触角の測定を行った。未処理の場合との比較結果を表6に示す。
この結果、上記他の実施形態と同様に接触角の減少が見られ、親水化を確認することができた。
This surface modification method was performed under the same conditions as in the fifth embodiment, and the contact angle between the treated tubular member 12 and water was measured. Table 6 shows the result of comparison with the untreated case.
As a result, a decrease in the contact angle was observed as in the other embodiments, and hydrophilicity could be confirmed.

Figure 2006249195
Figure 2006249195

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、フッ素樹脂をPTFEとしているが、これに限らず他のフッ素系樹脂であっても構わない。また、管状部材やシート状部材の大きさは、上記のものに限らず、他の大きさを有するものでも構わない。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the fluororesin is PTFE, but the present invention is not limited to this, and other fluororesins may be used. Moreover, the magnitude | size of a tubular member or a sheet-like member is not restricted to the above-mentioned thing, You may have what has another magnitude | size.

本発明の第1の実施形態に係る表面改質方法を行う処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus which performs the surface modification method which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る表面改質方法を行う処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus which performs the surface modification method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る表面改質方法を行う処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus which performs the surface modification method which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る表面改質方法を行う処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus which performs the surface modification method which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る表面改質方法を行う処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus which performs the surface modification method which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る表面改質方法を行う処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus which performs the surface modification method which concerns on the 6th Embodiment of this invention.

符号の説明Explanation of symbols

12、32 管状部材(フッ素樹脂部材)
12A 開口端(被処理表面)
12B、32A 内表面(被処理表面)
17、33 処理領域
18、31 プラズマ生成領域(生成領域)
40 シート状部材(フッ素樹脂部材)
40A 表面(被処理表面)

12, 32 Tubular member (fluorine resin member)
12A Open end (surface to be treated)
12B, 32A Inner surface (surface to be treated)
17, 33 Processing area 18, 31 Plasma generation area (generation area)
40 Sheet-like member (fluororesin member)
40A surface (surface to be treated)

Claims (4)

大気圧又はその近傍の圧力下でプラズマを生成してフッ素樹脂部材の被処理表面を改質する表面改質方法であって、
前記被処理表面が、前記プラズマの生成領域を越えて該生成領域の周囲10mm未満の距離で囲まれる処理領域内に配されて行われることを特徴とする表面改質方法。
A surface modification method for modifying a surface to be treated of a fluororesin member by generating plasma under atmospheric pressure or a pressure in the vicinity thereof,
The surface modification method is characterized in that the surface to be treated is disposed in a treatment region surrounded by a distance of less than 10 mm around the generation region beyond the plasma generation region.
前記フッ素樹脂部材が管状部材とされ、
前記プラズマが前記管状部材の管内に向かって形成され、
前記管状部材の開口端が、前記被処理表面として前記処理領域内に配されていることを特徴とする請求項1に記載の表面改質方法。
The fluororesin member is a tubular member,
The plasma is formed into a tube of the tubular member;
The surface modification method according to claim 1, wherein an open end of the tubular member is disposed in the processing region as the surface to be processed.
前記フッ素樹脂部材が管状部材とされ、
前記プラズマの生成領域が、前記管状部材の内径よりも小さい外径にて前記管状部材の管内に形成され、
前記管状部材の内面が、前記被処理表面として前記処理領域内に配されていることを特徴とする請求項1に記載の表面改質方法。
The fluororesin member is a tubular member,
The plasma generation region is formed in the tube of the tubular member with an outer diameter smaller than the inner diameter of the tubular member,
The surface modification method according to claim 1, wherein an inner surface of the tubular member is disposed in the processing region as the surface to be processed.
前記プラズマを生成するための供給ガスが、水素及び酸素のうちの少なくとも一つを備えて供給されることを特徴とする請求項1から3の何れか一つに記載の表面改質方法。

The surface reforming method according to claim 1, wherein the supply gas for generating the plasma is supplied with at least one of hydrogen and oxygen.

JP2005066053A 2005-03-09 2005-03-09 Surface modifying method Withdrawn JP2006249195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066053A JP2006249195A (en) 2005-03-09 2005-03-09 Surface modifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066053A JP2006249195A (en) 2005-03-09 2005-03-09 Surface modifying method

Publications (1)

Publication Number Publication Date
JP2006249195A true JP2006249195A (en) 2006-09-21

Family

ID=37090021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066053A Withdrawn JP2006249195A (en) 2005-03-09 2005-03-09 Surface modifying method

Country Status (1)

Country Link
JP (1) JP2006249195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024882A1 (en) * 2020-07-27 2022-02-03 ウシオ電機株式会社 Fluorine resin surface modification method, surface-modified fluorine resin production method, joining method, material having surface-modified fluorine resin, and joined body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024882A1 (en) * 2020-07-27 2022-02-03 ウシオ電機株式会社 Fluorine resin surface modification method, surface-modified fluorine resin production method, joining method, material having surface-modified fluorine resin, and joined body
JP7481683B2 (en) 2020-07-27 2024-05-13 ウシオ電機株式会社 Method for modifying fluororesin surface, method for producing surface-modified fluororesin, and joining method

Similar Documents

Publication Publication Date Title
Pappas Status and potential of atmospheric plasma processing of materials
Sarani et al. Surface modification of PTFE using an atmospheric pressure plasma jet in argon and argon+ CO2
Wang et al. Microsecond pulse driven Ar/CF4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure
JP2009054557A (en) In-liquid plasma generating device
JP2006216468A (en) Plasma surface treatment method, plasma generation apparatus, and plasma surface treatment apparatus
KR101579349B1 (en) Water treatment apparatus using plasma-membrane and method using the same
JP6545053B2 (en) Processing apparatus and processing method, and gas cluster generating apparatus and generating method
CN101466194A (en) Preionization atmos low-temperature plasma jet generator
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
Desmet et al. On the effects of atmospheric-pressure microplasma array treatment on polymer and biological materials
Cools et al. Surface treatment of polymers by plasma
Lin et al. Study on CO2-based plasmas for surface modification of polytetrafluoroethylene and the wettability effects
US20100012477A1 (en) Modification of carbon fibers by means of electromagnetic wave irradiation
Fang et al. Interfacial properties of multicomponent plasma‐modified high‐performance fiber‐reinforced composites: a review
JP2007149590A (en) Radical processor
KR20130126592A (en) Device and method for the treatment of a gaseous medium and use of the device for the treatment of a gaseous medium, liquid, solid, surface or any combination therefor
KR20090006912A (en) Method and apparatus for modifying carbon nanotube using plasma
Shin et al. Treatment of metal surface by atmospheric microwave plasma jet
US20080233003A1 (en) System and method for treating liquid using a corona discharge process in a low pressure environment
Mansuroglu et al. Argon and nitrogen plasma modified polypropylene: Surface characterization along with the optical emission results
JP2006249195A (en) Surface modifying method
Morgan Atmospheric pressure dielectric barrier discharge chemical and biological applications
US7550927B2 (en) System and method for generating ions and radicals
Ma et al. Effects of a porous dielectric in atmospheric-pressure plasma jets submerged in water
JP5032042B2 (en) Plasma CVD apparatus and film forming method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513