JP2006244861A - Manufacturing method of anode for dye-sensitized solar battery - Google Patents

Manufacturing method of anode for dye-sensitized solar battery Download PDF

Info

Publication number
JP2006244861A
JP2006244861A JP2005059101A JP2005059101A JP2006244861A JP 2006244861 A JP2006244861 A JP 2006244861A JP 2005059101 A JP2005059101 A JP 2005059101A JP 2005059101 A JP2005059101 A JP 2005059101A JP 2006244861 A JP2006244861 A JP 2006244861A
Authority
JP
Japan
Prior art keywords
semiconductor
dye
drying
porous layer
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005059101A
Other languages
Japanese (ja)
Other versions
JP4904698B2 (en
Inventor
Naotada Yamamoto
直嗣 山本
Kazuhiro Sato
一弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2005059101A priority Critical patent/JP4904698B2/en
Publication of JP2006244861A publication Critical patent/JP2006244861A/en
Application granted granted Critical
Publication of JP4904698B2 publication Critical patent/JP4904698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode for a dye-sensitized solar battery having a porous semiconductor layer having dyestuff adsorbed on it, formed on an electrode substrate made of transparent resin, capable of manufacturing the dye-sensitized solar battery with high conversion efficiency. <P>SOLUTION: The anode for dye-sensitized solar battery is manufactured by forming a semiconductor coating layer by painting metal oxide semiconductor and semiconductor paste containing metal alkoxide dispersed in organic solvent corresponding to the metal oxide, on the electrode substrate made of transparent resin; forming a porous semiconductor layer by applying a treatment making the semiconductor coating layer porous; applying dyestuff adsorption treatment to the porous semiconductor layer by making a dyestuff solution contact the porous semiconductor layer; applying cleaning treatment after dyestuff adsorption, and by drying the anode by applying vacuum drying or hot-air drying. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、色素増感型太陽電池における負極の製造方法に関するものであり、より詳細には、有機溶媒中に金属酸化物半導体が分散された半導体ペーストを透明樹脂製電極基板上に塗布し、有機溶媒を除去することにより半導体多孔質層を形成する工程を含む色素増感型太陽電池における負極の製造方法に関する。   The present invention relates to a method for producing a negative electrode in a dye-sensitized solar cell, and more specifically, a semiconductor paste in which a metal oxide semiconductor is dispersed in an organic solvent is applied on a transparent resin electrode substrate, The present invention relates to a method for producing a negative electrode in a dye-sensitized solar cell including a step of forming a semiconductor porous layer by removing an organic solvent.

現在、地球規模の環境問題や化石エネルギー資源枯渇問題などの観点から太陽光発電に対する期待が大きく、単結晶及び多結晶シリコン光電変換素子が太陽電池として実用化されている。しかし、この種の太陽電池は、高価格であること、シリコン原料の供給問題などを有しており、シリコン以外の材料を用いた太陽電池の実用化が望まれている。   Currently, there is great expectation for photovoltaic power generation from the viewpoint of global environmental problems and fossil energy resource depletion problems, and single crystal and polycrystalline silicon photoelectric conversion elements are put into practical use as solar cells. However, this type of solar cell is expensive and has a problem of supply of silicon raw materials, and the practical application of solar cells using materials other than silicon is desired.

上記のような見地から、最近では、シリコン以外の材料を用いた太陽電池として、色素増感型太陽電池が注目されている。この色素増感型太陽電池は、図1に示すように、透明ガラスや透明樹脂フィルムなどの透明基板1a上に透明導電膜1b(例えばITO膜)を電極基板1として使用し、この電極基板1の透明導電膜1b上に二酸化チタンなどの金属酸化物半導体の多孔質層3を設け、この多孔質層3の表面に増感色素(例えばRu色素)5を吸着させたものを負極7として有しており、このような負極7を、電解質液8を間に挟んで正極10に対峙させた構造を有している。   From the above viewpoint, recently, a dye-sensitized solar cell has attracted attention as a solar cell using a material other than silicon. As shown in FIG. 1, this dye-sensitized solar cell uses a transparent conductive film 1b (for example, ITO film) as an electrode substrate 1 on a transparent substrate 1a such as transparent glass or a transparent resin film. A porous layer 3 made of a metal oxide semiconductor such as titanium dioxide is provided on the transparent conductive film 1b, and a sensitizing dye (for example, Ru dye) 5 is adsorbed on the surface of the porous layer 3 as the negative electrode 7. Such a negative electrode 7 has a structure in which the positive electrode 10 is opposed to the electrolyte solution 8 therebetween.

このような構造の色素増感型太陽電池では、負極7側から可視光を照射すると、色素5が励起され、基底状態から励起状態へと遷移し、励起された色素5の電子は、半導体の多孔質層3の伝導帯へ注入され、外部回路12を通って正極10に移動する。正極10に移動した電子は、電解液中のイオンによって運ばれ、色素5に戻る。このような過程の繰り返しにより電気エネルギーが取り出されるわけである。このような色素増感型太陽電池の発電メカニズムは、pn接合型光電変換素子と異なり、光の捕捉と電子伝導が別々の場所で行われ、植物の光電変換プロセスに非常に似たものとなっている。   In the dye-sensitized solar cell having such a structure, when visible light is irradiated from the negative electrode 7 side, the dye 5 is excited and transitions from the ground state to the excited state. It is injected into the conduction band of the porous layer 3 and moves to the positive electrode 10 through the external circuit 12. The electrons that have moved to the positive electrode 10 are carried by the ions in the electrolytic solution and return to the dye 5. Electric energy is extracted by repeating such a process. The power generation mechanism of such a dye-sensitized solar cell differs from that of a pn junction photoelectric conversion element in that light capture and electron conduction are performed at different locations, which is very similar to a plant photoelectric conversion process. ing.

ところで、上記のような色素増感型太陽電池の負極7は、透明基板1aの透明導電膜1b上に、金属酸化物半導体を、水や有機溶媒などに分散させた半導体ペーストを塗布して、加熱処理して溶媒を除去し焼き付けることにより半導体の多孔質層3を形成し、この上に色素溶液を塗布し、色素を多孔質層3に吸着させた後、色素溶液の溶媒を除去することにより製造されている(特許文献1,2)。
特許第2664194号 特公平8−15097号
By the way, the negative electrode 7 of the dye-sensitized solar cell as described above is obtained by applying a semiconductor paste in which a metal oxide semiconductor is dispersed in water, an organic solvent, or the like on the transparent conductive film 1b of the transparent substrate 1a. A porous layer 3 of semiconductor is formed by removing the solvent by heat treatment and baking, and a dye solution is applied thereon, the dye is adsorbed on the porous layer 3, and then the solvent of the dye solution is removed. (Patent Documents 1 and 2).
Japanese Patent No. 2664194 Japanese Patent Publication 8-15097

ところで、上記のようにして負極7を製造する方法では、透明基板1aとして透明ガラスを用いている場合には、半導体ペーストを塗布しての溶媒除去及び焼付けをかなり高温(例えば450℃程度まで)での加熱処理により行うことができるが、透明基板1aとしてポリエチレンテレフタレートなどの透明樹脂フィルムを用いた場合には、その熱変形を防止するために、加熱処理温度が制限される。従って、このような場合には、金属酸化物半導体を分散させるための溶媒として低級アルコール等の有機溶媒を使用し、且つ120〜150℃程度の低温での加熱処理により半導体多孔質層3を形成している。   By the way, in the method of manufacturing the negative electrode 7 as described above, when transparent glass is used as the transparent substrate 1a, the solvent removal and baking by applying the semiconductor paste are performed at a considerably high temperature (for example, up to about 450 ° C.). However, when a transparent resin film such as polyethylene terephthalate is used as the transparent substrate 1a, the heat treatment temperature is limited to prevent thermal deformation. Therefore, in such a case, an organic solvent such as a lower alcohol is used as a solvent for dispersing the metal oxide semiconductor, and the semiconductor porous layer 3 is formed by heat treatment at a low temperature of about 120 to 150 ° C. is doing.

しかしながら、上記のような方法で透明樹脂製電極基板(即ち、透明樹脂製フィルム表面に透明導電膜を形成したもの)上に半導体多孔質層を形成して得られた負極を製造したときには、最終的に組み立てられた太陽電池の変換効率が低く、例えば透明ガラスを電極基板として用いた場合に比して低く、変換効率の増大が求められている。   However, when the negative electrode obtained by forming the semiconductor porous layer on the transparent resin electrode substrate (that is, the transparent conductive film formed on the transparent resin film surface) by the above method is manufactured, the final The conversion efficiency of solar cells assembled in a low manner is low, for example, lower than when transparent glass is used as an electrode substrate, and an increase in conversion efficiency is required.

従って、本発明の目的は、透明樹脂製電極基板上に色素が吸着された半導体多孔質層を有する構造を有している負極であって、変換効率の高い色素増感型太陽電池を作製することが可能な負極を製造する方法を提供することにある。   Therefore, an object of the present invention is to produce a dye-sensitized solar cell having a high conversion efficiency, which is a negative electrode having a semiconductor porous layer in which a dye is adsorbed on a transparent resin electrode substrate. An object of the present invention is to provide a method of manufacturing a negative electrode that can be used.

本発明によれば、透明樹脂製電極基板上に、金属酸化物半導体及び該金属酸化物に対応する金属アルコキシドが有機溶媒中に分散された半導体ペーストを塗布して半導体コーティング層を形成し、該半導体コーティング層の多孔質化処理によって半導体多孔質層を形成し、この半導体多孔質層に色素溶液を接触させて色素吸着処理を行うことにより色素増感型太陽電池における負極を製造する方法において、前記色素吸着処理後に洗浄処理を行い、次いで減圧乾燥または熱風吹き付けによる乾燥を行うことを特徴とする製造方法が提供される。   According to the present invention, on a transparent resin electrode substrate, a semiconductor paste in which a metal oxide semiconductor and a metal alkoxide corresponding to the metal oxide are dispersed in an organic solvent is applied to form a semiconductor coating layer, In a method for producing a negative electrode in a dye-sensitized solar cell by forming a semiconductor porous layer by a porous treatment of a semiconductor coating layer, and contacting a dye solution with the semiconductor porous layer to perform a dye adsorption treatment, There is provided a production method characterized in that a washing treatment is performed after the dye adsorption treatment, followed by drying under reduced pressure or hot air blowing.

本発明の製造方法においては、
(1)前記乾燥を、25乃至120℃の温度で10Torr以下の真空度に保持されたチャンバー内に保持することにより行うこと、
(2)前記乾燥を、乾燥温度25乃至120℃の雰囲気のチャンバー内で、透明導電性樹脂基板側から、0.3乃至300m3の風量で気流を吹き付けることによる熱風乾燥により行うこと、
(3)半導体ペースト塗布後に直ちに半導体コーティング層を急激乾燥して脱溶媒し、脱溶媒に連続して脱水縮合並びに脱水縮合により生成した水の除去を行うことにより半導体多孔質層を形成すること、
(4)前記脱溶媒及びそれに続く脱水縮合及び水の除去を減圧下で行うこと、
(5)前記脱溶媒を低温領域での加熱により行い、それに続く脱水縮合及び水の除去を高温領域での加熱により行うこと、
(6)前記低温領域が25乃至100℃であり、前記高温領域が100乃至200℃であること、
が好ましい。
In the production method of the present invention,
(1) The drying is performed by holding in a chamber held at a temperature of 25 to 120 ° C. and a vacuum of 10 Torr or less,
(2) The drying is performed by hot air drying by blowing an air flow with an air volume of 0.3 to 300 m 3 from the transparent conductive resin substrate side in a chamber having an drying temperature of 25 to 120 ° C.,
(3) Immediately after applying the semiconductor paste, the semiconductor coating layer is rapidly dried to remove the solvent, and the semiconductor porous layer is formed by continuously removing the water generated by dehydration condensation and dehydration condensation after the solvent removal,
(4) performing the desolvation and subsequent dehydration condensation and water removal under reduced pressure;
(5) performing the desolvation by heating in a low temperature region, followed by dehydration condensation and water removal by heating in a high temperature region;
(6) The low temperature region is 25 to 100 ° C, and the high temperature region is 100 to 200 ° C.
Is preferred.

本発明においては、色素吸着処理を行った後に行われる洗浄処理後の乾燥が、減圧乾燥または熱風吹き付けによる熱風乾燥によって行われる。これにより、色素で増感された半導体多孔質層内に洗浄液に由来する微量水分を確実に除去することができるのである。   In the present invention, the drying after the cleaning process performed after the dye adsorption process is performed by drying under reduced pressure or hot air drying by hot air blowing. Thereby, a trace amount of moisture derived from the cleaning liquid can be reliably removed in the semiconductor porous layer sensitized with the dye.

本発明者等の研究によると、色素で増感されている半導体多孔質層の内部に僅かにでも微量の水分が残存していると、該負極を用いて組み立てられた色素増感型太陽電池の変換効率が低下してしまう。即ち、色素で増感された半導体多孔質層は、色素溶液を多孔質半導体層に接触させることにより形成されるため、このような処理(色素吸着処理)後に洗浄が行われる。従って、増感された半導体多孔質層の内部には、洗浄液に由来する微量の水分が残存し易く、これが変換効率の低下をもたらしているものと考えられる。例えば、従来では、色素水溶液を洗浄した後の乾燥は、大気圧下で適度な温度に加熱することにより行われていたため、該多孔質層の内部のポア内に微量の水分が残存してしまい、後述する比較例に示されているように、このような負極を用いた太陽電池の変換率は約2.0〜3.0%程度である。   According to the study by the present inventors, a dye-sensitized solar cell assembled using the negative electrode when a slight amount of water remains inside the semiconductor porous layer sensitized with the dye. Conversion efficiency will be reduced. That is, since the semiconductor porous layer sensitized with the dye is formed by bringing the dye solution into contact with the porous semiconductor layer, washing is performed after such treatment (dye adsorption treatment). Therefore, it is considered that a very small amount of water derived from the cleaning liquid tends to remain in the sensitized semiconductor porous layer, which causes a decrease in conversion efficiency. For example, conventionally, drying after washing an aqueous dye solution has been performed by heating to an appropriate temperature under atmospheric pressure, so a trace amount of moisture remains in the pores inside the porous layer. As shown in a comparative example described later, the conversion rate of a solar cell using such a negative electrode is about 2.0 to 3.0%.

しかるに、本発明に従い、この乾燥を減圧乾燥或いは熱風乾燥により行う場合には、半導体多孔質層の内部についても十分に乾燥が行われ、微量水分の残存を有効に抑制することが可能となり、この結果、後述する実施例に示されているように、変換効率は約3〜5%に増大することとなる。   However, according to the present invention, when this drying is performed under reduced pressure drying or hot air drying, the inside of the semiconductor porous layer is also sufficiently dried, and it is possible to effectively suppress the remaining of trace moisture. As a result, the conversion efficiency is increased to about 3 to 5% as shown in the examples described later.

また、本発明においては、半導体ペーストを塗布することにより透明電極樹脂基板上に形成された半導体コーティング層の多孔質化処理を、半導体ペースト塗布後に直ちに半導体コーティング層を急激乾燥して脱溶媒し、脱溶媒に連続して脱水縮合並びに脱水縮合により生成した水を除去することにより行うことが、色素吸着量を増大し、変換効率を高める上で極めて好適である。   Further, in the present invention, the semiconductor coating layer formed on the transparent electrode resin substrate by applying the semiconductor paste is made porous, and immediately after the semiconductor paste is applied, the semiconductor coating layer is rapidly dried to remove the solvent, It is extremely preferable to perform dehydration condensation after removing the solvent and removing water produced by the dehydration condensation in order to increase the dye adsorption amount and increase the conversion efficiency.

即ち、半導体ペースト中に金属酸化物半導体とともに配合されている金属アルコキシドは、バインダーとして機能するものであり、ゲル化により金属酸化物半導体粒子同士を接合し、多孔質の層を形成するものである。従来では、半導体ペースト塗布後に大気中に放置しての乾燥(自然乾燥)により徐々に溶媒の除去及びゲル化を行っていたのであるが、このような手段では、表面から徐々に脱溶媒及びゲル化が進行しいていくために、該多孔質層が緻密な層となってしまい、この結果、その表面積も小さいものとなり、色素吸着量を増大させることが困難となる。例えば、後述する比較例では、このような自然乾燥により半導体多孔質層を形成していることから、半導体多孔質層への色素吸着量は、約1.8〜2×10-8モル/cm程度である。 That is, the metal alkoxide blended with the metal oxide semiconductor in the semiconductor paste functions as a binder, and joins the metal oxide semiconductor particles together by gelation to form a porous layer. . Conventionally, after the semiconductor paste is applied, the solvent is gradually removed and gelled by drying by standing in the atmosphere (natural drying). As the conversion proceeds, the porous layer becomes a dense layer. As a result, the surface area becomes small, and it is difficult to increase the dye adsorption amount. For example, in the comparative example described later, since the semiconductor porous layer is formed by such natural drying, the amount of dye adsorbed to the semiconductor porous layer is about 1.8 to 2 × 10 −8 mol / cm. It is about 2 .

しかるに、半導体ペースト塗布後に急激乾燥(減圧下での加熱による乾燥)を行い、引き続いて減圧下で加熱温度を高めて脱水縮合(ゲル化)並びに脱水縮合により生成した水を除去する処理を行ったときには、コーティング層の内部から一気に溶媒が揮発するため、内部にポアが多く形成され、多孔質化度の高い多孔質層が形成され、その表面積が極めて増大し、色素吸着量も増大し、変化率がさらに高められるのである。例えば後述する実施例では、色素吸着量は、約3〜5×10-8モル/cm程度に増大しており、この結果、変換率は約3〜5%にさらに増大している。 However, after applying the semiconductor paste, rapid drying (drying by heating under reduced pressure) was performed, and subsequently, the heating temperature was increased under reduced pressure to perform dehydration condensation (gelation) and removal of water generated by dehydration condensation. In some cases, the solvent volatilizes from the inside of the coating layer all at once, so a lot of pores are formed inside, a porous layer with a high degree of porosity is formed, its surface area increases greatly, the amount of dye adsorption also increases, and changes The rate is further increased. For example, in the examples described later, the dye adsorption amount is increased to about 3 to 5 × 10 −8 mol / cm 2, and as a result, the conversion rate is further increased to about 3 to 5%.

尚、本発明において、半導体ペースト塗布後直ちに急激乾燥を行うとは、塗布後にコーティング層表面での脱溶媒或いはさらにゲル化が生じての表面の緻密化が生じない程度の時間内に急激乾燥を開始することを意味する。また、急激乾燥は、自然乾燥ではなく、減圧加熱や熱風吹き付け乾燥の如き、強制的に一気に乾燥を行うことを意味するものである。   In the present invention, rapid drying immediately after application of the semiconductor paste means that rapid drying is performed within a time period that does not cause densification of the surface due to solvent removal or further gelation after coating. Means to start. Moreover, rapid drying means not performing natural drying but forcibly drying at once, such as reduced pressure heating or hot air blowing drying.

以下、本発明の色素増感型太陽電池における負極の製造プロセスを、図1を参照して説明する。   Hereafter, the manufacturing process of the negative electrode in the dye-sensitized solar cell of this invention is demonstrated with reference to FIG.

先ず、図1で示されている透明樹脂製電極基板1を用意する。この電極基板1は、通常、0.25乃至360cm程度の大きさを有するものであり、透明樹脂フィルム1a上に透明導電膜1bを設けたものであり、透明樹脂フィルム1aとしては、透明である限り任意のものが使用されるが、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メチル−1−ペンテン、或いはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同士のランダム乃至ブロック共重合体等のポリオレフィン系樹脂;エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−塩化ビニル共重合体等のエチレン−ビニル化合物共重合体樹脂;ポリスチレン、アクリロニトリル−スチレン共重合体、ABS、α−メチルスチレン−スチレン共重合体等のスチレン系樹脂;ポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル−塩化ビニリデン共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル等のビニル系樹脂;ナイロン6、ナイロン6−6、ナイロン6−10、ナイロン11、ナイロン12等のポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリカーボネート;ポリフェニレンオキサイド;カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体;酸化澱粉、エーテル化澱粉、デキストリンなどの澱粉;及びこれらの混合物からなる樹脂;などからなるフィルムを用いることができる。一般的には、強度や耐熱性等の見地から、ポリエチレンテレフタレートフィルムやポリエチレンナフタレートが好適に使用される。また、透明樹脂フィルム1aの厚みや大きさは、特に制限されず、最終的に使用される色素増感型太陽電池の用途に応じて適宜決定される。 First, the transparent resin electrode substrate 1 shown in FIG. 1 is prepared. This electrode substrate 1 is usually one having a size of about 0.25 to 360 cm 2 and is provided with a transparent conductive film 1b on the transparent resin film 1a. The transparent resin film 1a is transparent. As long as it is arbitrary, for example, low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, or ethylene, propylene, 1-butene, 4-methyl- Polyolefin resins such as random or block copolymers of α-olefins such as 1-pentene; ethylene-vinyl such as ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl chloride copolymer Compound copolymer resin; polystyrene, acrylonitrile-styrene copolymer, ABS, α-methylstyrene Styrene resins such as vinyl-styrene copolymer; polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinylidene chloride copolymer, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethacryl Vinyl resins such as methyl acid; Polyamide resins such as nylon 6, nylon 6-6, nylon 6-10, nylon 11 and nylon 12; Polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; Polycarbonate; Polyphenylene oxide Cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose; starches such as oxidized starch, etherified starch and dextrin; and a resin comprising a mixture thereof; Rum can be used. In general, a polyethylene terephthalate film or polyethylene naphthalate is preferably used from the standpoint of strength, heat resistance, and the like. Further, the thickness and size of the transparent resin film 1a are not particularly limited, and are appropriately determined according to the use of the dye-sensitized solar cell to be finally used.

透明導電膜1bとしては、酸化インジウム−酸化錫合金からなる膜(ITO膜)や酸化錫にフッ素をドープした膜(FTO膜)が代表的であるが、電気抵抗が低いことから、特にITO膜が好適である。これらは蒸着により上記の透明基板1a上に形成され、その厚みは、通常、0.5乃至0.7μm程度である。   The transparent conductive film 1b is typically a film made of an indium oxide-tin oxide alloy (ITO film) or a film in which tin oxide is doped with fluorine (FTO film). Is preferred. These are formed on the transparent substrate 1a by vapor deposition, and the thickness is usually about 0.5 to 0.7 μm.

次いで、透明樹脂製電極基板1の透明導電膜1b上に、半導体ペーストを塗布して半導体コーティング層を形成する。このコーティング層は、図1における半導体多孔質層(チタニア多孔質層)3を形成するものである。   Next, a semiconductor paste is applied on the transparent conductive film 1b of the transparent resin electrode substrate 1 to form a semiconductor coating layer. This coating layer forms the semiconductor porous layer (titania porous layer) 3 in FIG.

従って、塗布する半導体ペーストは、金属酸化物半導体粒子を有機溶媒に分散させたものであり、金属酸化物半導体としては、色素増感型太陽電池において従来から使用されているもの、具体的には、チタン、ジルコニウム、ハフニウム、ストロンチウム、タンタル、クロム、モリブデン、タングステンなどの金属の酸化物、或いはこれら金属を含有する複合酸化物、例えばSrTiO、CaTiOなどのペロブスカイト型酸化物などを用いることができる。高い変換率を確保するためには、二酸化チタン(特にアナターゼ型結晶構造を有するもの)が最も好適に使用される。また、このような半導体酸化物の粒子は、多孔質化の点で微粒であることが好ましく、通常、その粒径が5〜500nm、特に5〜350nmの範囲にあるのがよい。 Therefore, the semiconductor paste to be applied is obtained by dispersing metal oxide semiconductor particles in an organic solvent. As the metal oxide semiconductor, those conventionally used in dye-sensitized solar cells, specifically, It is possible to use oxides of metals such as titanium, zirconium, hafnium, strontium, tantalum, chromium, molybdenum and tungsten, or composite oxides containing these metals, such as perovskite oxides such as SrTiO 3 and CaTiO 3. it can. In order to ensure a high conversion rate, titanium dioxide (in particular, one having an anatase type crystal structure) is most preferably used. Such semiconductor oxide particles are preferably fine in terms of porosity, and generally have a particle size of 5 to 500 nm, particularly 5 to 350 nm.

また、上記の金属酸化物半導体粒子を分散させる有機溶媒としては、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、sec−ブタノール、t−ブタノール等の炭素数が4以下の低級アルコール、エチレングリコール、プロピレングリコール(1,3−プロパンジオール)、1,3−プロパンジオール、1,4−ブタンジオール、1,2−ブタンジオール、1,3−ブタンジオール、2−メチル−1,3−プロパンジオール等の脂肪族グリコール、メチルエチルケトン等のケトン類、ジメチルエチルアミン等のアミン類などが単独または2種以上の組み合わせで好適に使用されるが、特に好適には、炭素数4以下の低級アルコールが使用される。即ち、このような有機溶媒を用いることにより、透明樹脂フィルム1aの熱変形を発生させることなく、容易に当該有機溶媒を除去することができるからである。   Examples of the organic solvent in which the metal oxide semiconductor particles are dispersed include lower alcohols having 4 or less carbon atoms such as methanol, ethanol, isopropanol, n-butanol, sec-butanol, and t-butanol, ethylene glycol, and propylene. Glycol (1,3-propanediol), 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, etc. Aliphatic glycols, ketones such as methyl ethyl ketone, and amines such as dimethyl ethyl amine are preferably used alone or in combination of two or more, but particularly preferably a lower alcohol having 4 or less carbon atoms is used. That is, by using such an organic solvent, the organic solvent can be easily removed without causing thermal deformation of the transparent resin film 1a.

さらに、上記の半導体ペースト中は、前記金属酸化物に対応する金属アルコキシドが配合される。この金属アルコキシドは、所謂バインダーとして機能するものであり、所謂分散剤及び硬化剤としての機能を有しており、有機溶媒中に金属酸化物半導体粒子を均一且つ安定に分散させることができ、更に、半導体微粒子同士を連結させるように容易に硬化し、短時間で均一な半導体多孔質層3を形成するのに有利となる。しかも、この金属アルコキシドは、半導体微粒子との縮合によって該半導体微粒子に対応する金属酸化物を形成するため、このような金属アルコキシドによる性能低下は生じない。本発明において、このような金属アルコキシドとしては、イソプロポキシドが好適であり、特に金属酸化物半導体として二酸化チタン粒子を用いた場合には、テトライソプロポキシチタンが最も好適である。例えば、二酸化チタン粒子とテトライソプロポキシチタンとの組み合わせの場合、テトライソプロポキシチタンは、有機溶媒中に含まれる微量の水分或いは大気中の湿分により容易に加水分解し且つ有機溶媒の除去に伴って二酸化チタン微粒子と縮合し、粒子間を結合させるため、半導体コーティング層の多孔質層化を促進させる。従って、かかる組み合わせは、短時間で且つ低温で多孔質化を行う上で極めて有利である。   Furthermore, in said semiconductor paste, the metal alkoxide corresponding to the said metal oxide is mix | blended. This metal alkoxide functions as a so-called binder, has a function as a so-called dispersant and a curing agent, and can uniformly and stably disperse the metal oxide semiconductor particles in an organic solvent. It is easy to cure so that the semiconductor fine particles are connected to each other, and it is advantageous to form the uniform semiconductor porous layer 3 in a short time. In addition, since the metal alkoxide forms a metal oxide corresponding to the semiconductor fine particles by condensation with the semiconductor fine particles, such performance deterioration due to the metal alkoxide does not occur. In the present invention, isopropoxide is suitable as such a metal alkoxide, and tetraisopropoxytitanium is most preferred when titanium dioxide particles are used as the metal oxide semiconductor. For example, in the case of a combination of titanium dioxide particles and tetraisopropoxytitanium, tetraisopropoxytitanium is easily hydrolyzed by a small amount of moisture contained in the organic solvent or moisture in the atmosphere, and accompanying the removal of the organic solvent. In order to condense with the titanium dioxide fine particles and bond the particles, the porous layering of the semiconductor coating layer is promoted. Accordingly, such a combination is extremely advantageous for making the porous material in a short time and at a low temperature.

また、上記の金属アルコキシドは、前述した金属酸化物半導体粒子100重量部当り、10乃至60重量部、特に20乃至40重量部の量で使用するのが好適である。あまり多量に使用すると、硬化効果は上昇するが、分散効果は上昇せず、かえって変換効率を低下する等の不都合を生じ易く、また、あまり少量でも、所望の硬化効果及び分散効果を得ることができないからである。   The metal alkoxide is preferably used in an amount of 10 to 60 parts by weight, particularly 20 to 40 parts by weight, per 100 parts by weight of the metal oxide semiconductor particles. If it is used too much, the curing effect will increase, but the dispersion effect will not increase, but it tends to cause inconveniences such as lowering the conversion efficiency, and the desired curing effect and dispersion effect can be obtained even with a very small amount. It is not possible.

さらに、上述した半導体ペーストの固形分濃度は、10乃至50重量%、特に15乃至25重量%の範囲にあるのがよい。溶媒量が多すぎると、垂れ等により安定な厚みのコーティング層を形成することが困難となり、また、溶媒量が少ないと、作業性が低下してしまう。   Further, the solid content concentration of the semiconductor paste described above should be in the range of 10 to 50% by weight, particularly 15 to 25% by weight. When the amount of the solvent is too large, it becomes difficult to form a coating layer having a stable thickness due to dripping or the like, and when the amount of the solvent is small, the workability is lowered.

尚、金属アルコキシド含有の半導体ペーストは、1リットル当たり1〜3モル程度の金属アルコキシドを含有する有機溶媒溶液を調製し、この有機溶媒溶液を金属酸化物半導体粒子とともに前述した低級アルコールに分散させることにより調製することができる。この場合、金属アルコキシド用の有機溶媒としては、前述した炭素数4以下の低級アルコールが好適に使用される。   The metal alkoxide-containing semiconductor paste is prepared by preparing an organic solvent solution containing about 1 to 3 moles of metal alkoxide per liter, and dispersing the organic solvent solution together with the metal oxide semiconductor particles in the aforementioned lower alcohol. Can be prepared. In this case, as the organic solvent for the metal alkoxide, the aforementioned lower alcohol having 4 or less carbon atoms is preferably used.

半導体ペーストのコーティングは、ドクターブレード法、スピンコート法、スクリーン印刷法、スプレーコーティング法等の周知の方法で行うことができ、その厚みは、多孔質化後の厚みが5乃至20μm程度、半導体重量としては、0.001乃至0.010g/cm程度となるようにするのがよい。 The semiconductor paste can be coated by a well-known method such as a doctor blade method, a spin coating method, a screen printing method, or a spray coating method. The thickness after the porous formation is about 5 to 20 μm. Is preferably about 0.001 to 0.010 g / cm 2 .

上記のようにして本発明の半導体ペーストを透明樹脂製電極基板1の透明導電膜1b上にコーティングして半導体コーティング層を形成した後に、多孔質化処理を行う。   After the semiconductor paste of the present invention is coated on the transparent conductive film 1b of the transparent resin electrode substrate 1 to form a semiconductor coating layer as described above, a porous treatment is performed.

即ち、この多孔質化は、半導体ペースト塗布後に直ちに行うことが好ましく、例えば塗布後、10分以内に多孔質化処理を開始することが好ましい。塗布後から多孔質化処理開始までにあまり時間が経過してしまうと、自然乾燥による脱溶媒及びゲル化がコーティング層の表面から始まり、コーティング層の表面が緻密になってしまうおそれがあり、多孔質度の高い層を形成しにくくなってしまうからである。例えば、従来法により自然乾燥等により多孔質化を行った場合には、図2に示されるように、半導体多孔質層3の内部には空隙が存在せず、緻密な層となるが、上記のように急激乾燥を経て形成される半導体多孔質層3には、その内部に空隙3aが多く生成しており、従ってその表面積も大きく、色素吸着量を増大させることができる。   That is, it is preferable to perform this porosity immediately after applying the semiconductor paste. For example, it is preferable to start the porosity processing within 10 minutes after application. If too much time elapses after application, the solvent removal and gelation by natural drying may start from the surface of the coating layer and the surface of the coating layer may become dense. This is because it becomes difficult to form a high quality layer. For example, when the porous structure is formed by natural drying or the like according to the conventional method, as shown in FIG. 2, there is no void inside the semiconductor porous layer 3 and the dense layer is formed. In the semiconductor porous layer 3 formed by rapid drying as described above, a large amount of voids 3a are formed in the inside thereof. Therefore, the surface area is large and the amount of dye adsorption can be increased.

また、多孔質化処理は、半導体コーティング層が表面に形成されている塗布された透明樹脂製電極基板1を、所定のチャンバー内に導入して行われるが、通常、急激乾燥により一気に脱溶媒を行い、引き続いて脱水縮合(ゲル化)及び縮合水の除去を行うことにより、多孔質化処理を行うことが、多孔質度の高い半導体多孔質層を形成し、後述する色素吸着処理による色素吸着量を増大させる上で好適である。先にも述べたように、急激乾燥により、一気にコーティング層内部の溶媒が揮散し、極めて多孔質度の高い層が形成されるからである。   The porous treatment is performed by introducing the applied transparent resin electrode substrate 1 having a semiconductor coating layer formed on the surface thereof into a predetermined chamber. Usually, the solvent is removed at once by rapid drying. It is possible to perform a porous treatment by performing dehydration condensation (gelation) and removal of condensed water, followed by formation of a highly porous semiconductor porous layer, and dye adsorption by dye adsorption treatment described later It is suitable for increasing the amount. This is because, as described above, the solvent inside the coating layer is volatilized at a stretch by rapid drying, and a layer having a very high degree of porosity is formed.

急激乾燥は、所謂大気圧下での加熱により行うこともできるが、コーティング層の内部の溶媒を迅速に揮散させるという点で、熱風吹き付け乾燥や減圧乾燥により急激乾燥を行うことが好ましく、最も好適には、減圧乾燥、例えば、チャンバー内を25乃至120℃の温度で且つ10Torr以下の真空度に保持することにより行うことが好ましい。即ち、単なる加熱乾燥では、透明樹脂製電極基板1の熱変形等を防止するために加熱温度が制限され、脱溶媒効率が低いが、上記のような減圧下での加熱乾燥により、極めて迅速に脱溶媒を行うことができ、しかもコーティング層内部の溶媒の揮散も有効に行うことができるからである。また、このような減圧で急激乾燥を行うことにより、半導体粒子同士の接触度合いも向上し、変換効率を高める上で有利となる。   Rapid drying can also be performed by heating at a so-called atmospheric pressure, but it is preferable to perform rapid drying by hot-air spray drying or reduced-pressure drying in terms of rapidly evaporating the solvent inside the coating layer, and most preferable. For this, it is preferable to carry out drying under reduced pressure, for example, by maintaining the inside of the chamber at a temperature of 25 to 120 ° C. and a vacuum of 10 Torr or less. That is, in simple heat drying, the heating temperature is limited to prevent thermal deformation of the transparent resin electrode substrate 1 and the solvent removal efficiency is low. However, by heat drying under reduced pressure as described above, the heating temperature is extremely rapid. This is because the solvent can be removed and the solvent in the coating layer can be effectively removed. In addition, rapid drying at such a reduced pressure improves the degree of contact between the semiconductor particles, which is advantageous in increasing the conversion efficiency.

尚、熱風吹き付け乾燥により急激乾燥を行う場合には、透明樹脂製電極基板1の熱変形等を生じない程度で可及的に高い温度(例えば120℃以下の温度)で、乾燥空気などをシリカゲルなどの乾燥剤を通して水を吸着しながらチャンバー内を循環させながら、半導体コーティング層に吹き付けることが好適である。   When rapid drying is performed by hot air spray drying, dry air or the like is applied to silica gel at a temperature as high as possible (for example, a temperature of 120 ° C. or less) as long as thermal deformation of the transparent resin electrode substrate 1 does not occur. It is preferable to spray the semiconductor coating layer while circulating the inside of the chamber while adsorbing water through a desiccant.

また、急激乾燥に続いて行われる脱水縮合(ゲル化)及び縮合水の除去は、上記の急激乾燥工程でも一部行われている。従って、この工程は明確に急激乾燥工程と分離できるものではなく、急激乾燥に連続して行われるものであるが、通常、かかる工程は、急激乾燥よりも高い温度領域で行われる。例えば、上記のように減圧下での加熱乾燥により急激乾燥が行われた場合には、その真空度を維持したまま、温度を100乃至200℃の高温領域に高めることにより、脱水縮合及び縮合水の除去を行うのがよい。従って、この場合には、急激乾燥開始から脱水縮合及び縮合水の除去を終了するまで、徐々に温度を昇温させていくことが好ましく、通常、これらの工程は1〜2時間程度かけて行われる。尚、熱風の吹き付けにより急激乾燥を行った場合には、そのまま、或いは透明樹脂製電極基板1の熱変形等を生じない程度の範囲で温度を上昇させて脱水縮合及び縮合水の除去を行うのがよい。   Further, the dehydration condensation (gelation) and the removal of the condensed water performed after the rapid drying are partly performed in the rapid drying process. Therefore, this step is not clearly separated from the rapid drying step, and is performed continuously after rapid drying. Usually, this step is performed in a higher temperature range than rapid drying. For example, when rapid drying is performed by heat drying under reduced pressure as described above, dehydration condensation and condensed water are performed by increasing the temperature to a high temperature range of 100 to 200 ° C. while maintaining the degree of vacuum. It is better to remove. Therefore, in this case, it is preferable to gradually raise the temperature from the start of rapid drying until the completion of dehydration condensation and the removal of condensed water. Usually, these steps are performed for about 1 to 2 hours. Is called. When rapid drying is performed by blowing hot air, dehydration condensation and removal of condensed water are performed by increasing the temperature as it is or without causing thermal deformation of the transparent resin electrode substrate 1. Is good.

上述した多孔質化処理により、例えばアルキメデス法による相対密度が50乃至90%、特に55乃至80%程度の半導体多孔質層3が形成される。   By the above-described porous treatment, the semiconductor porous layer 3 having a relative density of, for example, about 50 to 90%, particularly about 55 to 80% by the Archimedes method is formed.

上記のような多孔質化処理が行われた後に、半導体多孔質層3に色素溶液を接触させることにより、増感色素5を吸着させる。この吸着処理は、上記の脱水処理後、直ちに行うのがよい。即ち、脱水処理後の半導体多孔質層3が大気中に長時間曝されると、再び、大気中の水分を吸着してしまうからである。   After the porous treatment as described above is performed, the sensitizing dye 5 is adsorbed by bringing the dye solution into contact with the semiconductor porous layer 3. This adsorption treatment is preferably performed immediately after the above dehydration treatment. That is, if the semiconductor porous layer 3 after dehydration is exposed to the atmosphere for a long time, moisture in the atmosphere is adsorbed again.

色素溶液の接触は、ディッピング或いは色素溶液の滴下により行うことができる。吸着処理時間(浸漬時間)は、ディッピングの場合、通常、30分〜24時間程度である。また、色素溶液の滴下による吸着処理は、減圧下で行うこともでき、例えば、減圧下で多孔質化処理を行った場合には、減圧の程度を比較的小さくし(例えば、2〜0.1Torr程度)、さらに処理する基板1を振とうさせながら色素溶液の滴下を行うのがよい。   The contact of the dye solution can be performed by dipping or dropping of the dye solution. In the case of dipping, the adsorption treatment time (immersion time) is usually about 30 minutes to 24 hours. The adsorption treatment by dropping the dye solution can also be performed under reduced pressure. For example, when the porosification treatment is performed under reduced pressure, the degree of reduced pressure is relatively reduced (for example, 2 to 0. It is preferable that the dye solution is dropped while shaking the substrate 1 to be further processed.

上記のような吸着処理後、洗浄及び乾燥して色素溶液の溶媒、余剰色素や洗浄液を除去することにより、表面に増感色素5が形成された半導体多孔質層3を有する負極7を得ることができる。この場合、半導体多孔質層3表面に微量水分が付着していない状態で色素の吸着が行われるため、均一に増感色素5の薄層を形成することができる。   After the adsorption treatment as described above, the negative electrode 7 having the semiconductor porous layer 3 having the sensitizing dye 5 formed on the surface is obtained by washing and drying to remove the solvent of the dye solution, the excess dye and the washing liquid. Can do. In this case, since the dye is adsorbed in a state where a trace amount of moisture is not attached to the surface of the semiconductor porous layer 3, a thin layer of the sensitizing dye 5 can be formed uniformly.

用いる増感色素は、カルボキシレート基、シアノ基、ホスフェート基、オキシム基、ジオキシム基、ヒドロキシキノリン基、サリチレート基、α−ケト−エノール基などの結合基を有するそれ自体公知のものが使用され、前述した特許文献1,2等に記載されているもの、例えばルテニウム錯体、オスミウム錯体、鉄錯体などを何ら制限なく使用することができる。特に幅広い吸収帯を有するなどの点で、ルテニウム−トリス(2,2’−ビスピリジル−4,4’−ジカルボキシラート)、ルテニウム−シス−ジアクア−ビス(2,2’−ビスピリジル−4,4’−ジカルボキシラート)などのルテニウム系錯体が好適である。このような増感色素の色素溶液は、溶媒としてエタノールやブタノールなどのアルコール系有機溶媒を用いて調製され、その色素濃度は、通常、3×10−4乃至5×10−4mol/l程度である。 As the sensitizing dye to be used, those known per se having a bonding group such as a carboxylate group, a cyano group, a phosphate group, an oxime group, a dioxime group, a hydroxyquinoline group, a salicylate group, an α-keto-enol group are used. Those described in Patent Documents 1 and 2 mentioned above, for example, ruthenium complexes, osmium complexes, iron complexes and the like can be used without any limitation. Ruthenium-tris (2,2′-bispyridyl-4,4′-dicarboxylate), ruthenium-cis-diaqua-bis (2,2′-bispyridyl-4,4) in that it has a particularly broad absorption band. Ruthenium-based complexes such as' -dicarboxylate) are preferred. Such a dye solution of a sensitizing dye is prepared using an alcohol organic solvent such as ethanol or butanol as a solvent, and the dye concentration is usually about 3 × 10 −4 to 5 × 10 −4 mol / l. It is.

吸着処理後の洗浄は、例えばエタノール、アセトニトリル、メトキシプロピオニトリル等を用いて行われ、これにより、半導体多孔質層3の表面に単分子吸着していない余剰の色素及び溶媒を除去し、次いで乾燥が行われる。   Washing after the adsorption treatment is performed using, for example, ethanol, acetonitrile, methoxypropionitrile, etc., thereby removing excess dye and solvent not adsorbed on the surface of the semiconductor porous layer 3, and then Drying is performed.

本発明においては、かかる乾燥を、減圧乾燥または熱風吹き付けによる熱風乾燥によって行われる。即ち、半導体多孔質層3は多孔質度が高く、例えば内部に多くの空隙(ポア)を含んでおり、通常の自然乾燥或いは加熱乾燥では、この内部に、洗浄液等に由来する微量の水分が残存しやすく、微量の水分が残存していると、後述する実施例等にも示されているように変換効率の低下を招く。しかしながら、減圧乾燥や熱風の吹き付けによる乾燥により、このような半導体多孔質層3の内部に付着した微量の水分をも有効に除去することができ、変換効率を向上させることが可能となるのである。   In the present invention, such drying is performed by reduced-pressure drying or hot air drying by hot air blowing. That is, the porous semiconductor layer 3 has a high degree of porosity, and includes, for example, many voids (pores) inside. In ordinary natural drying or heat drying, a small amount of moisture derived from the cleaning liquid or the like is contained in the inside. If it is easy to remain and a trace amount of water remains, the conversion efficiency is lowered as shown in Examples and the like described later. However, by drying under reduced pressure or by blowing hot air, a small amount of water adhering to the inside of the semiconductor porous layer 3 can be effectively removed, and the conversion efficiency can be improved. .

本発明において、上記の乾燥を減圧乾燥により行うときには、例えば25乃至120℃の温度で10Torr以下の真空度に保持されたチャンバー内に、色素5で増感された半導体多孔質層3が形成された基板を保持することにより行うことが好ましく、乾燥時間は、基板の大きさや減圧度(真空度)等によっても異なるが、一般には、1乃至120分程度、当該チャンバー内に保持すればよい。   In the present invention, when the above drying is performed by vacuum drying, for example, the semiconductor porous layer 3 sensitized with the dye 5 is formed in a chamber maintained at a temperature of 25 to 120 ° C. and a vacuum of 10 Torr or less. The substrate is preferably held by holding the substrate, and the drying time varies depending on the size of the substrate, the degree of vacuum (vacuum degree), etc., but generally it may be held in the chamber for about 1 to 120 minutes.

また、熱風吹き付けにより乾燥を行う場合には、温度25乃至120℃の雰囲気に保持されたチャンバー内で、乾燥空気を吹き付けることが好ましく、特に、透明導電性樹脂基板1a側から吹き付け、その風量を0.3乃至300m3/min程度とすることが最も乾燥効率が高い。 When drying is performed by blowing hot air, it is preferable to blow dry air in a chamber maintained in an atmosphere at a temperature of 25 to 120 ° C. A drying efficiency of about 0.3 to 300 m 3 / min is the highest.

このようにして得られた負極7は、半導体多孔質層3内に洗浄液に由来する微量水分が確実に除去されており、かかる負極7を用いて作製された太陽電池は、高い変換効率を示す。   In the negative electrode 7 thus obtained, a trace amount of moisture derived from the cleaning liquid is reliably removed in the semiconductor porous layer 3, and a solar cell produced using the negative electrode 7 exhibits high conversion efficiency. .

即ち、上記のようにして得られた負極7は、図1に示すように、電解質液8を間に挟んで対極である正極10に対峙させることにより、色素増感型太陽電池として使用に供される。   That is, the negative electrode 7 obtained as described above is used as a dye-sensitized solar cell by facing the positive electrode 10 which is a counter electrode with an electrolyte solution 8 interposed therebetween as shown in FIG. Is done.

尚、電解質液8としては、通常、リチウムイオン等の陽イオンや塩素イオン等の陰イオンを含む種々の電解質溶液を使用することができる。また、この電解質溶液中には、酸化型構造及び還元型構造を可逆的にとり得るような酸化還元対を存在させることが好ましく、このような酸化還元対としては、例えばヨウ素−ヨウ素化合物、臭素−臭素化合物、キノン−ヒドロキノンなどを挙げることができる。また、この電解質液8は、一般に、電気絶縁性の樹脂等により封止され、電極間から漏洩しないように構成されている。   As the electrolyte solution 8, various electrolyte solutions containing a cation such as lithium ion and an anion such as chlorine ion can be used. Further, in this electrolyte solution, it is preferable to have a redox pair capable of reversibly taking an oxidized structure and a reduced structure. Examples of such a redox pair include iodine-iodine compounds, bromine- Examples thereof include bromine compounds and quinone-hydroquinone. The electrolyte solution 8 is generally sealed with an electrically insulating resin or the like so that it does not leak between the electrodes.

また、正極10は、透明、不透明に関係なく、種々の電極基板を用いることができ、例えばガラス基板や透明樹脂フィルムなどの透明基板表面に白金層やITO等の透明電極層を蒸着させたもの、或いは透明基板表面にITO等の透明電極層を蒸着させ、さらにその上に白金層を蒸着させたものなど、任意の構造を採ることができる。   In addition, the positive electrode 10 can use various electrode substrates regardless of whether they are transparent or opaque. For example, a transparent electrode layer such as a platinum layer or ITO is deposited on the surface of a transparent substrate such as a glass substrate or a transparent resin film. Alternatively, it is possible to adopt an arbitrary structure such as a transparent electrode layer such as ITO deposited on the transparent substrate surface and a platinum layer deposited thereon.

本発明の製造方法により得られた負極7を用いて作製された色素増感型太陽電池では、負極7中の増感色素5が半導体多孔質層3の表面に多く且つ均一に吸着しており、且つ該多孔質層3の内部での微量水分の残存が有効に回避されているため、高い変換効率を示すこととなる。   In the dye-sensitized solar cell produced using the negative electrode 7 obtained by the production method of the present invention, the sensitizing dye 5 in the negative electrode 7 is adsorbed on the surface of the semiconductor porous layer 3 in a large and uniform manner. In addition, since a trace amount of moisture remaining inside the porous layer 3 is effectively avoided, high conversion efficiency is exhibited.

本発明を、次の実施例及び比較例により説明する。
(実施例1)
チタンイソプロポキシドを1mol/lになるように、有機溶剤ブタノールで希釈したチタンアルコキシド溶液を調整し、これと、二酸化チタン粒子(構成粒子径は、15〜350nmの汎用チタニア粒子)を、二酸化チタン微粒子100重量部当り50重量部の量で含有し、且つ固形分濃度が20重量%の二酸化チタン微粒子ペーストを調整した。
そして、ポリエチレンテレフタレートフィルムに導電膜としてITO膜を設けた
導電性フィルム(トービ社製、製品名「OTEC」)に、上記調整した二酸化チタンのペーストを塗布し、その後、1Torr減圧下雰囲気のチャンバー内に二酸化チタンのペーストが塗布されたサンプルを設置し、130℃で60分の加熱を施し、多孔質膜を得た。その半導体ペーストの厚みは約5μmで、半導体重量は約0.002g/cmであった。その後、純度99.5%のエタノールに分散させたルテニウム錯体色素[Ru(dcbpy)2(NCS)2]・2H2Oからなる色素溶液中に、20時間浸漬して色素を吸着させた。その後、メトキシプロピオニトリルで過剰吸着色素分を洗浄し、50℃に保持したチャンバー内に挿入して1Torr減圧下で30分乾燥させた。
以上のようにして得られた負極を用いて、これと、LiI/I2(0.5mol/0.05mol)をメトキシプロピオニトリルに溶かしたものに4-tert-butyl pyridine(ターシャリーブチルピリジン)を添加して作製した電解質を、白金を蒸着したITO/ガラスで構成される正極とで挟み込んだ色素増感型太陽電池を作製した。この電池の変換効率を測定したところ、約4%であった。また、負極の色素吸着量を測定したところ、約3.8×10-8モル/cm2であった。
The invention is illustrated by the following examples and comparative examples.
Example 1
A titanium alkoxide solution diluted with an organic solvent butanol was prepared so that titanium isopropoxide was 1 mol / l, and titanium dioxide particles (general-purpose titania particles having a constituent particle diameter of 15 to 350 nm) were combined with titanium dioxide. A titanium dioxide fine particle paste containing 50 parts by weight per 100 parts by weight of fine particles and having a solid content concentration of 20% by weight was prepared.
Then, the above-prepared titanium dioxide paste is applied to a conductive film (product name “OTEC”, manufactured by Tobi Co., Ltd.) in which an ITO film is provided as a conductive film on a polyethylene terephthalate film, and then the inside of the chamber under a reduced pressure of 1 Torr. A sample coated with a titanium dioxide paste was placed on and heated at 130 ° C. for 60 minutes to obtain a porous film. The thickness of the semiconductor paste was about 5 μm, and the semiconductor weight was about 0.002 g / cm 2 . Then, the dye was adsorbed by being immersed in a dye solution composed of a ruthenium complex dye [Ru (dcbpy) 2 (NCS) 2 ] · 2H 2 O dispersed in ethanol having a purity of 99.5% for 20 hours. Thereafter, the excessively adsorbed dye component was washed with methoxypropionitrile, inserted into a chamber maintained at 50 ° C., and dried under reduced pressure of 1 Torr for 30 minutes.
Using the negative electrode obtained as described above, 4-tert-butyl pyridine (tertiary butyl pyridine) was dissolved in LiI / I 2 (0.5 mol / 0.05 mol) dissolved in methoxypropionitrile. A dye-sensitized solar cell was fabricated by sandwiching an electrolyte prepared by adding a) with a positive electrode composed of ITO / glass deposited with platinum. When the conversion efficiency of this battery was measured, it was about 4%. Further, when the amount of dye adsorbed on the negative electrode was measured, it was about 3.8 × 10 −8 mol / cm 2 .

(実施例2)
実施例と同様に調整した二酸化チタンペーストを、ポリエチレンテレフタレートフィルムに導電膜としてITO膜を設けた導電性フィルム(トービ社製、製品名「OTEC」)に塗布し、その後、1Torr減圧下雰囲気のチャンバー内に二酸化チタンのペーストが塗布されたサンプルを設置し、130℃で60分の加熱を施し、多孔質膜を得た。その半導体ペーストの厚みは約5μmで、半導体重量は約0.002g/cmであった。その後、実施例1と同様に色素を吸着・洗浄させた後、50℃に保持したチャンバー内に挿入して、透明導電性樹脂基板側から風速200rpmの乾燥空気を吹き付けて乾燥させた。
以上のようにして得られた負極を用いて、実施例1と同様に色素増感型太陽電池を作製し、変換効率を測定したところ、約3.5%であった。また、負極の色素吸着量を測定したところ、約3.4×10-8モル/cm2であった。
(Example 2)
The titanium dioxide paste prepared in the same manner as in the example was applied to a conductive film (product name “OTEC”, manufactured by Tobi Co., Ltd.) having a polyethylene terephthalate film provided with an ITO film as a conductive film. A sample coated with a titanium dioxide paste was placed therein, and heated at 130 ° C. for 60 minutes to obtain a porous film. The thickness of the semiconductor paste was about 5 μm, and the semiconductor weight was about 0.002 g / cm 2 . Then, after adsorb | sucking and wash | cleaning a pigment | dye similarly to Example 1, it inserted in the chamber hold | maintained at 50 degreeC, and dried by blowing dry air with a wind speed of 200 rpm from the transparent conductive resin board | substrate side.
Using the negative electrode obtained as described above, a dye-sensitized solar cell was produced in the same manner as in Example 1, and the conversion efficiency was measured. The result was about 3.5%. Further, when the amount of dye adsorbed on the negative electrode was measured, it was about 3.4 × 10 −8 mol / cm 2 .

(比較例1)
実施例1と同様に調整した二酸化チタンペーストを、ポリエチレンテレフタレートフィルムに導電膜としてITO膜を設けた導電性フィルム(トービ社製、製品名「OTEC」)に塗布し、その後、1Torr減圧下雰囲気のチャンバー内に二酸化チタンのペーストが塗布されたサンプルを設置し、130℃で60分の加熱を施し、多孔質膜を得た。その半導体ペーストの厚みは約5μmで、半導体重量は約0.002g/cmであった。その後、実施例1と同様に色素を吸着・洗浄させた後、140℃に保持したチャンバー内に挿入して大気圧下で30分乾燥させた。
以上のようにして得られた負極を用いて、実施例1と同様に色素増感型太陽電池を作製し、変換効率を測定したところ、約2%であった。また、負極の色素吸着量を測定したところ、約1.8×10-8モル/cm2であった。
(Comparative Example 1)
The titanium dioxide paste prepared in the same manner as in Example 1 was applied to a conductive film (product name “OTEC”, manufactured by Tobi Co., Ltd.) provided with an ITO film as a conductive film on a polyethylene terephthalate film, and then in an atmosphere under a reduced pressure of 1 Torr. A sample coated with titanium dioxide paste was placed in the chamber and heated at 130 ° C. for 60 minutes to obtain a porous film. The thickness of the semiconductor paste was about 5 μm, and the semiconductor weight was about 0.002 g / cm 2 . Thereafter, the dye was adsorbed and washed in the same manner as in Example 1, then inserted into a chamber maintained at 140 ° C. and dried at atmospheric pressure for 30 minutes.
Using the negative electrode obtained as described above, a dye-sensitized solar cell was produced in the same manner as in Example 1, and the conversion efficiency was measured. As a result, it was about 2%. Further, when the amount of dye adsorbed on the negative electrode was measured, it was about 1.8 × 10 −8 mol / cm 2 .

(比較例2)
実施例1と同様に調整した二酸化チタンペーストを、ポリエチレンテレフタレートフィルムに導電膜としてITO膜を設けた導電性フィルム(トービ社製、製品名「OTEC」)に塗布し、その後、1Torr減圧下雰囲気のチャンバー内に二酸化チタンのペーストが塗布されたサンプルを設置し、130℃で60分の加熱を施し、多孔質膜を得た。その半導体ペーストの厚みは約5μmで、半導体重量は約0.002g/cmであった。その後、実施例1と同様に色素を吸着・洗浄させた後、室温、大気圧中で30分放置し乾燥させた。
以上のようにして得られた負極を用いて、実施例1と同様に色素増感型太陽電池を作製し、変換効率を測定したところ、約2%であった。また、負極の色素吸着量を測定したところ、約2×10-8モル/cm2であった。
(Comparative Example 2)
The titanium dioxide paste prepared in the same manner as in Example 1 was applied to a conductive film (product name “OTEC”, manufactured by Tobi Co., Ltd.) provided with an ITO film as a conductive film on a polyethylene terephthalate film, and then in an atmosphere under a reduced pressure of 1 Torr. A sample coated with titanium dioxide paste was placed in the chamber and heated at 130 ° C. for 60 minutes to obtain a porous film. The thickness of the semiconductor paste was about 5 μm, and the semiconductor weight was about 0.002 g / cm 2 . Thereafter, the dye was adsorbed and washed in the same manner as in Example 1, and left to dry at room temperature and atmospheric pressure for 30 minutes.
Using the negative electrode obtained as described above, a dye-sensitized solar cell was produced in the same manner as in Example 1, and the conversion efficiency was measured. As a result, it was about 2%. Further, when the dye adsorption amount of the negative electrode was measured, it was about 2 × 10 −8 mol / cm 2 .

本発明により製造される負極を有する色素増感型太陽電池の概略構造を示す図。The figure which shows schematic structure of the dye-sensitized solar cell which has a negative electrode manufactured by this invention. 従来の製法によって作成された多孔質層の模式図。The schematic diagram of the porous layer created by the conventional manufacturing method. 本発明の製法によって作成された多孔質層の模式図。The schematic diagram of the porous layer created by the manufacturing method of this invention.

符号の説明Explanation of symbols

1:透明樹脂製電極基板
1a:透明樹脂フィルム
1b:透明導電層
3:多孔質半導体層
5:増感色素
7:負極
8:電解質液
10:正極
1: Electrode substrate made of transparent resin 1a: Transparent resin film 1b: Transparent conductive layer 3: Porous semiconductor layer 5: Sensitizing dye 7: Negative electrode 8: Electrolyte solution 10: Positive electrode

Claims (7)

透明樹脂製電極基板上に、金属酸化物半導体及び該金属酸化物に対応する金属アルコキシドが有機溶媒中に分散された半導体ペーストを塗布して半導体コーティング層を形成し、該半導体コーティング層の多孔質化処理によって半導体多孔質層を形成し、この半導体多孔質層に色素溶液を接触させて色素吸着処理を行うことにより色素増感型太陽電池における負極を製造する方法において、前記色素吸着処理後に洗浄処理を行い、次いで減圧乾燥または熱風吹き付けによる乾燥を行うことを特徴とする製造方法。   A semiconductor coating layer is formed by applying a semiconductor paste in which a metal oxide semiconductor and a metal alkoxide corresponding to the metal oxide are dispersed in an organic solvent on a transparent resin electrode substrate. In the method for producing a negative electrode in a dye-sensitized solar cell by forming a semiconductor porous layer by an oxidation treatment, and performing a dye adsorption treatment by bringing a dye solution into contact with the semiconductor porous layer, washing is performed after the dye adsorption treatment. A manufacturing method characterized by performing a treatment and then performing drying by vacuum drying or hot air blowing. 前記乾燥を、25乃至120℃の温度で10Torr以下の真空度に保持されたチャンバー内に保持することにより行う請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the drying is performed by holding in a chamber held at a temperature of 25 to 120 ° C and a vacuum of 10 Torr or less. 前記乾燥を、乾燥温度25乃至120℃の雰囲気のチャンバー内で、透明導電性樹脂基板側から、0.3乃至300m3の風量で気流を吹き付けることによる熱風乾燥により行う請求項1に記載の製造方法。 2. The production according to claim 1, wherein the drying is performed by hot air drying by blowing an air flow with an air volume of 0.3 to 300 m 3 from the transparent conductive resin substrate side in a chamber having an atmosphere of a drying temperature of 25 to 120 ° C. 3. Method. 半導体ペースト塗布後に直ちに半導体コーティング層を急激乾燥して脱溶媒し、脱溶媒に連続して脱水縮合並びに脱水縮合により生成した水の除去を行うことにより半導体多孔質層を形成する請求項1に記載の製造方法。   The semiconductor porous layer is formed by rapidly drying the semiconductor coating layer immediately after applying the semiconductor paste to remove the solvent, and subsequently removing the water generated by dehydration condensation and dehydration condensation after the solvent removal. Manufacturing method. 前記脱溶媒及びそれに続く脱水縮合及び水の除去を減圧下で行う請求項4に記載の製造方法。   The production method according to claim 4, wherein the desolvation and subsequent dehydration condensation and water removal are performed under reduced pressure. 前記脱溶媒を低温領域での加熱により行い、それに続く脱水縮合及び水の除去を高温領域での加熱により行う請求項5に記載の製造方法。   The production method according to claim 5, wherein the solvent removal is performed by heating in a low temperature region, and the subsequent dehydration condensation and water removal are performed by heating in a high temperature region. 前記低温領域が25乃至100℃であり、前記高温領域が100乃至200℃である請求項6に記載の製造方法。   The manufacturing method according to claim 6, wherein the low temperature region is 25 to 100 ° C, and the high temperature region is 100 to 200 ° C.
JP2005059101A 2005-03-03 2005-03-03 Method for producing negative electrode in dye-sensitized solar cell Expired - Fee Related JP4904698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059101A JP4904698B2 (en) 2005-03-03 2005-03-03 Method for producing negative electrode in dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059101A JP4904698B2 (en) 2005-03-03 2005-03-03 Method for producing negative electrode in dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2006244861A true JP2006244861A (en) 2006-09-14
JP4904698B2 JP4904698B2 (en) 2012-03-28

Family

ID=37051071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059101A Expired - Fee Related JP4904698B2 (en) 2005-03-03 2005-03-03 Method for producing negative electrode in dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4904698B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218394A (en) * 2007-02-28 2008-09-18 Samsung Sdi Co Ltd Dye-sensitized solar cell and method of manufacturing the same
JP2013110066A (en) * 2011-11-24 2013-06-06 Ulvac Japan Ltd Device and method of manufacturing dye-sensitized solar cell
JP2013161751A (en) * 2012-02-08 2013-08-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing the same, and dye-sensitized solar cell using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313444A (en) * 2001-04-18 2002-10-25 Hitachi Maxell Ltd Photoelectric transducer, and method for manufacturing the same
JP2002324591A (en) * 2001-02-21 2002-11-08 Showa Denko Kk Optical active electrode for dye sensitized solar cell and manufacturing method therefor
JP2003109676A (en) * 2001-09-27 2003-04-11 Konica Corp Semiconductor for photoelectric conversion material, photoelectric conversion element and solar battery
JP2004119099A (en) * 2002-09-25 2004-04-15 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion element, and solar cell
JP2005019124A (en) * 2003-06-25 2005-01-20 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion device, and solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324591A (en) * 2001-02-21 2002-11-08 Showa Denko Kk Optical active electrode for dye sensitized solar cell and manufacturing method therefor
JP2002313444A (en) * 2001-04-18 2002-10-25 Hitachi Maxell Ltd Photoelectric transducer, and method for manufacturing the same
JP2003109676A (en) * 2001-09-27 2003-04-11 Konica Corp Semiconductor for photoelectric conversion material, photoelectric conversion element and solar battery
JP2004119099A (en) * 2002-09-25 2004-04-15 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion element, and solar cell
JP2005019124A (en) * 2003-06-25 2005-01-20 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion device, and solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218394A (en) * 2007-02-28 2008-09-18 Samsung Sdi Co Ltd Dye-sensitized solar cell and method of manufacturing the same
JP2013110066A (en) * 2011-11-24 2013-06-06 Ulvac Japan Ltd Device and method of manufacturing dye-sensitized solar cell
JP2013161751A (en) * 2012-02-08 2013-08-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing the same, and dye-sensitized solar cell using the same
EP2814108A4 (en) * 2012-02-08 2015-10-07 Fujifilm Corp Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element

Also Published As

Publication number Publication date
JP4904698B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
Sun et al. Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air
US20070095390A1 (en) Solar cell and manufacturing method thereof
CN109004048A (en) A kind of preparation method of the inorganic perovskite quantum dot film of caesium lead bromine and photovoltaic device based on it
CN106033797A (en) Perovskite solar energy battery having organic skeleton structure and preparation method for the same
KR20090010632A (en) Photo electrodes equipped hollow sphere metal oxide nanoparticle for dye-sensitized photovoltaic cell and method for preparing the same
KR100945742B1 (en) The method for producing of the photo-electrode of dye-sensitized solar cell
TW201101508A (en) Dye-sensitized solar cells and manufacturing method for thereof
JP2002075477A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
TW201101556A (en) Method and device for dye adsorption for photosensitizing dye, process and apparatus for producing dye-sensitized solar cell, and dye-sensitized solar cell
JP2005251591A (en) Manufacturing method of negative electrode in dye-sensitized solar cell
JP2007084671A (en) Binder composition for dispersing semiconductor micro-particle
JP4904698B2 (en) Method for producing negative electrode in dye-sensitized solar cell
JP4601285B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
Wang et al. Dye-sensitized solar cells based on cobalt-containing room temperature ionic liquid redox shuttles
JP2008152949A (en) Titanium oxide film, semiconductor electrode, and dye-sensitized solar cell
JP4595337B2 (en) Method for producing negative electrode in dye-sensitized solar cell
Bharwal et al. Bimodal titanium oxide photoelectrodes with tuned porosity for improved light harvesting and polysiloxane-based polymer electrolyte infiltration
JP5332358B2 (en) Coating solution for reverse electron prevention layer formation
JP2003297442A (en) Photoelectric conversion oxide semiconductor electrode and dye-sensitized solar battery
JP2002184476A (en) Method of manufacturing porous photoelectric conversion semiconductor layer and solar battery
JP4379865B2 (en) Photoelectrode, method for producing the same, and solar cell using the same
JP4608897B2 (en) Method for producing negative electrode in dye-sensitized solar cell
JP2008053024A (en) Dye-sensitized solar battery
US20100154878A1 (en) Electrode Structure and Fabrication of the Dye-Sensitized Solar Cell
JP4635447B2 (en) Semiconductor fine particle paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees