JP2006236939A - Bismuth system oxide superconductive wire rod, its manufacturing method and superconductive apparatus - Google Patents

Bismuth system oxide superconductive wire rod, its manufacturing method and superconductive apparatus Download PDF

Info

Publication number
JP2006236939A
JP2006236939A JP2005053778A JP2005053778A JP2006236939A JP 2006236939 A JP2006236939 A JP 2006236939A JP 2005053778 A JP2005053778 A JP 2005053778A JP 2005053778 A JP2005053778 A JP 2005053778A JP 2006236939 A JP2006236939 A JP 2006236939A
Authority
JP
Japan
Prior art keywords
phase
bismuth
based oxide
oxide superconducting
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005053778A
Other languages
Japanese (ja)
Other versions
JP4720211B2 (en
Inventor
Kohei Yamazaki
浩平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005053778A priority Critical patent/JP4720211B2/en
Publication of JP2006236939A publication Critical patent/JP2006236939A/en
Application granted granted Critical
Publication of JP4720211B2 publication Critical patent/JP4720211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bismuth system oxide superconductive wire rod having excellent properties and its manufacturing method by smoothing cracks or irregularities generated at intermediate rolling. <P>SOLUTION: The manufacturing method of a bismuth system oxide superconductive wire rod includes a process of filling a bismuth system oxide superconductive wire rod raw material containing a superconductive phase into a metal sheath, putting the metal sheath under plastic processing and heat treatment at least once and making a ratio of Bi2223 phase 92% or less, an intermediate rolling process, and a sintering process to smooth irregularities of the Bi2223 phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ビスマス系の酸化物超電導線材、その製造方法および超電導機器に関し、より詳細には、Bi2223相が平滑化されていることを特徴とする、ビスマス系の酸化物超電導線材、その製造方法および超電導機器に関する。   The present invention relates to a bismuth-based oxide superconducting wire, a manufacturing method thereof, and a superconducting device, and more specifically, a Bi2223 phase is smoothed, and a bismuth-based oxide superconducting wire, a manufacturing method thereof And superconducting equipment.

従来、酸化物超電導線材の1つとして、ビスマス(Bi)系の酸化物超電導線材が知られている。このBi系の酸化物超電導線材は、液体窒素温度での使用が可能であり、比較的高い臨界電流密度を得ることができる。また、このBi系の酸化物超電導線材は、長尺化が比較的容易なため、超電導ケーブルやマグネットへの応用が期待されている。   Conventionally, a bismuth (Bi) -based oxide superconducting wire is known as one of oxide superconducting wires. This Bi-based oxide superconducting wire can be used at a liquid nitrogen temperature, and a relatively high critical current density can be obtained. In addition, since this Bi-based oxide superconducting wire is relatively easy to lengthen, application to superconducting cables and magnets is expected.

このようなBi系の酸化物超電導材料においては、粉末を熱処理した後に金属シースにて被覆し、伸線加工および圧延加工を施した後、さらに熱処理することにより、高い臨界電流密度を有する単芯の酸化物超電導線材が得られている。   In such a Bi-based oxide superconducting material, a single core having a high critical current density is obtained by heat-treating the powder, coating with a metal sheath, performing wire drawing and rolling, and further heat-treating. An oxide superconducting wire is obtained.

また、酸化物超電導材料を主成分とする粉末を熱処理した後に金属シースにて被覆し、伸線加工を施した後嵌合して多芯線とし、伸線加工および圧延加工を施した後、さらに熱処理することにより、同様に高い臨界電流密度を有する酸化物超電導多芯線材が得られている。   In addition, after heat-treating the powder mainly composed of oxide superconducting material, it is coated with a metal sheath, subjected to wire drawing and then fitted into a multi-core wire, and after wire drawing and rolling, By performing the heat treatment, an oxide superconducting multicore wire having a high critical current density is obtained.

さらに、従来、このような酸化物超電導線材の製造において、圧延加工および熱処理のステップを複数回繰返すことにより、より高い臨界電流密度を有する酸化物超電導線材が得られることが知られている。   Furthermore, it has been known that, in the production of such an oxide superconducting wire, an oxide superconducting wire having a higher critical current density can be obtained by repeating the rolling and heat treatment steps a plurality of times.

ところで、下記特許文献1には、Bi系の酸化物超電導線材の製造方法において、超電導体の密度を高めるために中間圧延を行うことが記載されている。すなわち、熱処理の温度よりも低い温度にし、かつ大気よりも低酸素雰囲気の条件下で線材を加熱する処理が記載されている。   By the way, the following Patent Document 1 describes performing intermediate rolling in order to increase the density of a superconductor in a method for producing a Bi-based oxide superconducting wire. That is, a process is described in which the wire is heated under a temperature lower than the temperature of the heat treatment and in a lower oxygen atmosphere than the air.

しかし、当該中間圧延によりフィラメントとして線材全体の一部を構成する線材中のBi2223結晶にクラックや凹凸が発生し、当該クラックや凹凸は中間圧延後の焼結によっても完全には修復されることなく、前記結晶中に残存することになる。   However, cracks and irregularities are generated in the Bi2223 crystal in the wire constituting a part of the whole wire as a filament by the intermediate rolling, and the cracks and irregularities are not completely repaired even by sintering after the intermediate rolling. , Will remain in the crystal.

このようなクラックや凹凸は、Bi2223相の結晶間および結晶内の電流の流れを阻害し、超電導線材としての特性を大きく低下させるものであるので、問題であった。
特開2003−203532号公報
Such cracks and concavities and convexities are problematic because they impede the flow of current between and within the Bi2223 phase and greatly deteriorate the properties of the superconducting wire.
JP 2003-203532 A

本発明は、上記従来の技術の問題を解決するためになされたものであり、その目的は、中間圧延の際に発生するクラックや凹凸を平滑化して、優れた特性を有するビスマス系酸化物超電導線材、その製造方法および超電導機器を提供することにある。   The present invention has been made in order to solve the above-described problems of the prior art, and its purpose is to smooth cracks and irregularities generated during intermediate rolling and to provide a bismuth-based oxide superconductor having excellent characteristics. It is providing a wire, its manufacturing method, and a superconducting apparatus.

本発明の1つの局面によれば、Bi2223相の比率が98%以上であり、かつ前記Bi2223相の凹凸が平滑化されていることを特徴とするビスマス系酸化物超電導線材が提供される。   According to one aspect of the present invention, there is provided a bismuth-based oxide superconducting wire characterized in that the Bi2223 phase ratio is 98% or more and the unevenness of the Bi2223 phase is smoothed.

本発明の別の局面によれば、上記ビスマス系酸化物超電導線材をフィラメントとして複数本含み、この線材が金属シースに内包されかつテープ状である、ビスマス系酸化物超電導多芯線材が提供される。   According to another aspect of the present invention, there is provided a bismuth-based oxide superconducting multi-core wire which includes a plurality of the above-mentioned bismuth-based oxide superconducting wires as filaments, the wires are encapsulated in a metal sheath and are in a tape shape. .

本発明の別の局面によれば、超電導相を含むビスマス系酸化物超電導線材原料を金属シースに充填し、金属シースに少なくとも1回の塑性加工および熱処理を施して、Bi2223相の比率を92%以下にする工程と、中間圧延を行う工程と、Bi2223相の凹凸を平滑化させるように焼結を行う工程と、を包含する、ビスマス系酸化物超電導線材の製造方法が提供される。   According to another aspect of the present invention, a metal sheath is filled with a bismuth-based oxide superconducting wire material containing a superconducting phase, and the metal sheath is subjected to at least one plastic working and heat treatment, so that the ratio of the Bi2223 phase is 92%. Provided is a method for producing a bismuth-based oxide superconducting wire, which includes the following steps: a step of performing intermediate rolling; and a step of sintering so as to smooth the unevenness of the Bi2223 phase.

好ましくは、Bi2223相の凹凸を平滑化させるように焼結を行う工程は、酸素分圧を6kPa〜15kPaの範囲内、温度を815℃〜835℃の範囲内の条件下で30時間〜100時間焼結を行う工程である。   Preferably, the step of performing the sintering so as to smooth the unevenness of the Bi2223 phase is performed for 30 hours to 100 hours under conditions where the oxygen partial pressure is in the range of 6 kPa to 15 kPa and the temperature is in the range of 815 ° C. to 835 ° C. This is a process of sintering.

好ましくは、中間圧延を行う工程は、圧延前の厚みに対して10%〜25%の範囲内の圧下率で行う。   Preferably, the step of performing the intermediate rolling is performed at a rolling reduction within a range of 10% to 25% with respect to the thickness before rolling.

好ましくは、Bi2223相の凹凸を平滑化させるように焼結を行う工程は、Bi2223相の比率を98%以上にする。   Preferably, in the step of sintering so as to smooth the unevenness of the Bi2223 phase, the ratio of the Bi2223 phase is set to 98% or more.

本発明の別の局面によれば、上記のいずれかに記載のビスマス系酸化物超電導線材の製造方法によって製造されたビスマス系酸化物超電導線材をフィラメントとして複数本含み、この線材は金属シースに内包されかつテープ状であることを特徴とする、ビスマス系酸化物超電導多芯線材が提供される。   According to another aspect of the present invention, a plurality of bismuth-based oxide superconducting wires produced by the method for producing a bismuth-based oxide superconducting wire as described above are included as filaments, and the wires are encapsulated in a metal sheath. And a bismuth-based oxide superconducting multifilamentary wire, characterized by being in the form of a tape.

本発明の別の局面によれば、上記ビスマス系酸化物超電導多芯線材を含む超電導機器が提供される。   According to another aspect of the present invention, there is provided a superconducting device including the bismuth-based oxide superconducting multicore wire.

本発明のビスマス系酸化物超電導線材およびその製造方法によれば、Bi2223相中のクラックや凹凸が低減されて、優れた特性を示す超電導線材を得ることができる。   According to the bismuth-based oxide superconducting wire of the present invention and the method for producing the same, cracks and irregularities in the Bi2223 phase are reduced, and a superconducting wire exhibiting excellent characteristics can be obtained.

本発明のビスマス系酸化物超電導線材は、Bi2223相の比率が98%以上であり、かつBi2223相の凹凸が平滑化されていることを特徴とする。   The bismuth-based oxide superconducting wire of the present invention is characterized in that the ratio of the Bi2223 phase is 98% or more and the unevenness of the Bi2223 phase is smoothed.

このように、Bi2223相中の凹凸が平滑化されていることにより、得られる線材の特性が優れたものになる。   Thus, the unevenness | corrugation in Bi2223 phase is smooth | blunted, and the characteristic of the obtained wire becomes excellent.

Bi2223相中の凹凸が平滑化されることにより、超電導線材の特性に優れる理由は図1により次のように理解することができる。図1において、(A)はBi2223相の結晶が平滑である場合を示す模式図であり、(B)は、Bi2223相の結晶が凹凸である場合を示す模式図である。なお、図1において、四角で囲まれた領域は1つの結晶相を模式的に示すものである。また、結晶が平滑な場合のSEM写真を図1に示し、結晶に凹凸がある場合のSEM写真を図2に示す。   The reason why the characteristics of the superconducting wire are excellent by smoothing the unevenness in the Bi2223 phase can be understood from FIG. 1 as follows. 1A is a schematic diagram illustrating a case where a Bi2223 phase crystal is smooth, and FIG. 1B is a schematic diagram illustrating a case where a Bi2223 phase crystal is uneven. In FIG. 1, a region surrounded by a square schematically shows one crystal phase. Further, FIG. 1 shows an SEM photograph in the case where the crystal is smooth, and FIG. 2 shows an SEM photograph in the case where the crystal has irregularities.

超電導線材を流れる電流は、線材を構成するフィラメント内に成長したBi2223結晶内および結晶間である。図1(B)に示すように、Bi2223相中に凹凸が存在すると結晶内における電流の流れの経路(たとえば、矢印1B)が図1(A)に示す平滑な場合(たとえば、矢印1A)と比べて凹凸になって阻害され、線材全体として得られる電流も低減する。   The current flowing through the superconducting wire is in and between the Bi2223 crystals grown in the filament constituting the wire. As shown in FIG. 1B, when unevenness exists in the Bi2223 phase, the current flow path (for example, arrow 1B) in the crystal is smooth as shown in FIG. 1A (for example, arrow 1A). In comparison, the unevenness is disturbed and the current obtained as a whole wire is reduced.

また、Bi2223結晶間においては、Bi2223相中に凹凸が存在すると、Bi2223相の結晶同士の結合性が低下するため、図1(B)に示すように、当該結晶間を流れる電流の経路(たとえば、矢印2B)が結晶の結合性の低下により減少し、図1(A)と比べて(たとえば、矢印1B)線材全体として得られる電流も低減されることになる。   In addition, between the Bi2223 crystals, if unevenness exists in the Bi2223 phase, the bonding between the crystals of the Bi2223 phase decreases, and therefore, as shown in FIG. , Arrow 2B) decreases due to a decrease in crystal bonding, and the current obtained as a whole wire rod is also reduced as compared to FIG. 1A (for example, arrow 1B).

そこで、本発明においては、Bi2223相の結晶を平滑化することにより、結晶内においては、電流の流れる経路を増大させ、結晶間においては、Bi2223相の結晶同士の結合性を良好にし、線材全体として得られる電流を向上させるものである。   Therefore, in the present invention, by smoothing the Bi2223 phase crystal, the current flow path is increased in the crystal, and the bonding property between the Bi2223 phase crystals is improved between the crystals. As a result, the current obtained can be improved.

また、本発明のビスマス系酸化物超電導線材において、Bi2223相の比率は98%以上である。98%未満であると、Bi2223相の量が少なく、Bi2212相の存在量が大きくなり、超電導特性に悪影響を及ぼすためである。   In the bismuth-based oxide superconducting wire of the present invention, the Bi2223 phase ratio is 98% or more. If it is less than 98%, the amount of Bi2223 phase is small and the amount of Bi2212 phase is large, which adversely affects the superconducting characteristics.

ここで、本発明において、Bi2223相とは、ビスマス(必要に応じて、ビスマスと共に鉛を含む)とストロンチウムとカルシウムと銅と酸素とを含み、その組成、すなわち原子比(酸素を除く)として、ビスマス(またはビスマス+鉛):ストロンチウム:カルシウム:銅が2:2:2:3と近似して表されるBi−Sr−Ca−Cu−O系の酸化物超電導体相のことである。なお、Bi2223組成とは、上記のとおり上記原子比の近似値比をいう。また、Bi2223結晶とは、Bi2223相および組成を有する結晶のことをいう。   Here, in the present invention, the Bi2223 phase includes bismuth (including lead together with bismuth if necessary), strontium, calcium, copper, and oxygen, and its composition, that is, an atomic ratio (excluding oxygen), Bi-Sr—Ca—Cu—O-based oxide superconductor phase in which bismuth (or bismuth + lead): strontium: calcium: copper is approximated as 2: 2: 2: 3. The Bi2223 composition means an approximate value ratio of the atomic ratio as described above. The Bi2223 crystal refers to a crystal having a Bi2223 phase and composition.

同様に、本発明において、Bi2212相とは、ビスマス(必要に応じて、ビスマスと共に鉛を含む)とストロンチウムとカルシウムと銅と酸素とを含み、その原子比(酸素を除く)として、ビスマス(またはビスマス+鉛):ストロンチウム:カルシウム:銅が2:2:1:2と近似して表されるBi−Sr−Ca−Cu−O系の酸化物超電導体相のことである。なお、Bi2212組成とは、上記のとおり上記原子比の近似値比をいう。また、Bi2212結晶とは、Bi2212相および組成を有する結晶のことをいう。   Similarly, in the present invention, the Bi 2212 phase means bismuth (or lead as well as bismuth), strontium, calcium, copper and oxygen, and its atomic ratio (excluding oxygen) is bismuth (or Bi-Sr—Ca—Cu—O-based oxide superconductor phase in which bismuth + lead): strontium: calcium: copper is approximated as 2: 2: 1: 2. The Bi2212 composition refers to an approximate value ratio of the atomic ratio as described above. Bi2212 crystal refers to a crystal having a Bi2212 phase and composition.

また、本発明において、平滑化とは、Bi2223相の表面を平坦にし、かつ、滑らかにすることをいう。当該平滑化は、線材を、線材の長軸方向と平行な方向によって線材を切断した際の線材表面を走査型電子顕微鏡(SEM)により確認し、画像解析により結晶に乱れがない(大きな波うちがない)場合は平滑であると判断することができる。   In the present invention, smoothing means smoothing and smoothing the surface of the Bi2223 phase. In the smoothing, the surface of the wire when the wire is cut in a direction parallel to the major axis direction of the wire is confirmed by a scanning electron microscope (SEM), and the crystal is not disturbed by image analysis (a large wave) If there is no), it can be determined to be smooth.

なお、本発明において、上述したビスマス系酸化物超電導線材の複数本をフィラメントとして含有させてビスマス系酸化物超電導多芯線材として用いることができる。この際、フィラメントとしての線材はテープ状である。このように、多芯線材とすることにより、線材の強度を向上することができる。   In the present invention, a plurality of the above-described bismuth-based oxide superconducting wires can be contained as filaments and used as a bismuth-based oxide superconducting multicore wire. At this time, the wire as the filament is in the form of a tape. Thus, the intensity | strength of a wire can be improved by setting it as a multi-core wire.

次に、このような本発明のビスマス系酸化物超電導線材の製造方法について説明する。   Next, a method for producing such a bismuth-based oxide superconducting wire of the present invention will be described.

本発明のビスマス系酸化物超電導線材の製造方法は、超電導相を含むビスマス系酸化物超電導線材原料を金属シースに充填し、該金属シースに少なくとも1回の塑性加工および熱処理を施して、Bi2223相の比率を92%以下にする工程と、中間圧延を行う工程と、Bi2223相の凹凸を平滑化させるように焼結を行う工程と、を包含する。   The method for producing a bismuth-based oxide superconducting wire according to the present invention includes filling a metal sheath with a bismuth-based oxide superconducting wire material containing a superconducting phase, subjecting the metal sheath to plastic processing and heat treatment at least once, and then Bi2223 phase. Including a step of making the ratio of 92% or less, a step of performing intermediate rolling, and a step of performing sintering so as to smooth the unevenness of the Bi2223 phase.

本発明において、ビスマス系酸化物超電導線材原料は、超電導線材の製品として用いる場合に77K以上の臨界温度を有するものが好ましく、具体的には、BiO、PbO、SrCO、CaCO、CuOなどを用いることができる。なお、77K以上の臨界温度を有するためには、線材製品において通常Bi2223相を有することが必要であり、すなわち、Bi:Sr:Ca:Cuの比が略2:2:2:3になるようにする必要がある。 In the present invention, the bismuth-based oxide superconducting wire material preferably has a critical temperature of 77 K or higher when used as a superconducting wire product. Specifically, Bi 2 O, PbO, SrCO 3 , CaCO 3 , CuO Etc. can be used. In order to have a critical temperature of 77 K or higher, it is necessary that the wire product usually has a Bi2223 phase, that is, the ratio of Bi: Sr: Ca: Cu is approximately 2: 2: 2: 3. It is necessary to.

超電導線材の製品として上記の臨界温度を得るために、原料としてはBi2212相を主体とする粉末を調製し、その後、後述の工程によりBi2223相を得るものである。当該Bi2212相を得るために、当該分野で公知の手法を用いることができ、たとえば、上記の材料を、700〜870℃、10〜40時間、大気雰囲気下で少なくとも1回焼結し、粉砕することが挙げられるが、これに限定されるわけではない。   In order to obtain the above critical temperature as a superconducting wire product, a powder mainly comprising a Bi2212 phase is prepared as a raw material, and then a Bi2223 phase is obtained by a process described later. In order to obtain the Bi2212 phase, a technique known in the art can be used. For example, the above material is sintered and pulverized at least once in an air atmosphere at 700 to 870 ° C. for 10 to 40 hours. However, the present invention is not limited to this.

また、本発明において、金属シースの材料としては、Ag、Cu、Fe、Ni、Cr、Ti、Mo、W、Pt、Pd、Rh、Ir、RuおよびOsよりなる群から選択される金属またはその金属の合金が好ましい。特に、酸化物超電導体との反応性や加工性からAgまたはAgの合金が好ましい。   In the present invention, the metal sheath material is a metal selected from the group consisting of Ag, Cu, Fe, Ni, Cr, Ti, Mo, W, Pt, Pd, Rh, Ir, Ru, and Os or its Metal alloys are preferred. In particular, Ag or an Ag alloy is preferable in terms of reactivity with an oxide superconductor and workability.

本発明のビスマス系酸化物超電導線材の製造方法は、上記の原料を金属シースに充填した後、該金属シースに少なくとも1回の塑性加工および熱処理を施すものである。   In the method for producing a bismuth-based oxide superconducting wire according to the present invention, the metal sheath is filled with the above raw material, and then the metal sheath is subjected to at least one plastic working and heat treatment.

ここで、塑性加工としては、種々の減面加工が含まれ、具体的には、伸線加工、圧延加工、プレス加工、スウェージなどが挙げられる。   Here, the plastic working includes various surface-reducing processes, and specifically includes wire drawing, rolling, press working, swaging, and the like.

塑性加工を1回行う場合、塑性加工の具体的内容としては、上述のような原料粉末を充填した金属パイプを減面加工してクラッド線を作製し、次いで、クラッド線を束ねて挿入した金属パイプを減面加工して多芯線を製造し、その後、多芯線をテープ状に加工することが含まれる。多芯線からテープ線材に加工するのは、最終的に形成される超電導導体の結晶の向きを揃えるためである。一般に、酸化物系の超電導導体は結晶の方向により流すことができる電流密度に大きな違いがあり、結晶方向を揃えることでより大きな電流密度を得ることができる。   When plastic processing is performed once, the specific content of plastic processing is to reduce the surface of the metal pipe filled with the raw material powder as described above to produce a clad wire, and then bundle the clad wire and insert the metal This includes producing a multi-core wire by reducing the surface of the pipe, and then processing the multi-core wire into a tape shape. The reason why the multifilamentary wire is processed into the tape wire is to align the crystal orientation of the finally formed superconducting conductor. In general, oxide-based superconducting conductors have a large difference in current density that can flow depending on the direction of the crystal, and a larger current density can be obtained by aligning the crystal direction.

塑性加工を2回以上行う場合、上述の1回目の塑性加工には前述したクラッド線の作製、多芯線の作製、テープ線材の加工に加え、テープ線材をさらに再圧延することを含む。この再圧延加工は、1回目の熱処理による反応で形成された空隙を押し潰し、後に行う二次熱処理で超電導体の結晶同士を強固に結合させるために行われる。1回目の塑性加工における減面率は20%以上95%未満、より好ましくは80%以上90%以下であることが望ましい。2回目以降の塑性加工における減面率は10%以上が好ましく、さらに好ましくは20%以上30%以下程度である。   When the plastic working is performed twice or more, the first plastic working described above includes the above-described production of the clad wire, the production of the multi-core wire, and the processing of the tape wire, and further re-rolling the tape wire. This re-rolling process is performed to crush the voids formed by the reaction by the first heat treatment and firmly bond the superconductor crystals to each other by the secondary heat treatment performed later. The area reduction rate in the first plastic working is preferably 20% or more and less than 95%, more preferably 80% or more and 90% or less. The area reduction rate in the second and subsequent plastic working is preferably 10% or more, more preferably about 20% or more and 30% or less.

本発明において、熱処理は、少なくとも1回以上行うものであり、代表的に、1回目の熱処理と2回目の熱処理を行うことが好ましい。1回目の熱処理は、主としてBi2223相などの超電導相を生成させることを目的として行われる。2回目の熱処理は、主としてBi2223相などの結晶粒同士を強固に結合させるために行う。   In the present invention, the heat treatment is performed at least once, and it is typically preferable to perform the first heat treatment and the second heat treatment. The first heat treatment is performed mainly for the purpose of generating a superconducting phase such as a Bi2223 phase. The second heat treatment is mainly performed in order to firmly bond crystal grains such as the Bi2223 phase.

処理温度は、1回目の熱処理および2回目の熱処理共に815℃超860℃以下とすることが好ましい。より好ましくは830℃〜850℃程度である。特に、1回目の熱処理を840℃以上850℃以下とし、2回目の熱処理を830℃以上840℃以下とすることが好適である。なお、2回目より後の熱処理として、上記温度内の異なる温度で複数回行っても良い。   The treatment temperature is preferably more than 815 ° C. and not more than 860 ° C. for both the first heat treatment and the second heat treatment. More preferably, it is about 830 degreeC-850 degreeC. In particular, the first heat treatment is preferably 840 ° C. or higher and 850 ° C. or lower, and the second heat treatment is preferably 830 ° C. or higher and 840 ° C. or lower. The heat treatment after the second time may be performed a plurality of times at different temperatures within the above temperature.

熱処理時間は、50時間以上250時間以下とすることが好ましい。特に、2回目以降の熱処理を100時間以上とすることが好適である。   The heat treatment time is preferably 50 hours or more and 250 hours or less. In particular, the second and subsequent heat treatments are preferably 100 hours or longer.

熱処理の雰囲気は、大気雰囲気または低酸素雰囲気にて行えば良い。より好ましくは、大気と同成分からなる気流中で熱処理を施すことである。その際、熱処理雰囲気における水分の含有率を低下させることが好ましい。   The heat treatment may be performed in an air atmosphere or a low oxygen atmosphere. More preferably, the heat treatment is performed in an air stream composed of the same components as the atmosphere. At that time, it is preferable to reduce the moisture content in the heat treatment atmosphere.

本発明において、上記少なくとも1回の塑性加工および熱処理の後において、線材中のBi2223相の比率を92%以下になるようにする。逆にいえば、Bi2223相の比率が92%以下になるまで上記塑性加工および熱処理を行うものである。   In the present invention, after at least one plastic working and heat treatment, the ratio of the Bi2223 phase in the wire is set to 92% or less. Conversely, the plastic working and heat treatment are performed until the Bi2223 phase ratio is 92% or less.

ここで、Bi2223相の比率とは、Bi2223相とBi2212相との全体の相に対するBi2223相の割合のことであり、式で表すと、(Bi2223相)/((Bi2223相)+(Bi2212相))となる。   Here, the ratio of the Bi2223 phase is a ratio of the Bi2223 phase to the entire phase of the Bi2223 phase and the Bi2212 phase, and is expressed by a formula (Bi2223 phase) / ((Bi2223 phase) + (Bi2212 phase). )

なお、92%以下になっていることを確認する方法としては、X線回折においてBi2223相とBi2212相の強度から上記式を用いて計算することができる。   In addition, as a method of confirming that it is 92% or less, it can calculate using the said formula from the intensity | strength of Bi2223 phase and Bi2212 phase in X-ray diffraction.

本発明において、焼結前のBi2223相の比率が92%を超えると、Bi2223相の結晶が成長しにくいのでその後の焼結後に結晶相が平滑にならないおそれがある。好ましくは、90%以下である。   In the present invention, if the ratio of the Bi2223 phase before sintering exceeds 92%, the crystals of the Bi2223 phase hardly grow, so that there is a possibility that the crystal phase will not be smooth after the subsequent sintering. Preferably, it is 90% or less.

また、通常Bi2223相の比率を92%以下にするためには、上記塑性加工および熱処理として、Bi2223相の板状結晶を大きくするためにテープ状に加工された線材を熱処理することで得られる。   Moreover, in order to make the ratio of Bi2223 phase 92% or less normally, it is obtained by heat-treating the wire processed into a tape shape in order to enlarge the plate-like crystal of Bi2223 phase as the plastic working and heat treatment.

上記Bi2223相の比率が92%以下にされた後、中間圧延を行う。なお、中間圧延は、線材を圧延し、フィラメントの密度を高める目的としている。   After the ratio of the Bi2223 phase is set to 92% or less, intermediate rolling is performed. The intermediate rolling is intended to roll the wire and increase the density of the filament.

ここで、中間圧延は、当該圧延前の厚みに対して10%以上、好ましくは、15%以上になるように行い、また、25%以下、好ましくは、20%以下の範囲内になるように行う。25%を超えると、Bi2223結晶同士は密着するが結晶に大きなクラックが入るおそれがあり、その後の焼結の後においてもクラックが回復せず超電導特性が向上しない場合がある。また、10%未満であると、Bi2223結晶同士を密着することが難しく、隙間が多くなるのでその後の焼結後でも超電導特性が向上しにくい。   Here, the intermediate rolling is performed so that the thickness before the rolling is 10% or more, preferably 15% or more, and is 25% or less, preferably 20% or less. Do. If it exceeds 25%, Bi2223 crystals are in close contact with each other, but there is a possibility that large cracks may be formed in the crystals, and even after the subsequent sintering, the cracks are not recovered and the superconducting properties may not be improved. On the other hand, if it is less than 10%, Bi2223 crystals are difficult to adhere to each other, and the gap increases, so that the superconducting properties are hardly improved even after the subsequent sintering.

上記中間圧延の後、Bi2223相における凹凸を平滑化させるように焼結を行う。具体的には、酸素分圧を6kPa〜15kPaの範囲内、温度を815℃〜835℃の範囲内の条件下で30時間〜100時間焼結を行う。   After the intermediate rolling, sintering is performed so as to smooth the unevenness in the Bi2223 phase. Specifically, sintering is performed for 30 hours to 100 hours under conditions where the oxygen partial pressure is in the range of 6 kPa to 15 kPa and the temperature is in the range of 815 ° C. to 835 ° C.

酸素分圧が6kPa未満であると、反応がすばやく進行しすぎるので、大きな結晶を回復できないおそれがあり、15kPaを超えると、逆にBi2223相が分解しやすくなる。好ましくは、7kPa以上であり、10kPa以下である。   If the oxygen partial pressure is less than 6 kPa, the reaction proceeds too quickly, so that large crystals may not be recovered. If the oxygen partial pressure exceeds 15 kPa, the Bi2223 phase tends to decompose. Preferably, it is 7 kPa or more and 10 kPa or less.

また、焼結温度が815℃未満では、Bi2223結晶が成長するのに十分な温度ではなく、835℃を超えると、Bi2223相が分解するおそれがある。好ましくは、820℃以上であり、830℃以下である。   Further, if the sintering temperature is less than 815 ° C., the temperature is not sufficient for Bi2223 crystals to grow, and if it exceeds 835 ° C., the Bi2223 phase may be decomposed. Preferably, it is 820 ° C. or higher and 830 ° C. or lower.

また、焼結時間が30時間未満であると、十分にBi2223相が成長するのに短く、また、100時間を超えるとBi2223相が分解するおそれがある。好ましくは、40時間以上であり、80時間未満である。   Further, if the sintering time is less than 30 hours, the Bi2223 phase is short enough to grow, and if it exceeds 100 hours, the Bi2223 phase may be decomposed. Preferably, it is 40 hours or more and less than 80 hours.

本発明において、上記焼結後のBi2223相の比率は98%以上であることが好ましい。98%未満であると、Bi2223相が少なくBi2212相が多いため、十分なBi2223結晶が存在せず、得られる超電導特性が低いおそれがある。より好ましくは、99%以上である。   In the present invention, the ratio of the Bi2223 phase after sintering is preferably 98% or more. If it is less than 98%, the Bi2223 phase is small and the Bi2212 phase is large, so that sufficient Bi2223 crystals do not exist, and the obtained superconducting characteristics may be low. More preferably, it is 99% or more.

なお、本発明において焼結の手法としては、大型な炉または管状炉などを用いて焼結を行うことが挙げられる。   In the present invention, the sintering method includes performing sintering using a large furnace or a tubular furnace.

本発明は、上述の本発明のビスマス系酸化物超電導線材の製造方法によって製造されたビスマス系酸化物超電導線材を、フィラメントとして複数本含み、当該フィラメントとしの複数本の線材を金属シースに投入したビスマス系酸化物超電導線材が提供される。ここで、上記フィラメントとしての線材はテープ状であることが好ましい。   The present invention includes a plurality of bismuth-based oxide superconducting wires manufactured by the above-described method for manufacturing a bismuth-based oxide superconducting wire of the present invention as filaments, and the plurality of wires as the filaments are put into a metal sheath. A bismuth-based oxide superconducting wire is provided. Here, the wire as the filament is preferably in the form of a tape.

本発明において、フィラメントとは、超電導線材中に含まれる1つずつの線材という意味である。すなわち、本発明のビスマス系酸化物超電導線材は、単芯線としても用いることができるが、これらフィラメントとして複数個合せて多芯線の超電導線材としても用いることができることを意味する。   In the present invention, the filament means one wire contained in the superconducting wire. That is, the bismuth-based oxide superconducting wire of the present invention can be used as a single core wire, but it means that a plurality of these filaments can be combined and used as a multiconductor superconducting wire.

ここで、フィラメントとしての線材は、テープ状であることが好ましい。テープ状にすることにより、Bi2223相の結晶配向性が向上する。また、テープ状にするためには、プレス、圧延をすることが挙げられる。   Here, the wire as the filament is preferably in the form of a tape. By making it into a tape shape, the crystal orientation of the Bi2223 phase is improved. Moreover, in order to make it into tape shape, pressing and rolling are mentioned.

本発明のビスマス系酸化物超電導線材は、種々の超電導機器に用いることができる。当該機器としては、たとえば、ケーブル、マグネット、コイル、モーター、変圧器などが挙げられる。   The bismuth oxide superconducting wire of the present invention can be used for various superconducting devices. Examples of the device include a cable, a magnet, a coil, a motor, and a transformer.

以下、実施例により本発明をより詳細に説明するがこれに限定されるわけではない。   Hereinafter, the present invention will be described in more detail by way of examples, but is not limited thereto.

まず、原料粉末を調製し、これを原料粉末の金属シースへの充填した。すなわち、Bi、PbO、SrCO、CaCO、CuOの各粉末を1.70:0.30:1.98:2.00:3.00の割合で混合し、混合粉末を大気中にて減圧雰囲気において熱処理を順次行う。各熱処理後にはそれぞれ粉砕を行う。このようにして得られた粉末を熱処理して原料粉末を調整する。この原料粉末を外径26mm、内径22mmの銀パイプに充填し、直径2.4mmまで伸線してクラッド線を作製する。 First, raw material powder was prepared, and this was filled in the metal sheath of raw material powder. That is, Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , and CuO powders were mixed at a ratio of 1.70: 0.30: 1.98: 2.00: 3.00, and the mixed powder was mixed in the atmosphere. The heat treatment is sequentially performed in a reduced pressure atmosphere. Grinding is performed after each heat treatment. The powder thus obtained is heat-treated to prepare a raw material powder. This raw material powder is filled in a silver pipe having an outer diameter of 26 mm and an inner diameter of 22 mm, and drawn to a diameter of 2.4 mm to produce a clad wire.

その後、塑性加工および熱処理(大気中)を少なくとも1回施し、中間圧延を行った後、Bi2223相の凹凸を平滑化させるように焼結を行った。   Thereafter, plastic working and heat treatment (in air) were performed at least once, and after intermediate rolling, sintering was performed so as to smooth the unevenness of the Bi2223 phase.

塑性加工の際冷間加工することが好ましく、熱処理の際熱処理雰囲気を変えられる炉があることが好ましい。   It is preferable to perform cold working during plastic working, and it is preferable to have a furnace that can change the heat treatment atmosphere during heat treatment.

得られた線材をフィラメントとして、所定の処理により、55芯を持つ多芯構造で、外径サイズが幅4.1mm、厚さ0.23mmで、長さ100mm、銀比が1.5のテープ形状のBi系酸化物超電導線材を得た。   Using the obtained wire as a filament, a tape with a multicore structure with 55 cores, an outer diameter size of 4.1 mm, a thickness of 0.23 mm, a length of 100 mm, and a silver ratio of 1.5 by predetermined treatment A Bi-based oxide superconducting wire having a shape was obtained.

表1に、塑性加工および熱処理の回数、熱処理後のBi2223相の比率、中間圧延後の圧下率、焼結の際の条件、焼結後のBi2223相の比率、Bi2223結晶の凹凸、線材の臨界電流についての結果を示す。   Table 1 shows the number of plastic working and heat treatment, the ratio of Bi2223 phase after heat treatment, the reduction ratio after intermediate rolling, the conditions during sintering, the ratio of Bi2223 phase after sintering, the unevenness of Bi2223 crystal, the criticality of the wire Results for current are shown.

なお、結晶の凹凸の有無はSEMにより測定した結果を上述の基準により判断した。   In addition, the presence or absence of the unevenness | corrugation of a crystal | crystallization judged the result measured by SEM based on the above-mentioned standard.

試料No.2,8−11,13,14,16−18,21は実施例を示し、試料No.1,3−7,12,15,19,20は比較例を示す。   Sample No. 2, 8-11, 13, 14, 16-18, and 21 show Examples. Reference numerals 1, 3-7, 12, 15, 19, and 20 represent comparative examples.

表1の結果より、本発明の範囲内の試料は、優れた超電導特性を示すことが明らかとなった。   From the results in Table 1, it was revealed that the samples within the scope of the present invention exhibited excellent superconducting properties.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

(A)は、Bi2223相の結晶が平滑な場合の模式図であり、(B)は、凹凸がある場合を示す模式図である。(A) is a schematic diagram when the crystal | crystallization of Bi2223 phase is smooth, (B) is a schematic diagram which shows the case where there exists an unevenness | corrugation. 平滑なBi2223相のSEMにより観察した写真を示す図である。It is a figure which shows the photograph observed by SEM of smooth Bi2223 phase. 凹凸のあるBi2223相のSEMにより観察した写真を示す図である。It is a figure which shows the photograph observed by SEM of the uneven | corrugated Bi2223 phase.

符号の説明Explanation of symbols

1A,1B,2A,2B 電流の流れ。   1A, 1B, 2A, 2B Current flow.

Claims (8)

Bi2223相の比率が98%以上であり、かつ前記Bi2223相の凹凸が平滑化されていることを特徴とする、ビスマス系酸化物超電導線材。   A bismuth-based oxide superconducting wire characterized in that the Bi2223 phase ratio is 98% or more and the unevenness of the Bi2223 phase is smoothed. 請求項1のビスマス系酸化物超電導線材をフィラメントとして複数本含み、該線材が金属シースに内包されかつテープ状であることを特徴とする、ビスマス系酸化物超電導多芯線材。   A bismuth-based oxide superconducting multi-core wire comprising a plurality of filaments of the bismuth-based oxide superconducting wire according to claim 1, wherein the wire is enclosed in a metal sheath and has a tape shape. 超電導相を含むビスマス系酸化物超電導線材原料を金属シースに充填し、該金属シースに少なくとも1回の塑性加工および熱処理を施して、Bi2223相の比率を92%以下にする工程と、
中間圧延を行う工程と、
Bi2223相の凹凸を平滑化させるように焼結を行う工程と、
を包含する、ビスマス系酸化物超電導線材の製造方法。
Filling a metal sheath with a bismuth-based oxide superconducting wire material containing a superconducting phase, subjecting the metal sheath to plastic processing and heat treatment at least once, and setting the ratio of Bi2223 phase to 92% or less;
Intermediate rolling, and
Sintering to smooth the unevenness of the Bi2223 phase;
A process for producing a bismuth-based oxide superconducting wire.
前記Bi2223相の凹凸を平滑化させるように焼結を行う工程は、酸素分圧を6kPa〜15kPaの範囲内、温度を815℃〜835℃の範囲内の条件下で30時間〜100時間焼結を行う工程であることを特徴とする、請求項3に記載のビスマス系酸化物超電導線材の製造方法。   The step of sintering so as to smooth the unevenness of the Bi2223 phase is performed by sintering for 30 hours to 100 hours under conditions where the oxygen partial pressure is in the range of 6 kPa to 15 kPa and the temperature is in the range of 815 ° C. to 835 ° C. The method for producing a bismuth-based oxide superconducting wire according to claim 3, wherein 前記中間圧延を行う工程は、圧延前の厚みに対して10%〜25%の範囲内の圧下率で行うことを特徴とする、請求項3または4に記載のビスマス系酸化物超電導線材の製造方法。   5. The production of a bismuth-based oxide superconducting wire according to claim 3, wherein the intermediate rolling step is performed at a rolling reduction within a range of 10% to 25% with respect to a thickness before rolling. Method. 前記Bi2223相の凹凸を平滑化させるように焼結を行う工程は、該Bi2223相の比率を98%以上にすることを特徴とする、請求項3〜5のいずれかに記載のビスマス系酸化物超電導線材の製造方法。   The bismuth-based oxide according to any one of claims 3 to 5, wherein the step of sintering so as to smooth the unevenness of the Bi2223 phase makes the ratio of the Bi2223 phase 98% or more. Manufacturing method of superconducting wire. 請求項3〜6のいずれかに記載のビスマス系酸化物超電導線材の製造方法によって製造されたビスマス系酸化物超電導線材をフィラメントとして複数本含み、該線材は金属シースに内包されかつテープ状であることを特徴とする、ビスマス系酸化物超電導多芯線材。   A plurality of bismuth-based oxide superconducting wires manufactured by the method for manufacturing a bismuth-based oxide superconducting wire according to any one of claims 3 to 6 are included as filaments, and the wires are encapsulated in a metal sheath and have a tape shape. A bismuth-based oxide superconducting multifilamentary wire. 請求項1のビスマス系酸化物超電導線材、あるいは請求項2または7に記載のビスマス系酸化物超電導多芯線材を含む超電導機器。   A superconducting device comprising the bismuth-based oxide superconducting wire according to claim 1 or the bismuth-based oxide superconducting multi-core wire according to claim 2 or 7.
JP2005053778A 2005-02-28 2005-02-28 Method for producing bismuth oxide superconducting wire Active JP4720211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053778A JP4720211B2 (en) 2005-02-28 2005-02-28 Method for producing bismuth oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053778A JP4720211B2 (en) 2005-02-28 2005-02-28 Method for producing bismuth oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2006236939A true JP2006236939A (en) 2006-09-07
JP4720211B2 JP4720211B2 (en) 2011-07-13

Family

ID=37044334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053778A Active JP4720211B2 (en) 2005-02-28 2005-02-28 Method for producing bismuth oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP4720211B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161930A1 (en) * 2012-04-26 2013-10-31 国立大学法人東京大学 Superconducting wire, superconducting wire precursor body and fabrication method thereof, and superconducting multi-core conductor precursor body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753637B2 (en) * 1990-03-26 1995-06-07 超電導発電関連機器・材料技術研究組合 Oxide superconductor material and manufacturing method thereof
JP2003203532A (en) * 2001-12-28 2003-07-18 Sumitomo Electric Ind Ltd Manufacturing method of superconducting wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753637B2 (en) * 1990-03-26 1995-06-07 超電導発電関連機器・材料技術研究組合 Oxide superconductor material and manufacturing method thereof
JP2003203532A (en) * 2001-12-28 2003-07-18 Sumitomo Electric Ind Ltd Manufacturing method of superconducting wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161930A1 (en) * 2012-04-26 2013-10-31 国立大学法人東京大学 Superconducting wire, superconducting wire precursor body and fabrication method thereof, and superconducting multi-core conductor precursor body

Also Published As

Publication number Publication date
JP4720211B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4752505B2 (en) Method for manufacturing oxide superconducting wire and method for modifying oxide superconducting wire
JP2008140769A (en) METHOD FOR MANUFACTURING Bi2223 SUPERCONDUCTING WIRE ROD
JP4111240B1 (en) Oxide superconducting material, manufacturing method thereof, superconducting wire, superconducting equipment
JP4038813B2 (en) Superconducting wire manufacturing method
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JP2006260854A (en) Manufacturing method of superconductive wire rod
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JPWO2005124793A1 (en) Superconducting wire manufacturing method
JP4867380B2 (en) Superconducting wire, manufacturing method thereof and superconducting equipment
JP2003242847A (en) Method of manufacturing superconducting wire material
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP4496902B2 (en) Superconducting wire manufacturing method
JP2008041374A (en) Oxide superconducting wire and its manufacturing method
JPH06302235A (en) Manufacture of oxide superconductive wire rod
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JP2009170276A (en) Manufacturing method of bi2223 superconducting wire rod, and bi2223 superconducting wire rod
JP2003303519A (en) Method of manufacturing superconducting wire
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JP5343526B2 (en) Superconducting wire manufacturing method
JP2009181817A (en) Manufacturing method of oxide superconductive wire rod, and oxide superconductive wire rod
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JP2007026773A (en) Superconducting wire material and manufacturing method thereof
JPH07335052A (en) A15 type superconductor and its manufacture
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4720211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250