JP2006235385A - 光情報記録媒体 - Google Patents

光情報記録媒体 Download PDF

Info

Publication number
JP2006235385A
JP2006235385A JP2005051772A JP2005051772A JP2006235385A JP 2006235385 A JP2006235385 A JP 2006235385A JP 2005051772 A JP2005051772 A JP 2005051772A JP 2005051772 A JP2005051772 A JP 2005051772A JP 2006235385 A JP2006235385 A JP 2006235385A
Authority
JP
Japan
Prior art keywords
light
recording
dye
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005051772A
Other languages
English (en)
Inventor
Hiroo Takizawa
裕雄 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005051772A priority Critical patent/JP2006235385A/ja
Publication of JP2006235385A publication Critical patent/JP2006235385A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Holo Graphy (AREA)

Abstract

【課題】 高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を有し、情報光や記録・再生用参照光による光情報記録媒体の反射層からの乱反射を防止し、再生像に乗ってしまうノイズの量を削減する光情報記録媒体を提供すること。
【解決手段】 ホログラフィを利用して情報を記録するための光情報記録媒体であって、 透明基板1と、干渉パターンによって情報が記録される記録層4と、前記透明基板と前記記録層との間に設けられ、第一の波長の光を透過し、第二の波長の光を反射するフィルタ層6と、を備え、前記記録層が、1)発色反応、2)潜像発色−発色体自己増感増幅発色反応、3)潜像発色−発色体増感重合反応、4)固有複屈折率を有する化合物の配向変化、5)色素消色反応、6)残存消色色素潜像−潜像増感重合反応のいずれかの方法により干渉縞を屈折率変調として記録する光屈折率変調成分を含む。
【選択図】 図3

Description

本発明は、光情報記録媒体に関するものである。
ホログラフィを利用して記録媒体に情報を記録するホログラフィック記録は、一般的に、イメージ情報を持った光と参照光とを記録媒体の内部で重ね合わせ、そのときにできる干渉縞を記録媒体に書き込むことによって行われる。記録された情報の再生時には、その記録媒体に参照光を照射することにより、干渉縞による回折によりイメージ情報が再生される。
このホログラフィック記録に用いられる光情報記録媒体の1つの構造として、特許文献1には、図1に示されるように、プラスチック若しくはガラス基板1上にサーボピット3が設けられ、その上にアルミ等の膜を蒸着させることにより反射層2が形成され、この反射層の上に記録材料からなるホログラム記録層4、さらに基板5から構成されている。
しかしながら、図1においては、サーボ用の光(赤)だけでなく、記録時に用いられる情報光および記録用参照光並びに再生時に用いられる再生用参照光(何れも緑)もディスクに照射されることによって反射層2に到達し、それによって反射されて戻り光として光の入出射面Aから出射する。反射層2は完全にフラットではないので、反射層2で反射した光のうち一部は乱反射してしまう。この乱反射した光は、再生光にスキャッタリングのノイズとして乗ってしまい、しかもそのノイズを分離することは非常に困難なため、CMOSセンサやCCDによってうまく再生像を検出することができないという問題点がある。なお、サーボ用光は赤光であるので、緑光の情報光・記録再生用参照光とは分離可能であるので、反射層2にからのスキャッタリングノイズが問題となるのは緑光を照射したときである。
また、記録時であっても情報光と記録用参照光が反射層2に到達して反射し、乱反射する光を生成してしまうことにより、この乱反射した光や照射した情報光・記録用参照光と共に別の干渉パターンを生成してしまう可能性がある。この干渉パターンは不要なものであり、再生時にノイズとなる可能性もあるとともに、記録媒体の本来の記録容量を達成することができなくなるという問題もある。なお、記録媒体が赤に感光しない材料である場合には、サーボ用光が反射層2によって少々乱反射を起こしたとしても記録媒体の記録容量には影響を与えるものではない。
一方、ホログラム記録材料としては、次のような要件をいずれも満たすことが求められている。
(1)高感度であること
(2)高解像力を有すること
(3)ホログラムの回折効率が高いこと
(4)記録時の処理が乾式であり迅速であること
(5)多重記録が可能であること(ダイナミックレンジが広いこと)
(6)記録後の収縮率が小さいこと
(7)ホログラムの保存性が良いこと
特に、(1)高感度であることに対し、(3)回折効率が高いこと、(4)乾式処理であること、(6)記録後の収縮率が低いこと、(7)保存性が良いこと、は化学的に考えて相反する物性であり、その両立は極めて困難である。
例えば、公知の体積位相型ホログラム記録材料には、ライトワンス方式として重クロム酸ゼラチン方式、漂白ハロゲン化銀塩方式及びフォトポリマー方式などが知られ、リライタブル方式として、フォトリフラクティブ方式及びフォトクロミック高分子方式などが知られる。
しかしこれらの公知の体積位相型ホログラム記録材料では、前記要件をすべて満たす材料は未だなく改良が望まれている。
具体的には例えば、重クロム酸ゼラチン方式は高い回折効率と低ノイズ特性という長所を有するが、保存性が極めて悪く、湿式処理が必要で低感度という問題を有し、ホログラフィック記録用途には適さない。
漂白ハロゲン化銀方式は高感度という長所を有するが、湿式処理が必要でかつ漂白処理が煩雑であり、また、散乱が大きい、耐光性に劣るという問題点を有し、ホログラフィック記録用途にはやはり一般的に適さない。
フォトリフラクティブ材料は書き換え可能という長所を有するが、記録時に高電場印加が必要、記録保存性が悪いという問題点を有する。
アゾベンゼン高分子材料等に代表されるフォトクロミック高分子方式も書き換え可能という長所を有するが、感度が極めて低く記録保存性も悪いという問題点を有する。例えば、国際公開第WO97/44365号パンフレット[特許文献2]には、アゾベンゼン高分子(フォトクロミック高分子)の屈折率異方性と配向制御を用いた書き換え可能なホログラム記録材料が提示されているが、アゾベンゼン異性化の量子収率が低い上に配向変化を伴う方式であるがために感度が極めて低く、また書き換え可能であることとの相反で記録保存性も悪いという問題点を有し、実用には程遠い。
そのような中、特開平6−43634号公報[特許文献3]に開示されたような乾式処理フォトポリマー方式は、バインダー、ラジカル重合可能なモノマーおよび光重合開始剤を基本組成とし、屈折率変調を向上させるためにバインダーまたはラジカル重合可能なモノマーのどちらか一方に芳香環または塩素、臭素を有する化合物を用いて屈折率差を持たせる工夫をしており、その結果、ホログラム露光の際形成される干渉縞の明部にモノマーが、暗部にバインダーが集まりつつ重合が進行することにより屈折率差を形成することができる。したがって、高回折効率と乾式処理を両立できうる比較的実用的な方式といえる。
しかしながら、漂白ハロゲン化銀方式に比べると感度が1000分の1程度であること、回折効率を高めるためには2時間近い加熱定着処理を必要とすること、ラジカル重合であるため、酸素による重合阻害の影響を受け、また露光、定着後記録材料の収縮を伴い、再生時の回折波長及び角度が変化してしまう問題点があること、膜が柔らかいため保存性の点でも不足していること等からホログラフィック記録用途としては到底使用に耐えるものではない。
ここで一般に、ラジカル重合に対しカチオン重合、特にエポキシ化合物等の開環を伴うカチオン重合は、重合後の収縮が少なく、また酸素による重合阻害も受けず、剛性のある膜を与える。したがって、ホログラフィック記録用途としてはカチオン重合の方が適しているという指摘もある。
例えば、特開平5−107999号[特許文献4]、特開平8−16078号[特許文献5]等に、カチオン重合性化合物(モノマーまたはオリゴマー)をバインダーの代わりに用い、さらに増感色素、ラジカル重合開始剤、カチオン重合開始剤、ラジカル重合性化合物を組み合わせたホログラム記録材料が開示されている。
また、特表2001―523842号[特許文献6]、特表平11−512847号[特許文献7]等に、ラジカル重合を用いずに、増感色素、カチオン重合開始剤、カチオン重合性化合物及びバインダーのみを用いたホログラム記録材料が開示されている。
しかしこれらのカチオン重合方式はラジカル重合方式に比べて、収縮率の改善が見られるものの、その相反として、感度が低下しており、実用の際には転送速度の点で大きな問題となると考えられる。また回折効率も低下しており、S/N比や多重記録の点で問題となると考えられる。
前述したように、フォトポリマー方式は物質移動を伴う方式であるため、ホログラフィック記録への応用を検討する際、保存性を良く、収縮性を小さくしようとすれば感度が低下し(カチオン重合方式)、逆に感度を向上させようとすれば、保存性、収縮性が悪化する(ラジカル重合方式)というジレンマに陥る。また、ホログラフィック記録の記録密度を向上させるためには、50回を超えて好ましくは100回以上にも及ぶ多重記録が必須であるが、フォトポリマー方式では記録に物質移動を伴う重合を用いるため、多重記録初期の記録速度に対して、多くの化合物の重合が進んだ後の多重記録後期の記録速度が低下してしまい、それを制御して露光量を調節すること、広いダイナミックレンジをとることが実用上大きな問題となっている。
このような高感度と良保存性、低収縮率、乾式処理のジレンマ、多重記録特性(高記録密度)の問題点は、従来のフォトポリマー方式を用いている限りは物理法則上避けがたい。またハロゲン化銀方式にてホログラフィック記録に求められる要件を満たすことも、特に乾式処理化の点で原理的に困難である。
そこで、ホログラム記録材料をホログラフィック記録へ応用するためには、そのような課題を抜本的に解決した、とりわけ高感度と低収縮性、良保存性、乾式処理、多重記録特性(高記録密度)を両立できる全く新しい記録方式の開発が強く望まれていた。
特開平11−311936号公報 国際公開第WO97/44365号パンフレット 特開平6−43634号公報 特開平5−107999号公報 特開平8−16078号公報 特表2001―523842号公報 特表平11−512847号公報
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立することができるホログラム記録材料を用いるとともに、情報光や記録・再生用参照光による光情報記録媒体の反射層からの乱反射を防止し、再生像に乗ってしまうノイズの量を削減することが可能な光情報記録媒体を提供することにある。
本発明は、以下のとおりである。
(1)ホログラフィを利用して情報を記録するための光情報記録媒体であって、
透明基板と、
干渉パターンによって情報が記録される記録層と、
前記透明基板と前記記録層との間に設けられ、第一の波長の光を透過し、第二の波長の光を反射するフィルタ層と、を備え、
前記記録層が、1)発色反応、2)潜像発色−発色体自己増感増幅発色反応、3)潜像発色−発色体増感重合反応、4)固有複屈折率を有する化合物の配向変化、5)色素消色反応、6)残存消色色素潜像−潜像増感重合反応のいずれかの方法により干渉縞を屈折率変調として記録する光屈折率変調成分を含むことを特徴とする光情報記録媒体。
前記構成では、フィルタ層が、第一の波長の光(例えば、赤色光)を透過させ、第二の波長の光(例えば、緑色光)を反射させる。これによって2種類の波長の光が分離される。また、記録層として特定の光屈折率変調成分を使用しているので、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立することができる光情報記録媒体を提供することができる。
(2)前記透明基板は、サーボピットパターンを有することを特徴とする前記(1)記載の光情報記録媒体。
前記構成では、透明基板が、サーボピットパターンを有し、さらにそのパターン上に反射層が形成され、第二の波長の光は反射層に到達しないようにされる。また、記録層として特定の光屈折率変調成分を使用しているので、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立することができる光情報記録媒体を提供することができる。
(3)前記透明基板は、前記サーボピットパターン上に反射面が形成されていることを特徴とする前記(2)記載の光情報記録媒体。
(4)前記記録層と前記フィルタ層との間に、光の変更方向を偏光する偏光方向変更層が設けられていることを特徴とする前記(1)記載の光情報記録媒体。
(5)前記偏光方向変更層は4分の1波長板からなる層であることを特徴とする前記(4)記載の光情報記録媒体。
これらの構成では、光の偏光方向を変化させたり、反射型ホログラムによるゴースト映像が生成されることを防止できる。また、記録層として特定の光屈折率変調成分を使用しているので、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立することができる光情報記録媒体を提供することができる。
(6)前記フィルタ層は、ダイクロイックミラーからなる層であることを特徴とする前記(1)記載の光情報記録媒体。
(7)前記フィルタ層は、コレステリック液晶からなる層であることを特徴とする前記(4)または(5)記載の光情報記録媒体。
(8)前記偏光方向変更層は、前記第二の波長の光を所定方向の円偏光の光に変更し、前記第一の波長の光を前記所定方向の円偏光以外の偏光の光に変更することを特徴とする前記(7)記載の光情報記録媒体。
前記構成のように、フィルタ層として、ダイクロイックミラーからなる層またはコレステリック液晶からなる層を用いることができる。特にコレステリック液晶からなる層をフィルタ層として用いる場合には、上述の4分の1波長板層との組み合わせが効果的である。コレステリック液晶は、所定方向の円偏光の光は反射し、それ以外の光は透過する性質を有するからである。また、記録層として特定の光屈折率変調成分を使用しているので、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立することができる光情報記録媒体を提供することができる。
(9)前記反射面は、金属反射膜であることを特徴とする前記(3)記載の光情報記録媒体。
(10)前記反射面は、光を反射させると共に追記または消去可能な媒体面とすること
を特徴とする前記(3)記載の光情報記録媒体。
これらの構成のように、基板に設けられた反射面は、基本的に金属反射膜であるが、光を反射させると共に追記または消去可能な媒体面であってもよい。また、記録層として特定の光屈折率変調成分を使用しているので、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立することができる光情報記録媒体を提供することができる。
(11)前記フィルタ層と前記反射面との間に、前記基板表面を平滑化するためのギャップ層が設けられていることを特徴とする前記(3)記載の光情報記録媒体。
ギャップ層を設けることにより、基板表面を平滑化するほかに、記録層に記録されるホログラムサイズを調整することができる。また、記録層として特定の光屈折率変調成分を使用しているので、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立することができる光情報記録媒体を提供することができる。
本発明によれば、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立し、情報光や記録・再生用参照光による光情報記録媒体の反射層からの乱反射を防止し、再生像に乗ってしまうノイズの量を削減することが可能な光情報記録媒体を提供することができる。
以下、本発明をさらに説明する。
本発明の光情報記録媒体の記録層に含まれる光屈折率変調成分(ホログラム記録材料)は、1)発色反応、2)潜像発色−発色体自己増感増幅発色反応、3)潜像発色−発色体増感重合反応、4)固有複屈折率を有する化合物の配向変化、5)色素消色反応、6)残存消色色素潜像−潜像増感重合反応のいずれかの方法により干渉縞を屈折率変調として記録する成分であることを特徴としている。
なお、本発明のホログラム記録材料は、湿式処理を行わないことが好ましい。
本発明のホログラム記録材料は、書き換えできない方式であることが好ましい。なおここで、書き換えできない方式とは、不可逆反応により記録される方式であり、一度記録されたデータは、さらに上書き記録して書き換えしようとしても書き換えされることなく保存できる方式を示す。したがって重要でかつ長期保存が必要なデータの保存に適する。ただし無論、まだ記録されていない領域に新たに追記して記録していくことは可能である。そのような意味で、一般には「追記型」または「ライトワンス型」と呼ばれる。
本発明のホログラム記録に用いる光は好ましくは波長200〜2000nmの紫外光、可視光、赤外光のいずれかであり、より好ましくは波長300〜700nmの紫外光または可視光であり、さらに好ましくは400〜700nmの可視光である。
さらに、本発明のホログラム記録に用いる光としては、コヒーレントな(位相及び波長のそろった)レーザー光が好ましい。用いられるレーザーとしては、固体レーザー、半導体レーザー、気体レーザー、液体レーザーのいずれでも良いが、好ましいレーザー光としては例えば、532nmのYAGレーザー2倍波、355nmのYAGレーザー3倍波、400〜415nm付近のGaNやInGaN等の半導体レーザー、650〜660nm付近のAlGaInP等の半導体レーザー、488または515nmのArイオンレーザー、632または633nmのHe−Neレーザー、647nmのKrイオンレーザー、694nmのルビーレーザーや636、634、538、534、442nmのHe−Cdレーザーなどが挙げられる。
また、ナノ秒やピコ秒オーダーのパルスレーザーを用いることも好ましい。
本発明のホログラム記録材料を光情報記録媒体に使用する場合は、532nmのYAG
レーザー2倍波または400〜415nm付近のGaNやInGaNレーザー、650〜660nm付近のAlGaInP等の半導体レーザーを用いることが好ましい。
ホログラム露光(記録)に用いる光の波長に対し、ホログラム再生に用いる光の波長は同じであるか、長波長であることが好ましく、同じであることがより好ましい。
本発明のホログラム記録材料においては、ホログラム露光の後に、光または熱、あるいはその両方により定着工程を行っても良い。
特に本発明のホログラム記録材料に酸増殖剤または塩基増殖剤を用いる場合、酸増殖剤または塩基増殖剤を有効に機能させる点においても定着に加熱を用いることが好ましい。
光定着の場合は、ホログラム記録材料全域に紫外光または可視光を全面照射(非干渉露光)する。用いる光源として好ましくは、可視光レーザー、紫外光レーザー、カーボンアーク、高圧水銀灯、キセノンランプ、メタルハライドランプ、蛍光ランプ、タングステンランプ、LED、有機ELなどが挙げられる。
熱定着の場合は、好ましくは40℃〜160℃、より好ましくは60℃〜130℃にて定着工程を行うことが好ましい。
光定着と熱定着を両方行う際は、光と熱を同時に加えても、光と熱を別々に加えてもよい。
なお、干渉縞記録の際の屈折率変調量は0.00001〜0.5であることが好ましく、0.0001〜0.3であることがより好ましい。なお、ホログラム記録材料の膜厚が厚い程屈折率変調量は少ない方が好ましく、ホログラム記録材料の膜厚が薄い程屈折率変調量は多い方が好ましい。
ホログラム記録材料の(相対)回折効率ηは以下の式で与えられる。
η=Idiff/Io (式1)
ここでIoは回折されない透過光の強度であり、Idiffは回折(透過型)または反射(反射型)された光強度である。回折効率は0〜100%のいずれかの値を取るが、30%以上であることが好ましく、60%以上であることがより好ましく、80%以上であることが最も好ましい。
ホログラム記録材料の感度は、一般に単位面積当たりの露光量(mJ/cm2)で表され、この値が小さい程感度が高いと言える。しかし、どの時点の露光量をもって感度とするかは、文献、特許によってまちまちであり、記録(屈折率変調)のはじまる露光量とする場合、最大回折効率(屈折率変調)を与える露光量とする場合、最大回折効率の半分の回折効率を与える露光量とする場合、露光量Eに対し、回折効率の傾きが最大となる露光量とする場合などある。
また、クーゲルニックの理論式より、ある回折効率を与えるための屈折率変調量Δnは膜厚dに反比例する。つまり、ある回折効率を与えるための感度は膜厚によっても異なり、膜厚dが厚くなる程少ない屈折率変調量Δnで済む。したがって、膜厚等の条件を揃えない限り、感度は一概には比較することはできない。
本発明においては、感度は「最大回折効率の半分の回折効率を与える露光量(mJ/cm2)」と定義する。本発明のホログラム記録材料の感度は、例えば膜厚が10〜200μm程度の場合、2J/cm2以下であることが好ましく、1J/cm2以下であることがより好ましく、500mJ/cm2以下であることがさらに好ましく、200mJ/cm2以下であることが最も好ましい。
本発明のホログラム記録材料を光情報記録媒体としてホログラフィックメモリに用いる際は、DMDやLCDといった空間光変調素子(SLM)を用いて2次元デジタル情報(信号光と呼ぶ)を数多く記録していくことが好ましい。記録には記録密度を上げるために多重記録を用いることが好ましく、多重記録の方法には、角度多重、位相多重、波長多重
、シフト多重などの多重記録を行う方法があるが、角度多重記録またはシフト多重記録を用いることが好ましい。また、再生される2次元データの読み出しにはCCDやCMOSが好ましく用いられる。
本発明のホログラム記録材料は、光情報記録媒体としてホログラフィックメモリに用いる際は、容量(記録密度)を向上させるために多重記録を行うことが必須である。その際、10回以上の多重記録を行うことがより好ましく、50回以上の多重記録を行うことがさらに好ましく、100回以上の多重記録を行うことが最も好ましい。さらに、多重記録の際の露光量がいずれの多重記録の際も終始一定のまま多重記録できることが記録システム簡略化、S/N比向上等の点でより好ましい。
なお、本発明のホログラム記録材料を光情報記録媒体に用いる際は、保存時ホログラム記録材料は遮光カートリッジ内に保存されていることが好ましい。また、記録光及び再生光波長以外の紫外光、可視光、赤外光の波長域の一部をカットすることができる遮光フィルターをホログラム記録材料の表面、裏面またはその両面に備え付けていることも好ましい。
本発明のホログラム記録材料を光情報記録媒体に用いる際は、光情報記録媒体はディスク状でもカード状でもテープ状であっても良くいかなる形状であっても良い。
以下に本発明のホログラム記録材料とこれを用いたホログラム記録方法について詳しく説明する。
1)発色反応による干渉縞記録
本発明にて発色反応とは、200〜2000nmの紫外光、可視光、赤外光の領域にて、吸収スペクトル形が変化するような反応を示し、より好ましくは吸収スペクトルにおいてλmaxが長波長化、εが増大のいずれかが起こるような反応を示し、さらに好ましくはその両方が起こるような反応を示す。また、発色反応は200〜1000nmの波長領域で起こることがより好ましく、300〜900nmの波長領域で起こることがさらに好ましい。
記録が発色反応による場合は、本発明のホログラム記録材料は好ましくは、
少なくとも、
1)ホログラム露光にて光を吸収し励起状態を生成する増感色素、と、
2)元の状態から吸収が長波長化しかつホログラム再生光波長に吸収を有さない発色体となることができる色素前駆体を含み、増感色素励起状態から電子移動またはエネルギー移動することにより、発色による屈折率変調を用いて干渉縞を記録することができる干渉縞記録成分、を含むことが好ましい。
ここで、色素の屈折率は一般に、線形吸収極大波長(λmax)付近からそれより長波長な領域で高い値を取り、特にλmaxからλmaxより200nm程長波長な領域において非常に高い値を取り、色素によっては1.8を超え、場合によっては2を超えるような高い値をとる。その一方で、バインダーポリマー等の色素ではない有機化合物は通常1.4〜1.6程度の屈折率である。
よって、ホログラム露光により色素前駆体を発色させることは、吸収率差だけでなく、大きな屈折率差も好ましく形成できることがわかる。
本発明のホログラム記録材料は、屈折率変調により干渉縞を記録する位相型ホログラム記録材料であることが高回折効率の点で好ましい。つまり、ホログラム再生時には、ホログラム記録材料が再生光波長に吸収を有さないか、ほとんど吸収を有さないことが好ましい。
したがって、本発明の色素前駆体がホログラム露光後発色体になる際には、ホログラム記録及び再生波長に吸収を有さずに、それよりも短波長側に吸収を有する発色体となることが好ましい。また増感色素の方は、ホログラム記録またはその後の定着の際に分解してその吸収及び増感機能を失うことが好ましい。
さらに、大きな屈折率変調を与え感度やダイナミックレンジを増すためには、本発明の色素前駆体は、ホログラム露光後、ホログラム記録及び再生波長に吸収を有さず、ホログラム記録波長とホログラム記録波長から200nm短波長な波長の間の領域に、吸収極大を有する発色体となることが好ましく、ホログラム記録波長とホログラム記録波長から100nm短波長な波長の間の領域に吸収極大を有する発色体となることがより好ましい。
まず、本発明のホログラム露光にて光を吸収し励起状態を生成する増感色素について詳しく説明する。
本発明の増感色素としては好ましくは、波長200〜2000nmの紫外光、可視光、赤外光のいずれかを吸収して励起状態を生成するものであり、より好ましくは波長300〜700nmの紫外光または可視光を吸収して励起状態を生成するものであり、さらに好ましくは400〜700nmの可視光を吸収して励起状態を生成するものである。
本発明の増感色素として好ましくはシアニン色素、スクワリリウムシアニン色素、スチリル色素、ピリリウム色素、メロシアニン色素、ベンジリデン色素、オキソノール色素、アズレニウム色素、クマリン色素、ケトクマリン色素、スチリルクマリン色素、ピラン色素、キサンテン色素、チオキサンテン色素、フェノチアジン色素、フェノキサジン色素、フェナジン色素、フタロシアニン色素、アザポルフィリン色素、ポルフィリン色素、縮環芳香族系色素、ペリレン色素、アゾメチン色素、アントラキノン色素、金属錯体色素、メタロセン色素等が挙げられ、より好ましくは、シアニン色素、スクワリリウムシアニン色素、ピリリウム色素、メロシアニン色素、オキソノール色素、クマリン色素、ケトクマリン色素、スチリルクマリン色素、ピラン色素、キサンテン色素、チオキサンテン色素、縮環芳香族系色素、金属錯体色素、メタロセン色素が挙げられ、さらに好ましくはシアニン色素、メロシアニン色素、オキソノール色素、金属錯体色素、メタロセン色素が挙げられる。なお、金属錯体色素としては特にRu錯体色素が、メタロセン色素としては特にフェロセン類が好ましい。
その他に「色素ハンドブック」(大河原信他編、講談社、1986年)、「機能性色素の化学」(大河原信他編、シーエムシー、1981年)、「特殊機能材料」(池森忠三郎他編、 シーエムシー、1986年)に記載される色素および染料も本発明の増感色素として用いることができる。なお、本発明の増感色素はこれらに限定されるものではなく、可視域の光に対して吸収を示す色素および染料であればどれでも用いることができる。これらの増感色素は、使用目的に応じて光源となるレーザーの波長に合うように選択することができ、用途によっては2種類以上の増感色素を組み合わせて使用しても構わない。
なお、ホログラム記録材料は厚膜で使用しかつ記録光の多くが膜を透過する必要があるため、ホログラム露光波長における増感色素のモル吸光係数を小さくすることにより増感色素添加量を極力多くすることが高感度化のために好ましい。ホログラム露光波長における増感色素のモル吸光係数は1以上10000以下であることが好ましく、1以上5000以下であることがより好ましく、5以上2500以下であることがさらに好ましく、10以上1000以下であることが最も好ましい。
また、ホログラム記録材料の記録波長光の透過率は10〜99%であることが好ましく、20〜95%であることがより好ましく、30〜90%であることがさらに好ましく、40〜85%であることが、回折効率、感度、記録密度(多重度)の点で最も好ましい。
したがって、そのようになるようにホログラム記録材料の膜厚に合わせて増感色素の記録波長におけるモル吸光係数と添加モル濃度を調整することが好ましい。
また、増感色素のλmaxはホログラム記録波長よりも短波長であることがより好ましく、ホログラム記録波長と同じから100nm短波長な範囲の間であることがさらに好ましい。
さらに、増感色素の記録波長におけるモル吸光係数はλmaxのモル吸光係数の5分の1以下であることが好ましく、10分の1以下であることがより好ましい。
特に増感色素がシアニン色素やメロシアニン色素のような有機色素の時は20分の1以下であることがより好ましく、50分の1以下であることがさらに好ましく、100分の1以下であることが最も好ましい。
以下に本発明の増感色素の具体的な例を挙げるが、本発明はこれに限定されるわけではない。
Figure 2006235385
Figure 2006235385
Figure 2006235385
Figure 2006235385
Figure 2006235385
Figure 2006235385
Figure 2006235385
Figure 2006235385
なお、ホログラム記録波長が532nmのYAGレーザー2倍波の場合、増感色素としてはベンゾオキサゾール環を有するトリメチンシアニン色素、Ru錯体色素、フェロセン類が特に好ましく、400〜415nmのGaNやInGaN等のレーザーの場合、ベンゾオキサゾール環を有するモノメチンシアニン色素、Ru錯体色素、フェロセン類が特に好ましい。
本発明の増感色素の好ましい例としては他に、特願2004−238427号に記載されている。本発明の増感色素は市販品であるか、あるいは公知の方法により合成することができる。
干渉縞記録成分として好ましくは、以下の組み合わせが挙げられる。これらについては、具体例として好ましくは、特願2004−238077号に記載されている例が挙げられる。
i)少なくとも色素前駆体としての酸発色型色素前駆体と、さらに酸発生剤を含む組み合わせ。必要によりさらに酸増殖剤を含む組み合わせ。
酸発生剤としてはジアリールヨードニウム塩、スルホニウム塩、スルホン酸エステルが好ましく、先述の酸発生剤(カチオン重合開始剤)を好ましく用いることができる。
酸発色型色素前駆体から生成する発色体はキサンテン色素、フルオラン色素またはトリ
フェニルメタン色素が好ましい。酸発色型色素前駆体の特に好ましい具体例を以下に挙げるが、本発明はこれに限定されるわけではない。
Figure 2006235385
また、本発明の酸発色型色素前駆体としては、酸(プロトン)付加により発色するシアニンベース(ロイコシアニン色素)も好ましく用いられる。シアニンベースの好ましい具体例を以下に示すが、本発明はこれに限定されるわけではない。
Figure 2006235385
ii)少なくとも色素前駆体としての塩基発色型色素前駆体と、さらに塩基発生剤を含む組み合わせ、必要によりさらに塩基増殖剤を含む組み合わせ。
塩基発生剤としては、先述の塩基発生剤(アニオン重合開始剤)が好ましく挙げられ、塩基発色型色素前駆体としては、解離型アゾ色素、解離型アゾメチン色素、解離型オキソノール色素、解離型キサンテン色素、解離型フルオラン色素、解離型トリフェニルメタン型色素の非解離体が挙げられる。
塩基発色型色素前駆体の特に好ましい具体例を以下に挙げるが、本発明はこれに限定されるわけではない。
Figure 2006235385
Figure 2006235385
Figure 2006235385
iii) 増感色素励起状態との電子移動またはエネルギー移動により共有結合を切断する機能を有する有機化合物部位と、共有結合している際と放出された際に発色体となる特徴を有する有機化合物部位が共有結合している化合物を含む場合。必要によりさらに塩基を含む組み合わせ。特に好ましい具体例を以下に挙げるが、本発明はこれに限定されるわけではない。
Figure 2006235385
Figure 2006235385
iv) 増感色素励起状態との電子移動により反応し、吸収形を変化させることができる化合物を含む場合。いわゆるエレクトロクロミック化合物を好ましく用いることができる。さらには、バインダーポリマーを含むことがより好ましく、バインダーポリマーとしては、3)潜像発色−発色体増感重合反応による干渉縞記録の所で後述する例や、特願2004−238077号に記載されている例が好ましく挙げられる。
2)潜像発色−発色体自己増感増幅発色反応による干渉縞記録
好ましくは、少なくとも、潜像としてホログラム再生光波長に吸収のない発色体をホログラム露光により生成する第1の工程と、その発色体潜像にホログラム露光とは異なり、増感色素のモル吸光係数が5000以下の波長域の光を照射し発色体を自己増感増幅生成することにより、干渉縞を屈折率変調として記録する第2の工程を有し、それらを乾式処理にて行うことを特徴とするホログラム記録方法であり、高速書き込み、高S/N比再生等の点で好ましい。
なお、ここで「潜像」とは、「第2の工程後形成される屈折率差の好ましくは2分の1以下の屈折率差」のこと(つまり好ましくは第2の工程にて2倍以上の増幅工程が行われること)を示し、より好ましくは5分の1以下、さらに好ましくは10分の1以下、最も好ましくは30分の1以下の屈折率差画像であること(つまり第2の工程にてより好ましくは5倍以上、さらに好ましくは10倍以上、最も好ましくは30倍以上の増幅工程が行われること)を示す。
ここで、第2の工程は光照射、熱印加のいずれかまたはその両方であることが好ましく、光照射であることがより好ましく、照射する光は全面露光(いわゆるベタ露光、ブランケット露光、ノンイメージワイズ露光)であることが好ましい。
用いる光源として好ましくは、可視光レーザー、紫外光レーザー、赤外光レーザー、カーボンアーク、高圧水銀灯、キセノンランプ、メタルハライドランプ、蛍光ランプ、タングステンランプ、LED、有機ELなどが挙げられる。特定の波長域の光を照射するために、必要に応じてシャープカットフィルターやバンドパスフィルター、回折格子等を用いることも好ましい。
さらに、そのようなホログラム記録方法が可能であるホログラム記録材料としては、少なくとも、
1)ホログラム露光にて光を吸収し励起状態を生成する増感色素、と、
2)元の状態から吸収が長波長化しかつホログラム再生光波長に吸収を有さない発色体となることができる色素前駆体を含み、増感色素または発色体励起状態から電子移動またはエネルギー移動することにより、発色による屈折率変調を用いて干渉縞を記録することができる干渉縞記録成分、
を含むことが好ましい。
増感色素、干渉縞記録成分として好ましい例は、1)発色反応の所で述べた例と同じである。
なお、第2の工程にて照射する光の波長域では、増感色素の線形吸収のモル吸光係数が1000以下であることがより好ましく、500以下であることがさらに好ましい。
また、第2の工程にて照射する光の波長域では、発色体のモル吸光係数が1000以上であることが好ましい。
以下に「潜像発色−発色体自己増感増幅発色反応方式」の概念を説明する。
例えば、532nmのYAG・SHGレーザーをホログラム記録材料に照射し、増感色素に吸収させ励起状態を生成させる。その増感色素励起状態から干渉縞記録成分にエネルギー移動または電子移動させることにより、干渉縞記録成分に含まれる色素前駆体を発色体に変化させて発色による潜像を形成する(以上第1の工程)。次に350〜420nmの波長域の光を照射して、発色体の吸収を起こし、発色体の自己増感により発色体を増幅生成させる(以上第2の工程)。第1の工程にて干渉暗部である部分では潜像があまり生成しないため第2の工程においても自己増感発色反応はほとんど起きず、その結果干渉明部と干渉暗部にて大きな屈折率変調を形成することができ、干渉縞として記録することができる。例えば532nmのレーザーを再び用い、記録を行ったホログラム記録材料に照射すると、記録した情報、画像等を再生する、あるいは所望の光学材料として機能することができる。
潜像発色−発色体自己増感増幅発色反応の具体例として好ましくは、特願2004−238427号に記載されている例が挙げられる。
3)潜像発色−発色体増感重合反応による干渉縞記録
好ましくは、少なくとも、潜像としてホログラム再生光波長に吸収のない発色体をホログラム露光により生成する第1の工程と、その発色体潜像にホログラム露光とは異なる波
長の光を照射することにより重合を起こし、干渉縞を屈折率変調として記録する第2の工程を有し、それらを乾式処理にて行うことを特徴とするホログラム記録方法であり、高速書きこみ、保存性等に優れる。
なお、第2の工程にて、発色体を自己増感増幅生成しつつかつ重合を起こす方法も好ましい。
さらに、そのようなホログラム記録方法が可能であるホログラム記録材料としては、少なくとも、
1)第1の工程のホログラム露光にて光を吸収し励起状態を生成する増感色素、
2)第1の工程にて増感色素励起状態から、または第2の工程にて発色体励起状態から電子移動またはエネルギー移動することにより、元の状態から吸収が長波長化し、増感色素のモル吸光係数が5000以下の波長域に吸収を有しかつホログラム再生光波長に吸収を有さない発色体となることができる色素前駆体群、
3)第1の工程にて増感色素励起状態から、第2の工程にて発色体励起状態から電子移動またはエネルギー移動することにより、重合性化合物の重合を開始することができる重合開始剤、
4)重合性化合物、
5)バインダー、
を含むことが好ましい。
増感色素、干渉縞記録成分として好ましい例は、1)発色反応の所で述べた例と同じである。
重合開始剤、重合性化合物、バインダーとして好ましい例を以下に詳しく述べる。
重合反応による干渉縞記録の際には、バインダーは重合性化合物と屈折率が違うことが好ましい。屈折率変調を大きくするためには重合性化合物とバインダーのバルクでの屈折率差は大きいことが好ましく、屈折率差は0.01以上であることが好ましく、0.05以上であることがより好ましく、0.1以上であることがさらに好ましい。
そのためには、重合性化合物またはバインダーのいずれか一方が、少なくとも1個以上のアリール基、芳香族ヘテロ環基、塩素原子、臭素原子、ヨウ素原子、硫黄原子を含み、残りの一方はそれらを含まないことが好ましい。なお、重合性化合物の方がより屈折率が大きくても、バインダーの方がより屈折率が大きくても、どちらでも構わない。
本発明の重合性化合物とは、増感色素(または発色体)と重合開始剤に光を照射することにより発生したラジカル、酸(ブレンステッド酸またはルイス酸)または塩基(ブレンステッド塩基またはルイス塩基)により、付加重合を起こしてオリゴマーまたはポリマー化が可能な化合物のことである。
本発明の重合性化合物としては、単官能性でも多官能性でも良く、一成分でも多成分でも良く、モノマー、プレポリマー(例えばダイマー、オリゴマー)でもこれらの混合物でもいずれでも良いが、モノマーであることが好ましい。
また、その形態は、室温において液状であっても固体状であっても良いが、沸点100℃以上の液状であるか、沸点100℃以上の液状モノマーと固体状モノマーの混合物であることが好ましい。
本発明の重合性化合物は、ラジカル重合可能な重合性化合物とカチオンまたはアニオン重合可能な重合性化合物に大別される。
以下に、ラジカル重合可能な重合性化合物とカチオンまたはアニオン重合可能な重合性化合物ごとに、A)屈折率:重合性化合物>バインダーの場合と、B)屈折率:バインダー>重合性化合物、の場合にわけて好ましい重合性化合物の例を説明する。
A)屈折率:重合性化合物>バインダーの場合のラジカル重合性化合物の好ましい例
この場合、ラジカル重合性化合物は屈折率が高いことが好ましく、本発明の高屈折率ラジカル重合性化合物としては、少なくとも1個のエチレン性不飽和二重結合を分子中に有し、さらに少なくとも1個以上のアリール基、芳香族ヘテロ環基、塩素原子、臭素原子、ヨウ素原子、硫黄原子を含む化合物が好ましく、また沸点100℃以上の液体であることが好ましい。
具体的には以下の重合性モノマー及びそれらから成るプレポリマー(ダイマー、オリゴマー等)が挙げられる。
高屈折率ラジカル重合性モノマーとして好ましくは、スチレン、2−クロロスチレン、2−ブロモスチレン、メトキシスチレン、アクリル酸フェニル、アクリル酸p−クロロフェニル、アクリル酸2−フェニルエチル、アクリル酸2−フェノキシエチル、メタクリル酸2−フェノキシエチル、アクリル酸2−(p−クロロフェノキシ)エチル、アクリル酸ベンジル、アクリル酸2−(1−ナフチロキシ)エチル、2,2−ジ(p−ヒドロキシフェニル)プロパンジアクリレート又はジメタクリレート、ビスフェノール−Aのジ(2−メタクリロキシエチル)エーテル、ビスフェノール−Aのジ(2−アクリロキシエチル)エーテル、テトラクロロ−ビスフェノール−Aのジ(2−メタクリロキシエチル)エーテル、テトラブロモ−ビスフェノール−Aのジ(2−メタクリロキシエチル)エーテル、1,4−ベンゼンジオールジメタクリレート、1,4−ジイソプロペニルベンゼン、などが挙げられ、より好ましくはアクリル酸2−フェノキシエチル、メタクリル酸2−フェノキシエチル、アクリル酸2−(p−クロロフェノキシ)エチル、アクリル酸p−クロロフェニル、アクリル酸フェニル、アクリル酸2−フェニルエチル、ビスフェノール−Aのジ(2−アクリロキシエチル)エーテル、アクリル酸2−(1−ナフチロキシ)エチルなどが挙げられる。
好ましい重合性化合物は液体であるが、それらはN−ビニルカルバゾール、アクリル酸2−ナフチル、アクリル酸ペンタクロロフェニル、アクリル酸2,4,6−トリブロモフェニル、ビスフェノール−Aジアクリレート、アクリル酸2−(2−ナフチロキシ)エチル、並びにN−フェニルマレイミドのような第2の固体重合性化合物と混合して使用してよい。
B)屈折率:バインダー>重合性化合物の場合のラジカル重合性化合物の好ましい例
この場合、ラジカル重合性化合物は屈折率が低いことが好ましく、本発明の低屈折率ラジカル重合性化合物としては、少なくとも1個のエチレン性不飽和二重結合を分子中に有し、さらにアリール基、芳香族ヘテロ環基、塩素原子、臭素原子、ヨウ素原子、硫黄原子を一切含まないことが好ましい。
また沸点100℃以上の液体であることが好ましい。
具体的には以下の重合性モノマー及びそれらから成るプレポリマー(ダイマー、オリゴマー等)が挙げられる。
低屈折率ラジカル重合性モノマーとして好ましくは、アクリル酸t−ブチル、アクリル酸シクロヘキシル、アクリル酸イソ−ボルニル、1,5−ペンタンジオールジアクリレート、エチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、ジエチレングリコールジアクリレート、ヘキサメチレングリコールジアクリレート、1,3−プロパンジオールジアクリレート、デカメチレングリコールジアクリレート、1,4−シクロヘキシルジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリ
トールトリアクリレート、ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、1,3−プロパンジオールジメタクリレート、1,2,4−ブタントリオールトリメタクリレート、2,2,4−トリメチル−1,3−プロパンジオールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、トリメチロールプロパントリメタクリレート、1,5−ペンタンジオールジメタクリレート、フマル酸ジアリル、アクリル酸1H,1H−パーフロロオクチル、メタクリル酸1H,1H,2H,2H−パーフロロオクチル、アクリル酸1H,1H,2H,2H−パーフロロオクチル、1−ビニル−2−ピロリジノンなどが挙げられ、より好ましくは、デカンジオールジアクリレート、アクリル酸イソ−ボルニル、トリエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、アクリル酸エトキシエトキシエチル、エトキシル化トリメチロールプロパンのトリアクリレートエステル、並びに1−ビニル−2−ピロリジンなどが挙げられ、より好ましくは、デカンジオールジアクリレート、アクリル酸イソ−ボルニル、トリエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、アクリル酸エトキシエトキシエチル、アクリル酸1H,1H−パーフロロオクチル、メタクリル酸1H,1H,2H,2H−パーフロロオクチル、アクリル酸1H,1H,2H,2H−パーフロロオクチル、1−ビニル−2−ピロリジンなどが挙げられる。
好ましい重合性化合物は液体であるが、それらは、第2の固体重合性化合物モノマー、例えばN−ビニルカプロラクタム等と混合して使用してよい。
本発明のカチオン重合性化合物は、増感色素とカチオン重合開始剤に光照射することにより発生した酸により重合が開始される化合物で、本発明のアニオン重合性化合物は、増感色素とアニオン重合開始剤に光照射することにより発生した塩基により重合が開始される化合物である。
本発明のカチオン重合性化合物として好ましくは、オキシラン環、オキセタン環、ビニルエーテル基、スチリル基、N−ビニルカルバゾール部位を分子中に少なくとも1個以上有する化合物であり、より好ましくはオキシラン環部位を有する化合物である。
本発明のアニオン重合性化合物として好ましいくは、オキシラン環、オキセタン環、ビニルエーテル基、スチリル基、N−ビニルカルバゾール部位、電子吸引性置換基を備えるエチレン性二重結合部位、ラクトン部位、ラクタム部位、環状ウレタン部位、環状尿素部位、または、環状シロキサン部位を分子中に少なくとも1個以上有する化合物であり、より好ましくはオキシラン環部位を有する化合物である。
A)屈折率:重合性化合物>バインダーの場合のカチオンまたはアニオン重合性化合物の好ましい例
この場合、カチオンまたはアニオン重合性化合物は屈折率が高いことが好ましく、本発明の高屈折率カチオンまたはアニオン重合性化合物としては、少なくとも1個のオキシラン環、オキセタン環、ビニルエーテル基、スチリル基、N−ビニルカルバゾール部位を分子中に有し、さらに少なくとも1個以上のアリール基、芳香族ヘテロ環基、塩素原子、臭素原子、ヨウ素原子、硫黄原子を含む化合物が好ましく、少なくとも1個以上のアリール基を含むことが好ましい。また沸点100℃以上の液体であることが好ましい。
具体的には以下の重合性モノマー及びそれらから成るプレポリマー(ダイマー、オリゴマー等)が挙げられる。
オキシラン環を有する高屈折率カチオンまたはアニオン重合性モノマーとして好ましくは、フェニルグリシジルエーテル、フタル酸ジグリシジルエステル、トリメリト酸トリグリシジルエステル、レゾルシンジグリシジルエーテル、ジブロモフェニルグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、4,4’−ビス(2,3−エポキシプロポキシパーフルオロイソプロピル)ジフェニルエーテル、p−ブロモスチレンオキサイド、ビスフェノール−A−ジグリシジルエーテル、テトラブロモビスフェノール−A−ジグリシジルエーテル、ビスフェノール−F−ジグリシジルエーテル、1,3−ビス(3’,4’−エポキシシクロヘキシル)エチル)−1,3,−ジフェニル−1,3,−ジメチルジシロキサンなどが挙げられる。
オキセタン環を有する高屈折率カチオンまたはアニオン重合性モノマーの具体例としては、前記のオキシラン環を有する高屈折率カチオンまたはアニオン重合性モノマーの具体例のオキシラン環をオキセタン環に置き換えた化合物等が挙げられる。
ビニルエーテル基部位を有する高屈折率カチオンまたはアニオン重合性モノマーの具体例としては例えば、ビニル−2−クロロエチルエーテル、4−ビニルエーテルスチレン、ハイドロキノンジビニルエーテル、フェニルビニルエーテル、ビスフェノールAジビニルエーテル、テトラブロモビスフェノールAジビニルエーテル、ビスフェノールFジビニルエーテル、フェノキシエチレンビニルエーテル、p−ブロモフェノキシエチレンビニルエーテルなどが挙げられる。
他に、スチレン、2−クロロスチレン、2−ブロモスチレン、メトキシスチレン等のスチレン系モノマーやN−ビニルカルバゾールも高屈折率カチオン重合性モノマーとして好ましい。
B)屈折率:バインダー>重合性化合物の場合のカチオンまたはアニオン重合性化合物の好ましい例
この場合、カチオンまたはアニオン重合性化合物は屈折率が低いことが好ましく、本発明の低屈折率カチオンまたはアニオン重合性化合物としては、少なくとも1個のオキシラン環、オキセタン環、ビニルエーテル基を分子中に有し、さらにアリール基、芳香族ヘテロ環基、塩素原子、臭素原子、ヨウ素原子、硫黄原子を一切含まない化合物が好ましい。また沸点100℃以上の液体であることが好ましい。
具体的には以下の重合性モノマー及びそれらから成るプレポリマー(ダイマー、オリゴマー等)が挙げられる。
オキシラン環を有する低屈折率カチオンまたはアニオン重合性モノマーの具体例としては、グリセロールジグリシジルエーテル、グルセロールトリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、エチレングリコールモノグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグルコールジグリシジルエーテル、アジピン酸ジグリシジルエステル、1,2,7,8−ジエポキシオクタン、1,6−ジメチロールパーフルオロヘキサンジグリシジルエーテル、ビニルシクロヘキセンジオキサイド、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルオキシラン、ビス(3,4−エポキシシクロヘキシル)アジペート、2,2−ビス[4−(2,3−エポキシプロポキシ)シクロヘキシル]プロパン、2,2−ビス[4−(2,3−エポキシプロポキシ)シクロヘキシル]ヘキサフルオロプロパン、2−(3,4−エポキシシクロヘキシル)−3’,4’−エポキシ−1,3−ジオ
キサン−5−スピロシクロヘキサン、1,2−エチレンジオキシ−ビス(3,4−エポキシシクロヘキシルメタン)、エチレングリコール−ビス(3,4−エポキシシクロヘキサンカルボキシレート)、ビス−(3,4−エポキシシクロヘキシルメチル)アジペート、ジ−2,3−エポキシシクロペンチルエーテル、ビニルグリシジルエーテル、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、1,3−ビス(3’,4’−エポキシシクロヘキシル)エチル)−1,1,3,3,−テトラメチルジシロキサンなどが挙げられる。
オキセタン環を有する低屈折率カチオンまたはアニオン重合性モノマーの具体例としては、前記のオキシラン環を有する低屈折率カチオンまたはアニオン重合性モノマーの具体例のオキシラン環をオキセタン環に置き換えた化合物等が挙げられる。
ビニルエーテル基部位を有する低屈折率カチオンまたはアニオン重合性モノマーの具体例としては例えば、ビニル−n−ブチルエーテル、ビニル−t−ブチルエーテル、エチレングリゴールジビニルエーテル、エチレングリコールモノビニルエーテル、プロピレングリコールジビニルエーテル、ネオペンチルグリコールジビニルグリコール、グリセロールジビニルエーテル、グリセロールトリビニルエーテル、トリエチレングリコールジビニルエーテル、トリメチロールプロパンモノビニルエーテル、トリメチロールプロパンジビニルエーテル、トリメチロールプロパントリビニルエーテル、アリルビニルエーテル、2,2−ビス(4−シクロヘキサノール)プロパンジビニルエーテル、2,2−ビス(4−シクロヘキサノール)トリフルオロプロパンジビニルエーテルなどが挙げられる。
次に、重合反応による干渉縞記録の際の、本発明における好ましいバインダーについて、A)屈折率:重合性化合物>バインダーの場合と、B)屈折率:バインダー>重合性化合物、の場合にわけて例を説明する。
A)屈折率:重合性化合物>バインダーの場合のバインダーの好ましい例。
この場合、バインダーは低屈折率であることが好ましく、アリール基、芳香族ヘテロ環基、塩素原子、臭素原子、ヨウ素原子、硫黄原子を一切含まないバインダーであることが好ましい。
好ましい低屈折率バインダーの具体例としては、アクリレート及びアルファ−アルキルアクリレートエステル及び酸性重合体及びインターポリマー(例えばポリメタクリル酸メチル及びポリメタクリル酸エチル,メチルメタクリレートと他の(メタ)アクリル酸アルキルエステルの共重合体)、ポリビニルエステル(例えば、ポリ酢酸ビニル、ポリ酢酸/アクリル酸ビニル、ポリ酢酸/メタクリル酸ビニル及び加水分解型ポリ酢酸ビニル)、エチレン/酢酸ビニル共重合体、飽和及び不飽和ポリウレタン、ブタジエン及びイソプレン重合体及び共重合体及びほぼ4,000〜1,000,000の平均分子量を有するポリグリコールの高分子量ポリ酸化エチレン、エポキシ化物(例えば、アクリレート又はメタクリレート基を有するエポキシ化物)、ポリアミド(例えば、N−メトキシメチルポリヘキサメチレンアジパミド)、セルロースエステル(例えば、セルロースアセテート、セルロースアセテートサクシネート及びセルロースアセテートブチレート)、セルロースエーテル(例えば、メチルセルロース、エチルセルロース、エチルベンジルセルロース)、ポリカーボネート、ポリビニルアセタール(例えば、ポリビニルブチラール及びポリビニルホルマール)、ポリビニルアルコール、ポリビニルピロリドン、などが挙げられる。
また、フッ素原子含有高分子も低屈折率バインダーとして好ましい。好ましいものとしては、フルオロオレフィンを必須成分とし、アルキルビニルエーテル、アリサイクリックビニルエーテル、ヒドロキシビニルエーテル、オレフィン、ハロオレフィン、不飽和カルボン酸およびそのエステル、およびカルボン酸ビニルエステルから選ばれる1種もしくは
2種以上の不飽和単量体を共重合成分とする有機溶媒に可溶性の重合体である。好ましくは、その質量平均分子量が5,000から200,000で、またフッ素原子含有量が5ないし70質量%であることが望ましい。
前記したフッ素原子含有高分子の具体例として、例えば水酸基を有する有機溶媒可溶性の「ルミフロン」シリーズ(例えばルミフロンLF200、質量平均分子量:約50,000、旭硝子社製)が挙げられる。この他にも、ダイキン工業(株)、セントラル硝子(株)、ペンウオルト社などからも有機溶媒可溶性のフッ素原子含有高分子が上市されており、これらも使用することができる。
またポリ(ジメチルシロキサン)などのケイ素化合物や芳香族を含まないシリコンオイル等も好ましい例として挙げられる。
また他に、芳香族を含まないエポキシオリゴマー化合物も低屈折率反応性バインダーとして使用することができる。
B)屈折率:バインダー>重合性化合物の場合のバインダーの好ましい例。
この場合、バインダーは高屈折率であることが好ましく、少なくとも1個以上のアリール基、芳香族ヘテロ環基、塩素原子、臭素原子、ヨウ素原子、硫黄原子を含むバインダーであることが好ましく、アリール基を含むバインダーであることがより好ましい。
好ましい高屈折率バインダーの具体例としては、ポリスチレン重合体、並びに例えばアクリロニトリル、無水マレイン酸、アクリル酸、メタクリル酸及びそのエステルとの共重合体、塩化ビニリデン共重合体(例えば、塩化ビニリデン/アクリロニトリル共重合体、ビニリデンクロリド/メタクリレート共重合体、塩化ビニリデン/酢酸ビニル共重合体)、ポリ塩化ビニル及び共重合体(例えば、ポリビニルクロリド/アセテート、塩化ビニル/アクリロニトリル共重合体)、ポリビニルベンザル合成ゴム(例えば、ブタジエン/アクリロニトリル共重合体、アクリロニトリル/ブタジエン/スチレン共重合体、メタクリレート/アクリロニトリル/ブタジエン/スチレン共重合体、2−クロロブタジエン−1,3重合体、塩素化ゴム、スチレン/ブタジエン/スチレン、スチレン/イソプレン/スチレンブロック共重合体)、コポリエステル(例えば、式HO(CH2)nOH(式中nは、2〜10の整数である)のポリメチレングリコール、並びに(1)ヘキサヒドロテレフタル酸、セバシン酸及びテレフタル酸、(2)テレフタル酸、イソフタル酸及びセバシン酸、(3)テレフタル酸及びセバシン酸、(4)テレフタル酸及びイソフタル酸の反応生成物から製造されたもの、並びに(5)該グリコール及び(i)テレフタル酸、イソフタル酸及びセバシン酸及び(ii)テレフタル酸、イソフタル酸、セバシン酸及びアジピン酸から製造されたコポリエステルの混合物)、ポリN−ビニルカルバゾール及びその共重合体、炭酸エステルとビスフェノールから成るポリカーボネートなどが挙げられる。
またポリ(メチルフェニルシロキサン)や、1,3,5−トリメチル−1,1,3,5,5−ペンタフェニルトリシロキサンなどのケイ素化合物、芳香族を多く含むシリコンオイル等も好ましい例として挙げられる。
また他に、芳香族を多く含むエポキシオリゴマー化合物も高屈折率反応性バインダーとして使用することができる。
本発明の重合反応による干渉縞記録に用いる重合開始剤として好ましくは、ケトン系、有機過酸化物系、トリハロメチル置換トリアジン系、ジアゾニウム塩系、ジアリールヨードニウム塩系、スルホニウム塩系、ホウ酸塩系、ジアリールヨードニウム有機ホウ素錯体系、スルホニウム有機ホウ素錯体系、カチオン性増感色素有機ホウ素錯体系、アニオン性増感色素オニウム塩錯体系、金属アレーン錯体系、スルホン酸エステル系のいずれかのラジカル重合開始剤(ラジカル発生剤)またはカチオン重合開始剤(酸発生剤)、あるいは
その両方の機能を有するものが挙げられる。
その際、酸増殖剤を用いることも高感度化の点で好ましい。酸増殖剤の好ましい例として具体的に例えば、特願2003−182849号に記載されている例が挙げられる。
また、アニオン重合及びアニオン重合開始剤(塩基発生剤)を用いる場合も好ましい。さらにその場合塩基増殖剤を用いることも高感度化の点で好ましい。それらの場合、アニオン重合開始剤及び塩基増殖剤の好ましい例として具体的には例えば、特願2003−178083号に記載されている例が挙げられる。
本発明の重合開始剤、重合性化合物、バインダーの好ましい例として具体的には例えば、特願2004−238392号に記載されている例が挙げられる。
本発明における重合開始剤として好ましい具体例を以下に挙げるが、本発明はこれに限定されるわけではない
Figure 2006235385
Figure 2006235385
なお、第2の工程にて照射する光の波長域では、増感色素の線形吸収のモル吸光係数が1000以下であることがより好ましく、500以下であることがさらに好ましい。
また、第2の工程にて照射する光の波長域では、発色体のモル吸光係数が1000以上であることがより好ましい。
本発明のホログラム記録材料においては、第1の工程、第2の工程、またはその後の光照射、熱印加、またはその両方による定着工程のいずれかにより増感色素を分解して定着することが保存性及び非破壊再生の点で好ましく、さらには、第1の工程、第2の工程、またはその後の光照射、熱印加、またはその両方による定着工程のいずれかにより増感色素を、第2の工程、またはその後の光照射、熱印加、またはその両方による定着工程のいずれかにより発色体を分解して定着することがより好ましい。
以下に「潜像発色−発色体増感重合反応方式」の概念を説明する。
例えば、532nmのYAG・SHGレーザーをホログラム記録材料に照射し、増感色素に吸収させ励起状態を生成させる。その増感色素励起状態から干渉縞記録成分にエネルギー移動または電子移動させることにより、干渉縞記録成分に含まれる色素前駆体を発色体に変化させて発色による潜像を形成する(以上第1の工程)。次に350〜420nmの波長域の光を照射して、発色体の吸収を起こし、重合開始剤に電子移動またはエネルギー移動させることにより活性化して重合を開始させる。例えば、重合性化合物がバインダーよりも屈折率が大きい場合、重合が起こる部分に重合性化合物が集まるため屈折率が高くなる(以上第2の工程)。第1の工程にて干渉暗部である部分では潜像があまり生成しないため第2の工程においても重合はあまり起きずバインダーの存在比が高くなり、その結果干渉明部と干渉暗部にて大きな屈折率変調を形成することができ、干渉縞として記録することができる。第1及び第2の工程、あるいはさらにその後の定着工程により増感色素及び発色体を分解して消色できれば、非破壊再生及び保存性に優れたホログラム記録材料を提供することができる。
例えば532nmのレーザーを再び用い、記録を行ったホログラム記録材料に照射すると、記録した情報、画像等を再生する、あるいは所望の光学材料として機能することができる。
潜像発色−発色体増感重合反応の具体例として好ましくは、特願2004−238392号に記載されている例が挙げられる。
4)固有複屈折率を有する化合物の配向変化による干渉縞記録
好ましくは、ホログラム露光により固有複屈折率を有する化合物の配向変化を起こし、そのまま化学反応により固定化することにより、書き換えできない方式にて屈折率変調として干渉縞記録することを特徴とするホログラム記録方法である。固有複屈折率を有する化合物としては液晶性化合物が好ましく、低分子液晶性化合物がより好ましく、重合性基を有する低分子液晶性化合物がさらに好ましい。重合性基を有する低分子液晶性化合物はネマチック液晶性化合物、スメクチック液晶性化合物、ディスコティックネマチック液晶性化合物、ディスコティック液晶性化合物、コレステリック液晶性化合物のいずれかであることが好ましく、ネマチック液晶性またはスメクチック液晶性であることがより好ましい。
さらに固有複屈折率を有する化合物の配向変化による干渉縞記録方式におけるホログラム記録材料においては、少なくとも重合性基を有する低分子液晶性化合物、光反応性化合物、重合開始剤を有することが好ましく、さらには、増感色素、バインダーポリマー等を有することも好ましい。重合開始剤、増感色素、バインダーポリマー等の好ましい例は先述した通りである。
なお光反応性化合物は光異性化化合物であることが好ましく、より好ましくはアゾベンゼン系化合物、スチルベン系化合物、スピロピラン系化合物、スピロオキサジン系化合物、ジアリールエテン系化合物、フルギド系化合物、フルギミド系化合物、桂皮酸系化合物、クマリン系化合物、カルコン系化合物のいずれかであり、最も好ましくはアゾベンゼン系化合物である。
光反応性化合物は低分子化合物であっても、高分子化合物であっても良く、高分子化合物である際は、光反応性部位をペンダントした高分子化合物であることが好ましい。
なお、固有複屈折率を有する化合物の配向変化による干渉縞記録方式及び材料の具体例として好ましくは、特願2003−327594号に記載されている例が挙げられる。
5)色素消色反応
好ましくは、少なくとも1種以上の消色性色素を有し、該消色性色素がホログラム露光により消色することを用いた屈折率変調により干渉縞を形成することを特徴とするホログラム記録方法である。
本発明にて消色性色素とは、200〜2000nmの紫外光、可視光、赤外光の領域に吸収を有し、光照射により直接または間接的にλmaxが短波長化、吸収のモル吸光係数の減少のいずれかが起こすような色素の総称を示し、さらに好ましくはその両方を起こすような色素である。また、消色反応は200〜1000nmの波長領域で起こることがより好ましく、300〜900nmの波長領域で起こることがさらに好ましい。
なお好ましい組み合わせとして、
(A)該消色性色素がホログラム露光波長に吸収を有する増感色素であり、ホログラム露光の際光を吸収し、その結果自身を消色することを用いた屈折率変調により干渉縞を形成することを特徴とするホログラム記録方法。
(B)少なくともホログラム露光波長に吸収を有する増感色素とホログラム再生光波長のモル吸光係数が1000以下、好ましくは100以下の消色性色素を有し、ホログラム露光の際増感色素が光を吸収し、その励起エネルギーを用いた電子移動またはエネルギー移動により消色性色素を消色することを用いた屈折率変調により干渉縞を形成することを特徴とするホログラム記録方法。
が挙げられ、(B)の方法の方がより好ましい。
さらに、消色性色素、増感色素とは別の消色剤前駆体を有し、増感色素または消色性色素がホログラム露光により励起状態を生成した後、消色剤前駆体とエネルギー移動または電子移動することにより消色剤前駆体から消色剤を発生させ、その消色剤が消色性色素を消色することを用いた屈折率変調により干渉縞を形成することを特徴とするホログラム記録方法も好ましい。その際、消色剤はラジカル、酸、塩基、求核剤、求電子剤、一重項酸素のいずれかであることが好ましく、したがって、消色剤前駆体はラジカル発生剤、酸発生剤、塩基発生剤、求核剤発生剤、求電子剤発生剤、三重項酸素のいずれかであることが好ましい。消色前駆体としては、ラジカル発生剤、酸発生剤、塩基発生剤のいずれかであることがより好ましい。
また、いずれの場合も、さらにバインダーポリマーを含むことがより好ましく、バインダーポリマーとしては、前記のバインダーポリマーが挙げられる。
次に「色素消色反応方式」において、干渉縞明部と暗部にて屈折率差を形成するための消色性色素について詳しく述べる。
先述した(A)の方式では、増感色素と消色性色素を兼ねるため、消色性色素の好ましい例としては先述した増感色素の例が挙げられる。増感色素兼消色性色素のλmaxはホログラム記録光波長とホログラム記録光波長から100nm短い波長域の間にあることが好ましい。
一方、先述した(B)の方式では、増感色素とは別に消色性色素を用いる。その際、消色性色素としてはホログラム記録光波長のモル吸光係数が1000以下であることが好ましく、100以下であることがより好ましく、0であることが最も好ましい。消色性色素のλmaxはホログラム記録光波長とホログラム記録光波長から200nm短い波長域の間にあることが好ましい。
(B)の方式では、消色性色素としては、好ましくは、シアニン色素、スクワリリウムシアニン色素、スチリル色素、ピリリウム色素、メロシアニン色素、ベンジリデン色素、オキソノール色素、クマリン色素、ピラン色素、キサンテン色素、チオキサンテン色素、フェノチアジン色素、フェノキサジン色素、フェナジン色素、フタロシアニン色素、アザポルフィリン色素、ポルフィリン色素、縮環芳香族系色素、ペリレン色素、アゾメチン色素、アゾ色素、アントラキノン色素、金属錯体色素のいずれかであり、さらに好ましくは、シアニン色素、スチリル色素、メロシアニン色素、ベンジリデン色素、オキソノール色素、クマリン色素、キサンテン色素、アゾメチン色素、アゾ色素、金属錯体色素のいずれかである。
特に、消色剤が酸の時、消色性色素としては、解離型ベンジリデン色素、解離型オキソノール色素、解離型キサンテン色素、解離型アゾ色素の解離体であることが好ましく、解離型ベンジリデン色素、解離型オキソノール色素、解離型アゾ色素の解離体であることがより好ましい。ここで解離型色素とは−OH基、−SH基、−COOH基、−NHSO2R基や−CONHSO2R基等、pKaが2〜14程度の範囲内にある活性水素を有し、プロトンが解離することによって、吸収が長波長化または高ε化する色素の総称である。したがって、解離型色素をあらかじめ塩基で処理して解離型としておけば、あらかじめ長波長化または高ε化した色素を調製することができ、光酸発生により非解離型に変化させ消色(短波長化または低ε化)することが可能となる。
また特に、消色剤が塩基の時は、あらかじめ酸で処理して発色体としたトリフェニルメタン色素、キサンテン色素、フルオラン色素等の酸発色性色素発色体を消色性色素として用いれば、光塩基発生により非プロトン付加体に変化させ消色(短波長化または低ε化)することが可能となる。
以下に本発明の消色性色素の具体的な例を挙げるが、本発明はこれに限定されるわけではない。
Figure 2006235385
Figure 2006235385
Figure 2006235385
Figure 2006235385
また、本発明の消色性色素としては、ホログラム露光により生成する増感色素励起状態からの電子移動により結合が切断し、その結果消色することができる以下の消色性色素の例も好ましく挙げることができる。
これらの消色性色素は元々はシアニン色素であるが、電子移動による結合の切断によりシアニンベース(ロイコシアニン色素)に変化し、吸収の消色または短波長化が起こるものである。
Figure 2006235385
消色剤前駆体が酸発生剤の場合、好ましい例としては前述のカチオン重合開始剤の例が挙げられる。ラジカル発生剤の場合、好ましい例としては前述のラジカル重合開始剤の例が挙げられる。塩基発生剤の場合、好ましい例としては前述のアニオン重合開始剤の例が挙げられる。
色素消色反応の具体例として好ましくは、特願2004−88790号に記載されている例が挙げられる。
6)残存消色色素潜像−潜像増感重合反応
好ましくは、ホログラム露光波長に吸収を有する増感色素がホログラム露光時に光を吸収して励起状態を生成した後、その励起エネルギーを用いてホログラム再生光波長のモル吸光係数が1000以下、好ましくは100以下、最も好ましくは0の消色性色素を消色し、消色されなかった残存消色性色素を潜像とする第1の工程と、その残存消色性色素潜像にホログラム露光とは異なる波長の光を照射することにより重合を起こし、干渉縞を屈折率変調として記録する第2の工程を有することを特徴とするホログラム記録方法であり、高速記録、多重記録適性、記録後の保存性等に優れる。
さらに、ホログラム露光波長に吸収を有する増感色素がホログラム露光時に光を吸収して励起状態を生成した後、5)で述べた消色剤前駆体とエネルギー移動または電子移動することにより消色剤前駆体から消色剤を発生させ、その消色剤が消色性色素を消色することにより、消色されなかった残存消色性色素を潜像とする第1の工程と、その残存消色性色素潜像にホログラム露光とは異なる波長の光を照射することにより、エネルギー移動または電子移動により重合開始剤を活性化させて重合を起こし、干渉縞を屈折率変調として記録する第2の工程を有することを特徴とするホログラム記録方法、も好ましい。
さらに、そのようなホログラム記録方法が可能な化合物群として、少なくとも、
1)第1の工程のホログラム露光にて光を吸収し励起状態を生成する増感色素、
2)第1の工程にて増感色素励起状態から、直接電子移動する結果、または消色剤前駆体へ電子移動することにより消色剤を発生させる結果、消色することができるホログラム再生光波長のモル吸光係数が1000以下の消色性色素、
3)第2の工程にて残存消色性色素励起状態から電子移動またはエネルギー移動することにより、重合性化合物の重合を開始することができる重合開始剤(場合により2)の消色剤前駆体を兼ねる)、
4)重合性化合物、
5)バインダー、
を含むことが好ましい。なお、2)にて消色剤前駆体にエネルギー移動または電子移動する場合は、6)第1の工程にて増感色素励起状態から、電子移動またはエネルギー移動することにより消色剤を発生することができる消色剤前駆体、も含むことが好ましい。
なお、増感色素として好ましい例は、1)発色反応の所で述べた例と同じである。重合開始剤、重合性化合物、バインダーとして好ましい例は、3)潜像発色−発色体増感重合反応の所で述べた例と同じである。
消色性色素、消色剤前駆体の好ましい例は、5)消色反応の所で述べた例と同じである。
なお、第2の工程にて照射する光の波長域では、増感色素の線形吸収のモル吸光係数が1000以下であることがより好ましく、500以下であることがさらに好ましい。
また、第2の工程にて照射する光の波長域では、消色性色素のモル吸光係数が1000以上であることが好ましい。
ここで、本発明の「残存消色色素潜像−潜像増感重合方式」において、消色剤前駆体と重合開始剤が一部または全部同じで両方の機能を兼ねることも好ましい。
増感色素とは別に消色性色素を添加する場合にて、消色剤前駆体と重合開始剤が異なる場合(例えば消色剤前駆体が酸発生剤または塩基発生剤、重合開始剤はラジカル重合開始剤、あるいは、消色剤前駆体がラジカル発生剤または求核剤発生剤、重合開始剤が酸発生剤または塩基発生剤)は、増感色素は消色剤前駆体に対してのみ電子移動増感可能で、重合開始剤は消色性色素によってのみ電子移動増感可能であることが好ましい。
本発明のホログラム記録方法及びそのような記録が可能であるホログラム記録材料においては、第1の工程、第2の工程、またはその後の光照射、熱印加、またはその両方による定着工程のいずれかにより増感色素を分解して定着することが保存性及び非破壊再生の点で好ましく、さらには、第1の工程、第2の工程、またはその後の光照射、熱印加、またはその両方による定着工程のいずれかにより増感色素を、第2の工程、またはその後の光照射、熱印加、またはその両方による定着工程のいずれかにより残存している消色性色素を分解して定着することがより好ましい。
以下に「残存消色色素潜像−潜像増感重合反応方式」の概念を説明する。
例えば、532nmのYAG・SHGレーザーをホログラム記録材料に照射し、増感色素に吸収させ励起状態を生成させる。その増感色素励起状態から消色剤前駆体にエネルギー移動または電子移動させることにより消色剤を発生させて、消色性色素を消色させる。その結果、残存した消色性色素による潜像を形成することができる(以上第1の工程)。次に350〜420nmの波長域の光を照射して、残存消色色素潜像の吸収を起こし、重合開始剤に電子移動またはエネルギー移動させることにより活性化して重合を開始させる。例えば、重合性化合物がバインダーよりも屈折率が小さい場合、重合が起こる部分に重合性化合物が集まるため屈折率が低くなる(以上第2の工程)。第1の工程にて干渉明部となった部分では潜像となる残存消色性色素が少ないため第2の工程においても重合はあまり起きずバインダーの存在比が高くなり、その結果干渉明部と干渉暗部にて大きな屈折率変調を形成することができ、干渉縞として記録することができる。第1及び第2の工程、あるいはさらにその後の定着工程により増感色素及び残存消色性色素を分解して消色できれば、非破壊再生及び保存性に優れたホログラム記録材料を提供することができる。
例えば532nmのレーザーを再び用い、記録を行ったホログラム記録材料に照射する
と、記録した情報、画像等を再生する、あるいは所望の光学材料として機能することができる。
残存消色色素潜像−潜像増感重合反応の具体例として好ましくは、特願2004−88790号に記載されている例が挙げられる。
本発明のホログラム記録材料は、前記のような増感色素、干渉縞記録成分、重合開始剤、重合性化合物、バインダー、消色性色素、消色剤前駆体等に加えて、さらに必要に応じて電子供与性化合物、電子受容性化合物、連鎖移動剤、架橋剤、熱安定剤、可塑剤、溶媒等の添加物を用いることができる。
電子供与性化合物は増感色素、発色体または消色性色素のラジカルカチオンを還元する能力を有し、電子受容性化合物は増感色素、発色体または消色性色素のラジカルアニオンを酸化する能力を有し、共に増感色素、発色体または消色性色素を再生する機能を有する。具体的には例えば、特願2004−238077号に記載されている例が好ましい例として挙げられる。
特に電子供与性化合物は、色素前駆体群への電子移動後の増感色素、発色体または消色性色素ラジカルカチオンを素早く再生できるため高感度のために有用である。電子供与性化合物としては、酸化電位が増感色素、発色体または消色性色素の酸化電位よりも卑なものが好ましい。電子供与性化合物の好ましい具体例を以下に挙げるが、本発明はこれに限定されるものではない。
Figure 2006235385
電子供与性化合物としては特に、フェノチアジン系化合物(例えば10−メチルフェノチアジン、10−(4‘−メトキシフェニル)フェノチアジン)、トリフェニルアミン系化合物(例えばトリフェニルアミン、トリ(4’−メトキシフェニル)アミン、TPD系化合物(例えばTPD)等が好ましく、フェノチアジン系化合物がさらに好ましく、N−メチルフェノチアジンが最も好ましい。
なお、前述してきた本発明の増感色素、酸発生剤、塩基発生剤、色素前駆体、消色性色素、消色剤前駆体、電子供与性化合物等はオリゴマーまたはポリマーでも良く、その際は主鎖に含まれても側鎖に含まれても良く、共重合体であっても良い。
ポリマー主鎖としてはどのような構造でも良いが、ポリアクリレートやポリメタクリレート、ポリスチレン、ポリエチレンオキサイド等のポリエーテル、ポリエステル、ポリアミド等が好ましく挙げられる。
その際、本発明のポリマーまたはオリゴマーとしては繰り返し単位が2以上100万以下であり、好ましくは3以上100万以下であり、より好ましくは5以上50万以下であり、もっとも好ましくは10以上10万以下である。
またポリマーまたはオリゴマーの分子量としては好ましくは500以上1000万以下であり、より好ましくは1000以上500万以下であり、さらに好ましくは2000以上100万以下であり、最も好ましくは3000以上100万以下である。
連鎖移動剤、架橋剤、熱安定剤、可塑剤、溶媒等の具体例として好ましい例は、特願2004−238392号に記載されている例が挙げられる。
連鎖移動剤として好ましくは、チオール類であり、例えば、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、2−メルカプトベンズイミダゾール、4−メチル−4H−1,2,4−トリアゾール−3−チオール、p−ブロモベンゼンチオール、チオシアヌル酸、1,4−ビス(メルカプトメチル)ベンゼン、p−トルエンチオール
などが挙げられる。
特に重合開始剤が2,4,5−トリフェニルイミダゾリルダイマーの場合は連鎖移動剤を用いることが好ましい。
本発明のホログラム記録材料には、保存時の保存性を向上させるために熱安定剤を添加することができる。
有用な熱安定剤にはハイドロキノン、フェニドン、p−メトキシフェノール、アルキルおよびアリール置換されたハイドロキノンとキノン、カテコール、t−ブチルカテコール、ピロガロール、2−ナフトール、2,6−ジ−t−ブチル−p−クレゾール、フェノチアジン、およびクロルアニールなどが含まれる。
可塑剤はホログラム記録材料の接着性、柔軟性、硬さ、およびその他の機械的諸特性を変えるために用いられる。可塑剤としては例えば、トリエチレングリコールジカプリレート、トリエチレングリコールビス(2−エチルヘキサノエート)、テトラエチレングリコールジヘプタノエート、ジエチルセバケート、ジブチルスベレート、トリス(2−エチルヘキシル)ホスフェート、トリクレジルホスフェート、ジブチルフタレート、アルコール類、フェノール類等が挙げられる。
本発明のホログラム記録材料は通常の方法で調製されてよい。
例えば、本発明のホログラム記録材料の製膜方法としては、前記のバインダーや各成分を溶媒等に溶かしてスピンコーターまたはバーコーター等を用いて塗布しても良い。
その際、溶媒として好ましくは例えば、メチルエチルケトン、メチルイソブチルケトン、アセトン、シクロヘキサノンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチレングリコールジアセテート、乳酸エチル、セロソルブアセテートなどのエステル系溶媒、シクロヘキサン、トルエン、キシレンなどの炭化水素系溶媒、テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルセロソルブなどのセロソルブ系溶媒、メタノール、エタノール、n−プロパノール、2−プロパノール、n−ブタノール、ジアセトンアルコールなどのアルコール系溶媒、2,2,3,3−テトラフルオロプロパノールなどのフッ素系溶媒、ジクロロメタン、クロロホルム、1,2−ジクロロエタンなどのハロゲン化炭化水素系溶媒、N、N−ジメチルホルムアミドなどのアミド系溶媒、アセトニトリル、プロピオニトリルなどのニトリル系溶媒が挙げられる。
本発明のホログラム記録材料は、スピンコーター、ロールコーターまたはバーコーターなどを用いることによって基板上に直接塗布することも、あるいはフィルムとしてキャストしついで通常の方法により基板にラミネートすることもでき、それらによりホログラム記録材料とすることができる。
ここで、「基板」とは、任意の天然又は合成支持体、好適には柔軟性又は剛性フィルム、シートまたは板の形態で存在することができるものを意味する。
基板として好ましくは、ポリエチレンテレフタレート、樹脂下塗り型ポリエチレンテレフタレート、火炎又は静電気放電処理されたポリエチレンテレフタレート、セルロースアセテート、ポリカーボネート、ポリメチルメタクリレート、ポリエステル、ポリビニルアルコール、ガラス等である。
使用した溶媒は乾燥時に蒸発除去することができる。蒸発除去には加熱や減圧を用いても良い。
また本発明のホログラム記録材料は、各成分を含むバインダーをバインダーのガラス転移温度または融点以上の温度にしてメルトさせ溶融押し出しまたは射出成型して製膜しても良い。その際、バインダーとして反応性架橋バインダーを使用し、押し出しまたは成型後に架橋させて膜を硬化させ、膜強度を増しても良い。その場合、架橋反応にはラジカル
重合反応、カチオン重合反応、縮合重合反応、付加重合反応等が使用できる。また、特開2000−250382号公報、特開2000−172154号公報等記載の方法も好ましく使用することができる。
また、バインダーを形成するモノマー溶液に各成分を溶解させておいた上でモノマーを熱重合または光重合させてポリマーとし、バインダーとして使用する方法も好ましく使用できる。その際の重合法としても、ラジカル重合反応、カチオン重合反応、縮合重合反応、付加重合反応等が使用できる。
さらに、ホログラム記録材料の上に、酸素遮断のための保護層を形成してもよい。保護層は、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンテレフタレートまたはセロファンフィルムなどのプラスチック製のフィルムまたは板を静電的な密着、押し出し機を使った積層等により貼合わせるか、前記ポリマーの溶液を塗布してもよい。また、ガラス板を貼合わせてもよい。また、保護層と感光膜の間および/または、基材と感光膜の間に、気密性を高めるために粘着剤または液状物質を存在させてもよい。
本発明のホログラム記録材料をホログラフィック光メモリ用途に用いる場合、ホログラム記録材料はホログラム記録前後で収縮等が起こらない方が信号再生時のS/N比向上の点でより好ましい。
そのため、例えば本発明のホログラム記録材料に特開2000−86914号記載の膨張剤を用いたり、特開2000−250382号、2000−172154、特開平11−344917号記載の耐収縮性のあるバインダーを用いることも好ましい。
また、特開平3−46687号、5−204288号、特表平9−506441号等記載の拡散要素を用いて干渉縞間隔を調節することも好ましい。
特許文献3、4〜7のような公知の通常のフォトポリマーでは多重記録を行うと、多重記録後半の方では重合がかなり進んだ所に記録することとなるため、多重記録前半に比べて、同じ信号を記録するにも露光時間を必要とする(感度が低下する)こととなり、システム設計上重大な問題とされていた。つまり、露光量に対して、屈折率変調量がリニアに上昇する範囲が非常に狭いことが問題とされていた。
それに対し、特に本発明の1)発色反応、2)潜像発色−発色体自己増感増幅発色反応及び5)色素消色反応の記録方法は干渉縞記録に重合を伴わない方式であり、また、3)潜像発色−発色体増感重合反応、6)残存消色色素潜像−潜像増感重合反応による記録方法においても、ホログラム露光(第1の工程)の際に重合反応をほとんど伴わなわず、第2の工程の全面露光にて一括して重合による屈折率変調を行う方式である。したがって、1)〜3)、5)、6)いずれの方法においても多くの多重記録が可能であり、さらに、多重記録の際の露光量がいずれの多重記録の際も終始一定のまま、つまり露光量に対して屈折率変調量がリニアに上昇しながら多重記録することができるため、広いダイナミックレンジを取ることができる。このように、発色方式、消色方式または潜像増幅方式を用いる本発明の1)〜3)及び5)、6)の記録方式は、上記多重記録適性の点で大変有利である。
これは、高密度(容量)化、記録システム簡略化、S/N比向上等の点で好ましい。
以上のように、本発明のホログラム記録材料は、前述の課題を抜本的に解決した、とりわけ高感度と良保存性、乾式処理、多重記録特性(高記録密度)を両立できる全く新しい記録方式を与えるものであり、特に、光情報記録媒体(ホログラフィック光メモリ)に用いることが好ましい。
また、本発明のホログラム記録材料は、特表2005−500581号公報、特表2005−501285号公報、特許第3393064号公報、特開2003−85768号
公報、特開2004−265472号公報、特開2004−126040号公報などに記載の記録媒体に用いることができる。また本発明のホログラム記録材料は、特開2004−272268号公報、特開2004−177958号公報、特開2003−43904号公報、特許第3451663号公報、特開2004−335044号公報、特開2004−361928号公報、特開2004−171611号公報、特開2003−228849号公報、特開2002−83431号公報、特開2002−123948号公報、特開2004−30734号公報、特開2004−362750号公報、特許第3430012号公報、特開2003−178457号公報、特開2003−178458号公報、特開2003−178462号公報、特開2003−178484号公報、特開2003−151143号公報などに記載の記録再生装置を用いてホログラム記録および再生を行うことができる。
さらに、本発明のホログラム記録材料は、光情報記録媒体の他にも、3次元ディスプレイホログラム、ホログラフィック光学素子(HOE、例えば、自動車搭載用のヘッドアップディスプレイ(HUD)、光ディスク用ピックアップレンズ、ヘッドマウントディスプレイ、液晶用カラーフィルター、反射型液晶反射板、レンズ、回折格子、干渉フィルター、光ファイバー用結合器、ファクシミリ用光偏光器、建築用窓ガラス)、書籍、雑誌等の表紙、POPなどのディスプレイ、ギフト、偽造防止用のセキュリティ目的としてクレジットカード、紙幣、包装などに好ましく用いることができる。
以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されるものではない。
参考例1
[発色方式によるホログラム記録方法]
赤色灯下にて、表1に示した増感色素、電子供与性化合物、干渉縞記録成分、添加剤、バインダーPMMA−EA(ポリ(メチルメタクリレート−5%エチルアクリレート)共重合体、Mw101000)を、2〜4倍質量の塩化メチレン(必要によりアセトンまたはアセトニトリルも併用した)に溶解し、ホログラム記録材料用組成物101〜110を調液した。なお%はすべてバインダーPMMA−EAに対した質量%を表す。
このホログラム記録材料用組成物101〜110を厚さが約80μmになるようにブレードを用いてガラス基板に塗布(必要なら重ね塗り)し、感光層を形成した後、室温で1日真空乾燥して溶媒を留去した。さらに感光層上をTAC膜で覆うことにより、ホログラム記録材料101〜110を作製した。
ホログラム記録材料101〜110におけるホログラム記録材料を、図2に示す透過型ホログラム記録用の2光束光学系により、光源としてYAGレーザー2倍波(532nm、出力2W)を用いて露光し記録した。物体光と参照光のなす角は30度である。ビームは0.6cmの直径と8mW/cm2の強度とを有しており、ホログラフィー露光時間を0.1〜400秒の範囲(照射エネルギーにして0.8〜3200mJ/cm2の範囲)変化させて露光した。ホログラムに露光している間、He−Neレーザー632nmのビームをブラック角にて露光領域の中心に通し、その透過光に対した回折光の比(相対回折効率)を実時間で測定した。なお632nmには増感色素の吸収がないため、He−Neレーザーはホログラム記録材料を感光させない。なお、図2において、符号10はYAGレーザー、12はレーザービーム、14は鏡、20はビームスプリッター、22はビームセグメント、24は鏡、26は空間フィルター、40はビームエキスパンダー、30はホログラム記録材料、28は試料、32はHe−Neレーザービーム、34はHe−Neレーザー、36は検出器、38は回転ステージである。
ホログラム記録材料101〜110における最大回折効率及び収縮率の評価結果を表2に記す。なお、収縮率は記録前後の膜厚変化から求めた。なお、比較例として、特開平6
−43634号実施例1のラジカル重合フォトポリマー方式ホログラム記録材料を作成した。
結果を表2に示す。
Figure 2006235385
Figure 2006235385
Figure 2006235385
表2から、公知の特開平6−43634号公報記載の比較例は回折効率は高いもののラジカル重合を伴なうフォトポリマー方式であるため5%を超える大きな収縮を伴ない、特にホログラフィックメモリ用途としてはS/N比が極めて悪化し不向きである。それに対し、本発明のホログラム記録材料101〜110は物質移動と重合を用いないで発色反応を用いた屈折率変調によるホログラム記録を行う、公知のホログラム記録材料とは全く異なる記録方式であるため、高い回折効率と0.01%以下の極めて小さい収縮率を両立できることがわかり、特にホログラフィックメモリ用途に適している。
さらに、本発明のホログラム記録材料は露光量(mJ/cm2)に応じてほぼリニアーにΔn(干渉縞における屈折率変調量、回折効率と膜厚からクーゲルニックの式に基づいて計算)が上昇し、多重記録の際有利である。
実際に、本発明のホログラム記録材料を用い、前記最大回折効率を与えた露光量の10分の1の光量で、参照光の角度を2度ずつ変えて同じ場所に10回の多重ホログラム記録を行った後、再生光の角度を2度ずつ変更して照射することによりそれぞれの物体光を再生することが可能なことを確かめた。つまり、本発明のホログラム記録材料は同じ露光量にて多重記録が可能であり、多重記録適性を有したことがわかる。このように本発明のホログラム記録材料は数多くの多重記録が可能であるため、高密度(容量)記録が可能である。
それに対し、特開平6−43634号公報を始めとする公知のフォトポリマー方式ホログラム記録材料は、多重記録後期はフォトポリマーの重合が進んで記録に必要なモノマーの移動が遅くなり、同じ記録を行うのに際し初期に比べてより多くの照射光量を必要とすることがわかり、多重度つまり記録密度を向上させるに際し問題であることがわかった。
なお、試料101〜110にて、増感色素をS−1,S−4,S−8,S−10,S−11,S−19,S−23,S−31,S−33,S−34,S−43,S−45,S−46,S−50,S−58,S−67,S−73,S−74,S−77,S−80,S−91,S−94,S−95,S−96に変更しても同様な効果が得られた。
また、試料101〜107にて干渉縞記録成分の酸発生剤をI−3,I−4,I−6、I−7,I−8,I−9,I−10,4−(オクチルフェニル)フェニルヨードニウムヘキサフルオロアンチモネート、トリス(4−メチルフェニル)スルホニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムパーフルオロペンタノエート、ビス(1−(4−ジフェニルスルホニウム)フェニルスルフィドジトリフラート、ジメチルフェナシルスルホニウムパーフルオロブタンスルホネート、ベンゾイントシレート、I−22,I−23,に変更しても、試料101〜107にて干渉縞記録成分の酸発色型色素前駆体をL−1,L−3,LC−1,LC−4,LC−9,LC−11,LC−12,LC−13に変更しても同様な効果が得られた。
また、試料108にて干渉縞記録成分の塩基発生剤を、PB−3,PB−4,PB−5、PB−6、PB−7、PB−8,PB−9に変更しても、試料108にて塩基発色型色
素前駆体(解離型色素非解離体)をDD−1、DD−13,DD−15、DD−17,DD−22,DD−30,DD−31,DD−32,DD−34,DD−35,DD−36,DD−37,DD−38に変更しても同様な効果が得られた。
また、試料109,110にて干渉縞記録成分をE−5、E−9,E−10、E−11、E−12,E−13,E−14,E−15、E−16、E−18、E−20、E−25、E−26、E−27、E−28、E−29、E−30に変更しても同様な効果が得られた。
また、試料103、106〜109にて電子供与体をA−2、A−3、A−4、A−5、A−6、A−9、A−10、A−11に変更しても同様な効果が得られた。
また試料101〜110にて、バインダーをポリメチルメタクリレート(Mw996000、350000、120000)、ポリ(メチルメタクリレート−ブチルアクリレート共重合体(Mw75000),ポリビニルアセタール(Mw83000)、ポリカーボネート、セルロースアセテートブチレート等に変更しても同様な効果が得られた。
参考例2
[潜像発色−発色体増感重合反応方式によるホログラム記録方法]
赤色灯下にて、表3に示した増感色素、電子供与性化合物、色素前駆体群+重合開始剤、重合性化合物及びバインダーを2〜5倍量の塩化メチレン(必要によりアセトン、アセトニトリルまたはメタノールを一部使用)に溶解し、ホログラム記録材料201〜204を調液した。なお%は質量%を表す。
Figure 2006235385
Figure 2006235385
このホログラム記録材料201〜204を厚さが約80μmになるようにブレードを用いてガラス基板に塗布(必要により重ね塗り)し、感光層を形成した後、室温で1日真空乾燥して溶媒を留去した。さらに感光層上をTAC膜で覆うことにより、ホログラム記録材料201〜204を作製した。
ホログラム記録材料を、図2に示す透過型ホログラム記録用の2光束光学系により、光源としてYAGレーザー2倍波(532nm、出力2W)を用いて露光し記録した。物体光と参照光のなす角は30度である。ビームは0.6cmの直径と8mW/cm2の強度とを有しており、ホログラフィー露光時間を0.1〜40秒の範囲(照射エネルギーにして0.8〜320mJ/cm2の範囲)変化させて露光し、(第1の工程)He−Neレーザー632nmのビームをブラック角にて露光領域の中心に通し、その透過光に対した回折光の比(相対回折効率)を実時間で測定した(第1の工程後回折効率η)。なお632nmには増感色素の吸収がないため、He−Neレーザーはホログラム記録材料を感光させない。
さらにそれぞれについて、370〜410nmの波長範囲の光を全面照射し(第2の工程)、回折効率を測定した(第2の工程後回折効率η)。さらに、第2の工程を用いずに第1の工程のみで最大回折効率を出すのに必要な照射光量を、第2の工程を用いる場合に第1の工程に必要な照射光量で割ったものを「増幅率」とし、以上を表4にまとめた。
Figure 2006235385
表4より、本発明のホログラム記録材料においては、第1の工程に照射する光量は、第2の工程を用いない場合に比べ5分の1〜7分の1にすることができる。第2の工程は一括露光が可能なため、第2の工程における第1の工程の発色体を潜像として重合を起こすことによる屈折率変調記録の増幅により、第1の工程の短縮化つまり高感度化が可能であ
ることがわかる。当然ながら、特開平6−43634号公報記載のような公知の材料では、そのような増幅による高感度化は不可能である。
さらに、本発明のホログラム記録材料は第1の工程後及び第2の工程後共、露光量(mJ/cm2)に応じてほぼリニアーにΔn(干渉縞における屈折率変調量、回折効率と膜厚からクーゲルニックの式に基づいて計算)が上昇し、多重記録の際有利である。
実際に、本発明のホログラム記録材料を用い、前記の第1の工程における露光量の10分の1の光量で、参照光の角度を2度ずつ変えて同じ場所に10回の多重ホログラム記録を行った後(第1の工程)、370〜410nmの波長範囲の光を全面照射して重合による記録増幅を行った(第2の工程)ところ、再生光の角度を2度ずつ変更して照射することによりそれぞれの物体光を再生することが可能なことを確かめた。つまり、本発明のホログラム記録材料は同じ露光量にて多重記録が可能であり、多重記録適性を有していることがわかる。つまり、本発明のホログラム記録材料は数多くの多重記録が可能であり、高密度(容量)記録が可能である。
それに対し、特開平6−43634号を始めとする公知のフォトポリマー方式ホログラム記録材料は、多重記録後期はフォトポリマーの重合が進んで記録に必要なモノマーの移動が遅くなり、同じ記録を行うのに際し初期に比べてより多くの照射光量を必要とすることがわかり、多重度つまり記録密度を向上させるに際し問題であることがわかった。
それに対し、本発明のホログラム記録方法は、ホログラム記録(第1の工程)に重合ではなく発色反応をしかも潜像として用いるために前記のようなことが起こらず、公知のフォトポリマー方式に対して優れている。
なお、試料201〜204にて、増感色素をS−1,S−4,S−8,S−10,S−11,S−19,S−23,S−31,S−33,S−34,S−43,S−45,S−46,S−50,S−58,S−67,S−71,S−73,S−74,S−75,S−77,S−80,S−81,S−88,S−91,S−94,S−95,S−96に変更しても同様な効果が得られた。
また、試料201,202にて干渉縞記録成分の酸発生剤(兼カチオンまたはラジカル重合開始剤)をI−3,I−4,I−6、I−7,I−8,I−9,I−10,4−(オクチルフェニル)フェニルヨードニウムヘキサフルオロアンチモネート、トリス(4−メチルフェニル)スルホニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムパーフルオロペンタノエート、ビス(1−(4−ジフェニルスルホニウム)フェニルスルフィドジトリフラート、ジメチルフェナシルスルホニウムパーフルオロブタンスルホネートに変更しても、試料201,202にて干渉縞記録成分の酸発色型色素前駆体をL−1,L−3,LC−1,LC−4,LC−9,LC−11,LC−12,LC−13に変更しても同様な効果が得られた。
また、試料203にて干渉縞記録成分兼重合開始剤の塩基発生剤(兼アニオン重合開始剤)を、PB−3,PB−4,PB−5、PB−6、PB−7、PB−8,PB−9に変更しても、試料203にて塩基発色型色素前駆体(解離型色素非解離体)をDD−1、DD−13、DD−15、DD−17,DD−22,DD−30,DD−31,DD−32,DD−34,DD−35,DD−36,DD−37,DD−38に変更しても同様な効果が得られた。
また、試料204にて色素前駆体をE−3,E−5、E−9,E−10、E−11、E−12,E−13,E−14,E−15、E−16、E−18、E−20、E−25、E−26、E−27、E−28、E−29、E−30に変更しても、
試料204にてラジカル重合開始剤をI−1,I−11〜I−20等に変更しても同様な効果が得られた。
また、試料201〜204にて電子供与体をA−2、A−3、A−4、A−5、A−6
、A−9、A−10、A−11に変更しても同様な効果が得られた。
なお、上記の際、全面露光を行う光はそれぞれの系にて最適な波長を用いた。
参考例3
[消色方式(増感色素+消色性色素)によるホログラム記録方法]
赤色灯下にて、表5に示した増感色素、電子供与性化合物、消色剤前駆体、消色性色素、バインダーPMMA−EA(ポリ(メチルメタクリレート−5%エチルアクリレート)共重合体、Mw101000)を2〜4倍重量の塩化メチレン(必要によりアセトンまたはアセトニトリルも併用する)に溶解し、ホログラム記録材料用組成物301〜307を調液した。なお%はすべてバインダーPMMA−EAに対する質量%を表す。
Figure 2006235385
このホログラム記録材料用組成物301〜307を厚さが約80μmになるようにブレードを用いてガラス基板に塗布(必要なら重ね塗り)し、感光層を形成した後、室温で1日真空乾燥して溶媒を留去した。さらに感光層上をTAC膜で覆うことにより、ホログラム記録材料301〜307を作製した。
ホログラム記録材料を、図2に示す透過型ホログラム記録用の2光束光学系により、光源としてYAGレーザー2倍波(532nm、出力2W)を用いて露光し記録した。物体光と参照光のなす角は30度である。ビームは0.6cmの直径と8mW/cm2の強度とを有しており、ホログラフィー露光時間を0.1〜400秒の範囲(照射エネルギーにして0.8〜3200mJ/cm2の範囲)変化させて露光した。ホログラムに露光している間、He−Neレーザー632nmのビームをブラック角にて露光領域の中心に通し、その透過光に対する回折光の比(相対回折効率)を実時間で測定した。なお632nmには増感色素の吸収がないため、He−Neレーザーはホログラム記録材料を感光させない。
なお、比較例として、特開平6−43634号の実施例1のフォトポリマー方式ホログラム記録材料を作成した。
Figure 2006235385
表6から、公知の特開平6−43634号記載の比較例は回折効率は高いもののラジカル重合を伴なうフォトポリマー方式であるため5%を超える大きな収縮を伴ない、特にホログラフィックメモリ用途としてはS/N比が極めて悪化し不向きである。それに対し、本発明のホログラム記録材料301〜307は物質移動と重合を用いないで消色反応を用いた屈折率変調によるホログラム記録を行う、公知のホログラム記録材料とは全く異なる記録方式であるため、高い回折効率と0.01%以下の極めて小さい収縮率を両立できることがわかり、特にホログラフィックメモリ用途に適している。
さらに、本発明のホログラム記録材料は露光量(mJ/cm2)に応じてほぼリニアーにΔn(干渉縞における屈折率変調量、回折効率と膜厚からクーゲルニックの式に基づいて計算)が上昇し、多重記録の際有利である。
実際に、本発明のホログラム記録材料を用い、前記最大回折効率を与えた露光量の10分の1の光量で、参照光の角度を2度ずつ変えて同じ場所に10回の多重ホログラム記録を行った後、再生光の角度を2度ずつ変更して照射することによりそれぞれの物体光を再生することが可能なことを確かめた。つまり、本発明のホログラム記録材料は同じ露光量にて多重記録が可能であり、多重記録適性を有したことがわかる。このように本発明のホ
ログラム記録材料は数多くの多重記録が可能であるため、高密度(容量)記録が可能である。
それに対し、特開平6−43634号を始めとする公知のフォトポリマー方式ホログラム記録材料は、多重記録後期はフォトポリマーの重合が進んで記録に必要なモノマーの移動が遅くなり、同じ記録を行うのに際し初期に比べてより多くの照射光量を必要とすることがわかり、多重度つまり記録密度を向上させるに際し問題であることがわかった。
参考例4
[残存消色性色素潜像−潜像増感重合方式によるホログラム記録方法]
赤色灯下にて、表7に示した増感色素、電子供与性化合物、消色性色素、消色剤前駆体、重合開始剤、重合性化合物及びバインダーを2〜5倍量の塩化メチレン(必要によりアセトン、アセトニトリルまたはメタノールを一部使用)に溶解し、ホログラム記録材料401〜404を調液した。なお%は質量%を表す。
Figure 2006235385
Figure 2006235385
このホログラム記録材料401〜404を厚さが約80μmになるようにブレードを用いてガラス基板に塗布(必要により重ね塗り)し、感光層を形成した後、室温で1日真空乾燥して溶媒を留去した。さらに感光層上をTAC膜で覆うことにより、ホログラム記録材料401〜404を作製した。
ホログラム記録材料を、図2に示す透過型ホログラム記録用の2光束光学系により、光源としてYAGレーザー2倍波(532nm、出力2W)を用いて露光し記録した。物体光と参照光のなす角は30度である。ビームは0.6cmの直径と8mW/cm2の強度とを有しており、ホログラフィー露光時間を0.1〜40秒の範囲(照射エネルギーにして0.8〜320mJ/cm2の範囲)変化させて露光し、(第1の工程)He−Neレーザー632nmのビームをブラック角にて露光領域の中心に通し、その透過光に対する回折光の比(相対回折効率)を実時間で測定した(第1の工程後回折効率η)。なお632nmには増感色素の吸収がないため、He−Neレーザーはホログラム記録材料を感光させない。
さらにそれぞれについて、370〜410nmの波長範囲の光を全面照射し(第2の工程)、回折効率を測定した(第2の工程後回折効率η)。さらに、第2の工程を用いずに第1の工程のみで最大回折効率を出すのに必要な照射光量を、第2の工程を用いる場合に第1の工程に必要な照射光量で割ったものを「増幅率」とし、以上を表8にまとめた。
Figure 2006235385
表8より、本発明のホログラム記録材料においては、第1の工程に照射する光量は、第2の工程を用いない場合に比べ5分の1〜7分の1にすることができる。第2の工程は一括露光が可能なため、第2の工程における第1の工程の残存消色性色素を潜像として重合を起こすことによる屈折率変調記録の増幅により、第1の工程の短縮化つまり高感度化が可能であることがわかる。当然ながら、特開平6−43634号公報記載のような公知の材料では、そのような増幅による高感度化は不可能である。
さらに、本発明のホログラム記録材料は第1の工程後及び第2の工程後共、露光量(mJ/cm2)に応じてほぼリニアーにΔn(干渉縞における屈折率変調量、回折効率と膜厚からクーゲルニックの式に基づいて計算)が上昇し、多重記録の際有利である。
実際に、本発明のホログラム記録材料を用い、前記の第1の工程における露光量の10分の1の光量で、参照光の角度を2度ずつ変えて同じ場所に10回の多重ホログラム記録を行った後(第1の工程)、370〜410nmの波長範囲の光を全面照射して重合による記録増幅を行った(第2の工程)ところ、再生光の角度を2度ずつ変更して照射することによりそれぞれの物体光を再生することが可能なことを確かめた。つまり、本発明のホログラム記録材料は同じ露光量にて多重記録が可能であり、多重記録適性を有していることがわかる。つまり、本発明のホログラム記録材料は数多くの多重記録が可能であり、高密度(容量)記録が可能である。
それに対し、特開平6−43634号を始めとする公知のフォトポリマー方式ホログラム記録材料は、多重記録後期はフォトポリマーの重合が進んで記録に必要なモノマーの移動が遅くなり、同じ記録を行うのに際し初期に比べてより多くの照射光量を必要とすることがわかり、多重度つまり記録密度を向上させるに際し問題であることがわかった。
それに対し、本発明のホログラム記録方法は、ホログラム記録(第1の工程)に重合ではなく消色反応をしかも潜像として用いるために前記のようなことが起こらず、公知のフォトポリマー方式に対して優れている。
なお、試料301〜307、401〜404にて、増感色素をS−1,S−4,S−8,S−10,S−11,S−19,S−23,S−31,S−33,S−34,S−43,S−45,S−46,S−50,S−58,S−67,S−71,S−73,S−74,S−77,S−80,S−81,S−88,S−91,S−94,S−95,S−96に変更しても同様な効果が得られた。
また、試料301〜306,401、402にて消色剤前駆体(酸発生剤、場合により兼酸またはラジカル重合開始剤)をI−3,I−4,I−6、I−7,I−8,I−9,I−10,4−(オクチルフェニル)フェニルヨードニウムヘキサフルオロアンチモネート、トリス(4−メチルフェニル)スルホニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムパーフルオロペンタノエート、ビス(1−(4−ジフェニルスルホニウム)フェニルスルフィドジトリフラート、ジメチルフェナシルスルホニウムパーフルオロブタンスルホネート、ベンゾイントシレート、I−22,I−23に変更しても、試料301〜306、401,402にて酸消色性色素をG−14,G−17,G−21,G−22,G−26,G−27に変更しても同様な効果が得られた。
また、試料307、403にて消色剤前駆体(塩基発生剤、場合により兼アニオン重合開始剤)をPB−3,PB−4,PB−5、PB−6、PB−7、PB−8,PB−9に変更しても、試料307、403にて塩基消色性色素をG−29,G−32、G−38,G−40,G−42,G−43,G−44,G−45に変更しても同様な効果が得られた。また、試料404にてラジカル重合開始剤をI−1,I−11〜I−20等に変更しても、試料404にて消色性色素をG−48,G−49,G−51,G−52に変更しても同様な効果が得られた。
また、試料301〜303、306、307、402〜404にて電子供与体をA−2、A−3、A−4、A−5、A−6、A−9、A−10、A−11に変更しても同様な効果が得られた。
また、試料301〜307にてバインダーをポリメチルメタクリレート(Mw996000、350000、120000)、ポリ(メチルメタクリレート−ブチルメタクリレート)共重合体(Mw75000)、ポリビニルアセテート(Mw83000)、ポリカーボネート、セルロースアセテートブチレート等に変更しても同様な効果が得られた。
なお、上記の際、全面露光を行う光はそれぞれの系にて最適な波長を用いた。
実施例1
図3は、本実施例1のおける光情報記録媒体の構成を示す図である。光情報記録媒体1
01では、ポリカーボネート又はガラス基板1にサーボピットが形成され、その上にアルミ、金や白金等でコーティングして反射層2が設けられている。図1と異なり、図3では基板全面にサーボピットが形成されているが、図1のように周期的に形成されていても良い。また、このサーボピットの高さは最大1750Åであり、基板を始め他の層の暑さに比べて充分に小さいものである。
また、反射層2つき基板1の上には赤色光透過フィルタ層6が設けられ、それと上基板5(ポリカーボネートやガラス等)によってホログラム記録層4たるホログラム記録材料を挟むことによって光情報記録媒体101が構成される。
図3において、赤色光透過フィルター層6は、赤色光のみを透過し、それ以外の色の光を通さないものである。従って、情報光、記録・再生用参照光は緑色又は青色の光であるので、フィルター層6を透過せず、反射層2まで達することなく、戻り光となり、入出射面Aから出射することになる。この赤色光透過フィルター層6は、例えばコレステリック液晶層であり、チッソ社製のCM−33等を用いることができる。なお、コレステリック液晶層を用いる場合には、光情報記録媒体101の中であって、フィルタ層(コレステリック液晶層)6と入出射面Aとの間に4分の1波長板を光情報記録媒体の構成として入れるか、光情報記録媒体101の中でなくても後述のダイクロイックミラー15と光情報記録媒体101との間に光学的な構成として4分の1波長板を配置するようにすればよい。この4分の1波長板は緑色の光に対してのみ4分の1波長分ずらすようにし、緑の光が入射すると円偏光の光になるが、それ以外(例えば、赤)の色の光が入射すると楕円偏光の光になるようにするものである。
本実施例1における光情報記録媒体101は、ディスク形状でもいいし、カード形状であってもよい。カード形状の場合にはサーボピットは無くても良い。また、この光情報記録媒体101では、基板1は0.6mm、赤色光透過フィルタ6は2〜3μm、ホログラム記録層4は0.6mm、基板5は0.6mmの厚さであって、合計ほぼ1.8mmとなっている。
次に、図7を参照して、光情報記録媒体101周辺での光学的動作を説明する。まず、サーボ用レーザから出射した光(赤光)は、ダイクロイックミラー15で100%反射して、対物レンズ17を通過する。対物レンズ17によってサーボ用光は反射層2上で焦点を結ぶように光情報記録媒体101に対して照射される。つまり、ダイクロイックミラー15は緑色や青色の波長の光を透過し、赤色の波長の光をほぼ100%反射させるようになっている。光情報記録媒体101の光の入出射面Aから入射したサーボ用光は、基板5、ホログラム記録層4および赤色透過フィルタ層6を通過し、反射層2で反射され、再度フィルタ層6、ホログラム記録層4および基板5を透過して入出射面Aから出射する。出射した戻り光は、対物レンズ17を通過し、ダイクロイックミラー15で100%反射して、図示しないサーボ情報検出器でサーボ情報が検出される。検出されたサーボ情報は、フォーカスサーボ、トラッキングサーボ、スライドサーボ等に用いられる。ホログラム記録層4を構成するホログラム記録材料は、赤色の光では感光しないようになっているので、サーボ用光がホログラム記録層4を通過したり、サーボ用光が反射層2で乱反射したとしても、ホログラム記録層4には影響を与えない。また、サーボ用光の反射層2による戻り光は、ダイクロイックミラー15によってほぼ100%反射するようになっているので、サーボ用光が再生像検出のためのCMOSセンサまたはCCD19で検出されることはなく、再生光に対してノイズとなることも無い。
また、記録用/再生用レーザから生成された情報光および記録用参照光は、ダイクロイックミラー15を透過し、対物レンズ11によって情報光と記録用参照光がホログラム記録層4内で干渉パターンを生成するように光情報記録媒体101に照射される。情報光お
よび記録用参照光は入出射面Aから入射し、ホログラム記録層4で干渉し合って干渉パターンをそこに生成する。その後、情報光および記録用参照光はホログラム記録層4を通過し、赤色光透過フィルタ層6に入射するが、その層の底面までの間に反射されて戻り光となる。つまり、情報光と記録用参照光は反射層2までは到達しない。赤色光透過フィルタ層6は赤色光のみを透過する性質を有するからである。
実施例2
図4は、本実施例2おける光情報記録媒体の構成を示す図である。本実施例2に係る光情報記録媒体102では、ポリカーボネート又はガラス基板1にサーボピットが形成され、その上にアルミ、金や白金等でコーティングして反射層2が設けられている。また、このサーボピットの高さは最大1750Åである点については、実施例1と同様である。
本実施例2と実施例1の構造の差異は、本実施例2に係る光情報記録媒体102では、ギャップ層8があること、光情報記録媒体101のフィルタ層6の代わりにダイクロイックミラー層9が設けられていること、さらに、ダイクロイックミラー層9とホログラム記録層4との間に4分の1波長板層7が設けられていること、である。
ギャップ層8は、UVレジン等の材料を基板1の反射層2上にスピンコート等によって塗布して形成される。ギャップ層8は、反射層2を保護すると共に、ホログラム記録層4内に生成されるホログラムの大きさを調整するためにも有効である。つまり、ホログラム記録層4において記録用参照光と情報光の干渉領域をある程度の大きさに形成する必要がある。そのためにホログラム記録層4とサーボピットとの間にギャップを設けると有効なのである。
ダイクロイックミラー層9は、波長分離フィルターをギャップ層8上に誘電体多層膜コーティング(スパッタリング)することによって形成される。本実施例2におけるダイクロイックミラーは、緑色の光を反射し、それ以外の光(例えば、赤色)を透過するような性質を有するものである。
4分の1波長板層7は、位相差を発生させるための材料、例えば、アゾベンゼンをダイクロイックミラー層9上にスピンコートさせることにより形成される。アゾベンゼンにより生成された膜は光異方性があり、照射される偏光に対して分子を垂直方向に配列する性質を有する。その他、いわゆるラビング処理を用いることによって4分の1波長板層7を生成することもできる。4分の1波長板は、P偏光やS偏光のような直線偏光の光が入射すると、その直線偏光の方向が4分の1波長板における結晶の光学軸に対してなす角度が45度のとき、通過光を直線偏光から円偏光の光にし、逆に、円偏光の光が入射すれば直線偏光の光にする性質を有する。なお、本実施例では、4分の1波長板層7は、反射型ホログラム(Horizontal Fringe)によるゴーストを除去する作用を持つものであり,ゴーストの影響を無視しうる場合はこの層は無くてもかまわない。
また、光情報記録媒体102では、基板1は0.6mm、ギャップ層8は2〜3μm、ダイクロイックミラー層9は1μm以下、4分の1波長板層7は20μm以下、ホログラム記録層4は0.6mm、基板5は0.6mmの厚さであって、合計ほぼ1.8mmとなっている。
情報の記録又は再生を行う場合、このような構造を有する光情報記録媒体102に対して、赤色のサーボ用光および緑色の情報光ならびに記録・再生用参照光が照射される。サーボ用光は、入出射面Aから入射し、ホログラム記録層4、4分の1波長板層7、ダイクロイックミラー層9、およびギャップ層8を通過して反射層2で反射して戻り光となる。この戻り光は、再度ギャップ層8、ダイクロイックミラー層9、4分の1波長板層7、ホ
ログラム記録層4および基板5をこの順序で通過して、入出射面Aより出射する。出射した戻り光は、フォーカスサーボやトラッキングサーボ等に用いられる。ホログラム記録層4を構成するホログラム記録材料は、赤色の光では感光しないようになっているので、サーボ用光がホログラム記録層4を通過したり、サーボ用光が反射層2で乱反射したとしても、ホログラム記録層4には影響を与えない。緑色の情報光等は、入出射面Aから入射し、ホログラム記録層4、4分の1波長板層7を通過して、ダイクロイックミラー層9で反射して戻り光となる。この戻り光は、再度4分の1波長板層7、ホログラム記録層4および基板5をこの順序で通過して、入出射面Aより出射する。また、再生時についても再生用参照光はもちろん、再生用参照光をホログラム記録層4に照射することによって発生する再生光も反射層2に到達せずに入出射面Aから出射する。なお、再生光に関しては、記録の仕方、つまり反射型ホログラムを記録するか、透過型ホログラムを記録するかによって、ダイクロイックミラー層9によって反射されるかが決まる。
なお、光情報記録媒体102周辺( 図7)における対物レンズ17、ダイクロイックミラー15、検出器たるCMOSセンサまたはCCD19)での光学的動作は、実施例1( 図7)と同様なので説明を省略する。
実施例3
図5は、本実施例3における光情報記録媒体の構成を示す図である。本実施例3に係る光情報記録媒体103では、実施例2におけるダイクロイックミラー層9の代わりにコレステリック液晶層11が設けられている。その他の構成は実施例2と同じ構成である。
このコレステリック液晶層11も1〜2μmの厚さであり、光情報記録媒体全体としても他の実施例の構成と同様、ほぼ1.8mmである。
コレステリック液晶層11は、ギャップ層(平滑層)8を形成した後、例えばカイラルドーパントであるコレステリック液晶CM−33(チッソ社製)を塗布し、スピンコートすることによって形成される。コレステリック液晶は、そこに所定の方向の円偏光の光が入射するとその光を反射し、それ以外の光、例えば逆方向の円偏光の光、直線偏光の光や楕円偏光の光が入射するとその光を透過する性質を有するものである。
実施例3では、4分の1波長板層7は、緑色の光に対してのみ4分の1波長ずらすような性質を有する。即ち、4分の1波長板層7では、直線偏光の緑色の光(情報光および参照光)が入射すれば円偏光の緑色の光に変更され、直線偏光の赤色の光(サーボ用光)が入射すれば楕円偏光の赤色の光に変更される。従って、4分の1波長板層7で直線偏光から円偏光に変更された緑色光の情報光および参照光は、コレステリック液晶層11で反射され、反射層2には到達しない。また、4分の1波長板層7で直線偏光から楕円偏光に変更された赤色光のサーボ用光はコレステリック液晶層11を透過して反射層2まで到達し、戻り光がフォーラスサーボやトラッキングサーボ等に用いられる。
実施例4
図6は、本実施例4における光情報記録媒体の構成を示す図である。本実施例4に係る光情報記録媒体104では、実施例3における反射層2をAlのような単なる金属反射膜ではなく、追記または書き換え可能な記録媒体、例えばフェイズチェンジフィルムを配したものであり、その他の構成は実施例3と同じ構成である。従って、コレステリック液晶層11の作用は実施例3と同様であるので、その説明は省略する。
図1の構成を有する光情報記録媒体100では、ホログラムを記録する際に光強度の高い情報光や参照光(緑色光)もこの反射面上に集光するため、反射層2にサーボ用光と同じ赤色光を用いた追記機能を持たせようとしても信頼性を確保するのに問題がある。また、これら追記または書き換え可能な膜の反射率はさほど高くないためホログラムの再生効率を低下させてしまうという問題もある。
しかし、本実施例による方式において緑色光は波長分離層であるコレステリック液晶層10によって独立に反射率を設定できるため、サーボを取るための赤色光のための反射層13は低反射率でも良いという利点がある。
(各実施例の効果)
各実施例によれば、2種類の波長の光を効率良く分離しているので、2種類の波長の光(赤色光と緑色光)をそれぞれの影響を受けずに別々の目的で用いることができる。
また、記録層とフィルタ層との間に、光の変更方向を偏光する偏光方向変更層、例えば、4分の1波長板からなる層が設けられている。これによって、光の偏光方向を変化させたり、反射型ホログラムによるゴースト映像が生成されることを防止することができる。
さらに、各実施例によれば、記録又は再生時に用いられる情報光および参照光、さらに再生光は、反射層2または13に到達しないので、反射面上での乱反射による拡散光が発生することを防ぐことができる。従って、この拡散光によって生じるノイズが再生像に重畳されてCMOSセンサまたはCCD19上で検出されることもなく、再生像が少なくともエラー訂正可能な程度に検出することができるようになる。拡散光によるノイズ成分はホログラムの多重度が大きくなればなるほど大きな問題となる。つまり、多重度が大きくなればなるほど、例えば1000以上になると、1つのホログラムからの回折効率が極めて小さくなり、拡散ノイズがあると再生像の検出が非常に困難となるのである。本発明によれば、このような困難性は除去することができるので有効である。また、このように構成することにより、図1の従来の光情報記録媒体とは異なり、サーボピットはサンプルサーボに限らず、どのような形態のプリピット構造でも採ることができるようになる。さらに、ピットとピットとの間隔もホログラムサイズに依存せずに配置することができる。
また、実施例2乃至4では、4分の1波長板層7の入射光と出射光の偏光を直交させ、記録再生光学系で用いられる図示しない偏光ビームスプリッタにより、発生したほとんどの再生光を検出することができるため、光利用効率が高く、光学的に優れている。また、4分の1波長層7よりも図示しないレーザ光源側で発生した光学素子の表面反射など不要な迷光を除去する上でもこの組み合わせは非常に有効である。
さらに、サーボピットの配置とホログラム記録とは光学的に分離されるため,どのようなピットのフォーマットを採用したとしても記録密度の低下をきたしてしまうということが無い。そのため、サーボ制御信号に十分な周波数帯域を与えることができ、サーボの精度を従来の光ディスクと同等かそれ以上に高めることができるのである。
また、本発明によれば、サーボ用の反射膜の反射率を自由に選択でき、かつ反射膜の材料も自由に選ぶことが可能になる。よって、実施例4のように、反射層13に追記または書き換え可能な記録媒体、例えば、DVD(ディジタル・ビデオ・ディスク)などを用い、ホログラムをどのエリアまで記録したかとかいつ書き換えたかとか、どの部分にエラーが存在し交替処理をどのように行ったかなどのディレクトリ情報などをホログラムに影響を与えずに追記およびないしは書き換えすることも可能となる。
なお、波長分離膜であるフィルタ層はミクロンオーダーと比較的薄く形成可能なので、フィルタ層6、9または11による反射面と反射層2または13による反射面のずれに起因する対物レンズの光学的な収差の影響は無視しうるものである。
さらにまた、記録層として特定の光屈折率変調成分を使用しているので、高感度かつ高回折効率、良保存性、低収縮率、乾式処理、多重記録特性(高記録密度)を両立すること
ができる光情報記録媒体を提供することができる。
なお、前記実施例では、サーボ用光として赤色光、記録・再生用の光に緑色光を用いているが、これに限られず、他の波長の光の組み合わせも媒体の性質によって可能である。
従来の光情報記録媒体の構造を示す図である。 ホログラム露光用の2光束光学系を説明する概略図である。 本発明による実施例1の光情報記録媒体を説明するための図である。 本発明による実施例2の光情報記録媒体を説明するための図である。 本発明による実施例3の光情報記録媒体を説明するための図である。 本発明による実施例4の光情報記録媒体を説明するための図である。 本発明による光情報記録媒体周辺の光学系を示す図である。
符号の説明
1 下基板(サーボピット付)
2 反射層
4 ホログラム記録層
5 上基板
6 フィルター層
7 4分の1波長板層
8 ギャップ層
9 ダイクロイックミラー層
10 YAGレーザー
11 コレステリック液晶層
12 レーザービーム
13 フェイズチェンジ反射層
14 鏡
20 ビームスプリッター
22 ビームセグメント
24 鏡
26 空間フィルター
28 試料
30 ホログラム記録材料
32 He−Neレーザービーム
34 He−Neレーザー
36 検出器
38 回転ステージ
40 ビームエキスパンダー

Claims (11)

  1. ホログラフィを利用して情報を記録するための光情報記録媒体であって、
    透明基板と、
    干渉パターンによって情報が記録される記録層と、
    前記透明基板と前記記録層との間に設けられ、第一の波長の光を透過し、第二の波長の光を反射するフィルタ層と、を備え、
    前記記録層が、1)発色反応、2)潜像発色−発色体自己増感増幅発色反応、3)潜像発色−発色体増感重合反応、4)固有複屈折率を有する化合物の配向変化、5)色素消色反応、6)残存消色色素潜像−潜像増感重合反応のいずれかの方法により干渉縞を屈折率変調として記録する光屈折率変調成分を含むことを特徴とする光情報記録媒体。
  2. 前記透明基板は、サーボピットパターンを有することを特徴とする請求項1記載の光情報記録媒体。
  3. 前記透明基板は、前記サーボピットパターン上に反射面が形成されていることを特徴とする請求項2記載の光情報記録媒体。
  4. 前記記録層と前記フィルタ層との間に、光の変更方向を偏光する偏光方向変更層が設けられていることを特徴とする請求項1記載の光情報記録媒体。
  5. 前記偏光方向変更層は4分の1波長板からなる層であることを特徴とする請求項4記載の光情報記録媒体。
  6. 前記フィルタ層は、ダイクロイックミラーからなる層であることを特徴とする請求項1記載の光情報記録媒体。
  7. 前記フィルタ層は、コレステリック液晶からなる層であることを特徴とする請求項4または5記載の光情報記録媒体。
  8. 前記偏光方向変更層は、前記第二の波長の光を所定方向の円偏光の光に変更し、前記第一の波長の光を前記所定方向の円偏光以外の偏光の光に変更することを特徴とする請求項7記載の光情報記録媒体。
  9. 前記反射面は、金属反射膜であることを特徴とする請求項3記載の光情報記録媒体。
  10. 前記反射面は、光を反射させると共に追記または消去可能な媒体面とすることを特徴とする請求項3記載の光情報記録媒体。
  11. 前記フィルタ層と前記反射面との間に、前記基板表面を平滑化するためのギャップ層が設けられていることを特徴とする請求項3記載の光情報記録媒体。
JP2005051772A 2005-02-25 2005-02-25 光情報記録媒体 Pending JP2006235385A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051772A JP2006235385A (ja) 2005-02-25 2005-02-25 光情報記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051772A JP2006235385A (ja) 2005-02-25 2005-02-25 光情報記録媒体

Publications (1)

Publication Number Publication Date
JP2006235385A true JP2006235385A (ja) 2006-09-07

Family

ID=37043075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051772A Pending JP2006235385A (ja) 2005-02-25 2005-02-25 光情報記録媒体

Country Status (1)

Country Link
JP (1) JP2006235385A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054077A (ja) * 2011-08-31 2013-03-21 Fujifilm Corp 赤外感光性発色組成物、平版印刷版原版及びこれを用いた製版方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054077A (ja) * 2011-08-31 2013-03-21 Fujifilm Corp 赤外感光性発色組成物、平版印刷版原版及びこれを用いた製版方法

Similar Documents

Publication Publication Date Title
JP4649158B2 (ja) ホログラム記録方法
JP2006235386A (ja) ホログラム記録材料およびこれを用いた光記録媒体
JP2006235087A (ja) ホログラム記録材料、ホログラム記録方法、光記録媒体及び光記録媒体への記録方法
EP1626309B1 (en) Hologram recording material, hologram recording method and holographic optical element
JP2007233155A (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体
JP2005275273A (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体
EP1508833A2 (en) Hologram recording material composition, hologram recording material and hologram recording method
WO2006059516A1 (ja) 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに光記録方法及び光再生方法
JP2006235209A (ja) 光情報記録装置のホログラム情報記録方法
JP4516813B2 (ja) ホログラム記録材料及びホログラム記録方法
JP4431429B2 (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体
JP2006235226A (ja) 光情報記録再生装置のホログラム情報記録方法
JP2005017354A (ja) ホログラム記録材料用組成物、ホログラム記録材料及びホログラム記録方法。
JP2008275671A (ja) ホログラフィック記録用組成物、ホログラフィック記録媒体、情報記録方法、および酸発生促進剤
JP2006235385A (ja) 光情報記録媒体
JP4351940B2 (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体
JP2006235210A (ja) 光情報記録装置のホログラム情報記録方法
JP4686380B2 (ja) ホログラム記録材料、ホログラム記録方法、及び光記録媒体
JP2005017730A (ja) ホログラム記録材料用組成物、ホログラム記録材料及びホログラム記録方法。
JP2006078821A (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体
JP2006078877A (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体
JP2007233165A (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体
JP2005099751A (ja) ホログラム記録材料用組成物、ホログラム記録材料及びホログラム記録方法。
JP2007248517A (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体
JP4779038B2 (ja) ホログラム記録材料、ホログラム記録方法及び光記録媒体

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127