JP2006248809A - 水素生成装置および燃料電池システム - Google Patents

水素生成装置および燃料電池システム Download PDF

Info

Publication number
JP2006248809A
JP2006248809A JP2005064608A JP2005064608A JP2006248809A JP 2006248809 A JP2006248809 A JP 2006248809A JP 2005064608 A JP2005064608 A JP 2005064608A JP 2005064608 A JP2005064608 A JP 2005064608A JP 2006248809 A JP2006248809 A JP 2006248809A
Authority
JP
Japan
Prior art keywords
reaction
reforming
hydrogen
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005064608A
Other languages
English (en)
Other versions
JP4664709B2 (ja
Inventor
Satoshi Aoyama
智 青山
Satoru Iguchi
哲 井口
Naoki Ito
直樹 伊藤
Keisuke Nagasaka
圭介 永坂
Hiroshi Aoki
博史 青木
Takashi Shimazu
孝 志満津
Hiroyuki Mitsui
宏之 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2005064608A priority Critical patent/JP4664709B2/ja
Priority to CNA2006800077384A priority patent/CN101138123A/zh
Priority to DE112006000502T priority patent/DE112006000502T5/de
Priority to PCT/JP2006/305069 priority patent/WO2006095910A1/en
Priority to US11/883,163 priority patent/US8382864B2/en
Publication of JP2006248809A publication Critical patent/JP2006248809A/ja
Application granted granted Critical
Publication of JP4664709B2 publication Critical patent/JP4664709B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/46Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using discontinuously preheated non-moving solid materials, e.g. blast and run
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】 再生反応への切替頻度が多くなることに伴なう改質効率の低下を抑制し、安定的した水素の改質生成を可能とする。
【解決手段】 改質反応と再生反応とを切替えて行なうPSR型改質器10,20に対して、改質反応させる場合に水素透過膜を有する水素分離膜型燃料電池30から排出されたカソードオフガスが供給されるようになっている。
【選択図】 図2

Description

本発明は、触媒を用いた燃料改質反応と触媒を加熱再生する再生反応とを切替えて行なう水素生成装置およびこれを備えた燃料電池システムに関する。
従来の電気自動車は、車両駆動用の電源として燃料電池を搭載すると共に、燃料電池を発電運転させるための燃料である水素又は水素生成用の原燃料を搭載している。
水素自体を搭載する場合、水素ガスを圧縮して高圧ボンベに若しくは液化してタンクに充填し、又は水素吸蔵合金や水素吸着材料を用いて搭載する。しかし、高圧充填による場合は、容器壁厚が厚く大きいわりに内容積をかせげないため水素充填量が少なく、また、液体水素とする液化充填による場合は、気化ロスが避けられないほか液化に多大なエネルギーを要する。また、水素吸蔵合金や水素吸着材料では電気自動車等に必要とされる水素貯蔵密度が不充分で、水素の吸蔵/吸着等の制御も困難である。また、原燃料を搭載する場合、燃料を水蒸気改質して水素を得る方法などがあるが、改質反応は吸熱的であるために別途熱源が必要であり、熱源に電気ヒータ等を用いたシステムでは全体のエネルギー効率の向上は図れず、また、あらゆる環境条件下で安定的に水素量を確保できる点も不可避である。
水素の供給方法については、未だ技術的に確立されていないのが実状であるが、将来的に各種装置における水素利用の増加が予測されることを踏まえると、水素の供給方法の確立が期待されている。
上記に関連する技術として、触媒を用いて、吸熱反応である燃料の水蒸気改質反応と、水蒸気改質反応で低下した触媒温度を再生する再生反応とを切替えて繰り返し行なう改質装置を有する燃料電池システムが提案されている(例えば、特許文献1参照)。
これに関連する技術として、上記以外に開示されているものもある(例えば、特許文献2〜5参照)。また、高温域で発電運転を行なう燃料電池の例として、水素透過性材料を用いた燃料電池に関する開示がある(例えば、特許文献6参照)。
米国特許2004−175326号明細書 米国特許2003−235529号明細書 米国特許2004−170558号明細書 米国特許2004−170559号明細書 特開2003−151599号公報 特開2004−146337号公報
しかしながら、水素要求量が大きい場合、改質反応を連続的に行なって水素の改質生成量を高める必要があるが、水蒸気改質反応は吸熱反応であるために改質反応を連続的に行なったときには触媒温度の低下幅が大きくなり、触媒温度を高温に戻すための再生反応への切替頻度が多くなる。そして、切替頻度の増加は改質生成した水素の消費の増大を招くため、この改質装置では水素を効率よく得ることはできない。つまり、触媒の熱バランスを維持しつつ、改質生成する水素量の増減を所望に制御し得る技術は未だ提案されていないのが現状である。
本発明は、上記に鑑みなされたものであり、水素要求量の多少に関わらず、再生反応への切替頻度が多くなることに伴なう改質効率の低下を抑制し、水素の改質生成を安定的に行なうことができる水素生成装置並びに、熱の利用効率が高く、負荷変動の大小に関わらず安定した発電性能を発揮し得る燃料電池システムを提供することを目的とし、該目的を達成することを課題とする。
本発明は、吸熱反応である燃料の水蒸気改質反応と、水蒸気改質反応により低下した触媒温度を回復させて触媒上での改質反応性を再生するための燃焼反応(以下、「再生反応」ともいう。)とを切替えて繰り返す場合に、触媒の熱バランスおよび水素生成量の増減を適正に制御するには、水蒸気改質反応と水蒸気改質反応下での部分酸化反応との反応バランスおよび、負荷変動時等に伴なう水素要求量の増大に対応した触媒温度調整が有用であるとの知見を得、かかる知見に基づいて達成されたものである。
前記目的を達成するために、第1の発明である水素生成装置は、触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、燃焼用燃料が供給されたときには該燃焼用燃料を燃焼反応させて前記触媒を加熱する、少なくとも2基の改質反応器と、改質反応させる少なくとも1基の改質反応器に酸素含有ガスを供給する供給手段とで構成したものである。
本発明の水素生成装置には、蓄熱を利用した燃料の改質反応と改質反応で低下した蓄熱量(すなわち触媒温度)を回復させる再生反応とを交互に切替えて行なうことができる少なくとも2基の改質反応器(以下、「PSR(Pressure swing reforming)型改質器」ともいう。)が設けられており、少なくとも1基が燃料の改質反応を行なうと共に、他の少なくとも1基において再生反応を行なわせるようになっている(以下、この水素生成装置を「PSR改質装置」ということがある。)。
本発明に係る改質反応には、下記の吸熱反応である水蒸気改質反応と発熱反応である部分酸化反応とが含まれる。
n2n+2+nH2O → (2n+1)H2+nCO …(1)
n2n+2+(n/2)O2 → (n+1)H2+nCO …(2)
例えば改質反応器が2基である場合、一方を器内の蓄熱を利用して吸熱反応である改質反応させると共に、他方では発熱反応である再生反応を行なわせるようにし、前記一方の蓄熱量が水蒸気改質反応(主に前記(1)の反応)により低下したときには再生反応に切替えると共に、前記他方では再生反応により蓄熱された熱で燃料改質を行なうように改質反応に切替える。これにより、別途の加熱器等が不要になり、この切替えを繰り返すことにより、熱エネルギーの利用効率の高い連続的な水素生成が可能である。
第1の発明においては、複数のPSR型改質器のうち改質反応を行なうPSR型改質器に酸素含有ガスを供給することで、改質反応が行なわれる雰囲気中の酸素濃度を増大させ、水蒸気改質反応と共に部分酸化反応を行なわせるようにするので、例えば燃料電池システムを構成した際の負荷の変動幅が大きい場合等、水素の改質生成要求量が増加することに起因し、改質生成量が増加すると、触媒温度、すなわち蓄熱量が著しく低下するが、この蓄熱量の低下に伴なう反応温度の低下による水素生成速度の低下を効果的に抑制し、必要水素生成量を確保し得ると共に、再生反応への切替周期を長くすることができる。
この場合、部分酸化反応させる割合を増大させたときは、水素生成効率が低下するので、改質用原料を増加することが望ましい。
本発明において、PSR型改質器で改質反応させる改質用原料には、水蒸気改質などの改質反応により水素および一酸化炭素の合成ガス(特に水素)を得るための燃料として一般に用いられる炭化水素燃料(例えばメタンガス、ガソリンなど)の中から適宜選択して用いることができる。
第2の発明である燃料電池システムは、前記第1の発明である水素生成装置、即ち、触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、燃焼用燃料が供給されたときには該燃焼用燃料を燃焼反応させて前記触媒を加熱する、少なくとも2基の改質反応器及び、改質反応させる少なくとも1基の前記改質反応器に酸素含有ガスを供給する供給手段を備えた水素生成装置と、この水素生成装置で改質生成された水素含有ガスの供給により発電する燃料電池とで構成され、水素生成装置を構成する供給手段により、改質反応させる少なくとも1基の改質反応器に直接、燃料電池から排出されたカソードオフガスを供給し、これにより改質反応器に酸素含有ガスが供給されるようにしたものである。
燃料電池から排出されたカソードオフガスは比較的高い温度を有するため、排出されたカソードオフガスを直に、改質反応させる改質反応器に供給するようにすることで、カソードオフガス中の水分および残存酸素を有効に利用できると共に、廃熱利用によって蓄熱量の低下、すなわち吸熱反応である水蒸気改質反応を担う触媒温度の著しい低下が抑えられ、負荷変動の大小に拘わらず、安定した発電運転を連続的に行なうことができる。残存酸素は、部分酸化反応させるのに用いられ、水分は水蒸気改質反応に利用できる。
したがって、カソードオフガス中の水分を別途回収後に改質用原料として改質装置に供給する従来の燃料電池システムに比して、カソードオフガスの廃熱利用が可能であると共に、回収水分を改質用に供給する際に別途ヒータ等で加熱気化させる必要もなく、システム全体の熱の利用効率を効果的に向上させ得る。
第2の発明では、水素透過性金属層の少なくとも片側に電解質層が積層された電解質を備えた燃料電池を用いて構成することが効果的である。このような、水素透過性金属層の少なくとも片側に電解質層が積層された電解質を備えた燃料電池は、作動温度域が300〜600℃であるため、改質反応が進行する反応温度域と略同域にあり、燃料電池のカソードオフガスをPSR型改質器に導入する構成とすることにより、吸熱反応である水蒸気改質反応に伴なう触媒温度の大幅な低下防止に効果的である。また、導入前の予熱も不要であり、熱エネルギーの有効利用の点で特に適している。
複数の改質反応器のうち改質反応させる少なくとも1基は、水蒸気改質反応と共に部分酸化反応を行なうように構成することができる。このとき、燃料電池が低負荷から高負荷への発電運転に変化したとき(過渡時)に、改質反応器における部分酸化反応の割合、すなわち高負荷時に行なわせる水蒸気改質反応を1としたときの部分酸化反応の割合a(<1)が、低負荷時に行なわせる水蒸気改質反応を1としたときの部分酸化反応の割合b(<1)よりも大きくなる(a>b)反応制御手段を設け、改質反応時の温度環境を適正に保つように制御を行なうようにすることが望ましい。
過渡時では、低負荷状態から高負荷状態に移ると共に急激に燃料電池の水素要求量が増大する一方、PSR型改質器における水蒸気要求量に対し、燃料電池からのカソードオフガス中の水蒸気量では追従し得ず、また、カソードオフガス量の追従遅延と共に蓄熱量、すなわち触媒温度の低下も著しくなるが、部分酸化反応は発熱反応であり、かつ水蒸気も不要なことから、水蒸気改質反応下で行なわせる部分酸化反応の比率を大きくすることで、蓄熱量の大幅な低下を抑え、触媒温度をある程度高く保持し得るようにするので、負荷変動の影響に依らず改質生成される水素量を安定的に確保することができる。また、雰囲気中の酸素量の増大による煤生成をも回避できる。これにより、安定した発電運転を連続的に行なうことが可能である。
部分酸化反応の比率を大きくするには、燃料電池のカソード側への酸素供給量を増加させたり、別途設けた供給路からエアや燃料電池冷却用の冷却媒体として用いた冷却用エア等を改質反応させる改質反応器に導入する方法が好適である。なお、部分酸化反応させる比率を大きくしたときは、水素生成効率の低下を伴なうので、改質用原料を増加することが好適である。
第2の発明である燃料電池システムには、冷却媒体(例えば空気、水)を用いて冷却する冷却手段を設けることができ、複数の改質反応器のうち改質反応させる少なくとも1基に、カソードオフガスを供給すると共に更に、冷却手段から排出された冷却媒体を供給することが有効である。改質反応を促進し得ると共に、部分酸化反応させるときには、部分酸化反応に必要な酸素量を確保することができる。
また、第2の燃料電池システムにおいては、既述したa>bとなる反応制御を行なうと共にあるいは行なわずに、燃料電池が低負荷から高負荷での発電運転に変化したとき(過渡時)に、高負荷時における各改質反応器での改質反応と燃焼反応との間の切替周期を、低負荷時における各改質反応器での前記切替周期よりも短くなるように反応制御を行なう反応制御手段を設けるようにすることが望ましい。
上記のように過渡時には、蓄熱量(触媒温度)が著しく低下しやすいため、高負荷状態にあるときには、改質反応から再生反応への切替周期を低負荷状態にあるときよりも短くすることで、吸熱的な改質時間を短縮し、蓄熱量の大幅な低下を抑え、触媒温度をある程度高く保持し得るようにすることができる。その結果、負荷変動の大小に拘わらず、安定した発電運転を連続的に行なうことができる。
本発明は、改質器に蓄えられた蓄熱量を利用して改質反応させ、改質生成された水素を燃料電池に供給すると共に、燃料の水蒸気改質により低下した改質器の蓄熱量を発熱反応である燃焼反応(再生反応)を行なわせて回復するようにする場合に、低負荷から高負荷に過渡に変化する燃料電池への負荷状態に依存することなく、燃料から水素を改質生成する改質効率を確保し、安定した発電運転を連続的に行なうことが可能なシステムに構築することができる。
本発明によれば、水素要求量の多少に関わらず、再生反応への切替頻度が多くなることに伴なう改質効率の低下を抑制し、水素の改質生成を安定的に行なうことができる水素生成装置並びに、熱の利用効率が高く、負荷変動の大小に関わらず安定した発電性能を発揮し得る燃料電池システムを提供することができる。
以下、図1〜図9を参照して、本発明の燃料電池システムの実施形態について詳細に説明すると共に、該説明を通じて本発明の水素生成装置の詳細についても具体的に説明することとする。
本実施形態の燃料電池システムは、水素透過性の金属膜の膜面にプロトン伝導性のセラミックスが積層されたものを電解質膜として用いた水素分離膜型燃料電池(HMFC)が搭載された電気自動車に本発明の水素生成装置を搭載し、この水素生成装置で改質生成された水素を発電用燃料として水素分離膜型燃料電池に供給し発電運転を行なうように構成したものである。
水素生成装置については、改質反応により改質する原料(改質用原料)としてガソリン、あるいはガソリンおよび水蒸気の混合ガスを、再生反応時に燃焼させる燃焼用燃料として燃料電池のアノードオフガス(および必要に応じてガソリンや水素等)を用いる場合を中心に説明する。但し、本発明においては下記実施形態に制限されるものではない。
図1に示すように、本実施形態は、触媒および噴射装置が設けられ、改質反応と再生反応とを交互に切替えて行なわせることが可能な第1のPSR型改質器(PSR1)10および第2のPSR型改質器(PSR2)20を有するPSR改質装置1と、各PSR型改質器で改質生成された水素で発電運転を行なう水素分離膜型燃料電池(HMFC)30と、を備えている。
PSR型改質器10および第2のPSR型改質器20での改質反応と再生反応との相互切替は、ガソリン、あるいはガソリンおよび水蒸気の混合ガス(改質用原料)をPSR型改質器へ供給するための流路、アノードオフガスをPSR型改質器へ供給するための流路、並びに改質生成された水素リッチガス(水素含有ガス)をPSR型改質器から排出するための流路等を切替える切替手段、ここでは具体的には複数のバルブを制御装置で制御して行なわれるようになっている。
まず、本実施形態の燃料電池システムの基本的構成について、図1を参照して略説する。図1は、燃料電池システムの構成を説明するための概念図である。
第1のPSR型改質器10の一端、および第2のPSR型改質器20の一端には各々、ガソリン、あるいはガソリンおよび水蒸気の混合ガス(改質用原料)を供給する供給配管101とバルブVaを介して繋がる配管102、配管103の一端が接続されており、バルブVaの切替により各PSR型改質器に改質用原料を供給できるようになっている。
PSR型改質器10の他端、およびPSR型改質器20の他端には、改質反応を行なわせてガソリンを水蒸気改質して生成された水素リッチガスを排出する排出配管104,排出配管105がそれぞれ接続され、バルブVbを介して繋がる水素供給管106を介在させて水素分離膜型燃料電池(以下、単に「燃料電池」ともいう。)30と連通されており、バルブVbの切替により発電用燃料である水素を連続的に供給可能なようになっている。また、水素供給管106には、水素を一時的に貯蔵しておくための水素タンク(例えば水素吸蔵装置、高圧タンクなど)を設けることができ、燃料電池30への水素量調整や、例えば電池起動時などPSR型改質器の蓄熱量が低い場合の発電用の予備燃料の目的で供給を行なうようにすることもできる。
PSR型改質器10およびPSR型改質器20の各々の他端には更に、水素分離膜型燃料電池30からのアノードオフガスを排出する排出配管107とバルブVcを介して繋がり、各PSR型改質器に排出されたアノードオフガスを供給するための供給配管108,109の一端がそれぞれ接続されている。バルブVcの切替により燃焼用燃料であるアノードオフガスを、再生反応を行なうPSR型改質器に供給可能なようになっている。
また、水素分離膜型燃料電池30には、水素供給管106および排出配管107が各々一端で接続されると共に、発電運転させるための酸素含有率の高いエア(酸化剤ガス)を供給するエア供給管111と、電池反応で生じたカソードオフガスを排出する排出配管112とが各々一端で接続されており、改質生成された水素とエアとが供給されたときに発電運転し、発電後のオフガス(アノードオフガスおよびカソードオフガス)を電池外部に排出できるようになっている。
排出配管112が他端で接続するバルブVdには、PSR型改質器10,20にカソードオフガスを供給する供給配管113,114の各一端が接続されており、改質反応時に部分酸化反応を起こさせる酸素源として、および改質用原料の一部として、カソードオフガスをバルブVdの切替により改質反応を行なうPSR型改質器に供給できるようになっている。
例えばPSR型改質器10で再生反応を、PSR型改質器20で改質反応を行なわせる場合、排出配管112と供給配管114とが連通するようにバルブVdが切替えられると共に、供給配管101および配管103と、排出配管105および水素供給管106と、排出配管107および供給配管109と、が各々連通するようにバルブVa〜Vcが切替えられ、燃料電池30から排出されたカソードオフガスをガソリンおよび水蒸気の混合ガス(改質用原料)と共に改質反応に供すると共に、燃料電池30のアノードオフガスは再生反応での燃焼用燃料として用いられる。
改質反応を行なうPSR型改質器20の蓄熱量が低下したときには、各バルブを再び切替えることによって、逆にPSR型改質器10で改質反応を、PSR型改質器20で再生反応を行なわせることができる。このとき、再生反応を行なうPSR型改質器10では、改質反応させ得るように蓄熱量が増大した状態にある。この場合は、バルブVdの切替により排出配管112と供給配管113とが連通されると共に、供給配管101および配管102と、排出配管104および水素供給管106と、排出配管107および供給配管108と、が各々連通するようにバルブVa〜Vcが切替えられる。
本実施形態の燃料電池システムについて、図2を参照して、PSR型改質器10において改質反応させると共に、PSR型改質器20において再生反応させる場合を中心に更に詳細に説明することとする。
第1のPSR型改質器(PSR1)10の一端には、改質用原料であるガソリン、あるいはガソリンおよび水蒸気の混合ガスを噴射するための噴射装置13と、水素分離膜型燃料電池(HMFC)30からのカソードオフガスを噴射するための噴射装置14とが取付けられている。噴射装置13は、改質用原料を構成する燃料であるガソリン(および必要に応じ水蒸気;あるいはガソリンおよび水蒸気の混合ガス)を供給する供給配管102の一端と接続され、噴射装置14はカソードオフガスを供給する供給配管113の一端と接続されており、供給配管102を挿通して供給された改質用原料(ガソリン、あるいはガソリンおよび水蒸気の混合ガス)を噴射装置13から広角に噴射すると共に、供給配管113を挿通して供給されたカソードオフガスを噴射装置14から広角に噴射し、PSR型改質器10に内装された触媒上で反応させ得るようになっている。
PSR型改質器10の他端には、水蒸気改質反応により改質生成された水素リッチガスを排出する排出配管104の一端が接続されており、他端で接続されて連通する水素分離膜型燃料電池30に、発電用燃料である水素を供給できるようになっている。また、水素分離膜型燃料電池30には、排出配管107の一端が接続され、排出配管107の他端はバルブV2を備えた供給配管108の一端と接続されて、排出配管107および供給配管108によって水素分離膜型燃料電池30はPSR型改質器20と連通されるようになっている。水素分離膜型燃料電池30から排出されたアノードオフガスは、排出配管107および供給配管108を挿通してPSR型改質器20に供給することができる。
また、供給配管108の配管途中には、バルブV6を備えた燃料供給管120の一端が接続されており、アノードオフガスに加えて、再生反応に用いる燃焼用燃料としてガソリンや水素ガスを加給することで、燃料量の大幅な増減調整が可能である。さらに排出配管104の配管途中には、バルブV4を備えたバイパス管116の一端が接続されており、バルブV4での流量調節によっても燃料量の増減調整を行なうことができる。すなわち、例えば低負荷から高負荷の発電運転に変化し、燃料電池30での要求水素量が増大する場合等のように、供給配管108から供給される水素量(燃焼用燃料)が少ないときや改質/再生間の切替周期を短周期にするとき等には、外部から、あるいは改質生成された水素の一部を再生反応させるPSR型改質器20に供給し、アノードオフガスの利用率を制御すると共に、再生反応下での燃焼用燃料の量的な増減調節が広範に行なえるようになっている。これにより、再生反応させるPSR型改質器20の蓄熱を迅速に行なうことができ、改質/再生間の反応の切替周期を短くするのに有効である。
また、供給配管108には、開度によりアノードオフガス量を調節する絞り弁や水素バッファータンク(例えば水素吸蔵装置、高圧タンクなど)を設け、絞り弁の駆動や水素バッファータンクからの水素供給を行なうことにより、PSR型改質器20への供給量を発電運転状態に連動しないように制御するようにしてもよい。
バルブV2には、不図示の燃焼器を備えた排出管109の一端が接続されると共に、排出配管104と連通する戻し配管110の一端が接続されている。再生反応に必要な量以上の余剰水素(アノードオフガス)が供給配管108からPSR型改質器20に供給されている場合、バルブV2により排出管109と連通されたときには燃焼器で浄化して排出管109の他端から外部へ排出し、戻し配管110と連通されたときにはアノードオフガスを再度水素供給管106に戻して発電用燃料として循環利用することで、水素等(燃焼用燃料)の量の増減調整を適宜行なえるようになっている。
また、余剰水素は別に設けた水素貯蔵タンクに水素吸蔵させるようにしてもよく、必要に応じてPSR型改質器20に水素供給することで水素(燃焼用燃料)量の増減調整を適宜行なうことが可能である。
水素分離膜型燃料電池30には更に、発電運転させるための酸素含有率の高いエア(酸化剤ガス)を供給するエア供給管111の一端と、電池反応で生じたカソードオフガスを排出する排出配管112の一端とが各々接続されており、燃料電池30はバルブV1を介して繋がる供給配管113を介してPSR型改質器10と連通されている。
また、バルブV1には更に供給配管119の一端が接続されており、供給配管119および排出配管112により、燃料電池30はPSR型改質器20とも連通されている。PSR型改質器20に供給される、アノードオフガス中の水素等(燃焼用燃料)を燃焼させるためのエア(支燃エア)の量を制御すると共に、酸素量を所望に調整することができ、また、比較的高温のカソードオフガスの加給により温度調節も可能なように構成されている。
水素分離膜型燃料電池30の内部には、一端で大気中から給気された冷却用エア(冷却媒体)を挿通するバルブV3を備えた冷却管115が設けられており、冷却管内の冷却用エアとの間で熱交換することによって電池内部の冷却が行なえるようになっている。この冷却管115は、その他端でPSR型改質器20と接続されており、冷却に使われて加熱された冷却用エアが直にPSR型改質器20に供給され、器内温度を保持すると共に流量制御が可能であり、再生反応時にアノードオフガス中の水素等の燃焼用燃料を燃焼させる支燃エアとして利用できるようになっている。改質/再生間の反応の切替周期を短くする場合にも有効である。
また、冷却管115には、開度により冷却用エア量を調節する絞り弁やバッファータンク(例えば酸素吸着装置、高圧タンクなど)を設け、絞り弁の駆動やバッファータンクからの供給を行なうことにより、PSR型改質器20への供給量を発電運転状態に連動しないように制御すると共に、酸素量を所望に調整することが可能である。
PSR型改質器20の一端には、噴射装置23,24,25,および26が取り付けられており、広角に噴射してPSR型改質器20に内装された触媒上への供給が可能なようになっている。
噴射装置23は供給配管108の他端と、噴射装置24は冷却管115の他端とそれぞれ接続されている。噴射装置25は、供給配管119の他端と接続されており、カソードオフガスの一部を支燃エアとしてPSR型改質器20に追加的に供給できるようになっている。また、噴射装置26は、バイパス管116の他端と接続されており、改質生成された水素リッチガスの一部を燃焼用燃料としてPSR型改質器20に追加的に供給できるようになっている。
PSR型改質器20の他端には、再生反応後の雰囲気ガスを再利用するためのバルブV5を備えた戻り配管117の一端と、再生反応後の雰囲気ガスを外部に排気するための排出管118の一端とが接続されている。戻り配管117の他端は、供給配管108の配管途中で接続されて循環系が構築されており、再生反応後の温度の高いガスを再度PSR型改質器20に戻すことで、器内温度を高く保持することができる。
第1のPSR型改質器10は、図3に示すように、両端が閉塞された断面円形の筒状体11と、筒状体11の内壁面に担持された触媒(触媒担持部)12とで構成されており、筒状体11は反応を行なうための空間を形成すると共に、触媒担持体として機能を担っている。
筒状体11は、セラミックスハニカムを用いて直径10cmの断面円形の筒型に成形し、筒の長さ方向の両端を閉塞した中空体である。断面形状やサイズは、目的等に応じて、円形以外の矩形、楕円形などの任意の形状、サイズを選択することができる。
触媒12は、筒状体内壁の曲面のうち、筒状体の長さ方向両端から筒内方向に向かう筒の中央付近、すなわち長さ方向の両端からそれぞれ所定距離Aの領域を触媒を担持しない触媒非担持部12A,12Bとして残し(図2参照)、触媒非担持部を除く全面に担持されている。触媒12には、Pd、Ni、Pt、Rh、Ag、Ce、Cu、La、Mo、Mg、Sn、Ti、Y、Zn等の金属を用いることができる。
触媒12により改質反応させた場合、改質生成された水素リッチガスは該ガスの排出方向下流側の触媒非担持部12Aで冷却され、水素リッチガスを燃料電池の運転温度に近づけて供給できると共に、逆に改質反応から再生反応に切替えられた場合には、触媒非担持部12Aは水素リッチガスとの熱交換により昇温した状態にあり、水素リッチガスとは逆向きに供給された燃焼用燃料を触媒非担持部12Aで予熱させてから触媒12に供給できるようになっている。これにより、触媒12が担持された筒状体11の中央付近ほど、蓄熱量が高くなる温度分布が形成され、反応性の点で有利である。
筒状体11の曲面部には、触媒の温度を計測するための温度センサ15が取り付けられており、触媒温度に基づいた反応制御を行なうことができるようになっている。
第2のPSR型改質器20は、第1のPSR型改質器10と同様に構成されており、第1のPSR型改質器10で行なわせる反応(改質反応であるか再生反応であるか)との関係で、改質反応と再生反応とを切替えて行なえるようになっている。
水素分離膜型燃料電池(HMFC)30は、図4に示すように、水素透過性金属を用いた緻密な水素透過層を有する電解質膜51と、電解質膜51を狭持する酸素極(O2極)52および水素極(H2極)53とで構成されており、PSR型改質器10で改質生成された水素リッチガスが供給されると水素を選択的に透過させて発電運転が行なえるようになっている。
酸素極52と電解質膜51との間には、酸化剤ガスとして空気(Air)を通過、すなわち給排するためのエア流路59aが形成されており、水素極53と電解質膜51との間には、水素リッチな燃料ガス(ここでは、改質生成された水素リッチガス)を通過、すなわち給排するための燃料流路59bが形成されている。酸素極52および水素極53は、カーボン(例えば、白金または白金と他の金属とからなる合金を担持したカーボン粉)や電解質溶液(例えば、Aldrich Chemical社製のNafion Solution)など種々の材料を用いて形成可能である。
電解質膜51は、バナジウム(V)で形成された緻密な基材(水素透過性金属からなる緻密な水素透過層)56を含む4層構造となっている。パラジウム(Pd)層(水素透過性材料からなる緻密な水素透過層)55、57は、基材56を両側から挟むようにして設けられており、一方のPd層55の基材56と接する側と逆側の面には、更にBaCeO3(固体酸化物)からなる電解質層54が薄層状に設けられている。
基材56は、バナジウム(V)以外に、ニオブ、タンタル、およびこれらの少なくとも一種を含む合金を用いて好適に形成することができる。これらは、高い水素透過性を有すると共に、比較的安価である。
電解質層(BaCeO3層)54は、BaCeO3以外にSrCeO3系のセラミックスプロトン伝導体などを用いて構成することができる。
水素透過性金属には、パラジウム以外に、例えば、バナジウム、ニオブ、タンタルおよびこれらの少なくとも一種を含む合金、並びにパラジウム合金などが挙げられる。これらを用いた緻密層を設けることで電解質層を保護できる。
水素透過性金属からなる緻密層(被膜)については、酸素極側では、一般に水素透過性が高く比較的安価である点で、例えば、バナジウム(バナジウム単体および、バナジウム−ニッケル等の合金を含む。)、ニオブ、タンタルおよびこれらの少なくとも一種を含む合金のいずれかを用いるのが好ましい。これらは水素極側での適用も可能であるが、水素脆化を回避する点で酸素極側が望ましい。また、水素極側では、水素透過性が比較的高く水素脆化しにくい点で、例えば、パラジウムまたはパラジウム合金を用いるのが好ましい。
図4に示すように、Pd層55/基材56/Pd層57の3層からなるサンドウィッチ構造、すなわち異種金属(水素透過性材料からなる緻密層)からなる2層以上の積層構造を有してなる場合、異種金属の接触界面の少なくとも一部に該異種金属同士の拡散を抑制する金属拡散抑制層を設けるようにしてもよい(例えば図8及び図9参照)。金属拡散抑制層については、特開2004−146337号公報の段落[0015]〜[0016]に記載されている。
上記のように、サンドウィッチ構造をパラジウム(Pd)/バナジウム(V)/Pdとする以外に、Pd/タンタル(Ta)/V/Ta/Pd等の5層構造などとして設けることも可能である。既述のように、VはPdよりプロトンまたは水素原子の透過速度が速く安価であるが、水素分子をプロトン等に解離する能力が低いため、水素分子をプロトン化する能力の高いPd層をV層の片側または両側の面に設けることで、透過性能を向上させることができる。この場合に、金属層間に金属拡散抑制層を設けることで、異種金属同士の相互拡散を抑え、水素透過性能の低下、ひいては燃料電池の起電力の低下を抑制することができる。
また、電解質層54は固体酸化物からなり、Pd層55との界面の少なくとも一部には、電解質層中の酸素原子とPdとの反応を抑制する反応抑制層を設けるようにしてもよい(例えば図8の反応抑制層65)。この反応抑制層については、特開2004−146337号公報の段落[0024]〜[0025]に記載されている。
電解質膜51は、緻密な水素透過性材料であるバナジウム基材と燃料電池のカソード側に成膜された無機質の電解質層とで構成されることにより、電解質層の薄層化が可能で、一般に高温型の固体酸化物型燃料電池(SOFC)の作動温度を300〜600℃の温度域に低温化することができる。これにより、燃料電池から排出されたカソードオフガスを直接、改質反応させるPSR型改質器に供給する本発明の燃料電池システムを好適に構成することが可能である。
水素分離膜型燃料電池30は、燃料流路59bに水素(H2)密度の高い水素リッチガスが供給され、エア流路59aに酸素(O2)を含む空気が供給されると、下記式(1)〜(3)で表される電気化学反応(電池反応)を起こして外部に電力を供給する。なお、式(1) 、式(2)は各々アノード側、カソード側での反応を示し、式(3)は燃料電池での全反応である。
2 → 2H++2e- …(1)
(1/2)O2+2H++2e- → H2O …(2)
2+(1/2)O2 → H2O …(3)
PSR型改質器10,20(PSR改質装置)、水素分離膜型燃料電池(HMFC)30、バルブV1〜V6、噴射装置13,14および噴射装置23,24,25,26、並びに温度センサ15等は、制御装置100と電気的に接続されており、制御装置100によって動作タイミングが制御されるようになっている。この制御装置100は、水素分離膜型燃料電池と接続されている不図示の負荷の大きさに応じて水素ガスおよびエアの量を調節することにより出力を制御する該燃料電池の通常の発電運転制御を担うと共に、PSR改質装置における改質反応と再生反応との間の反応制御(燃料電池の発電運転時に負荷変動が生じたときの反応制御を含む。)をも担うものである。
本実施形態では、PSR型改質器10が再生反応から改質反応に切替えられると共に、PSR型改質器20が改質反応から再生反応に切替えられた場合に、PSR型改質器10では、蓄熱量が増大しており、噴射装置13からガソリン、あるいはガソリンおよび水蒸気の混合ガス(改質用原料)が噴射されて触媒上に供給されると、触媒上でガソリンの水蒸気改質が行なわれて水素リッチな合成ガス(水素リッチガス)が生成され、さらに噴射装置14からは、燃料電池30から排出されたカソードオフガスが噴射される。カソードオフガスには、電池反応に供されなかった残存酸素および電池反応で生成された生成水が主に含まれる。このとき、燃料電池30は通常の発電運転状態、すなわちエアが供給されている状態にあり、バルブV1により排出配管112と供給配管113とは連通されている。改質反応は、300〜1100℃の蓄熱下で行なうのが望ましい。
改質反応は吸熱反応であるため、改質反応を連続的に行なわせる場合など、蓄熱量(すなわち触媒温度)が低下傾向にある場合や低下幅が著しい場合が生じ、水素の改質生成性が低下しやすくなるが、比較的高温のカソードオフガスを供給して降温を抑えると共に、触媒上で部分酸化反応を行なわせることができる。部分酸化反応は発熱反応であり、吸熱性の改質反応と共に再生反応による発熱を得ることで、負荷変動の大小に拘わらず、安定した発電運転を連続的に行なうことができる。
なお、イグニッションスイッチがオンされたときにPSR型改質器10の蓄熱量が低い場合には、例えば水素供給管106に設けた水素タンクに貯蔵された水素を供給することにより燃料電池を起動し、このとき排出されたカソードオフガスがPSR型改質器10に供給されると、その熱で昇温すると共に徐々に改質用原料の部分酸化反応を行なわせることができ、これにより蓄熱量が増大し、その後通常の改質反応を行なうことができる。
上記のように改質生成された水素リッチガスは、PSR型改質器10の排出配管104が接続する側の触媒非担持部12Aで予め冷却された後、排出配管104を挿通して水素分離膜型燃料電池30のアノード側に供給され、発電運転(電池反応)で消費されると、その後アノードオフガスとして排出配管107から排出され、供給配管108を挿通して噴射装置23から噴射される。アノードオフガスには、主として電池反応に供されなかった残存水素およびCO、CH4が含まれる。このとき、供給配管108が戻し配管110または排出管109と連通するようにバルブV2を切替えることにより、PSR型改質器20に供給される供給量をコントロールすることができる。
PSR型改質器20には、アノードオフガスが供給されると共に、燃焼させるための酸素源として、燃料電池30の冷却用エア、カソードオフガスの一部がそれぞれ噴射装置24,25から噴射され、触媒上で噴射された水素を燃焼させ、燃焼加熱による蓄熱量、すなわち触媒温度を回復させることができる。このとき、PSR型改質器20のアノードオフガス等が供給される側の触媒非担持部(12A)は、上記同様に再生反応が開始される前の改質反応で昇温しており、再生反応時に供給されたアノードオフガス等との熱交換で熱が再び触媒12に戻されて有効に熱利用可能なようになっている。
また、アノードオフガスのみでは燃焼量が少なく、充分な蓄熱量が得られない、あるいは蓄熱が短時間に行なえない等の場合は、燃焼用燃料として、改質生成された水素リッチガスの一部がバイパス管116と繋がる噴射装置26から、また、ガソリンや水素ガスが燃料供給管120を通じて外部から加給され、燃焼加熱による蓄熱量を充分に、また迅速に回復させることができる。
燃焼後の雰囲気ガスは、排出管118から外部に排出される。燃焼後の雰囲気ガスが戻り配管117を挿通して供給配管108に戻されるときには、支燃エア量が増加され、また、噴射装置23に供給されるアノードオフガスおよび支燃エアの温度が調節される。
次に、本実施形態に係る燃料電池システムの制御装置100による制御ルーチンについて、特に燃料電池30が低負荷から高負荷での発電運転に変化したときに、改質反応と再生反応との間の切替制御を行なう制御ルーチンを中心に図5〜図7を参照して説明する。
まず、切替制御を行なう制御ルーチンについて、燃料電池30が低負荷から高負荷での発電運転に変化した場合(過渡時)に、高負荷時において改質反応と共に行なわせる部分酸化反応の割合(改質反応の進行量に対する部分酸化反応の進行量)が低負荷時よりも大きくなるように反応制御を行なう反応率制御ルーチンについて説明する。
上記のように、イグニッションスイッチがオンされた後、燃料電池30が通常の発電運転に移ると共に、PSR改質装置1のPSR型改質器10及び20の一方では通常の改質反応が、他方では通常の再生反応が行なわれ、この改質反応と再生反応とは所定の切替タイミングにしたがって切替えられる。切替えは、例えば、改質反応を行なっている側(改質側)のPSR型改質器の触媒温度が改質可能温度以下になった場合や、反応開始からの経過時間が所定の切替制御時間を超えた場合に行なうようにすることができる。
具体的には、排出配管112と供給配管113とが連通され、配管102がPSR型改質器10と連通されると共に、排出配管104および水素供給管106と、排出配管107および供給配管108とが各々連通され、PSR型改質器10にて改質反応が、PSR型改質器20にて再生反応が開始されると、PSR型改質器10では、噴射装置13からガソリン、あるいはガソリンおよび水蒸気の混合ガス(改質用原料)が触媒上に供給されると共に、噴射装置14からカソードオフガスが供給されてガソリンの水蒸気改質により水素リッチガスが改質生成される。この水蒸気改質反応が継続されるに伴ないPSR型改質器10の触媒12の温度は低下していき、温度センサ15での触媒12の検出温度が所定値(例えば改質可能温度)以下となった場合は、図1に示すように、図2に不図示のバルブVdの切替により排出配管112がPSR型改質器20側(供給配管114)と連通されると共に、図2に不図示のバルブVa〜Vcの切替えにより、供給配管101、水素供給管106、排出配管107が、PSR型改質器20側(配管103、排出配管105、供給配管109)と連通され、PSR型改質器10は改質反応から再生反応に、PSR型改質器20は再生反応から改質反応に各々切替えられる。その後また、PSR型改質器20での水蒸気改質反応の継続により触媒12の温度は低下し、その検出温度が所定値(例えば改質可能温度)以下となった場合は、再び図2に示す配管構成を形成してPSR型改質器10は再生反応から改質反応に、PSR型改質器20は改質反応から再生反応に切替えられる。
このとき、切替えた後に次の切替タイミングがくるまでの間において、燃料電池30が低負荷から高負荷での発電運転に変化した場合(過渡時)には、高負荷時の部分酸化反応の割合が低負荷時よりも大きくなるように反応制御する前記反応率制御ルーチンが実行される。図5は、高負荷時の部分酸化反応の割合が低負荷時よりも大きくなる反応率制御ルーチンを示すものである。
本ルーチンが実行されると、ステップ100において、PSR型改質器10での反応が改質反応であるか再生反応であるかが判断され、改質反応であると判断されたときには、ステップ102において本燃料電池システムが過渡期にあるか否かが判断される。一方、ステップ100において、再生反応であると判断されたときには、部分酸化反応を積極的に行なわせる必要がないため、そのまま本ルーチンは終了する。
ステップ102において、システムが過渡期、すなわち燃料電池が低負荷sの状態から高負荷tの状態に移ったときの負荷変動値P(=t−s)が所定値Qを超えているか否かが判断され、負荷変動値Pが所定値Qを超えていると判断されたときにはステップ104に移行し、バルブV1の開度を高めると共に、燃料電池(FC)30に供給されるエア(酸化剤ガス)の量がアップされる。
これにより、カソードオフガスの排出量が増加し、噴射装置14から供給されるカソードオフガスの供給量をアップさせる共に、負荷変動しない状態ではカソードオフガス中の酸素含有比を高めることができるので、低負荷時以上に酸素過剰となり、高負荷s時に改質反応下で行なわせる部分酸化反応の比率(部分酸化率Zs)を、低負荷t時に改質反応下で行なわせる部分酸化反応の比率(部分酸化率Zt)より大きくすることができる。このとき、水素生成効率が低下するため、ガソリン、あるいはガソリンおよび水蒸気の混合ガスの供給量を増加させることが望ましい。
逆に、ステップ102において、負荷変動値Pが所定値Q以下であると判断されたときには、部分酸化反応を積極的に行なわせる必要がないため、そのまま本ルーチンは終了する。
次にステップ106において、PSR型改質器10の触媒12の温度t1が所定値T1以上であるか否かが判断され、温度t1が所定値T1以上であると判断されたときには、Zs>Ztにて部分酸化反応が行なわれており、蓄熱量の大幅な低下を抑え、触媒温度がある程度高く保持されて負荷変動が大きいにも拘わらず水素量が低下することがないので、次のステップ108で再度、負荷変動値Pが所定値Qをなお超えた状態にあるか否かが判断され、負荷変動値Pが所定値Q以下であると判断されたときに本ルーチンを終了する。
一方、ステップ108において、負荷変動値Pが所定値Qをなお超えていると判断されたときには、ステップ106に戻って触媒温度t1が所定値T1以上であるか否かが判断され、温度t1が所定値T1以上であることを条件にステップ108に移行する。温度t1が所定値T1未満であると判断されたときには、Zs≦Ztであるか、あるいはZs>Ztを満たしても未だ不充分な状態であり、再度部分酸化反応の比率を高める必要があるため、ステップ107において触媒温度t1が所定の切替制御温度T0以下であるか否かが判断され、温度t1が切替制御温度T0を超えていると判定されたときは、未だ改質反応から再生反応に切替える切替タイミングではないので、ステップ104に戻る。そして、ステップ104において、上記同様にして噴射装置14から供給されるカソードオフガスの供給量がアップされる。
エア量をアップした後のステップ106において、温度t1が所定値T1未満であると判断されたときには、所定値T1に達するまでに時間を要するか、あるいは部分酸化反応の割合が不足している状態であるので、触媒温度t1が切替制御温度T0を超えていることを条件にステップ104に戻ってバルブV1の開度を高めると共に、燃料電池30に供給されるエア(酸化剤ガス)の量がアップされる。これにより、噴射装置14からのカソードオフガスの供給量が増大し、改質反応下で行なわせる部分酸化反応の比率を高めて、燃焼による加熱効率を向上させることができる。その後、ステップ106において温度t1が所定値T1以上であると判断されたときには、ステップ108に移行して上記同様に制御される。
ステップ107において、温度t1が所定の切替制御温度T0以下であると判定されたときには、既に触媒温度が改質反応性が劣る温度に低下して再生反応に切替える必要があるので、PSR型改質器10を改質反応から再生反応に切替え、本ルーチンを終了する。このとき、PSR型改質器20は再生反応から改質反応に切替えられる。
上記ように温度で切替える以外に、ステップ107において、反応開始からの時間(サイクル時間)が所定の切替制御時間を超えたとき(サイクル時間>切替制御時間)に切替えるようにしてもよい。
以上のように、改質反応下で行なわせる部分酸化反応の比率を大きくすることで、PSR型改質器10での蓄熱量の大幅な低下を抑え、触媒12の温度を保持し得るので、過渡時であっても改質生成される水素量を確保でき、酸素量の増大による煤生成も回避できる。これにより、安定した発電運転を連続的に行なうことが可能である。
続いて、燃料電池30が低負荷から高負荷での発電運転に変化した場合(過渡時)に、高負荷時における各PSR型改質器での改質反応と燃焼反応との間の切替周期が低負荷時よりも短くなるように切替制御を行なう切替周期制御ルーチンについて説明する。なお、切替タイミング〔切替間隔〕は、各PSR型改質器に取付けられた温度センサの検出値をモニターし、各々の値を基準に行なうようになっている。
この切替周期制御ルーチンも、改質/再生反応間の切替後に次の切替タイミングがくるまでの間において、燃料電池30が低負荷から高負荷での発電運転に変化した場合(過渡時)に実行される。
図6は、改質反応させるPSR型改質器の温度が閾値温度を下回る状態および再生反応させるPSR型改質器の温度が閾値温度を上回る状態のいずれか一方の状態が満たされたときに、改質反応および再生反応を相互に切替える切替タイミングを短周期とする切替周期制御ルーチンを示すものである。
本ルーチンが実行されると、ステップ200において、本燃料電池システムが過渡期、すなわち燃料電池が低負荷sの状態から高負荷tの状態に移ったときの負荷変動値P(=t−s)が所定値Qを超えているか否かが判断され、負荷変動値Pが所定値Qを超えていると判断されたときには、ステップ202に移行し、温度センサによりPSR型改質器10の温度t2およびPSR型改質器20の温度t3を取り込み、負荷変動値Pが所定値Q以下であると判断されたときには、部分酸化反応を積極的に行なわせる必要がないため、そのまま本ルーチンを終了する。
次のステップ204において、PSR型改質器10の温度t2が閾値T2未満である状態(t2<T2)および、PSR型改質器20の温度t3が閾値T3以上である状態(t3≧T3)のいずれか一方の状態を満たしているか否かが判断され、いずれか一方を満たしていると判断されたときには、ステップ206において強制的に、PSR型改質器10を改質反応から再生反応に切替えると共に、PSR型改質器20を再生反応から改質反応に切替えるための各バルブの開閉状態が切替えられ、その後本ルーチンは終了する。
これにより、低負荷状態から高負荷状態に移るに伴なって急激に燃料電池の水素要求量が増大した場合に、負荷変動の大小に拘わらず、水素量を確保することができ、安定した発電運転を連続的に行なうことができる。
ステップ204において、t2<T2およびt3≧T3のいずれも満たされていないと判断されたときには、負荷変動値Pが所定値Qを超えている状況下であって、水素生成効率が大幅に低下するおそれがあるので、ステップ200に戻って、再び負荷変動値Pが所定値Qを超えているか否かが判断された後、上記と同様に制御される。
次に、切替周期制御ルーチンの他の例について説明する。図7は、再生反応させるPSR型改質器の温度が閾値温度を上回る前に、改質反応させるPSR型改質器の温度が閾値温度を下回ったときに、改質反応および再生反応を相互に切替える切替タイミングを短周期とする切替周期制御ルーチンを示すものである。
本ルーチンが実行されると、ステップ300において、本燃料電池システムが過渡期、すなわち燃料電池が低負荷sの状態から高負荷tの状態に移ったときの負荷変動値P(=t−s)が所定値Qを超えているか否かが判断され、負荷変動値Pが所定値Qを超えていると判断されたときにはステップ302に移行し、温度センサによりPSR型改質器10の温度t2およびPSR型改質器20の温度t3を取り込み、荷変動値Pが所定値Q以下であると判断されたときには、部分酸化反応を積極的に行なわせる必要がないため、そのまま本ルーチンを終了する。
次に、ステップ304において、PSR型改質器10の温度t2が閾値T2未満である状態(t2<T2)であるか否かが判断され、t2<T2であると判断されたときには、PSR型改質器10を改質反応から再生反応に切替える必要があるため、次のステップ306においてPSR型改質器20の温度t3が閾値T3以上に達しているか否かが判断され、t3≧T3であると判断されたときには、ステップ312に移行し、強制的にPSR型改質器10を改質反応から再生反応に切替えると共に、PSR型改質器20を再生反応から改質反応に切替えるための各バルブの開閉状態を切替える。そして、その後に本ルーチンは終了する。
一方、ステップ306においてt3<T3であると判断、すなわち再生反応を担うPSR型改質器20の温度t3がt3≧T3を満たす前に改質反応を担うPSR型改質器10の温度t2がt2<T2を満たすと判断されたときには、ステップ308でバルブV1の開度を高めると共に、燃料電池30に供給されるエア(酸化剤ガス)の量がアップされる。
これにより、t3≧T3を満たすまでの間、カソードオフガスの排出量が増加し、噴射装置14から供給されるカソードオフガスの供給量をアップさせる共に、負荷変動しない状態ではカソードオフガス中の酸素含有比を高めることが可能で、低負荷t時以上に酸素過剰となって高負荷s時に改質反応下で行なわせる部分酸化反応の比率を高め得るので、過渡時であっても改質生成される水素量を確保でき、安定した発電運転を連続的に行なえる。これにより、再生と改質との両反応を同調させた定常運転に迅速に移行することができる。
そして、次のステップ310において再度、PSR型改質器20の温度t3がt3≧T3を満たすか否かが判断され、t3≧T3を満たすと判断されたときには、PSR型改質器20で改質反応を良好に行ない得るので、ステップ312において強制的に、PSR型改質器10を改質反応から再生反応に切替えると共に、PSR型改質器20を再生反応から改質反応に切替えるための各バルブの開閉状態が切替えられ、その後に本ルーチンは終了する。
ステップ310において、未だt3<T3であると判断されたときには、所定値T3に達するまでに時間を要するか、あるいは部分酸化反応の割合が不足している状態であるので、ステップ308に戻ってバルブV1の開度を高めると共に、燃料電池30に供給されるエア量をアップする。その後、ステップ310においてt3≧T3を満たすと判断されたときに上記同様にして各バルブの開閉状態を切替え、本ルーチンは終了する。
上記のステップ308では、燃料電池30へのエアの供給量をアップさせて部分酸化反応させるようにしたが、触媒近傍に電気ヒータ等の加熱器を設け、t3≧T3を満たすまでの間、加熱器をONにして加熱するようにしてもよい。この場合も、過渡時での水素量を確保でき、安定した発電運転を連続的に行なえる。これにより、再生と改質との両反応を同調させた定常運転に迅速に移行することができる。
なお、ステップ304において、t2≧T2であると判断されたときには、負荷変動値Pがなお所定値Qを超えている状況にあり、水素生成効率が大幅に低下するおそれがあるので、ステップ302に戻って再び両温度t2とt3とが取り込まれ、上記と同様に制御される。
以上のように、各PSR型改質器での改質反応の継続時間を低負荷時よりも短時間に抑えるようにすることで、個々のPSR型改質器での蓄熱量の大幅な低下を抑え、触媒12の温度を改質反応性を大きく損なわないように保持し得るので、過渡時であっても改質生成される水素量を確保でき。これにより、安定した発電運転を連続的に行なうことが可能である。
また、上記した切替周期制御ルーチンにおいて、改質反応させるPSR型改質器の温度t2が閾値温度T2を下回る、つまり改質反応による水素の改質生成が充分に行なわれなくなる前に、再生反応させるPSR型改質器の温度t3が閾値温度T3を上回った場合には、必要以上に再生側のPSR型改質器の温度が上がらないように、バルブV2、V4、V6により水素やアノードオフガスの供給量を減らす、バルブV1、V3により支燃エアやカソードオフガスの供給量を増やして温度上昇を抑えるようにすることができる。
また、上記の切替周期制御ルーチンでは、切替タイミング〔切替間隔〕は、各PSR型改質器の温度センサの検出値をモニターして行なうようにしたが、例えば改質反応させるPSR型改質器に取付けられた排出管(例えば排出配管104)にガス検出センサを取付け、水素リッチガス中のガス組成(例えば水素濃度)をモニターし、その値を基準に行なうようにすることもできる。
上記において、燃料電池30が低負荷状態から高負荷状態に移ると共に急激に燃料電池の水素要求量が増大する過渡時には、電気ヒータ等の加熱器を設けて触媒を加熱するようにするのも効果的である。この場合、電気ヒータ等をPSR型改質器の触媒担持部12の近傍に設け、改質反応させるPSR型改質器側の電気ヒータ等をONにすることで直接触媒を加熱することができ、改質反応を速やかに促進させ得ると共に、改質反応と再生反応との切替周期を短周期にする場合にも有効である。
また、電気ヒータ等の加熱器を設ける場合、PSR型改質器の触媒担持部のうち最も高温となる部位に選択的に加熱器を設けることが効果的である。改質反応は、最高温度の部位で最も迅速に進行するので(すなわち、反応速度は温度にリニアに変化せずに、高温になると急激に反応が促進される。)、加熱による反応向上効果が低い領域の加熱を減じ、反応性の低い領域あるいは該領域を含む全領域を中途半端に加熱しない構成とすることにより、熱エネルギー効率を高めることができる。
本発明の燃料電池システムにおいては、燃料電池として、水素透過性金属を用いた緻密な水素透過膜(水素透過性金属層)の少なくとも片側に電解質層が積層された電解質膜を備えた水素分離膜型燃料電池(プロトン伝導性の固体酸化物型、または固体高分子型のいずれであってもよい。)の中から目的等に応じて選択することができる。
例えば、(1) 水素透過性の金属と該金属の少なくとも片側に成膜された無機電解質層(特にプロトン伝導性のセラミックス)とを有する電解質膜と、電解質膜の一方の面に設けられた水素極および該水素極に発電用燃料を供給する燃料供給部と、電解質膜の他方の面に設けられた酸素極および該酸素極に酸化剤ガスを供給する酸化剤ガス供給部とで構成された水素分離膜型燃料電池、または(2) プロトン伝導性の電解質層と該電解質層を両側から挟む水素透過性金属とを有する電解質膜と、電解質膜の一方の面に設けられた水素極および該水素極に発電用燃料を供給する燃料供給部と、電解質膜の他方の面に設けられた酸素極および該酸素極に酸化剤ガスを供給する酸化剤ガス供給部とで構成された固体高分子型の水素分離膜型燃料電池、等を好適に用いることができる。
図8〜図9に本発明の燃料電池システムを構成する水素分離膜型燃料電池の他の具体例を挙げる。なお、他の具体例についての詳細については特開2004−146337号公報の記載を参照することができる。
図8は、バナジウム(V)で形成された緻密な基材66を含む5層構造の電解質膜61と、電解質膜61を狭持する酸素極(O2極)62および水素極(H2極)63とで構成され、金属拡散抑制層および反応抑制層を備えた水素分離膜型燃料電池60を示したものである。電解質膜61は、基材66の水素極(アノード)63側の面に該面側から順に緻密体の金属拡散抑制層67とパラジウム(Pd)層68とを備え、基材66の酸素極(カソード)62側の面に該面側から順に緻密体の反応抑制層(例えばプロトン伝導体や混合伝導体、絶縁体の層)65と、固体酸化物からなる薄層の電解質層(例えばペロブスカイトの1つである金属酸化物SrCeO3層など)64とを備えている。反応抑制層65は、電解質層64中の酸素原子と基材(V)66との反応を抑制する機能を担うものである。なお、酸素極または水素極と電解質膜との間には上記同様に、各々エア流路59a、燃料流路59bが形成されている。金属拡散抑制層および反応抑制層の詳細については既述の通りである。
図9は、水素透過性金属を用いた緻密な水素透過層を有する電解質膜71と、電解質膜71を狭持する酸素極(O2極)72および水素極(H2極)73とで構成された固体高分子型の水素分離膜型燃料電池70を示したものである。電解質膜71は、例えば、ナフィオン(登録商標)膜などの固体高分子膜からなる電解質層76の両側の面を、水素透過性の緻密な金属層で挟んだ多層構造となっており、電解質層76の水素極(アノード)側の面にパラジウム(Pd)層(緻密層)77を備え、電解質層76の酸素極(カソード)側の面に該面側から順に、基材となるバナジウム−ニッケル合金(V−Ni)層(緻密層)75とPd層(緻密層)74とを備えている。なお、酸素極または水素極と電解質膜71との間には上記同様に、各々エア流路59a、燃料流路59bが形成されている。本燃料電池においてもまた、V−Ni層75とPd層74との間には金属拡散抑制層を設けることができ、V−Ni層75またはPd層77と電解質層76との間には反応抑制層を設けることができる。
図9に示す固体高分子型の燃料電池では、含水電解質層を挟むようにして水素透過性金属を用いた水素透過層が形成された構成とすることにより、高温での電解質層の水分蒸発および膜抵抗増大の抑制が可能で、一般に低温型の固体高分子型燃料電池(PEFC)の作動温度を300〜600℃の温度域に向上させることができる。これにより、燃料電池から排出されたカソードオフガスを直接、改質反応させるPSR型改質器に供給する本発明の燃料電池システムの構成に好適である。
上記の実施形態では、改質用原料としてガソリンおよび水蒸気の混合ガスを使用した場合を説明したが、ガソリン以外の他の炭化水素燃料を使用した場合も同様である。
本発明の実施形態に係る燃料電池システムの概略構成を説明するための概念図である。 本発明の実施形態に係る燃料電池システムの一部を具体的に示す概略構成図である。 本発明の実施形態に係るPSR型改質器の概略構成を示す斜視図である。 本発明の実施形態に係る水素分離膜型燃料電池(HMFC)を示す概略断面図である。 本発明の実施形態に係る燃料電池システムの過渡時に実行される反応率制御ルーチンを示す流れ図である。 本発明の実施形態に係る燃料電池システムの過渡時に実行される切替周期制御ルーチンを示す流れ図である。 燃料電池システムの過渡時に実行される切替周期制御ルーチンの他の例を示す流れ図である。 本発明の実施形態に係る燃料電池システムを構成する燃料電池の他の具体例を示す概略断面図である。 本発明の実施形態に係る燃料電池システムを構成する燃料電池の他の具体例を示す概略断面図である。
符号の説明
1…PSR改質装置
10,20…PSR型改質器
12…触媒(触媒担持部)
12A,12B…触媒非担持部
13,14,23,24,25,26…噴射装置
15…温度センサ
30,60,70…水素分離膜型燃料電池
51…電解質膜
52…酸素極
53…水素極
59a…エア流路
59b…燃料流路
100…制御装置

Claims (6)

  1. 触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、燃焼用燃料が供給されたときには該燃焼用燃料を燃焼反応させて前記触媒を加熱する、少なくとも2基の改質反応器と、
    改質反応させる少なくとも1基の前記改質反応器に酸素含有ガスを供給する供給手段と、
    を備えた水素生成装置。
  2. 触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、燃焼用燃料が供給されたときには該燃焼用燃料を燃焼反応させて前記触媒を加熱する、少なくとも2基の改質反応器及び、改質反応させる少なくとも1基の前記改質反応器に酸素含有ガスを供給する供給手段を備えた水素生成装置と、
    前記水素生成装置で改質生成された水素含有ガスの供給により発電する燃料電池と、を備えた燃料電池システムであって、
    前記供給手段は、改質反応させる少なくとも1基の前記改質反応器に直接、前記燃料電池から排出されたカソードオフガスを供給して、前記酸素含有ガスの供給を行なう燃料電池システム。
  3. 前記燃料電池は、水素透過性金属層の少なくとも片側に電解質層が積層された電解質を備えた請求項2に記載の燃料電池システム。
  4. 改質反応させる少なくとも1基の前記改質反応器は、水蒸気改質反応と共に部分酸化反応させるように構成され、前記燃料電池が低負荷から高負荷への発電運転に変化したときに、前記改質反応器における前記部分酸化反応の割合を低負荷時よりも大きくする反応制御を行なう反応制御手段を更に備えた請求項2又は3に記載の燃料電池システム。
  5. 前記燃料電池は、冷却媒体を用いて冷却する冷却手段を備え、
    前記冷却手段から排出された前記冷却媒体を、改質反応させる少なくとも1基の前記改質反応器に前記カソードオフガスと共に供給する請求項2〜4のいずれか1項に記載の燃料電池システム。
  6. 前記燃料電池が低負荷から高負荷での発電運転に変化したときに、高負荷時における前記各改質反応器での改質反応と燃焼反応との間の切替周期を低負荷時よりも短くする反応制御を行なう反応制御手段を更に備えた請求項2〜5のいずれか1項に記載の燃料電池システム。
JP2005064608A 2005-03-08 2005-03-08 水素生成装置および燃料電池システム Expired - Fee Related JP4664709B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005064608A JP4664709B2 (ja) 2005-03-08 2005-03-08 水素生成装置および燃料電池システム
CNA2006800077384A CN101138123A (zh) 2005-03-08 2006-03-08 氢产生设备和燃料电池***
DE112006000502T DE112006000502T5 (de) 2005-03-08 2006-03-08 Wasserstoff erzeugende Vorrichtung und Brennstoffzellensystem
PCT/JP2006/305069 WO2006095910A1 (en) 2005-03-08 2006-03-08 Hydrogen-generating apparatus and fuel cell system
US11/883,163 US8382864B2 (en) 2005-03-08 2006-03-08 Hydrogen-generating apparatus and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064608A JP4664709B2 (ja) 2005-03-08 2005-03-08 水素生成装置および燃料電池システム

Publications (2)

Publication Number Publication Date
JP2006248809A true JP2006248809A (ja) 2006-09-21
JP4664709B2 JP4664709B2 (ja) 2011-04-06

Family

ID=36579255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064608A Expired - Fee Related JP4664709B2 (ja) 2005-03-08 2005-03-08 水素生成装置および燃料電池システム

Country Status (5)

Country Link
US (1) US8382864B2 (ja)
JP (1) JP4664709B2 (ja)
CN (1) CN101138123A (ja)
DE (1) DE112006000502T5 (ja)
WO (1) WO2006095910A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135270A (ja) * 2006-11-28 2008-06-12 Kyocera Corp 燃料電池システム
JP2008159465A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 燃料電池装置およびその運転方法
WO2011068122A1 (ja) * 2009-12-03 2011-06-09 国立大学法人新潟大学 水熱分解による水素製造法及び水素製造装置
JP2011249234A (ja) * 2010-05-28 2011-12-08 Nippon Telegr & Teleph Corp <Ntt> 燃料電池システムおよび燃料電池システムの運転方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006057357A1 (de) * 2006-12-04 2008-06-05 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem und zughöriges Betriebsverfahren
DE102007055135A1 (de) * 2007-11-19 2009-05-20 Enerday Gmbh Verfahren zum Betreiben eines Brennstoffzellensystems
KR20110069497A (ko) * 2009-12-17 2011-06-23 삼성전자주식회사 연료 전지 시스템의 제어 방법
ES2398554B1 (es) * 2011-02-22 2014-01-21 Universitat Politècnica De Catalunya Vehículo eléctrico radiocontrol.
EP3125348B1 (en) * 2015-07-31 2018-11-07 Plastic Omnium Advanced Innovation and Research Vehicle system comprising a fuel cell
JP6443404B2 (ja) * 2016-07-04 2018-12-26 トヨタ自動車株式会社 熱、水素生成装置
JP6443405B2 (ja) * 2016-07-04 2018-12-26 トヨタ自動車株式会社 熱、水素生成装置
JP7466299B2 (ja) * 2019-12-12 2024-04-12 株式会社エフ・シー・シー 燃料電池システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240805A (en) * 1979-03-16 1980-12-23 United Technologies Corporation Process for producing hydrogen containing gas
JPH111302A (ja) * 1997-06-10 1999-01-06 Toyota Motor Corp 燃料改質方法と燃料改質装置ならびに該燃料改質装置を備えた燃料電池装置
JP2003151599A (ja) * 2001-11-09 2003-05-23 Toyota Motor Corp 燃料電池システム
JP2003335503A (ja) * 2002-05-17 2003-11-25 Denso Corp 水素生成装置
US20030235529A1 (en) * 2002-06-25 2003-12-25 Frank Hershkowitz Pressure swing reforming
JP2004146337A (ja) * 2002-08-28 2004-05-20 Toyota Motor Corp 中温域で作動可能な燃料電池
US20040170559A1 (en) * 2003-02-28 2004-09-02 Frank Hershkowitz Hydrogen manufacture using pressure swing reforming
US20040170558A1 (en) * 2003-02-28 2004-09-02 Frank Hershkowitz Hydrocarbon synthesis process using pressure swing reforming
US20040175326A1 (en) * 2003-02-28 2004-09-09 Frank Hershkowitz Pressure swing reforming for fuel cell systems
US20040241505A1 (en) * 2003-05-23 2004-12-02 Frank Hershkowitz Solid oxide fuel cell systems having temperature swing reforming

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982962A (en) * 1975-02-12 1976-09-28 United Technologies Corporation Pressurized fuel cell power plant with steam powered compressor
JPS61168876A (ja) * 1985-01-18 1986-07-30 Sanyo Electric Co Ltd 燃料電池の作動方式
US6605316B1 (en) * 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US20040244289A1 (en) * 2001-09-28 2004-12-09 Fumiaki Morozumi Process for reforming inflammable gas, apparatus for reforming inflammable gas and gasification apparatus
AU2003237826A1 (en) * 2002-05-07 2003-11-11 The Regents Of The University Of California Electrochemical cell stack assembly
JP4385761B2 (ja) * 2003-12-24 2009-12-16 トヨタ自動車株式会社 燃料電池
US7807313B2 (en) * 2004-12-21 2010-10-05 Ultracell Corporation Compact fuel cell package

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240805A (en) * 1979-03-16 1980-12-23 United Technologies Corporation Process for producing hydrogen containing gas
JPH111302A (ja) * 1997-06-10 1999-01-06 Toyota Motor Corp 燃料改質方法と燃料改質装置ならびに該燃料改質装置を備えた燃料電池装置
JP2003151599A (ja) * 2001-11-09 2003-05-23 Toyota Motor Corp 燃料電池システム
JP2003335503A (ja) * 2002-05-17 2003-11-25 Denso Corp 水素生成装置
US20030235529A1 (en) * 2002-06-25 2003-12-25 Frank Hershkowitz Pressure swing reforming
JP2004146337A (ja) * 2002-08-28 2004-05-20 Toyota Motor Corp 中温域で作動可能な燃料電池
US20040170559A1 (en) * 2003-02-28 2004-09-02 Frank Hershkowitz Hydrogen manufacture using pressure swing reforming
US20040170558A1 (en) * 2003-02-28 2004-09-02 Frank Hershkowitz Hydrocarbon synthesis process using pressure swing reforming
US20040175326A1 (en) * 2003-02-28 2004-09-09 Frank Hershkowitz Pressure swing reforming for fuel cell systems
US20040241505A1 (en) * 2003-05-23 2004-12-02 Frank Hershkowitz Solid oxide fuel cell systems having temperature swing reforming

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135270A (ja) * 2006-11-28 2008-06-12 Kyocera Corp 燃料電池システム
JP2008159465A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 燃料電池装置およびその運転方法
WO2011068122A1 (ja) * 2009-12-03 2011-06-09 国立大学法人新潟大学 水熱分解による水素製造法及び水素製造装置
US8540962B2 (en) 2009-12-03 2013-09-24 Niigata University Method for producing hydrogen by means of thermochemical water-splitting, and device for producing hydrogen
JP5739818B2 (ja) * 2009-12-03 2015-06-24 国立大学法人 新潟大学 水熱分解による水素製造法及び水素製造装置
JP2011249234A (ja) * 2010-05-28 2011-12-08 Nippon Telegr & Teleph Corp <Ntt> 燃料電池システムおよび燃料電池システムの運転方法

Also Published As

Publication number Publication date
US8382864B2 (en) 2013-02-26
DE112006000502T5 (de) 2008-06-26
CN101138123A (zh) 2008-03-05
US20080145726A1 (en) 2008-06-19
JP4664709B2 (ja) 2011-04-06
WO2006095910A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4664709B2 (ja) 水素生成装置および燃料電池システム
CA2980664C (fr) Systeme de production d&#39;electricite par pile a combustible sofc avec circulation des especes carbonees en boucle fermee
JP4906242B2 (ja) 燃料電池の稼動停止方法
US7056480B2 (en) Fuel reforming system
JP2007292010A (ja) 内燃機関から排気される窒素酸化物を含む排気ガスの浄化
JP2006012817A (ja) 燃料電池用改質器及びこれを備えた燃料電池システム
JP4656985B2 (ja) 水素生成装置および燃料電池システム
WO2004082049A1 (ja) 燃料電池システム
JP2011507214A (ja) 燃料電池による電力発生方法
JP4779446B2 (ja) 触媒再生方法、水素生成装置および燃料電池システム
JP4507955B2 (ja) 水素生成装置及び燃料電池システム
JP2006315921A (ja) 水素生成装置および燃料電池システム
JP2011507215A (ja) 燃料電池による電力発生方法
JP2007169116A (ja) 水素生成装置および燃料電池システム
JP2007063038A (ja) 水素生成装置及び燃料電池システム
JP2006290652A (ja) 水素生成装置および燃料電池システム
JP2006248811A (ja) 水素生成装置及び燃料電池システム
JP2006248812A (ja) 水素生成装置および燃料電池システム
JP2007161553A (ja) 水素生成装置および燃料電池システム
JP2006282458A (ja) 水素生成装置及び燃料電池システム
JP2007045677A (ja) 水素生成装置および燃料電池システム
JP2006335588A (ja) 水素生成装置および燃料電池システム
JP2006282469A (ja) 水素生成装置および燃料電池システム
JP2006318870A (ja) 燃料電池システム及び燃料電池
JP2006248813A (ja) 水素生成装置及び燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees