JP2006237271A - Organic semiconductor device - Google Patents

Organic semiconductor device Download PDF

Info

Publication number
JP2006237271A
JP2006237271A JP2005049759A JP2005049759A JP2006237271A JP 2006237271 A JP2006237271 A JP 2006237271A JP 2005049759 A JP2005049759 A JP 2005049759A JP 2005049759 A JP2005049759 A JP 2005049759A JP 2006237271 A JP2006237271 A JP 2006237271A
Authority
JP
Japan
Prior art keywords
organic semiconductor
electrode
semiconductor layer
field effect
molecular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005049759A
Other languages
Japanese (ja)
Other versions
JP4635181B2 (en
Inventor
Yukihiro Takahashi
幸裕 高橋
Tatsuo Hasegawa
達生 長谷川
Yasushi Abe
恭 阿部
Yoshinori Tokura
好紀 十倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005049759A priority Critical patent/JP4635181B2/en
Publication of JP2006237271A publication Critical patent/JP2006237271A/en
Application granted granted Critical
Publication of JP4635181B2 publication Critical patent/JP4635181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an organic semiconductor device which has high performance and is provided with an electrode operating as p-type and an electrode operating n-type in a single organic semiconductor layer. <P>SOLUTION: The organic semiconductor device is provided with at least two kinds of electrodes 2, 3, 4, and 5 that can efficiently implant electrons and positive holes to an organic semiconductor layer 40, and that are comprised of a conductive charge-transfer complex that is made by the combination of an electron donative material and an electron-accepting molecular material; and that can efficiently implant electrons and another conductive charge-transfer complex that has a different combination of constituent molecular and can efficiently implant positive holes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機半導体装置における電極に関し、さらに詳しくは、有機半導体装置を構成する有機半導体層に電流を流すための電気的接点となる電極が導電性の高い電荷移動錯体系の有機材料を構成要素とし、単一の有機半導体層に電子を効率よく注入する電極と正孔を効率よく注入する電極をともに備えた有機半導体装置用の電極に関する。   The present invention relates to an electrode in an organic semiconductor device, and more specifically, an electrode serving as an electrical contact for passing a current through an organic semiconductor layer constituting the organic semiconductor device constitutes a highly conductive charge transfer complex organic material. The present invention relates to an electrode for an organic semiconductor device that includes both an electrode that efficiently injects electrons into a single organic semiconductor layer and an electrode that efficiently injects holes.

有機半導体からなる電子装置は、シリコン半導体装置の安価な代替品として注目されている。特に、著しく製造コストのかかる工程が必要なシリコン半導体装置と比べ有機半導体装置は、安価に製造することが可能であり、経済性が優先される場合には有用である。
また有機半導体装置のその他の利点として、大面積の電子装置を作ることが容易であること、製造工程に高温プロセスを必要としないことからプラスチック基板上への形成が可能であること、また機械的な折り曲げに対し素子特性を劣化させないなどの特性を持つため、シリコン半導体装置では不可能な、大面積で機械的にフレキシブルな電子装置を製造することが可能である点が挙げられる。
Electronic devices made of organic semiconductors are attracting attention as inexpensive alternatives to silicon semiconductor devices. In particular, an organic semiconductor device can be manufactured at a lower cost than a silicon semiconductor device that requires a process that requires a significant manufacturing cost, and is useful when economy is a priority.
Other advantages of the organic semiconductor device include that it is easy to make a large-area electronic device, that a high-temperature process is not required in the manufacturing process, and that it can be formed on a plastic substrate. Since it has characteristics such as not deteriorating element characteristics against simple bending, it is possible to manufacture a mechanically flexible electronic device having a large area, which is impossible with a silicon semiconductor device.

有機半導体装置の中でも、有機半導体薄膜電界効果トラジスタは近年研究開発が大きく進展し、その構成要素となる有機半導体材料として、分子量1000以下の種々の低分子系有機材料が提案されている。
中でも、有機半導体としてペンタセンを用いた有機半導体薄膜電界効果トラジスタでは、1cm2/Vs以上の高いホール移動度を示すP型電界効果トランジスタが得られている。また、キャリヤが負の電荷を持つ電子であるN型電界効果トランジスタに関しては、先に出願した特許願(特願2004−228575号)においてN型電界効果トランジスタを得る方法について提案が行われた。
しかしながら、単一の有機半導体層に注入するキャリヤの極性を制御することにより、P型として動作する電界効果トランジスタと、N型として動作する電界効果トランジスタをともに構築する方法は知られていない。
Among organic semiconductor devices, organic semiconductor thin film field effect transistors have been greatly researched and developed in recent years, and various low molecular weight organic materials having a molecular weight of 1000 or less have been proposed as organic semiconductor materials constituting the organic semiconductor devices.
Among them, in an organic semiconductor thin film field effect transistor using pentacene as an organic semiconductor, a P-type field effect transistor exhibiting a high hole mobility of 1 cm 2 / Vs or more is obtained. Further, regarding an N-type field effect transistor in which carriers are electrons having negative charges, a method for obtaining an N-type field effect transistor has been proposed in a previously filed patent application (Japanese Patent Application No. 2004-228575).
However, there is no known method for constructing both a field effect transistor operating as a P-type and a field effect transistor operating as an N-type by controlling the polarity of carriers injected into a single organic semiconductor layer.

上述の理由から、単一の有機半導体層のみを用いて、P型電界効果トランジスタとN型電界効果トランジスタの両者からなる相補型論理回路を構築することは困難である。相補型論理回路は、エネルギー効率がよく小型化に有利なため、現在の集積回路では欠かすことができないことから、それぞれ異なる有機半導体層から構成されたP型電界効果トランジスタとN型電界効果トランジスタを組み合わせることがこれまで考えられてきた。
しかしながら、単一の有機半導体層にP型電界効果トランジスタと、N型電界効果トランジスタをともに形成した単純な構成の相補型論理回路を実現することができれば、製造プロセスの簡略化によるコストの低減や装置の小型化、さらには相補型論理回路の動作を安定化させることが可能になる。
For the reasons described above, it is difficult to construct a complementary logic circuit composed of both a P-type field effect transistor and an N-type field effect transistor using only a single organic semiconductor layer. Since complementary logic circuits are energy efficient and advantageous for downsizing, they are indispensable in current integrated circuits. Therefore, P-type field effect transistors and N-type field effect transistors each composed of different organic semiconductor layers are used. Combinations have been considered so far.
However, if a complementary logic circuit having a simple configuration in which both a P-type field effect transistor and an N-type field effect transistor are formed in a single organic semiconductor layer can be realized, the cost can be reduced by simplifying the manufacturing process. It is possible to reduce the size of the device and stabilize the operation of the complementary logic circuit.

単一の有機半導体層に、P型、N型で動作する電界効果トランジスタをともに構築するための必要条件は、有機半導体層との電気的接点を構成する電極として、有機半導体層にP型のため正孔を高効率で注入するための電極と、N型のため電子を高効率で注入するための電極の二種類のものをともに備える装置を実現することである。そのためには、電極材料の特性を、有機半導体層に正孔及び電子を高効率で注入できるようそれぞれ整合させる、すなわちP型では有機半導体層において正孔が収容される価電子帯と電極のフェルミ準位が有機半導体−電極界面で整合し、またN型では有機半導体層において電子が収容される伝導帯と電極のフェルミ準位が有機半導体−電極界面で整合していることが必要である。しかしながら、通常有機半導体の伝導帯はバンド幅が小さく、種類の限られた通常の金属材料によって、電極のフェルミ準位を有機半導体の伝導帯や価電子帯に整合させることは一般的に困難である。
米国特許第5347144号明細書 米国特許第5625199号明細書 米国特許第652816号明細書 特開2002−204012号公報 特開2002−353165号公報
A necessary condition for constructing both a P-type and an N-type field effect transistor in a single organic semiconductor layer is that an electrode constituting an electrical contact with the organic semiconductor layer is used as a P-type in the organic semiconductor layer. Therefore, it is to realize an apparatus including both of an electrode for injecting holes with high efficiency and an electrode for injecting electrons with high efficiency because of N type. For this purpose, the characteristics of the electrode material are matched so that holes and electrons can be injected into the organic semiconductor layer with high efficiency, that is, in the P type, the valence band in which holes are accommodated in the organic semiconductor layer and the Fermi of the electrode. The level must be matched at the organic semiconductor-electrode interface, and in the N type, the conduction band in which electrons are accommodated in the organic semiconductor layer and the Fermi level of the electrode must be matched at the organic semiconductor-electrode interface. However, the conduction band of an organic semiconductor is usually small in bandwidth, and it is generally difficult to match the Fermi level of an electrode to the conduction band or valence band of an organic semiconductor using a limited number of ordinary metal materials. is there.
US Pat. No. 5,347,144 US Pat. No. 5,625,199 US Pat. No. 6,528,816 JP 2002-204012 A JP 2002-353165 A

上記の従来の問題点に鑑み、本発明は、単一の有機半導体層にP型として動作する電極と、N型として動作する電極を併せ持つ高性能の有機半導体装置を実現することを課題とする。   In view of the above-described conventional problems, an object of the present invention is to realize a high-performance organic semiconductor device that has both an electrode that operates as a P-type and an electrode that operates as an N-type in a single organic semiconductor layer. .

上記課題を解決するために、本発明は、有機半導体層と、該有機半導体層との電気的接点を構成する電極であって、該電極、又は該有機半導体と接する側の電極の一部が電子供与性分子材料と電子受容性分子材料の組み合わせからなる導電性電荷移動錯体を形成した電極を有し、単一の該有機半導体層に対して電子を注入する該導電性電荷移動錯体を一部とする電極と、該電極とは構成分子の組み合わせが異なり正孔を注入する導電性電荷移動錯体を一部とする電極との、少なくとも二種の電極を備えた有機半導体装置を提供する。   In order to solve the above-described problems, the present invention provides an organic semiconductor layer and an electrode constituting an electrical contact between the organic semiconductor layer, wherein the electrode or a part of the electrode on the side in contact with the organic semiconductor is An electrode having a conductive charge transfer complex composed of a combination of an electron-donating molecular material and an electron-accepting molecular material, and the conductive charge-transfer complex that injects electrons into a single organic semiconductor layer Provided is an organic semiconductor device provided with at least two kinds of electrodes: a part electrode, and an electrode partly composed of a conductive charge transfer complex in which holes are injected in a different combination of constituent molecules.

また本発明は、有機半導体層と、該有機半導体層との電気的接点を構成する電極であって、該電極、又は該有機半導体と接する側の電極の一部が、有機半導体層を構成する分子材料と類似の電子親和力を持つ分子材料に、電子受容性分子材料を組み合わせて導電性の高い電荷移動錯体を形成した電極と、有機半導体層を構成する分子材料と類似のイオン化エネルギーを持つ分子材料に、電子供与性分子材料を組み合わせて導電性の高い電荷移動錯体を形成した電極との、少なくとも二種の電極を備えた有機半導体装置を提供する。   The present invention also relates to an electrode constituting an electrical contact between the organic semiconductor layer and the organic semiconductor layer, wherein the electrode or a part of the electrode in contact with the organic semiconductor constitutes the organic semiconductor layer. Electrodes that combine electron-accepting molecular materials with molecular materials with similar electron affinity to molecular materials to form highly conductive charge-transfer complexes, and molecules with ionization energy similar to the molecular materials that make up organic semiconductor layers Provided is an organic semiconductor device provided with at least two kinds of electrodes, an electrode in which an electron-donating molecular material is combined with a material to form a highly conductive charge transfer complex.

また本発明は、有機半導体層と、該有機半導体層との電気的接点を構成するソース及びドレイン電極であって、該ソース及びドレイン電極、又は該有機半導体と接する側の該電極の一部が電子供与性分子材料と電子受容性分子材料の組み合わせからなる導電性電荷移動錯体を形成したソース及びドレイン電極を有し、単一の有機半導体層に電子を注入する導電性電荷移動錯体を一部とするソース及びドレイン電極からなるN型電界効果トランジスタと、該電極とは異なる構成分子の組み合わせからなり正孔を注入する導電性電荷移動錯体を一部とするソース及びドレイン電極からなるP型電界効果トランジスタの少なくとも二種の電界効果トランジスタを備えた電界効果型有機半導体装置を提供する。   The present invention also provides an organic semiconductor layer and a source and drain electrode constituting an electrical contact with the organic semiconductor layer, wherein the source and drain electrode or a part of the electrode in contact with the organic semiconductor is Part of a conductive charge-transfer complex that has a source and drain electrode formed with a combination of electron-donating molecular material and electron-accepting molecular material, and injects electrons into a single organic semiconductor layer An N-type field effect transistor comprising source and drain electrodes and a P-type electric field comprising a source and drain electrode comprising a combination of constituent molecules different from the electrode and a conductive charge transfer complex for injecting holes. Provided is a field effect organic semiconductor device provided with at least two types of field effect transistors.

また本発明は、上記P型電界効果トランジスタと、上記N型電界効果トランジスタにより相補型論理回路を構成した、電界効果型有機半導体装置を提供する。   The present invention also provides a field effect organic semiconductor device in which a complementary logic circuit is configured by the P-type field effect transistor and the N-type field effect transistor.

一般に、有機半導体薄膜からなる有機半導体装置は、図1〜図6に示すような構造を有する。これらの有機半導体装置は、ガラス、シリコン、プラスチックなどよりなる基板10を備えている。安価な又はフレキシブルなデバイスが求められる場合には、通常ポリエチレンナフタレート(PEN)などのプラスチック基板が用いられる。   In general, an organic semiconductor device made of an organic semiconductor thin film has a structure as shown in FIGS. These organic semiconductor devices include a substrate 10 made of glass, silicon, plastic, or the like. When an inexpensive or flexible device is required, a plastic substrate such as polyethylene naphthalate (PEN) is usually used.

有機半導体装置の中でもP型及びN型の二つの有機半導体薄膜電界効果トランジスタからなる相補型論理回路の一種であるCMOSインバーター回路は、図1の上面外観図及び図2の断面図に示すような構造あるいは図3の断面図に示すような構造を有する。そして、ゲート電極に相当する接点1は、基板又は基板上に形成された導体膜20を介して、誘電体層30と接触している。誘電体材料には、周知の材料である例えば二酸化珪素、窒化珪素、ポリイミド、ポリエチレン、ポリパラキシリレン(パリレン)、酸化アルミニウムなどが使用される。
また図4の断面図に示すP型及びN型の二つの有機半導体単結晶トランジスタからなるCMOSインバーター回路では、有機半導体単結晶層50上に接点2、3、4、5を介して誘電体層30が形成される。
Among organic semiconductor devices, a CMOS inverter circuit, which is a kind of complementary logic circuit composed of two organic semiconductor thin film field effect transistors of P-type and N-type, is shown in the top view of FIG. 1 and the cross-sectional view of FIG. The structure or the structure shown in the cross-sectional view of FIG. The contact 1 corresponding to the gate electrode is in contact with the dielectric layer 30 through the substrate or the conductor film 20 formed on the substrate. As the dielectric material, well-known materials such as silicon dioxide, silicon nitride, polyimide, polyethylene, polyparaxylylene (parylene), aluminum oxide and the like are used.
In the CMOS inverter circuit composed of two organic semiconductor single-crystal transistors of P-type and N-type shown in the cross-sectional view of FIG. 4, the dielectric layer is formed on the organic semiconductor single-crystal layer 50 via the contacts 2, 3, 4, and 5. 30 is formed.

上記のCMOSインバーター回路は、5個の空間的に離間された接点1、2、3、4、5を有する。外部装置との接続は、1に入力信号、2に定電圧電源をつなぎ、4を接地することによって、3、又は5から出力信号が得られる。インバーター回路を構成する電界効果トランジスタのゲート電極に相当する接点1は、基板又は基板上に形成された導体膜を介して、あるいは直接、誘電体層30と接触している。図2のCMOSインバーター回路では、P型電界効果トランジスタのソース・ドレイン電極に相当する二つの空間的に離間された接点(2、3)、及びN型電界効果トランジスタのソース・ドレイン電極に相当する二つの空間的に離間された接点(4、5)が、単一の有機半導体層40上に直接形成されている。 The above CMOS inverter circuit has five spatially spaced contacts 1, 2, 3, 4, 5. For connection with an external device, an input signal is connected to 1, a constant voltage power source is connected to 2, and an output signal is obtained from 3 or 5 by grounding 4. The contact 1 corresponding to the gate electrode of the field effect transistor constituting the inverter circuit is in contact with the dielectric layer 30 via the substrate, the conductor film formed on the substrate, or directly. In the CMOS inverter circuit of FIG. 2, two spatially separated contacts (2, 3) corresponding to the source / drain electrodes of the P-type field effect transistor and the source / drain electrodes of the N-type field effect transistor are corresponded. Two spatially spaced contacts (4, 5) are formed directly on the single organic semiconductor layer 40.

図3の有機半導体薄膜トランジスタでは、P型電界効果トランジスタのソース・ドレイン電極に相当する二つの空間的に離間された接点(2、3)、及びN型電界効果トランジスタのソース・ドレイン電極に相当する二つの空間的に離間された接点(4、5)が基板上の誘電体層30上に形成されている。上記有機半導体薄膜トランジスタにおける有機半導体層40の厚みは通常、約150nm〜約5nmである。   In the organic semiconductor thin film transistor of FIG. 3, two spatially separated contacts (2, 3) corresponding to the source / drain electrodes of the P-type field effect transistor and the source / drain electrodes of the N-type field effect transistor are corresponded. Two spatially spaced contacts (4, 5) are formed on the dielectric layer 30 on the substrate. The thickness of the organic semiconductor layer 40 in the organic semiconductor thin film transistor is usually about 150 nm to about 5 nm.

また有機半導体単結晶トランジスタを示す図4の構造では、P型電界効果トランジスタのソース・ドレイン電極に相当する二つの空間的に離間された接点(2、3)、及びN型電界効果トランジスタのソース・ドレイン電極に相当する二つの空間的に離間された接点(4、5)が全て単一の有機半導体単結晶層50上に形成されている。   In the structure of FIG. 4 showing an organic semiconductor single crystal transistor, two spatially separated contacts (2, 3) corresponding to the source / drain electrodes of the P-type field effect transistor and the source of the N-type field effect transistor are used. Two spatially spaced contacts (4, 5) corresponding to the drain electrode are all formed on a single organic semiconductor single crystal layer 50.

図1の上面外観図にあるCMOSインバーター回路は、ソース・ドレイン電極をそれぞれ平行に対向して配置したものであるが、図5のようにドレイン電極を、ソース電極を囲むように配置することもできる。図5の配置では、正孔及び電子を有効に収集できる利点がある。   The CMOS inverter circuit shown in the top external view of FIG. 1 has source and drain electrodes arranged in parallel and facing each other. However, as shown in FIG. 5, the drain electrode may be arranged so as to surround the source electrode. it can. The arrangement of FIG. 5 has an advantage that holes and electrons can be collected effectively.

有機半導体薄膜層40及び有機半導体単結晶層50を構成する有機材料としては、例えばペンタセン、ルブレン、ヘキサチオフェン、ヘキサメチレンテトラチアフルバレン、ジベンゾテトラチアフルバレン、フタロシアニンのような単成分有機半導体、あるいはジベンゾテトラチアフルバレン−テトラシアノキノジメタン(DBTTF−TCNQ)、ビスエチレンジチオテトラチアフルバレン−ジフルオロテトラシアノキノジメタン(BEDTTTF−F2TCNQ)のような有機電荷移動型錯体系の有機半導体が用いられる。   Examples of organic materials constituting the organic semiconductor thin film layer 40 and the organic semiconductor single crystal layer 50 include single component organic semiconductors such as pentacene, rubrene, hexathiophene, hexamethylenetetrathiafulvalene, dibenzotetrathiafulvalene, phthalocyanine, or dibenzo Organic charge transfer complex organic semiconductors such as tetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) and bisethylenedithiotetrathiafulvalene-difluorotetracyanoquinodimethane (BEDTTTF-F2TCNQ) are used.

本発明に係る接点(2、3)及び(4、5)は、有機半導体薄膜層40、あるいは有機半導体単結晶層50に正孔及び電子を高効率で注入できるように、その材料に整合した導電性の高い電荷移動錯体系の有機材料が選択される。すなわち、図7に示すように、接点(2、3)に対応するP型電界効果トランジスタの電極から有機半導体層に正孔を高効率に注入するためには、有機半導体層−電極界面において正孔が収容される価電子帯と電極のフェルミ準位が一致することが必要であり、また接点(4、5)に対応するN型電界効果トランジスタの電極から有機半導体層に電子を高効率に注入するためには、有機半導体層−電極界面において電子が収容される伝導帯と電極のフェルミ準位が一致している必要がある。この条件を満足するため、正孔を高効率に注入するためのP型電界効果トランジスタの電極又はその一部としては、有機半導体層を構成する分子材料と類似のイオン化エネルギーを持つ分子材料に、電子供与性分子材料を組み合わせて導電性の高い電荷移動錯体を形成したものを用い、また一方電子を高効率に注入するためのN型電界効果トランジスタの電極又はその一部としては、有機半導体層を構成する分子材料と類似の電子親和力を持つ分子材料に、電子受容性分子材料を組み合わせて導電性の高い電荷移動錯体を形成したものを用いることが最も適当である。   The contacts (2, 3) and (4, 5) according to the present invention are matched to the materials so that holes and electrons can be injected into the organic semiconductor thin film layer 40 or the organic semiconductor single crystal layer 50 with high efficiency. A charge transfer complex-based organic material having high conductivity is selected. That is, as shown in FIG. 7, in order to inject holes from the electrode of the P-type field effect transistor corresponding to the contacts (2, 3) to the organic semiconductor layer with high efficiency, the positive interface is formed at the organic semiconductor layer-electrode interface. It is necessary that the valence band in which the hole is accommodated matches the Fermi level of the electrode, and electrons are efficiently transferred from the electrode of the N-type field effect transistor corresponding to the contact (4, 5) to the organic semiconductor layer. In order to inject, the conduction band in which electrons are accommodated at the organic semiconductor layer-electrode interface and the Fermi level of the electrode need to match. In order to satisfy this condition, as an electrode of a P-type field effect transistor or a part thereof for injecting holes with high efficiency, a molecular material having an ionization energy similar to the molecular material constituting the organic semiconductor layer is used. An organic semiconductor layer is used as an electrode of an N-type field effect transistor or a part thereof for forming a highly conductive charge transfer complex by combining electron donating molecular materials, and for injecting electrons with high efficiency. It is most appropriate to use a molecular material having an electron affinity similar to that of the molecular material constituting the material and a combination of an electron-accepting molecular material to form a highly conductive charge transfer complex.

例えば、有機半導体層がテトラシアノキノジメタン(TCNQ)、あるいはジベンゾテトラチアフルバレン−テトラシアノキノジメタン(DBTTF−TCNQ)で構成されている場合には、正孔を高効率に注入するためのP型電界効果トランジスタの電極又はその一部として、DBTTFに電子供与性分子テトラフルオロテトラシアノキノジメタン(F4TCNQ)を組み合わせた電荷移動錯体ジベンゾテトラチアフルバレン−テトラフルオロテトラシアノキノジメタン(DBTTF−F4TCNQ)、あるいはその類似物質を用いることにより、電荷移動錯体内での部分的な電荷移動のため、該電極又はその一部のフェルミエネルギー準位がDBTTFの最高占有分子軌道(HOMO)からなる伝導帯内にあって有機半導体層の価電子帯のエネルギー準位と整合し、かつ導電性の極めて高い金属的な材料であることから適当であり、また電子を高効率に注入するためのN型電界効果トランジスタの電極又はその一部としては、テトラシアノキノジメタン(TCNQ)に電子供与性分子テトラチアフルバレン(TTF)を組み合わせた電荷移動錯体テトラチアフルバレン−テトラシアノキノジメタン(TTF−TCNQ)、あるいはその類似物質を用いることにより、電荷移動錯体内での部分的な電荷移動のため、該電極又はその一部のフェルミエネルギー準位がTCNQの最低非占有分子軌道(LUMO)からなる伝導帯内にあって有機半導体層の伝導帯のエネルギー準位と整合し、かつ導電性の極めて高い金属的な材料が得られることから適当である。   For example, in the case where the organic semiconductor layer is composed of tetracyanoquinodimethane (TCNQ) or dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ), it is necessary to inject holes with high efficiency. Charge transfer complex dibenzotetrathiafulvalene-tetrafluorotetracyanoquinodimethane (DBTTF-) in which electron donating molecule tetrafluorotetracyanoquinodimethane (F4TCNQ) is combined with DBTTF as an electrode of a P-type field effect transistor or a part thereof F4TCNQ), or similar materials, the conductivity of the Fermi energy level of the electrode or part of it is composed of the highest occupied molecular orbital (HOMO) of DBTTF due to partial charge transfer in the charge transfer complex. It is a metallic material that is in the band and matches the energy level of the valence band of the organic semiconductor layer and has extremely high conductivity. As an electrode of an N-type field effect transistor or a part thereof for injecting electrons with high efficiency, an electron donating molecule tetrathiafulvalene (TTF) is added to tetracyanoquinodimethane (TCNQ). By using a combined charge transfer complex tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), or an analog thereof, for partial charge transfer within the charge transfer complex, the electrode or part thereof Fermi energy level is in the conduction band consisting of the lowest unoccupied molecular orbital (LUMO) of TCNQ, and it matches the energy level of the conduction band of the organic semiconductor layer, and a highly conductive metallic material is obtained. This is appropriate.

本発明は、電界効果トランジスタ以外にも、正孔及び電子の双方の伝導を利用する有機半導体装置、例えば有機バイポーラトランジスタ、有機太陽電池、有機エレクトロルミネッセンスダイオード等にも適用可能である。
図6に示すような有機エレクトロルミネッセンスダイオードでは、基板10上にインジウム−スズ酸化物(ITO)からなる接点を形成する透明電極層60、接点を形成する電極層2、有機半導体層40、及び接点を形成する電極層4の多層構造をとる。
そして有機半導体層40に対する電極層2、及び4に適用すれば正孔及び電子の双方を利用した、効率の良い有機エレクトロルミネッセンスダイオードが得られる。
In addition to the field effect transistor, the present invention can also be applied to an organic semiconductor device using both conduction of holes and electrons, such as an organic bipolar transistor, an organic solar cell, and an organic electroluminescence diode.
In the organic electroluminescence diode as shown in FIG. 6, the transparent electrode layer 60 that forms a contact made of indium-tin oxide (ITO) on the substrate 10, the electrode layer 2 that forms the contact, the organic semiconductor layer 40, and the contact The electrode layer 4 forming a multi-layer structure.
When applied to the electrode layers 2 and 4 for the organic semiconductor layer 40, an efficient organic electroluminescence diode using both holes and electrons can be obtained.

以下本発明の実施例について説明する。
ここでは、有機半導体薄膜トランジスタと全く同一の原理で動作する有機半導体結晶トランジスタ、とりわけ、チャネル部分が単一の結晶からなるため結果の再現性が良好で電極の効果を判別することが容易な、図4の構造を持つ有機半導体単結晶トランジスタに関する実施例について説明する。
Examples of the present invention will be described below.
Here, an organic semiconductor crystal transistor that operates on exactly the same principle as an organic semiconductor thin film transistor, in particular, because the channel portion is made of a single crystal, the reproducibility of the results is good and it is easy to determine the effect of the electrode. Examples relating to the organic semiconductor single crystal transistor having the structure 4 will be described.

本実施例で用いた有機半導体単結晶であるジベンゾテトラチアフルバレン−テトラシアノキノジメタン(DBTTF−TCNQ)単結晶は、各原料分子、すなわちジベンゾテトラチアフルバレン(DBTTF)分子とテトラシアノキノジメタン(TCNQ)分子を20mbarの窒素ガスを封入したガラス管内で共に昇華することによって得た。
電子を高効率に注入するためのN型電界効果トランジスタの電極として用いた導電性の高い電荷移動型錯体テトラチアフルバレン−テトラシアノキノジメタン(TTF-TCNQ)は、テトラチアフルバレン(TTF)とテトラシアノキノジメタン(TCNQ)をそれぞれ有機溶媒、たとえばアセトニトリル中に溶解させた後、二つの溶液を混合して錯形成反応させることによって粉末状の試料として得た。
Dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) single crystal, which is an organic semiconductor single crystal used in this example, is composed of each raw material molecule, that is, dibenzotetrathiafulvalene (DBTTF) molecule and tetracyanoquinodimethane. (TCNQ) molecules were obtained by sublimation together in a glass tube filled with 20 mbar nitrogen gas.
A highly conductive charge transfer complex tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) used as an electrode of an N-type field effect transistor for injecting electrons with high efficiency is called tetrathiafulvalene (TTF). Tetracyanoquinodimethane (TCNQ) was dissolved in an organic solvent, for example, acetonitrile, and the two solutions were mixed to form a complex formation reaction to obtain a powdery sample.

図4に示すP型有機半導体単結晶トランジスタ及びN型有機半導体単結晶トランジスタを、上記のプロセスによって調製した有機半導体単結晶、有機分子材料ならびに導電性の高い電荷移動型錯体材料を用いて製造した。図4の単結晶トランジスタの製造の際に、P型有機半導体単結晶トランジスタの電極を形成するためにシャドウマスクによって接点チャネルを画定し、単結晶の平滑な結晶成長面の上に、ジベンゾテトラチアフルバレン(DBTTF)とテトラフルオロテトラシアノキノジメタン(F4TCNQ)をそれぞれの蒸着源で加熱して蒸着し電荷移動型錯体薄膜を対向基板である単結晶上で形成する二源真空蒸着法によって厚さ約100nm程度になるように形成した。またN型有機半導体単結晶トランジスタの電極を形成するためにシャドウマスクによって接点チャネルを画定し、単結晶の平滑な結晶成長面の上に、調整したテトラチアフルバレン−テトラシアノキノジメタン(TTF−TCNQ)をひとつの蒸着源で加熱して電荷移動型錯体薄膜を厚さ約100nm程度になるように、真空蒸着法によって形成した。なお本発明で用いられる電子供与性分子材料及び電子受容性分子材料からなる導電性の高い電荷移動錯体薄膜は、上記の真空蒸着法以外にも、キャスト法、インクジェット法又はスタンプ法などのいずれかの方法によって形成することが可能である。
上記のP型有機半導体単結晶トランジスタ及びN型有機半導体単結晶トランジスタはいずれも、チャンネルの幅は約250μmで、チャンネルの長さは25〜200μmであった。
The P-type organic semiconductor single crystal transistor and the N-type organic semiconductor single crystal transistor shown in FIG. 4 were manufactured using the organic semiconductor single crystal prepared by the above process, the organic molecular material, and the charge transfer complex material having high conductivity. . When the single crystal transistor of FIG. 4 is manufactured, a contact channel is defined by a shadow mask to form an electrode of the P-type organic semiconductor single crystal transistor, and dibenzotetrathiaful is formed on the smooth crystal growth surface of the single crystal. Thickness by two-source vacuum deposition method in which valene (DBTTF) and tetrafluorotetracyanoquinodimethane (F4TCNQ) are heated and vapor-deposited with respective deposition sources to form a charge transfer complex thin film on a single crystal as a counter substrate The film was formed to have a thickness of about 100 nm. In addition, in order to form an electrode of an N-type organic semiconductor single crystal transistor, a contact channel is defined by a shadow mask, and the adjusted tetrathiafulvalene-tetracyanoquinodimethane (TTF-) is formed on the smooth crystal growth surface of the single crystal. TCNQ) was heated with one vapor deposition source, and a charge transfer complex thin film was formed by vacuum vapor deposition so as to have a thickness of about 100 nm. In addition, the highly conductive charge transfer complex thin film composed of the electron donating molecular material and the electron accepting molecular material used in the present invention is any one of the cast method, the ink jet method, the stamp method and the like in addition to the above vacuum deposition method. It is possible to form by this method.
In both the P-type organic semiconductor single crystal transistor and the N-type organic semiconductor single crystal transistor, the channel width was about 250 μm and the channel length was 25 to 200 μm.

次にゲート絶縁層として、1μmの厚みを持つパリレン高分子絶縁膜を公知の気相重合法を用いて付着させた。さらに絶縁層の上に30nm程度の厚みの銀を蒸着してゲート電極を形成し、金線を繋ぐ事によって電界効果トランジスタを得た。直流の電界効果特性を常温・常圧下、あるいはクライオスタット中にサンプルを封入し、アジレントテクノロジー社半導体評価解析装置E5270を用いて評価した。   Next, a parylene polymer insulating film having a thickness of 1 μm was deposited as a gate insulating layer using a known gas phase polymerization method. Furthermore, a gate electrode was formed by vapor-depositing silver having a thickness of about 30 nm on the insulating layer, and a field effect transistor was obtained by connecting a gold wire. The DC field effect characteristics were evaluated using a semiconductor evaluation analyzer E5270 from Agilent Technologies under normal temperature and normal pressure, or by enclosing a sample in a cryostat.

ジベンゾテトラチアフルバレン−テトラフルオロテトラシアノキノジメタン(DBTTF-F4TCNQ)のソース・ドレイン電極を持つジベンゾテトラチアフルバレン−テトラシアノキノジメタン(DBTTF−TCNQ)単結晶トランジスタ、及びテトラチアフルバレン−テトラシアノキノジメタン(TTF-TCNQ)のソース・ドレイン電極を持つジベンゾテトラチアフルバレン−テトラシアノキノジメタン(DBTTF−TCNQ)単結晶トランジスタについて、ドレイン電圧を5Vに固定してb軸方向のゲート電圧依存性を測定した結果を図8に示す。これらのトランジスタは、DBTTF−F4TCNQを電極として用いたデバイスはP型、またTTF−TCNQを電極として用いたデバイスはN型の電界効果トランジスタの動作特性を示した。   Dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) single crystal transistor with source / drain electrodes of dibenzotetrathiafulvalene-tetrafluorotetracyanoquinodimethane (DBTTF-F4TCNQ) and tetrathiafulvalene-tetracyano Dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) single crystal transistor with quinodimethane (TTF-TCNQ) source / drain electrodes, with drain voltage fixed at 5V and gate voltage dependence in the b-axis direction The result of measuring the property is shown in FIG. Of these transistors, the device using DBTTF-F4TCNQ as an electrode showed the operating characteristics of a P-type, and the device using TTF-TCNQ as an electrode showed the operating characteristics of an N-type field effect transistor.

標準的な電界効果トランジスタの方程式:μ=(dID/dVG)[L/(WCiVD)]を用いて線形領域で移動度を評価したところ、ジベンゾテトラチアフルバレン−テトラフルオロテトラシアノキノジメタン(DBTTF−F4TCNQ)を電極材料に用いたP型電界効果トランジスタの正孔移動度は0.08 cm2/Vsであった。またテトラチアフルバレン−テトラシアノキノジメタン(TTF−TCNQ)を電極材料に用いたN型電界効果トランジスタの電子移動度は1.1 cm2/Vsと見積もられた。但し、Ci はゲート絶縁層の絶縁容量、LとWはそれぞれチャネル長とチャネル幅、VG はゲート電圧、VD はドレイン電圧、IDはソース−ドレイン電流、μは移動度である。 The mobility was evaluated in the linear region using the standard field-effect transistor equation: μ = (dID / dVG) [L / (WCiVD)]. Dibenzotetrathiafulvalene-tetrafluorotetracyanoquinodimethane (DBTTF The hole mobility of a P-type field effect transistor using -F4TCNQ) as an electrode material was 0.08 cm 2 / Vs. The electron mobility of an N-type field effect transistor using tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) as an electrode material was estimated to be 1.1 cm 2 / Vs. Where Ci is the insulating capacity of the gate insulating layer, L and W are the channel length and channel width, VG is the gate voltage, VD is the drain voltage, ID is the source-drain current, and μ is the mobility.

上記の結果から、構成分子が異なりフェルミ準位の大きく異なる導電性電荷移動錯体を要素とするソース・ドレイン電極をそれぞれ形成することにより、単一の有機半導体上に、P型電界効果トランジスタとN型電界効果トランジスタをともに構築可能である事が明らかになった。
なお、上記の実施例は、あくまで本発明の理解を容易にするためのものであり、この実施例に限定されるものではない。すなわち、本発明の技術思想に基づく変形、他の態様は、当然本発明に包含されるものである。
From the above results, by forming source / drain electrodes each composed of conductive charge transfer complexes having different constituent molecules and greatly different Fermi levels, a P-type field effect transistor and an N-type transistor are formed on a single organic semiconductor. It has become clear that it is possible to construct a type field effect transistor together.
In addition, said Example is for making an understanding of this invention easy, and is not limited to this Example. That is, modifications and other aspects based on the technical idea of the present invention are naturally included in the present invention.

P型有機半導体薄膜トランジスタとN型有機薄膜トランジスタからなるCMOSインバーター回路の上面の概観図である。It is a general-view figure of the upper surface of the CMOS inverter circuit which consists of a P-type organic-semiconductor thin-film transistor and an N-type organic thin-film transistor. P型有機半導体薄膜トランジスタとN型有機薄膜トランジスタからなるCMOSインバーター回路の断面図である。It is sectional drawing of the CMOS inverter circuit which consists of a P-type organic-semiconductor thin-film transistor and an N-type organic thin-film transistor. P型有機半導体薄膜トランジスタとN型有機薄膜トランジスタからなるCMOSインバーター回路の断面図である。It is sectional drawing of the CMOS inverter circuit which consists of a P-type organic-semiconductor thin-film transistor and an N-type organic thin-film transistor. P型有機半導体薄膜トランジスタとN型有機薄膜トランジスタからなるCMOSインバーター回路の断面図である。It is sectional drawing of the CMOS inverter circuit which consists of a P-type organic-semiconductor thin-film transistor and an N-type organic thin-film transistor. P型有機半導体単結晶トランジスタとN型有機薄膜トランジスタからなる他のCMOSインバーター回路の上面の概観図である。It is a general-view figure of the upper surface of the other CMOS inverter circuit which consists of a P-type organic-semiconductor single crystal transistor and an N-type organic thin-film transistor. 有機エレクトロルミネッセンスダイオードの断面概略説明図である。It is a cross-sectional schematic explanatory drawing of an organic electroluminescent diode. 本発明に係る導電性の高い有機材料を電極として用いた場合の有機半導体−電極界面のバンド図である。It is a band figure of the organic-semiconductor-electrode interface at the time of using the highly conductive organic material which concerns on this invention as an electrode. 二種類の有機半導体単結晶トランジスタにおける、一定のドレイン電圧を加えた状態でゲート電圧の変化に対するドレイン電流の変化を示すグラフである。It is a graph which shows the change of the drain current with respect to the change of a gate voltage in the state which applied the fixed drain voltage in two types of organic-semiconductor single crystal transistors.

符号の説明Explanation of symbols

1 ゲート電極となる電気的接点
2、3 正孔注入電極となる電気的接点
4、5 電子注入電極となる電気的接点
10 基板
20 導体膜
30 誘電体層
40 有機半導体薄膜層
50 有機半導体単結晶
60 透明電極
DESCRIPTION OF SYMBOLS 1 Electrical contact 2 used as a gate electrode 3, 3 Electrical contact 4 used as a hole injection electrode 5, 5 Electrical contact used as an electron injection electrode 10 Substrate 20 Conductor film 30 Dielectric layer 40 Organic semiconductor thin film layer 50 Organic semiconductor single crystal 60 Transparent electrode

Claims (4)

有機半導体層と、該有機半導体層との電気的接点を構成する電極であって、該電極、又は該有機半導体と接する側の電極の一部が、電子供与性分子材料と電子受容性分子材料の組み合わせからなる導電性電荷移動錯体を形成した電極を有し、単一の該有機半導体層に対して電子を注入する該導電性電荷移動錯体とする電極と、該電極とは構成分子の組み合わせが異なり正孔を注入する導電性電荷移動錯体とする電極との、少なくとも二種の電極を備えたことを特徴とする有機半導体装置。   An organic semiconductor layer and an electrode constituting an electrical contact with the organic semiconductor layer, wherein the electrode or a part of the electrode in contact with the organic semiconductor is an electron donating molecular material and an electron accepting molecular material An electrode having a conductive charge transfer complex formed of a combination of the above, wherein the electrode is a conductive charge transfer complex that injects electrons into a single organic semiconductor layer, and the electrode is a combination of constituent molecules An organic semiconductor device comprising at least two kinds of electrodes, which are different from each other and an electrode which is a conductive charge transfer complex for injecting holes. 有機半導体層と、該有機半導体層との電気的接点を構成する電極であって、該電極、又は該有機半導体と接する側の電極の一部が、有機半導体層を構成する分子材料と類似の電子親和力を持つ分子材料に、電子受容性分子材料を組み合わせて導電性の高い電荷移動錯体を形成した電極と、有機半導体層を構成する分子材料と類似のイオン化エネルギーを持つ分子材料に、電子供与性分子材料を組み合わせて導電性の高い電荷移動錯体を形成した電極との、少なくとも二種の電極を備えたことを特徴とする有機半導体装置。   An organic semiconductor layer and an electrode constituting an electrical contact between the organic semiconductor layer, wherein the electrode or a part of the electrode in contact with the organic semiconductor is similar to a molecular material constituting the organic semiconductor layer Electron donation to a molecular material with electron affinity and an electron-accepting molecular material to form a highly conductive charge transfer complex, and to a molecular material with ionization energy similar to that of the molecular material composing the organic semiconductor layer An organic semiconductor device comprising at least two types of electrodes: an electrode formed by combining a conductive molecular material to form a highly conductive charge transfer complex. 有機半導体層と、該有機半導体層との電気的接点を構成するソース及びドレイン電極であって、該ソース及びドレイン電極又は該有機半導体と接する側の該電極の一部が電子供与性分子材料と電子受容性分子材料の組み合わせからなる導電性電荷移動錯体を形成したソース及びドレイン電極を有し、単一の有機半導体層に電子を注入する導電性電荷移動錯体とするソース及びドレイン電極からなるN型電界効果トランジスタと、該電極とは異なる構成分子の組み合わせからなり正孔を注入する導電性電荷移動錯体とするソース及びドレイン電極からなるP型電界効果トランジスタの、少なくとも二種の電界効果トランジスタを備えたことを特徴とする電界効果型有機半導体装置。   An organic semiconductor layer and a source and drain electrode constituting an electrical contact with the organic semiconductor layer, wherein the source and drain electrode or a part of the electrode in contact with the organic semiconductor is an electron donating molecular material N having source and drain electrodes each having a source and drain electrode formed with a combination of electron-accepting molecular materials and having a charge-transfer complex that injects electrons into a single organic semiconductor layer. At least two types of field effect transistors, a P-type field effect transistor consisting of a source and drain electrode comprising a combination of a type field effect transistor and a conductive charge transfer complex made of a combination of constituent molecules different from the electrode and injecting holes A field-effect organic semiconductor device comprising: 上記P型電界効果トランジスタと、上記N型電界効果トランジスタにより相補型論理回路を構成した、請求項3記載の電界効果型有機半導体装置。
4. The field effect organic semiconductor device according to claim 3, wherein a complementary logic circuit is constituted by the P-type field effect transistor and the N-type field effect transistor.
JP2005049759A 2005-02-24 2005-02-24 Organic semiconductor device Expired - Fee Related JP4635181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049759A JP4635181B2 (en) 2005-02-24 2005-02-24 Organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049759A JP4635181B2 (en) 2005-02-24 2005-02-24 Organic semiconductor device

Publications (2)

Publication Number Publication Date
JP2006237271A true JP2006237271A (en) 2006-09-07
JP4635181B2 JP4635181B2 (en) 2011-02-16

Family

ID=37044596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049759A Expired - Fee Related JP4635181B2 (en) 2005-02-24 2005-02-24 Organic semiconductor device

Country Status (1)

Country Link
JP (1) JP4635181B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004396A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Organic thin film transistor array and manufacturing method thereof
JP2011181716A (en) * 2010-03-02 2011-09-15 Ricoh Co Ltd Organic thin film transistor using organic electrode, and method of manufacturing the same
JP2011181717A (en) * 2010-03-02 2011-09-15 Ricoh Co Ltd Organic electrode using novel organic conductive film
JP2018049931A (en) * 2016-09-21 2018-03-29 国立研究開発法人物質・材料研究機構 Organic transistor, operation control method of the same, and operation control method
JP2021005735A (en) * 2020-10-13 2021-01-14 国立研究開発法人物質・材料研究機構 Organic transistor and device for controlling operations of organic transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177109A (en) * 1999-11-17 2001-06-29 Lucent Technol Inc Thin film transistor
JP2002204012A (en) * 2000-12-28 2002-07-19 Toshiba Corp Organic transistor and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177109A (en) * 1999-11-17 2001-06-29 Lucent Technol Inc Thin film transistor
JP2002204012A (en) * 2000-12-28 2002-07-19 Toshiba Corp Organic transistor and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004396A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Organic thin film transistor array and manufacturing method thereof
JP2011181716A (en) * 2010-03-02 2011-09-15 Ricoh Co Ltd Organic thin film transistor using organic electrode, and method of manufacturing the same
JP2011181717A (en) * 2010-03-02 2011-09-15 Ricoh Co Ltd Organic electrode using novel organic conductive film
JP2018049931A (en) * 2016-09-21 2018-03-29 国立研究開発法人物質・材料研究機構 Organic transistor, operation control method of the same, and operation control method
JP2021005735A (en) * 2020-10-13 2021-01-14 国立研究開発法人物質・材料研究機構 Organic transistor and device for controlling operations of organic transistor
JP7030352B2 (en) 2020-10-13 2022-03-07 国立研究開発法人物質・材料研究機構 Organic transistor and operation control device for organic transistor

Also Published As

Publication number Publication date
JP4635181B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
Lakshminarayana et al. Modification of acenes for n-channel OFET materials
EP2926376B1 (en) Ambipolar vertical field effect transistor
JP4486000B2 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND FLAT DISPLAY DEVICE EQUIPPED WITH SAME
KR100647660B1 (en) A thin film transistor, and a flat panel display employing the same
US7923721B2 (en) Electromagnetically protected organic thin film transistor
US9520572B2 (en) Electronic device and method of manufacturing semiconductor device
US20100301311A1 (en) Organic Semiconductor Device
JP4498961B2 (en) Organic field effect transistor and flat panel display device having the same
JP2009514243A (en) Organic electronic device
CA2537198A1 (en) Vertical organic field effect transistor
US20100065833A1 (en) Organic field-effect transistor and circuit
Yakuphanoglu et al. Effects of channel widths, thicknesses of active layer on the electrical and photosensing properties of the 6, 13-bis (triisopropylsilylethynyl) pentacene transistors by thermal evaporation method: comparison study
JP4635181B2 (en) Organic semiconductor device
KR100719566B1 (en) An organic thin film transistor, and a flat panel display therewith
Unni et al. N-channel organic field-effect transistors using N, N′-ditridecylperylene-3, 4, 9, 10-tetracarboxylic diimide and a polymeric dielectric
JP2007273594A (en) Field-effect transistor
US7309876B2 (en) Organic semiconductor having polymeric and nonpolymeric constituents
CN101556987B (en) Organic film MOSFET and preparation method thereof
JP2005150410A (en) Thin film transistor
TW200926475A (en) Organic semiconductor light emitting device
JP2007019291A (en) Organic semiconductor device
JP2006049578A (en) Organic semiconductor device
KR100647603B1 (en) A thin film transistor and a flat panel display therewith
KR100633810B1 (en) An organic field-effect transistor, a flat panel display with the same, and method for manufacturing the same
JP2007200829A (en) Organic light emitting transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4635181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees