JP2006236797A - Superconducting acceleration cavity - Google Patents

Superconducting acceleration cavity Download PDF

Info

Publication number
JP2006236797A
JP2006236797A JP2005050222A JP2005050222A JP2006236797A JP 2006236797 A JP2006236797 A JP 2006236797A JP 2005050222 A JP2005050222 A JP 2005050222A JP 2005050222 A JP2005050222 A JP 2005050222A JP 2006236797 A JP2006236797 A JP 2006236797A
Authority
JP
Japan
Prior art keywords
superconducting
acceleration cavity
flange
titanium
superconducting acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005050222A
Other languages
Japanese (ja)
Other versions
JP4358764B2 (en
Inventor
Katsuya Sennyu
克也 仙入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005050222A priority Critical patent/JP4358764B2/en
Publication of JP2006236797A publication Critical patent/JP2006236797A/en
Application granted granted Critical
Publication of JP4358764B2 publication Critical patent/JP4358764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting acceleration cavity manufactured at a low cost and capable of certainly obtaining a high degree of vacuum. <P>SOLUTION: In a superconducting acceleration cavity 1 formed by connecting a plurality of cavity cells 1a of niobium as superconducting material; a flange 2 of titanium having a coefficient of linear expansion close to that of niobium is directly welded to an end 1b of the superconducting acceleration cavity 1; and a coat 6 of titanium nitride having high transformation temperature and high hardness, formed on a surface contacting a seal member 7 of the flange 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超伝導加速装置に用いられる超伝導加速空洞に関する。   The present invention relates to a superconducting acceleration cavity used in a superconducting accelerator.

電子ビーム又は荷電粒子を高効率で加速する装置として、ニオブ材等の超伝導材料からなる超伝導加速空洞を用いた超伝導加速装置が開発されており、工業分野に限らず、医療分野等でも使用されている。使用分野が拡がるに伴い、今後、更に高効率、安全で、安価な超伝導加速装置が要望されている。   As a device for accelerating an electron beam or charged particles with high efficiency, a superconducting acceleration device using a superconducting acceleration cavity made of a superconducting material such as a niobium material has been developed. in use. As the field of use expands, there is a need for a superconducting accelerator that is even more efficient, safe, and inexpensive.

Kristen Zapfe-Dueren, "A New Flange Design for the Superconducting Cavities for TESLA", Proceedings of The 8th workshop on RF Superconductivity, 1997Kristen Zapfe-Dueren, "A New Flange Design for the Superconducting Cavities for TESLA", Proceedings of The 8th workshop on RF Superconductivity, 1997

従来、超伝導加速装置に用いられる超伝導加速空洞は、本体部分だけでなく、そのフランジの部分も、ニオブ(Nb)材の超伝導材料が使用されていた。ニオブ材自身は硬度が低いため、極低温において超伝導加速空洞の内部を真空に保つためには、フランジ部分をシールするシール材として、更に硬度の低いインジウムを使用する必要があった。ところが、インジウムのシール材は、その硬度の低さ故に取り付け作業が難しく、取り付けに失敗して、所望の真空度を得られなかったり、取り付け時間が多大となったりと、問題が多かった。   Conventionally, a superconducting acceleration cavity used in a superconducting accelerator has used a niobium (Nb) superconducting material not only for the main body but also for the flange. Since the niobium material itself has a low hardness, in order to keep the inside of the superconducting acceleration cavity in a vacuum at an extremely low temperature, it was necessary to use indium having a lower hardness as a sealing material for sealing the flange portion. However, the indium sealing material is difficult to install due to its low hardness, and there are many problems that the mounting fails and the desired degree of vacuum cannot be obtained, or the mounting time is enormous.

近年、ニオブ材のフランジに代わって、ニオブチタン材のフランジが使用されるようになってきており、ニオブチタン材自身は硬度が低くないため、比較的安価で、真空用部材として実績のあるメタル製シール材が使用可能となってきている。ところが、ニオブチタン材は、素材自体が高価であるという問題があった。   In recent years, a niobium titanium flange has been used instead of a niobium flange. Since the hardness of the niobium titanium itself is not low, it is relatively inexpensive and has a proven track record as a vacuum member. The material has become usable. However, the niobium titanium material has a problem that the material itself is expensive.

そこで、安価なステンレス・スチール(SUS)製のフランジを、超伝導加速空洞のフランジに用いることも検討されている。ところが、SUSは、超伝導加速空洞を構成するニオブに直接溶接することができず、ロウ付け、HIP(Hot Isostatic Pressing)、爆着等により接合する必要がある上、超伝導加速空洞を構成するニオブと線膨張係数が倍近く異なるため、応力緩和や出ガスのための加熱処理時に、ステンレス・スチール製のフランジの接合部分に微少亀裂が生じ、微少リークが発生したり、場合によっては、破損したりするおそれがあった。   Therefore, the use of an inexpensive stainless steel (SUS) flange for the flange of the superconducting acceleration cavity has also been studied. However, SUS cannot be directly welded to niobium constituting the superconducting acceleration cavity, and must be joined by brazing, HIP (Hot Isostatic Pressing), explosive bonding, etc., and constitutes a superconducting acceleration cavity. Because the coefficient of linear expansion is nearly double from that of niobium, microcracks are formed at the joints of stainless steel flanges during stress relief and heat treatment for outgassing, causing microleakage and, in some cases, damage. There was a risk of doing so.

このように、超伝導加速空洞においては、フランジのシール部分、又、異種材との接合部分に、安価で、信頼性が高く、確実なシール方法が求められていたが、全てを満足するものは得られていなかった。   As described above, in the superconducting accelerating cavity, a low-cost, high-reliability, and reliable sealing method has been required for the flange sealing portion and the joint portion with the dissimilar material. Was not obtained.

本発明は上記課題に鑑みなされたもので、安価であると共に、確実に高い真空度を得ることができる超伝導加速空洞を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a superconducting acceleration cavity that is inexpensive and can reliably obtain a high degree of vacuum.

上記課題を解決する第1の発明に係る超伝導加速空洞は、
超伝導材料から形成された空洞のセルを有する超伝導加速空洞において、
前記超伝導加速空洞の端部に、前記超伝導材料と線膨張係数が近い金属からなるフランジを直接溶接すると共に、前記フランジのシール材との接触面に、融点が高く、かつ、硬度の高い被膜を形成したことを特徴とする。
The superconducting acceleration cavity according to the first invention for solving the above-mentioned problem is
In a superconducting acceleration cavity with a cavity cell formed from a superconducting material,
A flange made of a metal having a linear expansion coefficient close to that of the superconducting material is directly welded to the end of the superconducting acceleration cavity, and the contact surface with the sealing material of the flange has a high melting point and high hardness. A film is formed.

上記課題を解決する第2の発明に係る超伝導加速空洞は、
第1の発明に記載の超伝導加速空洞において、
前記超伝導材料をニオブとすると共に前記金属をチタンとし、前記被膜を窒化チタンとしたことを特徴とする。
The superconducting acceleration cavity according to the second invention for solving the above-mentioned problem is
In the superconducting acceleration cavity according to the first invention,
The superconductive material is niobium, the metal is titanium, and the coating is titanium nitride.

上記課題を解決する第3の発明に係る超伝導加速空洞は、
第2の発明に記載の超伝導加速空洞において、
前記被膜は、チタンからなる前記フランジの表面を窒化処理したもの、又は、チタンからなる前記フランジの表面に窒化チタンをコーティングしたものであることを特徴とする。
A superconducting acceleration cavity according to a third invention for solving the above-mentioned problem is
In the superconducting acceleration cavity according to the second invention,
The coating is characterized in that the surface of the flange made of titanium is nitrided, or the surface of the flange made of titanium is coated with titanium nitride.

なお、被膜の膜厚は、少なくとも5ミクロンとすることが望ましく、又、被膜の表面粗さRaは0.8ミクロン以下、Rmaxは3.2ミクロン以下とすることが望ましい。加えて、被膜としては、窒化チタン以外に、DLC(ダイヤモンド・ライク・カーボン)、CrN(窒化クロム)、Cr(クロム)、ZrN(窒化ジルコニウム)、TiAlN(窒化チタンアルミニウム)、TiW(チタンタングステン)、TiC(炭化チタン)、TiCN(窒化炭化チタン)等でもよく、TiN、TiCは、窒化処理、浸炭処理としてもよい。   The film thickness is preferably at least 5 microns, and the film surface roughness Ra is preferably 0.8 microns or less and Rmax is 3.2 microns or less. In addition to titanium nitride, DLC (diamond-like carbon), CrN (chromium nitride), Cr (chromium), ZrN (zirconium nitride), TiAlN (titanium nitride aluminum), TiW (titanium tungsten) TiC (titanium carbide), TiCN (titanium nitride carbide), or the like may be used, and TiN and TiC may be nitriding or carburizing.

本発明によれば、フランジを構成する金属の線膨張係数を、超伝導加速空洞本体を構成する超伝導材料と略同一にしたので、加熱、冷却等の熱履歴があっても、破損したり微少リークが発生したりすることはなく、又、フランジのシール材との接触面に、融点が高く、硬度の高い被膜を形成したので、比較的安価で、真空用部材として実績のあるメタル製シール材が使用可能となり、確実にかつ簡易に高真空を得ることができる。又、安価な部材が使用可能となるので、消耗品、メンテナンスコストを含めて、超伝導加速装置のコストを低減することもできる。   According to the present invention, the linear expansion coefficient of the metal constituting the flange is made substantially the same as that of the superconducting material constituting the superconducting accelerating cavity body. A slight leak does not occur, and a coating with high melting point and hardness is formed on the contact surface with the sealing material of the flange, so it is relatively inexpensive and made of metal that has a proven record as a vacuum member. A sealing material can be used, and a high vacuum can be obtained reliably and easily. Moreover, since inexpensive members can be used, the cost of the superconducting accelerator can be reduced including consumables and maintenance costs.

以下、図1、図2を参照して、本発明に係る超伝導加速空洞を説明する。   Hereinafter, the superconducting acceleration cavity according to the present invention will be described with reference to FIGS.

図1は、本発明に係る超伝導加速空洞の実施形態の一例を示す概略図である。又、図2(a)は、図1に示した超伝導加速空洞のフランジ部分を示す断面図であり、図2(b)は、図2(a)のA領域の拡大図である。   FIG. 1 is a schematic diagram showing an example of an embodiment of a superconducting acceleration cavity according to the present invention. 2A is a cross-sectional view showing a flange portion of the superconducting acceleration cavity shown in FIG. 1, and FIG. 2B is an enlarged view of a region A in FIG. 2A.

超伝導加速装置に用いられる超伝導加速空洞1は、軸方向断面が楕円状の空洞セル1aを複数連ねて形成したものであり、ニオブ材の超伝導材料から構成される。超伝導加速空洞1は、図示しないチタン製のジャケットの内部に配置されており、ジャケットの内部に供給され、超伝導加速空洞1の周囲を満たす液体ヘリウムにより冷却されて、超伝導状態を保つように構成されている。超伝導加速空洞1の一方の端部近傍には、超伝導加速空洞1に所定の高周波電力を供給する導波管3が設けられており、供給された高周波電力により、空洞セル1aが共振して、超伝導加速空洞1の長さ方向に、所定の加速勾配が形成されるようになっている。超伝導加速空洞1の内部を通過する電子ビーム又は荷電粒子は、超伝導加速空洞1の長さ方向に加速さる。   A superconducting accelerating cavity 1 used in a superconducting accelerator is formed by connecting a plurality of hollow cells 1a having an elliptical cross section in the axial direction, and is composed of a niobium superconducting material. The superconducting accelerating cavity 1 is disposed inside a titanium jacket (not shown), and is supplied to the inside of the jacket and cooled by liquid helium filling the periphery of the superconducting accelerating cavity 1 so as to maintain a superconducting state. It is configured. A waveguide 3 for supplying a predetermined high-frequency power to the superconducting acceleration cavity 1 is provided in the vicinity of one end of the superconducting acceleration cavity 1, and the cavity cell 1a resonates with the supplied high-frequency power. Thus, a predetermined acceleration gradient is formed in the length direction of the superconducting acceleration cavity 1. The electron beam or charged particle passing through the superconducting acceleration cavity 1 is accelerated in the length direction of the superconducting acceleration cavity 1.

超伝導加速空洞1の両端部1bには、フランジ2が設けられている。フランジ2は、ステンレス・スチール製のベローズ4のフランジ5と、シール材7を介して、複数のボルト10、ナット11を用いて連結されており、一方は電子ビーム又は荷電粒子の供給部へ、他方は加速された電子ビーム又は荷電粒子の出力部へ接続されている。本発明においては、超伝導加速空洞1を構成する超伝導材料と線膨張係数が近い金属を用いて、フランジ2を構成している。   Flange 2 is provided at both ends 1 b of superconducting acceleration cavity 1. The flange 2 is connected to a flange 5 of a stainless steel bellows 4 using a plurality of bolts 10 and nuts 11 via a seal material 7, one of which is supplied to an electron beam or charged particle supply unit. The other is connected to the output of an accelerated electron beam or charged particle. In the present invention, the flange 2 is formed using a superconducting material constituting the superconducting acceleration cavity 1 and a metal having a linear expansion coefficient close to that of the superconducting acceleration cavity 1.

具体的には、超伝導加速空洞1を構成する超伝導材料をニオブ材とする場合、フランジ2を、ニオブ材と線膨張係数が近い金属、例えば、チタン材を用いるとよい。ニオブ材における300Kから4Kへの線膨張率は−0.151%であり、チタン材における300Kから4Kへの線膨張率は−0.159%であり、線膨張係数が極めて近く、超伝導加速空洞1に接合する材料としては望ましい物性である。これに対して、ステンレス・スチール(SUS316)の場合は、300Kから4Kへの線膨張率が−0.305%と、ニオブ材の線膨張率の2倍近く大きく、超伝導加速空洞1に接合する材料として望ましいものではない。加えて、フランジ2にチタン材を用いる場合は、ニオブ材の超伝導加速空洞1に、電子ビームやレーザビーム等により直接溶接可能であるというメリットもあり、接合部分のシール性が確保できると共に、作製が容易となり、コストの低減も可能となる。   Specifically, when the superconducting material constituting the superconducting accelerating cavity 1 is a niobium material, the flange 2 may be made of a metal having a linear expansion coefficient close to that of the niobium material, for example, a titanium material. The linear expansion coefficient from 300K to 4K in niobium material is -0.151%, the linear expansion coefficient from 300K to 4K in titanium material is -0.159%, the linear expansion coefficient is very close, and superconducting acceleration The material to be joined to the cavity 1 is a desirable physical property. On the other hand, in the case of stainless steel (SUS316), the linear expansion coefficient from 300K to 4K is -0.305%, almost twice the linear expansion coefficient of niobium material, and it is bonded to the superconducting acceleration cavity 1. It is not desirable as a material. In addition, when using a titanium material for the flange 2, there is a merit that the superconducting acceleration cavity 1 of the niobium material can be directly welded by an electron beam, a laser beam or the like, and the sealing performance of the joint portion can be secured, Fabrication is facilitated, and cost can be reduced.

更に、本発明においては、フランジ2のシール材6との接触面に、融点が高く、かつ、硬度の高い、窒化チタンからなる被膜6を形成している。これは、通常、超伝導加速空洞1の応力緩和や出ガスのために加熱処理を行うが、このときの温度が750度程度であるため、フランジ2をチタンのみで構成した場合、チタン表面の結晶粒の単結晶化が進行し、シール特性が損なわれるおそれがあるため、フランジ2のシール材6との接触面に窒化チタンの被膜6を形成することで、フランジ2のシール材6との接触面の変性を防止して、シール特性が損なわれないようにするものである。   Furthermore, in the present invention, a coating 6 made of titanium nitride having a high melting point and high hardness is formed on the contact surface of the flange 2 with the sealing material 6. In general, heat treatment is performed for stress relaxation and outgassing of the superconducting acceleration cavity 1. Since the temperature at this time is about 750 degrees, when the flange 2 is made of only titanium, Since the single crystallization of the crystal grains proceeds and the sealing characteristics may be impaired, the titanium nitride film 6 is formed on the contact surface of the flange 2 with the seal material 6, thereby forming the seal material 6 of the flange 2 with the seal material 6. The contact surface is prevented from being denatured so that the sealing properties are not impaired.

ここで、被膜6は、チタンからなるフランジ2の表面を窒化処理して形成してもよいし、又は、チタンからなるフランジ2の表面に窒化チタンをコーティングして形成してもよい。   Here, the film 6 may be formed by nitriding the surface of the flange 2 made of titanium, or may be formed by coating titanium nitride on the surface of the flange 2 made of titanium.

又、被膜6は、熱処理後の窒化チタン界面のチタンからの影響を吸収するため、その膜厚を少なくとも5ミクロン(μm)とすることが望ましく、更に、熱処理後であっても、被膜6の表面粗さRaを0.8以下、そして、Rmaxを3.2以下することが望ましい。   Further, the film 6 desirably has a film thickness of at least 5 microns (μm) in order to absorb the influence of titanium at the titanium nitride interface after the heat treatment. It is desirable that the surface roughness Ra is 0.8 or less and Rmax is 3.2 or less.

上述したように、超伝導材料からなる超伝導加速空洞1本体に、超伝導材料と略同一の線膨張係数の金属のフランジ2を設け、そのフランジ2のシール材7との接触面に、融点が高く、硬度の高い被膜6を形成することで、加熱、冷却等の熱履歴があっても、破損したり微少リークが発生したりすることはなく、又、真空用部材として実績のある安価なメタル製シール材等が使用可能となる。従って、超伝導加速空洞1において、安価で、信頼性が高く、確実なシール方法を提供できることとなる。   As described above, a metal flange 2 having a linear expansion coefficient substantially the same as that of the superconducting material is provided in the body of the superconducting acceleration cavity 1 made of a superconducting material, and a melting point is formed on the contact surface of the flange 2 with the sealing material 7. By forming the coating film 6 having a high hardness and high hardness, even if there is a heat history such as heating and cooling, it does not break or cause a slight leak, and it has a proven record as a vacuum member. Metal seal material can be used. Therefore, in the superconducting accelerating cavity 1, an inexpensive, highly reliable and reliable sealing method can be provided.

なお、被膜6の材料としては、TiN(窒化チタン)に限らず、DLC(ダイヤモンド・ライク・カーボン)、CrN(窒化クロム)、Cr(クロム)、ZrN(窒化ジルコニウム)、TiAlN(窒化チタンアルミニウム)、TiW(チタンタングステン)、TiC(炭化チタン)、TiCN(窒化炭化チタン)等が使用可能である。   The material of the coating 6 is not limited to TiN (titanium nitride), but DLC (diamond-like carbon), CrN (chromium nitride), Cr (chromium), ZrN (zirconium nitride), TiAlN (titanium nitride aluminum). TiW (titanium tungsten), TiC (titanium carbide), TiCN (titanium nitride carbide) and the like can be used.

又、メタル製シール材としては、アルミニウム製の菱形断面のシール材や表皮がアルミニウム・銅・インジウムメッキからなるスプリング入りの金属Oリング等が使用可能である。   Further, as the metal sealing material, a sealing material having a rhombus section made of aluminum or a metal O-ring with a spring whose surface is made of aluminum, copper, or indium plating can be used.

本発明は、ニオブ材からなる超伝導加速空洞に好適なものであるが、超伝導材料として、ニオブ材以外の素材を用いる場合にも適用可能である。   The present invention is suitable for a superconducting acceleration cavity made of a niobium material, but can also be applied when a material other than a niobium material is used as the superconducting material.

本発明に係る超伝導加速空洞の実施形態の一例を示す概略図である。It is the schematic which shows an example of embodiment of the superconducting acceleration cavity which concerns on this invention. 図2(a)は、図1に示した超伝導加速空洞のフランジ部分を示す断面図であり、図2(b)は、図2(a)のA領域の拡大図である。2A is a cross-sectional view showing a flange portion of the superconducting acceleration cavity shown in FIG. 1, and FIG. 2B is an enlarged view of a region A in FIG. 2A.

符号の説明Explanation of symbols

1 超伝導加速空洞
1a セル
1b 端部
2 フランジ
3 導波管
4 ベローズ
5 フランジ
6 被膜
7 シール材
10 ボルト
11 ナット
1 Superconducting Acceleration Cavity 1a Cell 1b End 2 Flange 3 Waveguide 4 Bellows 5 Flange 6 Coating 7 Sealing Material 10 Bolt 11 Nut

Claims (3)

超伝導材料から形成された空洞のセルを有する超伝導加速空洞において、
前記超伝導加速空洞の端部に、前記超伝導材料と線膨張係数が近い金属からなるフランジを直接溶接すると共に、前記フランジのシール材との接触面に、融点が高く、かつ、硬度の高い被膜を形成したことを特徴とする超伝導加速空洞。
In a superconducting acceleration cavity with a cavity cell formed from a superconducting material,
A flange made of a metal having a linear expansion coefficient close to that of the superconducting material is directly welded to the end of the superconducting acceleration cavity, and the contact surface with the sealing material of the flange has a high melting point and high hardness. A superconducting accelerating cavity characterized in that a film is formed.
請求項1に記載の超伝導加速空洞において、
前記超伝導材料をニオブとすると共に前記金属をチタンとし、前記被膜を窒化チタンとしたことを特徴とする超伝導加速空洞。
The superconducting acceleration cavity according to claim 1,
A superconducting acceleration cavity characterized in that the superconducting material is niobium, the metal is titanium, and the coating is titanium nitride.
請求項2に記載の超伝導加速空洞において、
前記被膜は、チタンからなる前記フランジの表面を窒化処理したもの、又は、チタンからなる前記フランジの表面に窒化チタンをコーティングしたものであることを特徴とする超伝導加速空洞。
The superconducting acceleration cavity according to claim 2,
The superconducting acceleration cavity is characterized in that the surface of the flange made of titanium is nitrided or the surface of the flange made of titanium is coated with titanium nitride.
JP2005050222A 2005-02-25 2005-02-25 Superconducting acceleration cavity Expired - Fee Related JP4358764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050222A JP4358764B2 (en) 2005-02-25 2005-02-25 Superconducting acceleration cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050222A JP4358764B2 (en) 2005-02-25 2005-02-25 Superconducting acceleration cavity

Publications (2)

Publication Number Publication Date
JP2006236797A true JP2006236797A (en) 2006-09-07
JP4358764B2 JP4358764B2 (en) 2009-11-04

Family

ID=37044210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050222A Expired - Fee Related JP4358764B2 (en) 2005-02-25 2005-02-25 Superconducting acceleration cavity

Country Status (1)

Country Link
JP (1) JP4358764B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164371A (en) * 2008-01-08 2009-07-23 Gigaphoton Inc Buffering means of optical element for gas laser, and gas laser device using same
JP2011238517A (en) * 2010-05-12 2011-11-24 Mitsubishi Heavy Ind Ltd Manufacturing method of superconducting accelerator cavity
CN103026801A (en) * 2010-09-03 2013-04-03 三菱重工业株式会社 Port member of superconductive acceleration cavity
CN103702505A (en) * 2013-12-14 2014-04-02 中国科学院近代物理研究所 Niobium and titanium flange device with superconducting cavity suitable for two types of washers
CN113510445A (en) * 2021-06-10 2021-10-19 中国科学院近代物理研究所 Preparation method of niobium steel composite component
JP2022073477A (en) * 2020-11-02 2022-05-17 株式会社東芝 High Frequency Accelerator Cavity and High Frequency Accelerator System

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164371A (en) * 2008-01-08 2009-07-23 Gigaphoton Inc Buffering means of optical element for gas laser, and gas laser device using same
JP2011238517A (en) * 2010-05-12 2011-11-24 Mitsubishi Heavy Ind Ltd Manufacturing method of superconducting accelerator cavity
US8951936B2 (en) 2010-05-12 2015-02-10 Mitsubishi Heavy Industries, Ltd. Method of manufacturing superconducting accelerator cavity
CN103026801A (en) * 2010-09-03 2013-04-03 三菱重工业株式会社 Port member of superconductive acceleration cavity
US9497847B2 (en) 2010-09-03 2016-11-15 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Port member of superconducting accelerating cavity
CN103702505A (en) * 2013-12-14 2014-04-02 中国科学院近代物理研究所 Niobium and titanium flange device with superconducting cavity suitable for two types of washers
JP2022073477A (en) * 2020-11-02 2022-05-17 株式会社東芝 High Frequency Accelerator Cavity and High Frequency Accelerator System
CN113510445A (en) * 2021-06-10 2021-10-19 中国科学院近代物理研究所 Preparation method of niobium steel composite component

Also Published As

Publication number Publication date
JP4358764B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4358764B2 (en) Superconducting acceleration cavity
US5247800A (en) Thermal connector with an embossed contact for a cryogenic apparatus
US8807203B2 (en) Titanium-based thermal ground plane
US9642239B2 (en) Conduction cooling systems for linear accelerator cavities
CA2920813C (en) End-hall ion source with enhanced radiation cooling
KR20080102277A (en) Target arrangement
RU2665059C2 (en) Spraying target having the increased energy compatibility
JP2007128905A (en) Proximity switch and its manufacturing method
US10852051B2 (en) Method of forming a heat switch
JPH0786349B2 (en) Cryogenic fluid piston pump
JP2014081016A (en) Heat insulation film spacer and vacuum heat insulation low temperature apparatus
US6799418B2 (en) Rocket engine member and method for manufacturing a rocket engine member
US20150083938A1 (en) Cooler for plasma generation chamber of euv radiation source
TWI695414B (en) Tube target
JPH1167717A (en) Cooling/heating apparatus for semiconductor processing solution
JP2012069665A (en) Cryostat made of frp
US7888845B2 (en) Device for coupling low-frequency high-power ultrasound resonators by a tolerance-compensating force-transmitting connection
JP2007071515A (en) Cooling device
Kim et al. Thermal characteristics of epoxy as a bonding material in a low temperature vessel.
JP2023130948A (en) Thermal switch of cryogenic apparatus, and cryogenic apparatus
JP7432949B2 (en) Sonotrode for processing liquid metal and method for processing liquid metal
JP3462628B2 (en) Superconducting accelerating cavity
EP1533582B1 (en) Cold finger and observation apparatus including such device
US10378097B2 (en) Film forming apparatus
TW202415860A (en) Frictionless design of high-pressure recirculation thermo-pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4358764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees