JP2006242523A - Hot-water boiler - Google Patents

Hot-water boiler Download PDF

Info

Publication number
JP2006242523A
JP2006242523A JP2005061906A JP2005061906A JP2006242523A JP 2006242523 A JP2006242523 A JP 2006242523A JP 2005061906 A JP2005061906 A JP 2005061906A JP 2005061906 A JP2005061906 A JP 2005061906A JP 2006242523 A JP2006242523 A JP 2006242523A
Authority
JP
Japan
Prior art keywords
fluid
temperature
fluid temperature
combustion
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005061906A
Other languages
Japanese (ja)
Inventor
Sota Shimada
宗太 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2005061906A priority Critical patent/JP2006242523A/en
Publication of JP2006242523A publication Critical patent/JP2006242523A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil-burning boiler capable of preventing damage of a heat exchanger by surely judging a blockage of piping even when the difference between fluid temperature in starting combustion and target fluid temperature is small. <P>SOLUTION: A control portion 11 judges the blockage of fluid piping 6 on the basis of the fluid temperature and burning capacity determined on the basis of the fluid temperature and a set temperature, and controls a flow adjustment valve 21, immediately after the start of combustion of combustors 1, 2. The fluid temperature TO in starting the combustion and a fluid temperature T after the lapse of determination time are detected, and the blockage of the fluid piping is judged only when the fluid temperature T after the lapse of determination time is lower than a determination temperature obtained by adding determination temperature rise ΔT to the fluid temperature in starting the combustion, and the burning capacity Q after the lapse of determination time is more than a prescribed determination burning capacity Qj, so that the flow adjustment valve 21 is totally closed to extinguish a fire. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、温水により室内を暖房する温水式暖房装置に流体を加熱供給する油だき温水ボイラに係り、詳しくは温水配管の詰まりや凍結を判断する安全装置に関する。   The present invention relates to an oil-fired hot water boiler that supplies a fluid to a hot water heating apparatus that heats a room with hot water, and more particularly to a safety device that determines clogging or freezing of hot water piping.

従来の油だき温水ボイラは、例えば、特許文献1に開示されているように、燃料を燃焼させる燃焼器と、同燃焼器により発生した燃焼熱と内部を流れる流体とを熱交換する熱交換器を有する流体配管と、前記燃焼器に燃料を供給する供給路を開閉する開閉手段と、前記燃焼器による前記燃料による燃焼の停止を指示する指示手段を有し、同指示手段の指示に応じて前記開閉手段を制御する制御手段とを備え、前記制御手段は、前記熱交換器または同熱交換器付近の前記流体の温度または温度の変化量を検出する検出手段を有し、前記指示手段によって前記燃焼器による前記燃料の燃焼が指示された時、前記開閉手段を制御して前記供給路を開き、前記検出手段によって検出された前記流体の温度または温度の変化量が所定範囲外である場合、例えば、燃焼を開始してから第1設定時間t1が経過するまでに第1設定温度T1(=7℃)以下または第1温度変化ΔT1(=7℃)以下である場合は、熱交換器またはこの熱交換器付近の温水管内の温水が凍結していると判断し、前記開閉手段を制御して前記供給路を閉じることにより、流体が沸点に達する前に燃焼器による燃料の燃焼を中止して熱交換器内の流体の加熱を止めるようにしている。
これにより、流体配管内を流体が流れ難くても流体配管内の圧力があまり上昇せず、流体配管が破裂したりすることを防止していた。
A conventional oil-fired hot water boiler is, for example, as disclosed in Patent Document 1, a heat exchanger that exchanges heat between a combustor that burns fuel and combustion heat generated by the combustor and fluid that flows inside the combustor. A fluid pipe, an opening / closing means for opening and closing a supply path for supplying fuel to the combustor, and an instruction means for instructing stop of combustion by the fuel by the combustor, and according to an instruction of the instruction means Control means for controlling the opening / closing means, and the control means has detection means for detecting the temperature of the fluid or the temperature change of the fluid near the heat exchanger, When the combustion of the fuel by the combustor is instructed, the opening / closing means is controlled to open the supply path, and the temperature of the fluid or the amount of change in temperature detected by the detection means is outside a predetermined range , For example, when the first set temperature T1 (= 7 ° C.) or less or the first temperature change ΔT1 (= 7 ° C.) or less from the start of combustion until the first set time t1 elapses, the heat exchanger or By determining that the hot water in the hot water pipe near the heat exchanger is frozen and closing the supply path by controlling the opening and closing means, the combustion of the fuel by the combustor is stopped before the fluid reaches the boiling point. Thus, heating of the fluid in the heat exchanger is stopped.
As a result, even if it is difficult for the fluid to flow through the fluid piping, the pressure in the fluid piping does not increase so much that the fluid piping is prevented from bursting.

しかし、特許文献1に開示されている技術は、図8に示すように、燃焼開始時の温度と、目標流体温度との差が大きい場合は、正常時の温度変化が大きいため、凍結による管の閉塞時の温度変化ΔTとの差が大きいので、判定し易いが、図7−aに示すように、燃焼開始時の流体温度と、目標流体温度との差が小さい場合、目標流体温度近傍で燃焼量が制御され、前記第1設定時間t1経過時点で正常時の温度変化が閉塞時の温度変化ΔTより小さくなることがある。
このため、凍結検知機能を有効とする温度を例えば5℃以下としているため、燃焼開始時の流体温度と、目標流体温度との差が小さい場合、前記凍結検知機能を有効とする温度を超えるため、凍結やスケールによる配管の閉塞を判断することができないという問題がある。
However, as shown in FIG. 8, the technique disclosed in Patent Document 1 shows that when the difference between the temperature at the start of combustion and the target fluid temperature is large, the temperature change during normal operation is large. Since the difference with the temperature change ΔT at the time of blockage is large, it is easy to determine, but when the difference between the fluid temperature at the start of combustion and the target fluid temperature is small as shown in FIG. The combustion amount is controlled by the above, and when the first set time t1 elapses, the temperature change at the normal time may be smaller than the temperature change ΔT at the closing time.
For this reason, since the temperature at which the freezing detection function is activated is set to, for example, 5 ° C. or less, when the difference between the fluid temperature at the start of combustion and the target fluid temperature is small, it exceeds the temperature at which the freezing detection function is activated. There is a problem that it is impossible to determine the blockage of piping due to freezing or scale.

特開平04−64859号公報(第7−34頁、第1図)JP 04-64859 A (pages 7-34, FIG. 1)

本発明は、上記従来技術の問題点を解決し、燃焼開始時の流体温度と、目標流体温度との差が小さい場合でも確実に配管の閉塞を判断して熱交換器の損傷を防止することのできる油だきボイラを提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and even when the difference between the fluid temperature at the start of combustion and the target fluid temperature is small, the blockage of the pipe is reliably judged to prevent the heat exchanger from being damaged. It aims to provide an oil-fired boiler that can be used.

本発明は、本体内に燃料の流量を調整する流量調整弁と、同流量調整弁を介して供給される液体燃料を燃焼させる燃焼器と、同燃焼器で発生する燃焼熱と内部を流通する流体と熱交換する熱交換器と、前記流体を前記熱交換器に流通させる流体ポンプと、前記熱交換器で温められた流体(温水)を室内機に流出する流体往き管と同室内機を流通して冷やされた流体を流入する流体戻り管とでなる流体配管と、前記流体往き管に流通する流体温度を検出する流体温度検出手段と、同流体温度検出手段の検出する流体温度と前記室内機から設定された設定温度とから前記流量調整弁を調節して前記燃焼器の燃焼量を制御する制御部とからなる温水ボイラにおいて、
前記制御部が前記流体温度の変化量と前記燃焼量の変化量とにより前記流量調整弁を調整することを特徴とする温水ボイラとしている。
The present invention includes a flow rate adjusting valve that adjusts the flow rate of fuel in a main body, a combustor that burns liquid fuel supplied via the flow rate adjusting valve, and combustion heat generated in the combustor. A heat exchanger that exchanges heat with a fluid, a fluid pump that circulates the fluid through the heat exchanger, a fluid forward pipe that discharges fluid (warm water) heated by the heat exchanger to the indoor unit, and the indoor unit A fluid pipe comprising a fluid return pipe that flows in and flows a cooled fluid; fluid temperature detection means for detecting a fluid temperature flowing through the fluid forward pipe; fluid temperature detected by the fluid temperature detection means; and In a hot water boiler comprising a control unit that controls the combustion amount of the combustor by adjusting the flow rate adjustment valve from a set temperature set from an indoor unit,
The controller is configured to adjust the flow rate adjusting valve according to the change amount of the fluid temperature and the change amount of the combustion amount.

また、前記燃焼器の燃焼開始時の流体温度と所定の判定時間経過後の流体温度とを検出し、同判定時間経過後の流体温度が前記燃焼開始時の流体温度に判定温度上昇分を加算した判定温度以下であり、かつ、判定時間経過後の燃焼量が所定の判定燃焼量以上である場合に前記流体配管の詰まりと判断し前記流量調整弁を調整してなる温水ボイラとしている。   In addition, the fluid temperature at the start of combustion of the combustor and the fluid temperature after the elapse of a predetermined determination time are detected, and the fluid temperature after the elapse of the determination time adds the determination temperature increase to the fluid temperature at the start of the combustion. The hot water boiler is formed by determining that the fluid piping is clogged when the combustion amount after the determination time is equal to or higher than a predetermined determination combustion amount and adjusting the flow rate adjustment valve.

以上説明したように、制御部が燃焼器の燃焼開始直後に、流体温度と、同流体温度と設定温度とから決定される燃焼量とにより流体配管の詰まりを判断して流量調整弁を制御してなり、燃焼開始時の流体温度T0と判定時間経過後の流体温度Tとを検出し、判定時間経過後の流体温度Tが燃焼開始時の流体温度T0に判定温度上昇ΔTを加算した判定温度以下であり、かつ、判定時間経過後の燃焼量Qが所定の判定燃焼量Qj以上である場合にのみ流体配管の詰まりと判断し、流量調整弁を全閉、消火するので、
初期流体温度T0が比較的目標流体温度に近い場合であっても、誤判断を防止し、確実に流体配管の詰まりを判断するので、流体配管内を流体が流れ難くても流体配管内の圧力があまり上昇せず、流体配管が破裂したりすることを防止することのできる油だき温水ボイラを提供する。
As described above, immediately after the start of combustion of the combustor, the control unit determines the clogging of the fluid piping based on the fluid temperature and the combustion amount determined from the fluid temperature and the set temperature, and controls the flow rate adjustment valve. The fluid temperature T0 at the start of combustion and the fluid temperature T after the passage of the judgment time are detected, and the fluid temperature T after the passage of the judgment time adds the judgment temperature rise ΔT to the fluid temperature T0 at the start of combustion. Since it is determined that the fluid piping is clogged only when the combustion amount Q after the determination time has elapsed is equal to or greater than the predetermined determination combustion amount Qj, the flow adjustment valve is fully closed and extinguished,
Even when the initial fluid temperature T0 is relatively close to the target fluid temperature, misjudgment is prevented and clogging of the fluid piping is reliably determined. Therefore, even if it is difficult for the fluid to flow through the fluid piping, the pressure in the fluid piping Provides an oil-fired hot water boiler that can prevent fluid pipes from bursting.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings.

図1は本発明に係る油だきボイラの構造図、図2は本発明による油だきボイラを使用した暖房システムの構成図である。
油だきボイラ(10)は、ファンコンベクタや、床暖房用配管等の室内機(30)に温かい流体(温水)を供給するものである。
図1および図2に示すように、本発明の油だきボイラは、その本体10内に外部に設置されたコック20aを備える燃料タンク20より外部送油管20b、送油管接続口21a1および内部送油管21aを介して供給される灯油(液体燃料)の流量を調整する流量調整弁21と、同流量調整弁21を介して供給される灯油(液体燃料)を送風ファン1aにより送風される空気と混合して気化する気化室1と同気化室1の上方に配設され気化した液体燃料を燃焼させる燃焼室2とでなる燃焼器と、同燃焼器の前記燃焼室2の上部に配設され、同燃焼室2で発生する燃焼熱と、内部を流通する流体と熱交換する熱交換器3と、上部に給水口4aを備え流体を溜めるリザーブタンク4と、同リザーブタンク4からの流体を前記熱交換器3側に送出する流体ポンプ5と、前記リザーブタンク4、前記流体ポンプ5、および前記熱交換器3を順次接続して前記流体を流通して、同熱交換器3で温められた流体(温水)を流体往き管6aから流体往き口6a1を介して前記室内機30に送出し、同室内機30の熱交換器31を流通して冷やされた流体を流体戻り口6b1を介して流体戻り管6bから前記リザーブタンク4に戻す流体配管6とで構成されている。
FIG. 1 is a structural diagram of an oil-fired boiler according to the present invention, and FIG. 2 is a block diagram of a heating system using the oil-fired boiler according to the present invention.
The oil-fired boiler (10) supplies warm fluid (hot water) to an indoor unit (30) such as a fan convector or a floor heating pipe.
As shown in FIGS. 1 and 2, the oil-fired boiler according to the present invention includes an external oil feed pipe 20b, an oil feed pipe connection port 21a1, and an internal oil feed pipe from a fuel tank 20 having a cock 20a installed outside in the main body 10. The flow rate adjusting valve 21 that adjusts the flow rate of kerosene (liquid fuel) supplied via 21a and the kerosene (liquid fuel) supplied via the flow rate adjusting valve 21 are mixed with the air blown by the blower fan 1a. A combustor comprising a vaporizing chamber 1 to be vaporized and a combustion chamber 2 disposed above the vaporizing chamber 1 and combusting the vaporized liquid fuel, and disposed above the combustion chamber 2 of the combustor, Combustion heat generated in the combustion chamber 2, a heat exchanger 3 for exchanging heat with a fluid flowing through the inside, a reserve tank 4 having a water supply port 4 a in the upper part and storing the fluid, and a fluid from the reserve tank 4 Send to heat exchanger 3 side A fluid pump 5, the reserve tank 4, the fluid pump 5, and the heat exchanger 3 are sequentially connected to flow the fluid, and the fluid (hot water) heated by the heat exchanger 3 is fluid-outward pipe The reserve tank is sent from the fluid return port 6b1 to the indoor unit 30 through the fluid outlet 6a1 and circulated through the heat exchanger 31 of the indoor unit 30 from the fluid return pipe 6b through the fluid return port 6b1. And a fluid pipe 6 to be returned to 4.

そして、図1に示すように、前記流体往き管6aの流体往き口6a1近傍と、前記流体戻り管6bの流体戻り口6b1近傍との間をバイパス管7で接続している。
このバイパス管7は、例えば前記室内機30の配管が詰まったり、流通量が減った時に前記流体配管6の流通量を確保して前記熱交換器3内で流体が沸騰して空焚きとなり同熱交換器3が溶損するのを防止するためのものである。
また、前記熱交換器3と前記流体往き口6a1を接続する前記流体往き管6aの途中には流体往き口6a1側に内部を流通する流体の温度を検出するサーミスタでなる流体温度センサ8と、熱交換器3側にバイメタルでなる加熱防止装置9が設けられている。
As shown in FIG. 1, a bypass pipe 7 connects between the vicinity of the fluid outlet 6a1 of the fluid outlet pipe 6a and the vicinity of the fluid return opening 6b1 of the fluid return pipe 6b.
For example, when the pipe of the indoor unit 30 is clogged or the flow rate is reduced, the bypass pipe 7 secures the flow rate of the fluid pipe 6 so that the fluid boils in the heat exchanger 3 and becomes empty. This is to prevent the heat exchanger 3 from melting.
A fluid temperature sensor 8 comprising a thermistor for detecting the temperature of the fluid flowing through the fluid outlet 6a1 in the middle of the fluid outlet pipe 6a connecting the heat exchanger 3 and the fluid outlet 6a1; A heat prevention device 9 made of bimetal is provided on the heat exchanger 3 side.

また、図2に示す制御部11は、前記流体温度センサ8の検出する流体温度と、内臓する時計(タイマー)からの時間と、室内機30の操作部34の操作により指示された設定温度から決定される目標流体温度とから、前記流量調整弁21の開度および前記気化室内に配置される送風ファン1aの送風量を調整することにより前記燃焼器の燃焼量を制御している。   2 is based on the fluid temperature detected by the fluid temperature sensor 8, the time from the built-in clock (timer), and the set temperature instructed by the operation of the operation unit 34 of the indoor unit 30. The combustion amount of the combustor is controlled by adjusting the opening degree of the flow rate adjusting valve 21 and the blowing amount of the blowing fan 1a disposed in the vaporizing chamber from the determined target fluid temperature.

なお、前記室内機30には前記流体往き口6a1を介して流入された流体と室内空気と熱交換する熱交換器31と、同熱交換器31に室内空気を送風する送風機32と、室内温度を検出する室温検出手段33と、設定温度を入力する前記操作部34と、前記室内温度、設定温度等の情報を前記油だきボイラ本体10の制御部11に送信し、同制御部11からの制御信号に基づいて前記送風機32を制御する制御部35とを備えている。   In addition, the heat exchanger 31 that exchanges heat between the fluid that flows into the indoor unit 30 through the fluid outlet 6a1 and room air, the blower 32 that blows room air to the heat exchanger 31, and the room temperature The room temperature detecting means 33 for detecting the temperature, the operation unit 34 for inputting the set temperature, and the information such as the room temperature and the set temperature are transmitted to the control unit 11 of the oil-fired boiler body 10, and the control unit 11 And a control unit 35 that controls the blower 32 based on a control signal.

図3は本発明による油だきボイラの室内機30を含む流体配管6の凍結や不凍液のスケールによる詰まりを検出する動作を示すフローチャート図、図4は本発明による油だき温水ボイラにおける流体温度の制御を説明するための図で、流体温度の時間的推移を示す推移図、図5は同油だき温水ボイラにおける燃焼量の制御を説明するための図で、燃焼量の時間的推移を示す推移図、図6は同油だき温水ボイラの正常時における着火時の流体温度が目標流体温度に近い場合と離れている場合についての流体温度の時間的推移をそれぞれ示す推移図、図7は同流体配管6の詰まりの検出原理を説明するための図で、図7−aは流体温度の時間的推移、図7−bは燃焼量の時間的推移を示す推移図である。   FIG. 3 is a flowchart showing an operation for detecting freezing of the fluid piping 6 including the indoor unit 30 of the oil-fired boiler according to the present invention and clogging due to the scale of the antifreeze liquid, and FIG. 4 is a control of the fluid temperature in the oil-fired hot water boiler according to the present invention. FIG. 5 is a transition diagram showing the temporal transition of the fluid temperature, FIG. 5 is a diagram for explaining the control of the combustion amount in the oil-fired hot water boiler, and a transition diagram showing the temporal transition of the combustion amount FIG. 6 is a transition diagram showing the temporal transition of the fluid temperature when the fluid temperature at the time of normal ignition of the oil-fired hot water boiler is close to and away from the target fluid temperature, and FIG. 6A and 7B are diagrams for explaining the clogging detection principle of FIG. 6, in which FIG. 7A is a time transition of the fluid temperature, and FIG.

流体配管6の詰まりの検出原理を説明する前に、まず、図4、図5、図6を参照して本発明による油だき温水ボイラにおける流体温度の制御方法について説明する。
図4に示すように、燃焼器に着火して流体の加熱が開始されると、流体(温水)温度は目標流体(温水)温度Tsを目指して上昇を開始する。
図4中の(1) に示すように、流体(温水)温度が目標流体(温水)温度Tsに達した時点で、図5の(1) に示すように燃焼量を制御しても、流体温度はオーバーシュートして消火温度に達してしまう。
そこで、(2) に示すように、流体温度が温水温度制御開始温度Tc(例えばTs−10℃)に達した時点で、図5の(2) に示すように燃焼量を制御することにより、流体温度(温水温度)の余分な上昇を防ぎ、オーバーシュートを起こして消火温度に達し、誤って消火してしまうのを防いでいる。
このような制御の下で、流体配管6の詰まりのない正常な場合では、図6の(1) に示すように、着火時の流体(温水)温度が目標流体(温水)温度Tsより十分低い場合、凍結検知判定時間を経過しても、流体温度が温水温度制御開始温度Tc(例えばTs−10℃)に達しないので、温度上昇ΔT1は大きい値になる。
また、図6の(2) に示すように、着火時の流体(温水)温度が目標流体(温水)温度Tsに近い場合には、凍結検知判定時間経過前に温水温度制御開始温度Tc(例えばTs−10℃)に達して、燃焼量が制御され、流体温度(温水温度)の上昇が抑えられるので、温度上昇ΔT2は、着火時の流体温度(温水温度)が目標流体温度(目標温水温度)Tsより十分低い場合の温度上昇ΔT1より小さい値で、しかも、従来の凍結判定条件(例えばΔT<5℃)を満足してしまうため、従来の凍結判定方法では流体配管6の詰まりのない正常な場合でも凍結と誤判定されてしまう。
Before explaining the principle of detecting clogging of the fluid piping 6, first, a method for controlling the fluid temperature in the oil-fired hot water boiler according to the present invention will be described with reference to FIG. 4, FIG. 5, and FIG.
As shown in FIG. 4, when the combustor is ignited and fluid heating is started, the fluid (warm water) temperature starts to rise toward the target fluid (warm water) temperature Ts.
As shown in (1) of FIG. 4, when the fluid (warm water) temperature reaches the target fluid (warm water) temperature Ts, even if the combustion amount is controlled as shown in (1) of FIG. The temperature overshoots and reaches the fire extinguishing temperature.
Therefore, as shown in (2), when the fluid temperature reaches the hot water temperature control start temperature Tc (for example, Ts-10 ° C.), the combustion amount is controlled as shown in (2) of FIG. It prevents an excessive increase in fluid temperature (warm water temperature), prevents overshooting, reaches the fire extinguishing temperature, and prevents accidental fire extinguishing.
Under such control, in a normal case where the fluid piping 6 is not clogged, the fluid (warm water) temperature at the time of ignition is sufficiently lower than the target fluid (warm water) temperature Ts as shown in (1) of FIG. In this case, since the fluid temperature does not reach the hot water temperature control start temperature Tc (for example, Ts−10 ° C.) even after the freezing detection determination time has elapsed, the temperature rise ΔT1 becomes a large value.
Further, as shown in (2) of FIG. 6, when the fluid (warm water) temperature at the time of ignition is close to the target fluid (warm water) temperature Ts, the warm water temperature control start temperature Tc (for example, before the freezing detection determination time elapses) Ts−10 ° C.), the combustion amount is controlled, and the increase in fluid temperature (warm water temperature) is suppressed. Therefore, the temperature rise ΔT2 is the target fluid temperature (target warm water temperature). ) The value is smaller than Ts when the temperature is sufficiently lower than Ts, and satisfies the conventional freezing judgment condition (for example, ΔT <5 ° C.), so that the conventional freezing judgment method does not clog the fluid piping 6. Even in such a case, it is erroneously determined as freezing.

次に、図4〜図7を参照して本発明における流体配管6の詰まりの検出原理を説明する。
前記燃焼器は燃焼が開始されると、一定の増加率で燃料の燃焼量を増やすように制御される。
Next, the detection principle of clogging of the fluid piping 6 in the present invention will be described with reference to FIGS.
When combustion starts, the combustor is controlled to increase the amount of fuel combustion at a constant rate of increase.

前記流体配管6の詰まりが有る凍結時には、図7−aおよび図7−bに示すように、燃焼が開始されると、前記流体温度センサ8の検出する流体温度は初期流体温度T0から序々に上昇するが、流体温度制御開始温度Tcを超えないか、または、超える時間が遅く、凍結判定時間経過後の判定流体温度T1は(凍結判定温度)=(初期流体温度T0+凍結判定温度上昇ΔT)を超えないが、前記図7−bに示すように、前記燃焼器の燃焼量Qは初期の燃焼量Q0から一定の増加率で増加し続けて凍結判定時間経過後には燃焼量Q1に達する。   At the time of freezing when the fluid pipe 6 is clogged, as shown in FIGS. 7A and 7B, when combustion is started, the fluid temperature detected by the fluid temperature sensor 8 gradually increases from the initial fluid temperature T0. Although the fluid temperature control start temperature Tc does not exceed or exceeds the fluid temperature control start temperature Tc, the determination fluid temperature T1 after the freezing determination time elapses is (freezing determination temperature) = (initial fluid temperature T0 + freezing determination temperature increase ΔT) However, as shown in FIG. 7B, the combustion amount Q of the combustor continues to increase from the initial combustion amount Q0 at a constant increase rate, and reaches the combustion amount Q1 after the freezing determination time has elapsed.

一方、前記流体配管6の詰まりが無い正常時には、図7−aまたは図4の(2) に示すように、燃焼が開始されると、前記流体温度センサ8の検出する流体温度は初期流体温度T0から目標流体温度に向けて序々に上昇するが、流体温度制御開始温度Tc(例えば、目標流体温度−10℃)を超えると、前記制御部11が前記流量調整弁21の開度および前記気化室内に配置される送風ファン1aの送風量を調整することにより、図7−bまたは図5の(2) に示すように前記燃焼器の燃焼量Qを減らすことにより、オーバーシュートを抑えながら流体温度を目標流体温度に近づけるように制御される。
図6に示すように、初期流体温度T0が目標流体温度と離れている(1) の場合は凍結判定時間内に前記燃焼器の燃焼量Qの増加が抑えられることがなく、凍結判定時間経過後の判定流体温度T2が(凍結判定温度)=(初期流体温度T0+凍結判定温度上昇ΔT)を超える。
しかし、正常時であっても、初期流体温度T0が比較的目標流体温度に近い図6の(2) の場合は凍結判定時間内に前記燃焼器の燃焼量Qの増加が抑えられ、凍結判定時間経過後の判定流体温度T2が(凍結判定温度)=(初期流体温度T0+凍結判定温度上昇ΔT)を超えないことがある。
従って、初期流体温度T0が目標流体温度と離れている場合は、従来のように、凍結判定時間経過後の判定流体温度を検出しただけで判定することで問題ないが、初期流体温度T0が比較的目標流体温度に近い場合は、従来のように、凍結判定時間経過後の判定流体温度を検出しただけで判定すると、正常時でも凍結、即ち、詰まりと判定してしまうことになる。
On the other hand, when the fluid piping 6 is normal and clogged, as shown in FIG. 7A or (2) of FIG. 4, when combustion is started, the fluid temperature detected by the fluid temperature sensor 8 is the initial fluid temperature. The temperature gradually increases from T0 toward the target fluid temperature, but when the fluid temperature control start temperature Tc (for example, target fluid temperature −10 ° C.) is exceeded, the control unit 11 opens the flow rate adjustment valve 21 and the vaporization. By adjusting the amount of air blown by the blower fan 1a disposed indoors, the combustion amount Q of the combustor is reduced as shown in FIG. 7B or FIG. The temperature is controlled to approach the target fluid temperature.
As shown in FIG. 6, when the initial fluid temperature T0 is away from the target fluid temperature (1), the increase in the combustion amount Q of the combustor is not suppressed within the freezing judgment time, and the freezing judgment time elapses. The later determination fluid temperature T2 exceeds (freezing determination temperature) = (initial fluid temperature T0 + freezing determination temperature increase ΔT).
However, even in the normal state, in the case of (2) in FIG. 6 where the initial fluid temperature T0 is relatively close to the target fluid temperature, an increase in the combustion amount Q of the combustor is suppressed within the freezing determination time, and the freezing determination The judgment fluid temperature T2 after the elapse of time may not exceed (freezing judgment temperature) = (initial fluid temperature T0 + freezing judgment temperature rise ΔT).
Therefore, when the initial fluid temperature T0 is far from the target fluid temperature, there is no problem by simply determining the determination fluid temperature after the lapse of the freezing determination time as in the prior art, but the initial fluid temperature T0 is compared. When the target fluid temperature is close to the target target fluid temperature, if the determination is made only by detecting the determination fluid temperature after the freezing determination time elapses as in the prior art, it will be determined that the fluid is frozen, i.e., clogged even at normal times.

図7−bに示すように、正常時と凍結時との前記凍結判定時間経過後の前記燃焼器の燃焼量Qを比較すると、正常時の燃焼量Q2は凍結時の燃焼量Q1より少なくなるので、本発明においては、このことを利用して初期流体温度T0が比較的目標流体温度に近い場合でも凍結(詰まり)の判定をすることが可能となる。   As shown in FIG. 7B, when comparing the combustion amount Q of the combustor after the lapse of the freezing determination time between normal time and freezing, the normal combustion amount Q2 is smaller than the freezing combustion amount Q1. Therefore, in the present invention, it is possible to determine freezing (clogging) even when the initial fluid temperature T0 is relatively close to the target fluid temperature by utilizing this fact.

次に、図3のフローチャートを参照して、本発明による油だき温水ボイラの動作を説明する。
室内機30の操作部34の操作により電源が投入されると、同操作部34の操作により設定された目標温度となる目標流体温度を設定(ST1)し、初期流体温度T0を検出し記憶する(ST2)。
次に、流量調整弁21を開放して点火後、燃焼量Q0で燃焼を開始し、一定の増加率で燃焼量を増量する(ST3)。
次に、タイマーをスタートさせ(ST104)、凍結(詰まり)判定時間経過したか監視する(ST105)と共に、前記流体流体温度センサ8の検出する流体温度Tと前記目標流体温度から所定温度を引いた値として決定される制御開始温度Tcと比較する(ST204)。
ST204で流体温度Tが制御開始温度Tcより高くなると、前記流量制御弁21の開度を調整すると共に、前記送風ファン1aを制御して、前記目標流体温度から決定される燃焼量Q2となるように調整する(ST205)。
また、ST105で凍結判定時間t1経過すると、その時の流体温度Tと、ST2で検出した初期流体温度T0に凍結判定温度上昇ΔTを加えた凍結判定温度(T0+ΔT)と比較する(ST106)。
ST106で流体温度Tが凍結判定温度(T0+ΔT)以下でなければ、流体配管の詰まりは無いと判定し終了するが、流体温度Tが凍結判定温度(T0+ΔT)以下であった場合は、その時の燃焼量Qが凍結判定燃焼量QJと比較する(ST107)。
ST107で、燃焼量Qが凍結判定燃焼量QJ以上でなければ、流体配管の詰まりは無いと判定し終了するが、燃焼量Qが凍結判定燃焼量QJ以上である場合は、流体配管の詰まりがあると判定し、前記制御弁21を全閉して消火する(ST108)。
なお、本実施例では制御弁21を全閉としているが、必ずしも全閉である必要ではなく、全閉よりわずかに開けた状態を維持することにより、流体配管の凍結を解凍させることも可能となる。
Next, the operation of the oil-fired hot water boiler according to the present invention will be described with reference to the flowchart of FIG.
When the power is turned on by operating the operation unit 34 of the indoor unit 30, the target fluid temperature that is the target temperature set by the operation of the operation unit 34 is set (ST1), and the initial fluid temperature T0 is detected and stored. (ST2).
Next, after opening the flow rate adjusting valve 21 and igniting, combustion is started at the combustion amount Q0, and the combustion amount is increased at a constant increase rate (ST3).
Next, a timer is started (ST104), and it is monitored whether the freezing (clogging) determination time has elapsed (ST105), and a predetermined temperature is subtracted from the fluid temperature T detected by the fluid fluid temperature sensor 8 and the target fluid temperature. It is compared with the control start temperature Tc determined as a value (ST204).
When the fluid temperature T becomes higher than the control start temperature Tc in ST204, the opening degree of the flow rate control valve 21 is adjusted and the blower fan 1a is controlled so that the combustion amount Q2 is determined from the target fluid temperature. (ST205).
When the freezing determination time t1 has elapsed in ST105, the fluid temperature T at that time is compared with the freezing determination temperature (T0 + ΔT) obtained by adding the freezing determination temperature increase ΔT to the initial fluid temperature T0 detected in ST2 (ST106).
If the fluid temperature T is not equal to or lower than the freezing determination temperature (T0 + ΔT) in ST106, it is determined that there is no clogging of the fluid pipe, and the process ends. The amount Q is compared with the freezing determination combustion amount QJ (ST107).
In ST107, if the combustion amount Q is not equal to or greater than the freezing determination combustion amount QJ, it is determined that there is no clogging of the fluid piping, and the process is terminated. It is determined that there is, and the control valve 21 is fully closed to extinguish the fire (ST108).
In this embodiment, the control valve 21 is fully closed. However, the control valve 21 is not necessarily fully closed, and it is possible to thaw freezing of the fluid piping by maintaining a state slightly opened from the fully closed state. Become.

本発明に係る油だき温水ボイラの構造図である。1 is a structural diagram of an oil-fired hot water boiler according to the present invention. 本発明による油だき温水ボイラを使用した温水暖房システムの構成図である。1 is a configuration diagram of a hot water heating system using an oil-fired hot water boiler according to the present invention. 本発明による油だき温水ボイラの室内機30を含む流体配管6の凍結や不凍液のスケールによる詰まりを検出する動作を示すフローチャート図である。It is a flowchart figure which shows the operation | movement which detects the clogging by the freezing of the fluid piping 6 containing the indoor unit 30 of the oil-fired hot water boiler by this invention, or the scale of an antifreeze. 本発明による油だき温水ボイラにおける流体温度の制御を説明するための図で、流体温度の時間的推移を示す推移図である。It is a figure for demonstrating control of the fluid temperature in the oil-fired hot water boiler by this invention, and is a transition diagram which shows the time transition of fluid temperature. 本発明による油だき温水ボイラにおける燃焼量の制御を説明するための図で、燃焼量の時間的推移を示す推移図である。It is a figure for demonstrating control of the combustion quantity in the oil-fired warm water boiler by this invention, and is a transition diagram which shows the time transition of a combustion quantity. 本発明による油だき温水ボイラの正常時における流体温度の時間的推移を示す推移図で、着火時の流体温度が目標流体温度に近い場合と離れている場合について対比して示している。In the transition diagram which shows the time transition of the fluid temperature at the time of normal of the oil-fired hot water boiler by this invention, it has shown in contrast with the case where the fluid temperature at the time of ignition is close | similar to the target fluid temperature. 本発明による油だき温水ボイラの流体配管の詰まりの検出原理を説明するための図で、図7−aは流体温度の時間的推移、図7−bは燃焼量の時間的推移を示す推移図である。7A and 7B are diagrams for explaining a detection principle of clogging of a fluid piping of an oil-fired hot water boiler according to the present invention, in which FIG. 7A is a time transition of fluid temperature, and FIG. 7B is a transition diagram illustrating a time transition of combustion amount. It is. 従来の油だき温水ボイラの流体配管の詰まりの検出原理を説明するための流体温度の時 間的推移図である。FIG. 6 is a time transition diagram of fluid temperature for explaining the detection principle of clogging of a fluid piping of a conventional oil-fired hot water boiler.

符号の説明Explanation of symbols

1 気化室
1a 送風ファン
2 燃焼室
3 熱交換器
4 リザーブタンク
4a 給水口
5 流体ポンプ
6 流体配管
6a 流体往き管
6a1 流体往き口
6b 流体戻り管
6b1 流体戻り口
7 バイパス管
8 流体温度センサ
9 加熱防止装置
10 油だき温水ボイラ本体
11 制御部
20 燃料タンク
20a コック
20b 外部送油管
21 流量調整弁
21a 内部送油管
21a1 送油管接続口
30 室内機
31 熱交換器
32 送風機
33 室温検出手段
34 操作部
35 制御部
DESCRIPTION OF SYMBOLS 1 Vaporization chamber 1a Blower fan 2 Combustion chamber 3 Heat exchanger 4 Reserve tank 4a Water supply port 5 Fluid pump 6 Fluid piping 6a Fluid forward pipe 6a1 Fluid forward port 6b Fluid return pipe 6b1 Fluid return port 7 Bypass pipe 8 Fluid temperature sensor 9 Heating Prevention device 10 Oil-fired hot water boiler body 11 Control unit 20 Fuel tank 20a Cock 20b External oil feed pipe 21 Flow rate adjusting valve 21a Internal oil feed pipe 21a1 Oil feed pipe connection port 30 Indoor unit 31 Heat exchanger 32 Blower 33 Room temperature detection means 34 Operation part 35 Control unit

Claims (2)

本体内に燃料の流量を調整する流量調整弁と、同流量調整弁を介して供給される液体燃料を燃焼させる燃焼器と、同燃焼器で発生する燃焼熱と内部を流通する流体と熱交換する熱交換器と、前記流体を前記熱交換器に流通させる流体ポンプと、前記熱交換器で温められた流体(温水)を室内機に流出する流体往き管と同室内機を流通して冷やされた流体を流入する流体戻り管とでなる流体配管と、前記流体往き管に流通する流体温度を検出する流体温度検出手段と、同流体温度検出手段の検出する流体温度と前記室内機から設定された設定温度とから前記流量調整弁を調節して前記燃焼器の燃焼量を制御する制御部とからなる温水ボイラにおいて、
前記制御部が前記流体温度の変化量と前記燃焼量の変化量とにより前記流量調整弁を調整することを特徴とする温水ボイラ。
A flow rate adjustment valve that adjusts the flow rate of fuel in the main body, a combustor that combusts liquid fuel supplied through the flow rate adjustment valve, combustion heat generated in the combustor, and heat exchange with fluid flowing inside A heat exchanger that circulates the fluid through the heat exchanger, a fluid forward pipe that discharges the fluid (hot water) heated by the heat exchanger to the indoor unit, Set from the indoor unit, a fluid temperature detection means for detecting a fluid temperature flowing through the fluid forward pipe, a fluid temperature detected by the fluid temperature detection means In a hot water boiler comprising a control unit that controls the combustion amount of the combustor by adjusting the flow rate adjustment valve from the set temperature that has been set,
The hot water boiler, wherein the controller adjusts the flow rate adjusting valve according to a change amount of the fluid temperature and a change amount of the combustion amount.
前記制御部が、前記燃焼器の燃焼開始時の流体温度と所定の判定時間経過後の流体温度とを検出し、同判定時間経過後の流体温度が前記燃焼開始時の流体温度に判定温度上昇分を加算した判定温度以下であり、かつ、判定時間経過後の燃焼量が所定の判定燃焼量以上である場合に前記流体配管の詰まりと判断し前記流量調整弁を調整することを特徴とする請求項1記載の温水ボイラ。   The control unit detects a fluid temperature at the start of combustion in the combustor and a fluid temperature after a predetermined determination time has elapsed, and the fluid temperature after the determination time has elapsed is increased to a fluid temperature at the start of combustion by a determination temperature If the combustion temperature after the determination time is equal to or higher than a predetermined determination combustion amount and equal to or higher than a predetermined determination combustion amount, it is determined that the fluid piping is clogged and the flow rate adjustment valve is adjusted. The hot water boiler according to claim 1.
JP2005061906A 2005-03-07 2005-03-07 Hot-water boiler Pending JP2006242523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061906A JP2006242523A (en) 2005-03-07 2005-03-07 Hot-water boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061906A JP2006242523A (en) 2005-03-07 2005-03-07 Hot-water boiler

Publications (1)

Publication Number Publication Date
JP2006242523A true JP2006242523A (en) 2006-09-14

Family

ID=37049114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061906A Pending JP2006242523A (en) 2005-03-07 2005-03-07 Hot-water boiler

Country Status (1)

Country Link
JP (1) JP2006242523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688968B1 (en) * 2010-09-03 2011-05-25 バイオ燃料技研工業株式会社 Combustion device
JP2016085007A (en) * 2014-10-28 2016-05-19 ダイキン工業株式会社 Humidifier
CN109990486A (en) * 2019-04-17 2019-07-09 广东万和新电气股份有限公司 The antifreeze method and anti-freezing gas water heater of gas heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688968B1 (en) * 2010-09-03 2011-05-25 バイオ燃料技研工業株式会社 Combustion device
JP2012052759A (en) * 2010-09-03 2012-03-15 Bio Fuel Technology Research Co Ltd Combustion device
JP2016085007A (en) * 2014-10-28 2016-05-19 ダイキン工業株式会社 Humidifier
CN109990486A (en) * 2019-04-17 2019-07-09 广东万和新电气股份有限公司 The antifreeze method and anti-freezing gas water heater of gas heater
CN109990486B (en) * 2019-04-17 2023-07-11 广东万和新电气股份有限公司 Antifreezing method for gas water heater and antifreezing gas water heater

Similar Documents

Publication Publication Date Title
JP6674267B2 (en) Combustion equipment
JP2006242523A (en) Hot-water boiler
JP5741912B2 (en) Combustion device
JP5708975B2 (en) Water heater
JP5454914B2 (en) Water heater
JP5137311B2 (en) Water heater
JP6530299B2 (en) Heating system
JP2006226574A (en) Hot water circulation heating device
JP5151512B2 (en) Heating system
JP6513553B2 (en) Water heater
JP4682490B2 (en) Hot water system
JP2567503B2 (en) Fluid heating device
JP3794667B2 (en) Hot water system
JP4008396B2 (en) Hot water circulation system
JP3333652B2 (en) Hot water supply device with hot water function
JP2011122807A (en) Hot water supply device
JP2582069B2 (en) Hot water heater
JP3112412B2 (en) Gas water heater
JP3273005B2 (en) Water heater
JP7025742B2 (en) Hot water heater
JP3487889B2 (en) Water heater combustion control method
JP6386314B2 (en) Vaporizing oil water heater
JP6530346B2 (en) Heating system
JPH11101507A (en) Water heater and method of controlling combustion in the same
JPH11264607A (en) Hot-water supply machine with reheating function