JP2006233354A - Method for producing rubber-reinforcing fiber - Google Patents

Method for producing rubber-reinforcing fiber Download PDF

Info

Publication number
JP2006233354A
JP2006233354A JP2005049062A JP2005049062A JP2006233354A JP 2006233354 A JP2006233354 A JP 2006233354A JP 2005049062 A JP2005049062 A JP 2005049062A JP 2005049062 A JP2005049062 A JP 2005049062A JP 2006233354 A JP2006233354 A JP 2006233354A
Authority
JP
Japan
Prior art keywords
fiber
rubber
treatment
compound
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049062A
Other languages
Japanese (ja)
Inventor
Yoko Yamamoto
陽子 山本
Masatsugu Furukawa
雅嗣 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2005049062A priority Critical patent/JP2006233354A/en
Publication of JP2006233354A publication Critical patent/JP2006233354A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a rubber-reinforcing fiber excellent in heat resistant bonding force with the rubber. <P>SOLUTION: This method for producing the rubber-reinforcing fiber is characterized by treating the fiber with a plasma in a medium containing the gas of alkenes and/or alkynes, then treating with a first treating liquid containing a polyepoxide compound, a blocked isocyanate compound and rubber latex, and a second treating liquid containing mainly resorcinol, formalin and rubber latex in this order. Further, it is preferable that the fiber is a synthetic fiber, the medium for the plasma treatment is a compound consisting mainly of nitrogen and the concentration of the alkenes and/or alkynes on the plasma treatment is 0.1-15 vol%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はゴム補強用繊維の製造方法に関し、さらに詳しくはゴムに対する耐熱接着性の極めて高いゴム補強用繊維の製造方法に関する。   The present invention relates to a method for producing rubber reinforcing fibers, and more particularly to a method for producing rubber reinforcing fibers having extremely high heat-resistant adhesion to rubber.

産業資材として広く用いられている繊維補強ゴム複合体において、補強用繊維のマトリックスに対する接着力が強度や疲労性などの物性に大きく影響する。そしてその接着処理方法の例としては、タイヤやホース、ベルトに用いられるゴム/繊維用の接着処理液であるレゾルシン−ホルマリン−ゴムラテックス(RFL)を主成分とする樹脂が、接着処理用の処理液として古くから知られている。   In fiber reinforced rubber composites widely used as industrial materials, the adhesive strength of reinforcing fibers to the matrix greatly affects physical properties such as strength and fatigue. As an example of the adhesion treatment method, a resin mainly composed of resorcin-formalin-rubber latex (RFL) which is an adhesion treatment liquid for rubber / fiber used in tires, hoses, and belts is treated for adhesion treatment. It has long been known as a liquid.

だが、近年、ホース、ベルト分野においては、例えばその主用途である自動車のエンジンルームの温度が高くなるので、ゴム材質として高温特性に優れたものが使用されてきている。これらゴムの例としてはブチルゴム、エチレンプロピレンゴム、ニトリルゴム、クロロプレンゴム、クロルスルホン化エチレンゴムなどである。ところが、これらの特殊ゴムは化学構造に二重結合が少なく、反応性に乏しいために、接着が非常に困難であるという問題があった。   However, in recent years, in the field of hoses and belts, for example, the temperature of the engine room of an automobile, which is the main application thereof, has increased, and therefore, rubber materials having excellent high temperature characteristics have been used. Examples of these rubbers are butyl rubber, ethylene propylene rubber, nitrile rubber, chloroprene rubber, chlorosulfonated ethylene rubber and the like. However, these special rubbers have a problem that their chemical structure has few double bonds and is poor in reactivity, so that adhesion is very difficult.

このため、繊維と該ゴムとの接着に際しては、前述のRFLに特殊クロロフェノール化合物及を加えた処理剤を付与する方法(特許文献1)やRFL処理剤付与後、ポリアリルアミン化合物を含む処理剤で処理する方法(特許文献2)が提案されているが、いずれもまだ十分に満足できる接着力、特に耐熱接着力を得られていないのが実情である。   For this reason, at the time of adhesion between the fiber and the rubber, a method (Patent Document 1) of applying a processing agent in which a special chlorophenol compound and the above-mentioned RFL are added or a processing agent containing a polyallylamine compound after the RFL processing agent is applied. (Patent Document 2) has been proposed, but none of them has yet obtained a sufficiently satisfactory adhesive force, particularly a heat resistant adhesive force.

特開平7−138880号公報JP-A-7-138880 特開平10−280280号公報JP-A-10-280280

本発明は、ゴムとの耐熱接着力に優れたゴム補強用繊維の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a rubber reinforcing fiber having excellent heat-resistant adhesive strength with rubber.

本発明のゴム補強用繊維の製造方法は、繊維をアルケン類及び/またはアルキン類の気体を含む媒体中でプラズマ処理し、次いでポリエポキシド化合物、ブロックドイソシアネート化合物、ゴムラテックスを含む第1処理液と、レゾルシン、ホルマリン、ゴムラテックスを主とする第2処理液とで順に処理することを特徴とする。   In the method for producing a rubber reinforcing fiber of the present invention, the fiber is subjected to plasma treatment in a medium containing an alkene and / or alkyne gas, and then a first treatment liquid containing a polyepoxide compound, a blocked isocyanate compound, and a rubber latex; The second treatment liquid mainly comprises resorcin, formalin, and rubber latex.

さらには、繊維が合成繊維であることや、プラズマ処理時の媒体が、窒素を主とするものであること、あるいはプラズマ処理時のアルケン類及び/またはアルキン類の濃度が0.1〜15体積%であることが好ましい。   Furthermore, the fiber is a synthetic fiber, the medium during the plasma treatment is mainly nitrogen, or the concentration of alkenes and / or alkynes during the plasma treatment is 0.1 to 15 volumes. % Is preferred.

本発明によれば、ゴムとの耐熱接着力に優れたゴム補強用繊維の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the fiber for rubber reinforcement excellent in the heat resistant adhesive force with rubber | gum is provided.

本発明は繊維をアルケン類及び/またはアルキン類の気体を含む媒体中でプラズマ処理し、次いで第1処理液と、第2処理液とで順に処理するゴム補強用繊維の製造方法である。   The present invention is a method for producing a rubber reinforcing fiber, in which a fiber is subjected to plasma treatment in a medium containing an alkene and / or alkyne gas, and then sequentially treated with a first treatment liquid and a second treatment liquid.

ここで本発明の製造方法で用いられる繊維には特に制限は無く、天然繊維、半合成繊維、合成繊維等の有機繊維や、炭素繊維、ガラス繊維等の無機繊維を用いることができる。特には強度等の物性に優れる合成有機繊維や、無機繊維であることが好ましく、合成繊維としては例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートに代表されるポリエステル、ナイロン6、ナイロン66に代表される脂肪族ポリアミド、芳香族ポリアミド、およびポリビニルアルコール、ポリエチレンからなるポリマーを紡糸、延伸することにより得られる繊維であることが好ましい。上記の繊維は、高強力化を図るために、高粘度のポリマーを用い、高延伸倍率で延伸されたものであることが望ましい。また好ましい無機繊維である炭素繊維としては、有機繊維を焼成したPAN系の繊維が挙げられる。また、繊維のデニール、フィラメント数、断面形状、繊維物性、微細構造や、ポリマー性状(末喘基濃度、分子量等)、ポリマー中の添加剤の有無等には、なんら限定を受けるものではない。   Here, the fiber used in the production method of the present invention is not particularly limited, and organic fibers such as natural fibers, semi-synthetic fibers, and synthetic fibers, and inorganic fibers such as carbon fibers and glass fibers can be used. In particular, synthetic organic fibers excellent in physical properties such as strength and inorganic fibers are preferable. Examples of synthetic fibers include polyethylene terephthalate, polyester typified by polybutylene terephthalate, nylon 6 and aliphatic typified by nylon 66. It is preferably a fiber obtained by spinning and drawing a polyamide, an aromatic polyamide, and a polymer comprising polyvinyl alcohol and polyethylene. The above-mentioned fibers are desirably drawn using a high-viscosity polymer at a high draw ratio in order to increase the strength. Moreover, as a carbon fiber which is a preferable inorganic fiber, the PAN type fiber which baked the organic fiber is mentioned. Further, the denier of the fiber, the number of filaments, the cross-sectional shape, the fiber physical properties, the fine structure, the polymer properties (such as the concentration of powdery asthma group, the molecular weight), the presence or absence of additives in the polymer are not limited at all.

繊維材料の形態はその用途によって種々異なることは勿論であるが、本発明の処理は任意の形態の繊維材料に施すことが出来る。例えばヤーンの状態にてプラズマ処理した後、コード又は織布となし、次いで第1処理液および第2処理液にて処理を施しても良いし、第1処理液で処理した後、コード又は職布となし、次いで第2処理液による処理を施しても良いし、コードの形態でプラズマ処理及び第1処理液による処理を施し、次いで織布として第2処理液による処理をしても良い。このように本発明の製造方法では、その処理を行う時の形状に何ら制限されるものではなく、ヤーン、コード、不織布、織編物等種々の繊維集合形態で処理することができ、柔軟に本発明の製造プロセスを実施することが出来る。   Of course, the form of the fiber material varies depending on the application, but the treatment of the present invention can be applied to any form of fiber material. For example, after the plasma treatment in a yarn state, the cord or woven fabric may be formed, and then the treatment may be performed with the first treatment liquid and the second treatment liquid. There may be a cloth, and then the treatment with the second treatment liquid may be performed, or the plasma treatment and the treatment with the first treatment liquid may be performed in the form of a cord, and then the treatment with the second treatment liquid may be performed as a woven fabric. As described above, in the production method of the present invention, the shape at the time of the treatment is not limited at all, and it can be treated in various fiber aggregate forms such as yarn, cord, nonwoven fabric, woven or knitted fabric, and this The manufacturing process of the invention can be carried out.

本発明はこのような繊維を、アルケン類及び/またはアルキン類の気体を含む媒体中でプラズマ処理することを必須とする製造方法である。
以下このプラズマ処理について説明する。
The present invention is a production method which requires such a fiber to be plasma-treated in a medium containing an alkene and / or alkyne gas.
This plasma processing will be described below.

アルケン類またはアルキン類の例としては例えば、アクリル酸、エチレン、ブタジエン、2−ビニルピリジン、N−ビニル‐2−ピロリドン、アセチレン等の単体またはそれらの混合物が挙げられる。また反応性等の観点から、アルケン類よりもポリマー化しやすいアルキン類であることが、さらにはブタジエン等の分子量が小さくガス化しやすいものであることが好ましい。また、このプラズマ処理時の媒体は、アルケン類及び/またはアルキン類の気体に加え、窒素を主とするものであることが好ましい。窒素ガス濃度が低くなると表面活性の効果が低下する傾向にある。窒素以外のガス媒体としては酸素、二酸化炭素、アルゴンなどの空気中に含まれる成分や、ヘリウム、ネオン、キセノン等の希ガスであることが好ましい。   Examples of the alkenes or alkynes include simple substances such as acrylic acid, ethylene, butadiene, 2-vinylpyridine, N-vinyl-2-pyrrolidone, acetylene, or a mixture thereof. From the viewpoint of reactivity and the like, alkynes that are easier to polymerize than alkenes are preferable, and further, those having a low molecular weight such as butadiene are easily gasified. Moreover, it is preferable that the medium at the time of the plasma treatment is mainly composed of nitrogen in addition to the gas of alkenes and / or alkynes. When the nitrogen gas concentration is lowered, the surface activity effect tends to decrease. The gas medium other than nitrogen is preferably a component contained in the air such as oxygen, carbon dioxide, or argon, or a rare gas such as helium, neon, or xenon.

このプラズマ処理時のアルケン類及び/またはアルキン類の気体の濃度としては0.1〜15体積%の範囲であることが好ましい。このように処理することによりアルケン類またはアルキン類のプラズマの濃度が0.1〜15%となり、窒素プラズマで十分希釈されることになり好ましい。そしてアルケン類またはアルキン類のプラズマと窒素プラズマの合計濃度は90〜100%であることが望ましい。   The concentration of the alkene and / or alkyne gas during the plasma treatment is preferably in the range of 0.1 to 15% by volume. This treatment is preferable because the plasma concentration of alkenes or alkynes is 0.1 to 15%, which is sufficiently diluted with nitrogen plasma. The total concentration of alkene or alkyne plasma and nitrogen plasma is preferably 90 to 100%.

このようなプラズマ処理によって繊維の表面に接着に寄与する活性膜を得ることができる。この繊維上の活性膜は繊維と強い化学結合力を持っており、活性膜の表面はエポキシ等との強固な化学結合力を持つ。   An active film that contributes to adhesion on the surface of the fiber can be obtained by such plasma treatment. The active film on the fiber has a strong chemical bonding force with the fiber, and the surface of the active film has a strong chemical bonding force with epoxy or the like.

プラズマ処理のアルケン類及び/またはアルキン類の気体を含む媒体中での処理時間としては、5〜300秒間であることが好ましい。時間が短いとプラズマ処理によって得られる活性膜の厚みが十分に得られにくい傾向にあり、長すぎると活性膜が厚すぎる傾向にあり、繊維の表面に低分子の積層物が発生し易く、活性膜自体の凝集破壊等により接着力が低下する場合がある。   The treatment time in the medium containing the plasma-treated alkene and / or alkyne gas is preferably 5 to 300 seconds. If the time is short, the thickness of the active film obtained by the plasma treatment tends to be difficult to obtain sufficiently. If the time is too long, the active film tends to be too thick, and a low molecular weight laminate tends to be generated on the surface of the fiber. The adhesive force may be reduced due to cohesive failure of the film itself.

圧力条件としては、常圧下であることが好ましい。ここで常圧とは1万Pa〜11万Paであることをいい、好ましくは9万〜10.5万Paのほぼ大気圧下であることが、圧力調整が容易になり処理が簡便になるためにも好ましい。このように常圧で処理を行うことにより大型で特殊な装置が不要となり装置を小型化でき、製造コストが低減できる上、従来困難であった連続処理が可能となり、生産量を大きく増加させることができる。   The pressure condition is preferably normal pressure. Here, the normal pressure means 10,000 Pa to 110,000 Pa, and preferably under almost atmospheric pressure of 90,000 to 105,000 Pa, pressure adjustment becomes easy and the process becomes simple. This is also preferable. By performing processing at normal pressure in this way, a large and special device is not required, the device can be miniaturized, the manufacturing cost can be reduced, and continuous processing that has been difficult in the past can be performed, greatly increasing the production volume. Can do.

また、プラズマ処理はグロー放電方式で行うことが好ましい。常圧下で処理するためには一般にはパルス電界を印加する。   The plasma treatment is preferably performed by a glow discharge method. In order to perform the treatment under normal pressure, a pulse electric field is generally applied.

本発明の製造方法はこのようにプラズマ処理した繊維を、第1処理液と、第2処理液とで順に処理する方法である。そして第1処理液としては、ポリエポキシド化合物、ブロックドイソシアネート化合物、ゴムラテックスを含むことを必須とする。   The production method of the present invention is a method in which the plasma-treated fiber is treated in order with the first treatment liquid and the second treatment liquid. And as a 1st process liquid, it is essential to contain a polyepoxide compound, a blocked isocyanate compound, and rubber latex.

本発明で使用するポリエポキシド化合物としては、1分子中に少なくとも2個以上のエポキシ基を該化合物1kg当り2g当量以上含有する化合物が好ましい。具体的には、エチレングリコール、グリセロール、ソルビトール、ペンタエリスリトール、ポリエチレングリコール等の多価アルコール類とエピクロルヒドリンの如きハロゲン含有エポキシド類との反応生成物、レゾルシン、ピス(4−ヒドロキシフェニル)ジメチルメタン、フェノール・ホルムアルデヒド樹脂、レゾルシン・ホルムアルデヒド樹脂等の多価フェノール類と前記ハロゲン含有エポキシド類との反応生成物、過酢酸又は過酸化水素等で不飽和化合物を酸化して得られるポリエポキシド化合物、即ち3,4−エポキシシクロヘキセンエポキシド、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキセンカルボキシレート、ビス(3,4−エポキシ−6−メチル−シクロヘキシルメチル)アジベートなどを挙げることができる。これらのうち、特に多価アルコールとエピクロルヒドリンとの反応生成物、即ち多価アルコールのポリグリシジルエーテル化合物が優れた性能を発現するので好ましい。   As the polyepoxide compound used in the present invention, a compound containing 2 g equivalent or more of at least 2 epoxy groups per 1 kg of the compound is preferable. Specifically, reaction products of polyhydric alcohols such as ethylene glycol, glycerol, sorbitol, pentaerythritol, polyethylene glycol and halogen-containing epoxides such as epichlorohydrin, resorcin, pis (4-hydroxyphenyl) dimethylmethane, phenol -Reaction products of polyhydric phenols such as formaldehyde resin, resorcinol-formaldehyde resin and the above halogen-containing epoxides, polyepoxide compounds obtained by oxidizing unsaturated compounds with peracetic acid or hydrogen peroxide, ie 3, 4 -Epoxycyclohexene epoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexenecarboxylate, bis (3,4-epoxy-6-methyl-cyclohexylmethyl) adipate, etc. It is possible. Among these, a reaction product of a polyhydric alcohol and epichlorohydrin, that is, a polyglycidyl ether compound of a polyhydric alcohol is preferable because it exhibits excellent performance.

ブロックドポリイソシアネート化合物としては、ポリイソシアネート化合物とブロック化剤との付加化合物であり、加熱によりブロック成分が遊離して活性なポリイソシアネート化合物を生じるものである。   The blocked polyisocyanate compound is an addition compound of a polyisocyanate compound and a blocking agent, and releases a block component by heating to produce an active polyisocyanate compound.

ポリイソシアネート化合物としては、例えばトリレンジイソシアネート、メタフェニレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、ポリメチレンポリフェニルイソシアネート、トリフェニルメタントリイソシアネート等のポリイソシアネート、あるいはこれらポリイソシアネートと活性水素原子を2個以上有する化合物、例えばトリメチロールプロパン、ペンタエリスリトール等とをイソシアネート基(−NCO)とヒドロキシル基(−OH)の比が1を超えるモル比で反応させて得られる末端イソシアネート基含有のポリオールアダクトポリイソシアネート等が挙げられる。特にトリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルイソシアネートの如き芳香族ポリイソシアネートが優れた性能を発現するので好ましい。   Examples of the polyisocyanate compound include polyisocyanates such as tolylene diisocyanate, metaphenylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, polymethylene polyphenyl isocyanate, triphenylmethane triisocyanate, or two or more of these polyisocyanates and active hydrogen atoms. Terminal isocyanate group-containing polyol adduct polyisocyanate obtained by reacting a compound having, for example, trimethylolpropane, pentaerythritol, etc. with a molar ratio of isocyanate group (—NCO) to hydroxyl group (—OH) exceeding 1. Is mentioned. In particular, aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and polymethylene polyphenyl isocyanate are preferable because they exhibit excellent performance.

ブロックドポリイソシアネート化合物のブロック化剤としては、例えばフェノール、チオフェノール、クレゾール、レゾルシノール等のフェノール類、ジフェニルアミン、キシリジン等の芳香族第2級アミン類、フタル酸イミド類、カプロラクタム、バレロラクタム等のラクタム類、アセトキシム、メチルエチルケトンオキシム、シクロヘキサンオキシム等のオキシム類及び酸性亜硫酸ソーダ等がある。   Examples of the blocking agent for the blocked polyisocyanate compound include phenols such as phenol, thiophenol, cresol, and resorcinol, aromatic secondary amines such as diphenylamine and xylidine, phthalimides, caprolactam, valerolactam, and the like. Examples include lactams, acetoximes, methyl ethyl ketone oximes, oximes such as cyclohexane oximes, and acidic sodium sulfite.

ゴムラテックスとしては、例えば天然ゴムラテックス、スチレン・ブタジエン系ゴムラテックス、ビニルピリジン・スチレン・ブタジエン共重合体ラテックス、アクリロニトリル・ブタジエン系ゴムラテックス、クロロプレン系ゴムラテックス等があり、これらを単独または併用して使用する。なかでも、ビニルピリジン・スチレン・ブタジエン共重合体ラテックスを単独使用または併用使用するのが好ましい。併用使用の場合には、全ラテックス重量の1/3量以上使用した場合に特に優れた性能を示す。   Examples of rubber latex include natural rubber latex, styrene / butadiene rubber latex, vinylpyridine / styrene / butadiene copolymer latex, acrylonitrile / butadiene rubber latex, chloroprene rubber latex, and the like. use. Among them, it is preferable to use vinylpyridine / styrene / butadiene copolymer latex alone or in combination. In the case of combined use, particularly excellent performance is exhibited when used in an amount of 1/3 or more of the total latex weight.

第1処理液は上記ポリエポキシド化合物(A)、ブロックドポリイソシアネート化合物(B)、ゴムラテックス(C)を含み、(A)、(B)、(C)各成分の配合重量比が(A)/[(A)+(B)]は0.05〜0.9、(C)/[(A)+(B)]は0.05〜15となるようにして使用することが好ましい。さらには(A)/[(A)+(B)]が0.1〜0.5、(C)/[(A)+(B)]が1〜10の範囲となるように配合するのが好ましい。ここで(A)/[(A)+(B)]が上記範囲をはずれると繊維材料へのゴム付着率が悪化し接着性が低下する傾向にあり、また(C)/[(A)+(B)]が上記範囲より小さくなると処理した繊維材料が硬くなり、耐疲労性の低下を招く傾向にあり、上記範囲より大きくなると接着性が低下する傾向にある。   The first treatment liquid contains the polyepoxide compound (A), the blocked polyisocyanate compound (B), and the rubber latex (C), and the blending weight ratio of each component (A), (B), (C) is (A). / [(A) + (B)] is preferably 0.05 to 0.9, and (C) / [(A) + (B)] is preferably 0.05 to 15. Furthermore, it is blended so that (A) / [(A) + (B)] is in the range of 0.1 to 0.5 and (C) / [(A) + (B)] is in the range of 1 to 10. Is preferred. Here, when (A) / [(A) + (B)] is out of the above range, the rubber adhesion rate to the fiber material tends to deteriorate and the adhesiveness tends to decrease, and (C) / [(A) + When (B)] is smaller than the above range, the treated fiber material becomes hard and tends to cause a decrease in fatigue resistance, and when larger than the above range, the adhesiveness tends to decrease.

上記、ポリエポキシド化合物、ブロックドイソシアネート化合物、ゴムラテックスを含む第1処理液は、通常乳化液、水分散液、あるいは水溶液として使用される。乳化液または水分散液にするには、例えばそのままあるいは必要に応じて少量の溶媒に溶解した後、公知の乳化剤、例えばアルキルベンゼンスルホン酸ソーダ、ジオクチルスルホサクシネートナトリウム塩、ノニルフェノールエチレンオキサイド付加物等を用いて乳化または分散させればよい。   The first treatment liquid containing the polyepoxide compound, the blocked isocyanate compound, and the rubber latex is usually used as an emulsion, an aqueous dispersion, or an aqueous solution. To make an emulsion or aqueous dispersion, for example, as it is or after being dissolved in a small amount of a solvent, a known emulsifier such as sodium alkylbenzenesulfonate, dioctylsulfosuccinate sodium salt, nonylphenol ethylene oxide adduct, etc. What is necessary is just to emulsify or disperse using.

本発明に用いられる第2処理液としては、レゾルシン、ホルマリン、ゴムラテックスを主とするものである。この処理液は一般にRFL接着剤としてゴム・繊維用に用いられるレゾルシン・ホルマリン初期縮合物とゴムラテックスからなるものであることが好ましい。   The second treatment liquid used in the present invention mainly includes resorcin, formalin, and rubber latex. This treatment liquid is preferably composed of a resorcin / formalin precondensate generally used as an RFL adhesive for rubber / fiber and a rubber latex.

この第2処理液はさらに、RFL接着剤とブロックドイソシアネート化合物との混合物であることが好ましい。RFL接着剤は、レゾルシンとホルムアルデヒドとのモル比が1/0.1〜1/8、好ましくは1/0.5〜1/5、更に好ましくは1/1〜1/4の範囲であることが好ましく、レゾルシン・ホルマリン初期縮合物とゴムラテックスとの好ましい配合比率は、ブロックドポリイソシアネート化合物の添加割合によって変化するが、固形分重量比で初期縮合物:ゴムラテックスは1:1〜1:15、特に1:3〜1:12の範囲が適当である。ブロックドイソシアネート化合物は、第1処理液で使用したものと同様の、ポリイソシアネート化合物とブロック化剤との付加化合物である。ブロックドポリイソシアネート化合物の添加率はRFLに対して0.5〜30重量%が好ましい。この第2処理液は、総固形分濃度が1〜30重量%、特に5〜20重量%で処理することが好ましい。   The second treatment liquid is preferably a mixture of an RFL adhesive and a blocked isocyanate compound. The RFL adhesive has a molar ratio of resorcin to formaldehyde in the range of 1 / 0.1 to 1/8, preferably 1 / 0.5 to 1/5, more preferably 1/1 to 1/4. The preferred blending ratio of the resorcin / formalin initial condensate and the rubber latex varies depending on the addition ratio of the blocked polyisocyanate compound, but the initial condensate: rubber latex is 1: 1 to 1: A range of 15, especially 1: 3 to 1:12 is suitable. The blocked isocyanate compound is an addition compound of a polyisocyanate compound and a blocking agent similar to that used in the first treatment liquid. The addition rate of the blocked polyisocyanate compound is preferably 0.5 to 30% by weight with respect to RFL. The second treatment liquid is preferably treated at a total solid content concentration of 1 to 30% by weight, particularly 5 to 20% by weight.

本発明における第1処理液、第2処理液を繊維へ付着させるには、ローラーとの接触もしくはノズルからの噴霧による塗布又は溶液への浸漬などの手段が採用できる。また、該繊維に対する接着剤組成物の固形分付着量は、各処理液毎に0.1〜10重量%の範囲がよく、好ましくは0.3〜7重量%の範囲が、更に好ましくは0.5%〜3重量%の範囲にあるものがよい。該繊維に対する固形分付着量を制御するためには、処理液の濃度や粘度の調整以外に、圧接ローラーによる絞り、スクレバー等によるかき落とし、空気吹きつけによる吹き飛ばし、吸引、ビーターの手段により行うことができ、付着量を多くするためには複数回付着させてもよい。   In order to adhere the first treatment liquid and the second treatment liquid to the fibers in the present invention, means such as application by contact with a roller or spraying from a nozzle or immersion in a solution can be employed. Moreover, the solid content adhesion amount of the adhesive composition to the fiber is preferably in the range of 0.1 to 10% by weight, preferably in the range of 0.3 to 7% by weight, more preferably 0 for each treatment liquid. It should be in the range of 5% to 3% by weight. In order to control the amount of solids adhered to the fibers, in addition to adjusting the concentration and viscosity of the treatment liquid, it is performed by means of squeezing with a pressure roller, scraping with a scrubber, etc., blowing off with air blowing, suction, and beater means. In order to increase the amount of adhesion, it may be adhered multiple times.

本発明における第1処理液、第2処理液の処理では、処理液を使用して該繊維を処理した後、各処理液の付着毎に50℃以上で該合成繊維の融点よリ10℃以上低い温度で、0.5〜5.0分間、乾燥、熱処理することが好ましい。たとえば使用する繊維がポリエステル繊維の場合では、220〜250℃の温度で、1〜3分間乾燥、熱処理することがさらに好ましい。乾燥、熱処理温度が低すぎるとゴム類との接着が不十分となりやすく、一方温度が高すぎると合成繊維が溶融、融着したり、著しい強力低下を起こしたりして実用に供し得なくなる。   In the treatment of the first treatment liquid and the second treatment liquid in the present invention, the fibers are treated using the treatment liquid, and then at 50 ° C. or more and 10 ° C. It is preferable to dry and heat-treat at a low temperature for 0.5 to 5.0 minutes. For example, when the fiber to be used is a polyester fiber, it is more preferable to dry and heat-treat at a temperature of 220 to 250 ° C. for 1 to 3 minutes. If the drying and heat treatment temperature is too low, the adhesion to rubbers tends to be insufficient, while if the temperature is too high, the synthetic fiber melts and fuses, or a significant reduction in strength occurs, making it unusable.

かくして本発明の製造方法によって得られるゴム補強用繊維は、ゴムに対する接着力、特に耐熱劣化が極めて少ないものである。さらには柔軟で疲労性に強く補強用繊維として最適である。このゴム補強用繊維は、例えばタイヤ、ベルトおよびホースなどの繊維補強されたゴム繊維複合体に用いられ、得られるゴム繊維複合体は高い接着性を有する高品質な特性を発揮するため、繊維補強ゴム製品として極めて有用である。   Thus, the rubber reinforcing fiber obtained by the production method of the present invention has very little adhesive force to rubber, particularly heat deterioration. Furthermore, it is flexible and highly resistant to fatigue, and is optimal as a reinforcing fiber. This rubber reinforcing fiber is used for a fiber reinforced rubber fiber composite such as tires, belts and hoses, for example, and the resulting rubber fiber composite exhibits high quality properties with high adhesiveness. It is extremely useful as a rubber product.

以下、実施例を挙げて本発明の構成および効果をさらに詳細に説明する。
[実施例1]
1100dtex/192フィラメントのポリエチレンテレフタレート繊維の平織布(目付=250g/m)を大気圧下(10.1万Pa)のブタジエン0.5%と窒素99%の混合ガス媒体中で30秒間のパルス電界によりプラズマ処理を行った。
Hereinafter, an example is given and the composition and effect of the present invention are explained in detail.
[Example 1]
A plain woven fabric of polyethylene terephthalate fibers of 1100 dtex / 192 filaments (basis weight = 250 g / m 2 ) for 30 seconds in a mixed gas medium of 0.5% butadiene and 99% nitrogen under atmospheric pressure (101,000 Pa) Plasma treatment was performed with a pulsed electric field.

次いでポリエポキシド化合物、ブロックドポリイソシアネート、ゴムラテックスを3.0重量部,13重量部、84重量部の割合で混合し、総固形分濃度を10.0重量%の第1処理液とし、プラズマ処理を施した平織布を浸漬させた。その後、130℃で2分間乾燥し、引き続き240℃で1分間熱処理した。   Next, a polyepoxide compound, blocked polyisocyanate, and rubber latex are mixed at a ratio of 3.0 parts by weight, 13 parts by weight, and 84 parts by weight to form a first treatment liquid having a total solid concentration of 10.0% by weight, and plasma treatment. The plain woven fabric subjected to was immersed. Thereafter, it was dried at 130 ° C. for 2 minutes and subsequently heat treated at 240 ° C. for 1 minute.

次に第2処理液を作成するために、まずレゾルシン/ホルマリン(R/F)のモル比が1/0.6、固形分濃度が65重量%である初期縮合物をアルカリ条件下溶解し6重量%水溶液とした。これを、ビニルピリジン・スチレン・ブタジエン共重合体ラテックス9%水乳化液420重量部に対し、57重量部添加し、この液にホルマリン3重量部、33重量%アセトキシムブロックドジフェニルメタンジイソシアネート分散体を13重量部添加し、48時間熟成した固形分濃度20重量%の第2処理液とした。プラズマ処理、第1処理液による処理を施した平織布を第2処理液に浸漬させ、その後150℃で2分間乾燥し、引き続き240℃で1分間熱処理した。   Next, in order to prepare the second treatment liquid, first, an initial condensate having a resorcin / formalin (R / F) molar ratio of 1 / 0.6 and a solid content concentration of 65% by weight was dissolved under alkaline conditions. A weight% aqueous solution was obtained. 57 parts by weight of this was added to 420 parts by weight of a 9% aqueous emulsion of vinylpyridine / styrene / butadiene copolymer latex, and 3 parts by weight of formalin and 33% by weight of acetoxime blocked diphenylmethane diisocyanate dispersion were added to this liquid. 13 weight part was added and it was set as the 2nd process liquid of 20 weight% of solid content concentration age | cure | ripened for 48 hours. The plain woven fabric subjected to the plasma treatment and the treatment with the first treatment liquid was immersed in the second treatment liquid, then dried at 150 ° C. for 2 minutes, and subsequently heat treated at 240 ° C. for 1 minute.

得られた処理済みの平織布を、天然ゴムを主成分とするカーカス配合の未加硫ゴムと重ねあわせ、500N/cmのプレス圧力で初期条件として160℃20分の加硫を行い、平織布とゴムの接着体を得た。このときあらかじめ離けい紙またはフイルムを織物とゴムシートの間に挟んでおき、平織布とゴムの非接着部分を作っておいた。平織布とゴム接着体を2.54cm(1インチ)幅に切り、平織布とゴムの非接着部分の平織布を治具でつかみゴムシートに対し90度の方向へ100mm/分の速度で剥離するのに要する力を、N/2.54cmで示した結果を初期接着力とした。さらに、耐熱条件として加硫時間を160℃60分に変更して同様の測定を行い耐熱接着力とした。耐熱劣化性は、初期接着力に対する耐熱接着力の比を耐熱維持率として%で示した。その結果を表1に示す。 The obtained treated plain woven fabric is overlapped with an unvulcanized rubber containing carcass containing natural rubber as a main component, and vulcanized at 160 ° C. for 20 minutes as an initial condition at a pressing pressure of 500 N / cm 2 . A bonded body of plain woven fabric and rubber was obtained. At this time, a release paper or film was previously sandwiched between the woven fabric and the rubber sheet to create a non-bonded portion of the plain woven fabric and rubber. Cut the plain woven fabric and the rubber bonded body into 2.54 cm (1 inch) width, hold the plain woven fabric and the plain woven fabric of the non-bonded part of the rubber with a jig, and 90 mm to the rubber sheet at 100 mm / min The result of the force required for peeling at a speed of N / 2.54 cm was defined as the initial adhesive force. Furthermore, the vulcanization time was changed to 160 ° C. and 60 minutes as heat resistant conditions, and the same measurement was performed to obtain heat resistant adhesive strength. The heat deterioration resistance was expressed in% as the heat-resistant maintenance ratio, which is the ratio of the heat-resistant adhesive force to the initial adhesive force. The results are shown in Table 1.

[比較例1]
プラズマ処理を行わない以外は、実施例1と同様に行った。結果を表1に併せて示す。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the plasma treatment was not performed. The results are also shown in Table 1.

[比較例2]
第1処理液による処理を行わない以外は、実施例1と同様に行った。結果を表1に併せて示す。
[Comparative Example 2]
The same operation as in Example 1 was performed except that the treatment with the first treatment liquid was not performed. The results are also shown in Table 1.

[比較例3]
プラズマ処理および第1処理液による処理を行わない以外は、実施例1と同様に行った。結果を表1に併せて示す。
[Comparative Example 3]
The same operation as in Example 1 was performed except that the plasma treatment and the treatment with the first treatment liquid were not performed. The results are also shown in Table 1.

Figure 2006233354
Figure 2006233354

Claims (4)

繊維をアルケン類及び/またはアルキン類の気体を含む媒体中でプラズマ処理し、次いでポリエポキシド化合物、ブロックドイソシアネート化合物、ゴムラテックスを含む第1処理液と、レゾルシン、ホルマリン、ゴムラテックスを主とする第2処理液とで順に処理することを特徴とするゴム補強用繊維の製造方法。   The fiber is plasma-treated in a medium containing an alkene and / or alkyne gas, and then a first treatment liquid containing a polyepoxide compound, a blocked isocyanate compound and a rubber latex, and a first treatment mainly comprising resorcin, formalin and rubber latex. A method for producing a fiber for reinforcing rubber, characterized by sequentially treating with two treatment liquids. 繊維が合成繊維である請求項1記載のゴム補強用繊維の製造方法。   2. The method for producing a fiber for reinforcing rubber according to claim 1, wherein the fiber is a synthetic fiber. プラズマ処理時の媒体が、窒素を主とするものである請求項1または2記載のゴム補強用繊維の製造方法。   The method for producing a fiber for reinforcing rubber according to claim 1 or 2, wherein the medium during the plasma treatment is mainly nitrogen. プラズマ処理時のアルケン類及び/またはアルキン類の濃度が0.1〜15体積%である請求項1〜3のいずれか1項記載のゴム補強用繊維の製造方法。   The method for producing a rubber-reinforcing fiber according to any one of claims 1 to 3, wherein the concentration of alkenes and / or alkynes during plasma treatment is 0.1 to 15% by volume.
JP2005049062A 2005-02-24 2005-02-24 Method for producing rubber-reinforcing fiber Pending JP2006233354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049062A JP2006233354A (en) 2005-02-24 2005-02-24 Method for producing rubber-reinforcing fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049062A JP2006233354A (en) 2005-02-24 2005-02-24 Method for producing rubber-reinforcing fiber

Publications (1)

Publication Number Publication Date
JP2006233354A true JP2006233354A (en) 2006-09-07

Family

ID=37041330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049062A Pending JP2006233354A (en) 2005-02-24 2005-02-24 Method for producing rubber-reinforcing fiber

Country Status (1)

Country Link
JP (1) JP2006233354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149817A1 (en) * 2016-03-04 2017-09-08 日産自動車株式会社 High-pressure gas storage container and method for producing high-pressure gas storage container
CN108779893A (en) * 2016-03-04 2018-11-09 日产自动车株式会社 The manufacturing method of tectosome and tectosome
CN111795295A (en) * 2019-04-01 2020-10-20 丰田自动车株式会社 High-pressure tank and method for manufacturing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227457A (en) * 1990-01-29 1991-10-08 Teijin Ltd Method for treating aromatic polyamide fiber
JPH1046468A (en) * 1996-07-29 1998-02-17 Toyobo Co Ltd Production of polybenzazole fiber having improved adhesion property with rubber
JPH11217766A (en) * 1997-11-25 1999-08-10 Sekisui Chem Co Ltd Surface treatment of textile product
JP2000234275A (en) * 1999-02-15 2000-08-29 Teijin Ltd Treatment of polyester fiber for rubber reinforcement
JP2002539337A (en) * 1999-03-11 2002-11-19 ミリケン・アンド・カンパニー Vinyl compound plasma pretreatment to promote adhesion between textiles and rubber compounds
JP2003221778A (en) * 2002-01-28 2003-08-08 Toyobo Co Ltd Polybenzazol fiber and method for producing the same
JP2004316027A (en) * 2003-04-17 2004-11-11 Teijin Techno Products Ltd Fiber-reinforced rubber hose
JP2005171432A (en) * 2003-12-12 2005-06-30 Teijin Techno Products Ltd Method for manufacturing fiber for polymer composite reinforcement
JP2006219782A (en) * 2005-02-10 2006-08-24 Teijin Techno Products Ltd Method for producing rubber-reinforcing fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227457A (en) * 1990-01-29 1991-10-08 Teijin Ltd Method for treating aromatic polyamide fiber
JPH1046468A (en) * 1996-07-29 1998-02-17 Toyobo Co Ltd Production of polybenzazole fiber having improved adhesion property with rubber
JPH11217766A (en) * 1997-11-25 1999-08-10 Sekisui Chem Co Ltd Surface treatment of textile product
JP2000234275A (en) * 1999-02-15 2000-08-29 Teijin Ltd Treatment of polyester fiber for rubber reinforcement
JP2002539337A (en) * 1999-03-11 2002-11-19 ミリケン・アンド・カンパニー Vinyl compound plasma pretreatment to promote adhesion between textiles and rubber compounds
JP2003221778A (en) * 2002-01-28 2003-08-08 Toyobo Co Ltd Polybenzazol fiber and method for producing the same
JP2004316027A (en) * 2003-04-17 2004-11-11 Teijin Techno Products Ltd Fiber-reinforced rubber hose
JP2005171432A (en) * 2003-12-12 2005-06-30 Teijin Techno Products Ltd Method for manufacturing fiber for polymer composite reinforcement
JP2006219782A (en) * 2005-02-10 2006-08-24 Teijin Techno Products Ltd Method for producing rubber-reinforcing fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149817A1 (en) * 2016-03-04 2017-09-08 日産自動車株式会社 High-pressure gas storage container and method for producing high-pressure gas storage container
CN108779893A (en) * 2016-03-04 2018-11-09 日产自动车株式会社 The manufacturing method of tectosome and tectosome
JPWO2017149817A1 (en) * 2016-03-04 2018-12-20 日産自動車株式会社 High pressure gas storage container and method for manufacturing high pressure gas storage container
CN108779893B (en) * 2016-03-04 2019-07-23 日产自动车株式会社 The manufacturing method of tectosome and tectosome
US10940663B2 (en) 2016-03-04 2021-03-09 Nissan Motor Co., Ltd. High-pressure gas storage container and method for producing high-pressure gas storage container
US11040479B2 (en) 2016-03-04 2021-06-22 Nissan Motor Co., Ltd. Structure and method for manufacturing structure
US11590725B2 (en) 2016-03-04 2023-02-28 Nissan Motor Co., Ltd. Method for producing high-pressure gas storage container
CN111795295A (en) * 2019-04-01 2020-10-20 丰田自动车株式会社 High-pressure tank and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6453960B1 (en) Prepreg and fiber-reinforced rubber materials
JP2011236533A (en) Carbon fiber for rubber reinforcement
JP2006233354A (en) Method for producing rubber-reinforcing fiber
JP2010053469A (en) Method for producing reinforcing fiber
JP2007046210A (en) Method of producing fiber for reinforcing rubber
JPH10273877A (en) Production of rubber-reinforcing fiber
JPH07268771A (en) Treatment of aramid short fiber for rubber reinforcement
JP5519401B2 (en) Method for producing rubber reinforcing fiber
JP5145264B2 (en) Method for producing rubber reinforcing fiber
JPH042887A (en) Treatment of polyester fiber
JP4198565B2 (en) Processing method of rubber reinforcing fiber
JPH0112867B2 (en)
JP4213026B2 (en) Method for producing rubber reinforcing fiber
JP2009299220A (en) Synthetic fiber for reinforcing rubber
JPH0860555A (en) Method for treating polyester fiber
JP4246089B2 (en) Ethylene propylene diene rubber / fiber adhesive composition
JPH0892386A (en) Method for adhering rubber compound to fiber
JPH1112370A (en) Adhesion of polyparaphenylenebenzo-bis-oxazole fiber to chloroprene rubber
JP3231535B2 (en) Adhesion treatment method between polyester fiber and ethylene propylene rubber
JP3188639B2 (en) Processing method of polyester fiber for high pressure hose reinforcement
JP2005089679A (en) Treating liquid for rubber/fiber bonding and method for producing fiber material for rubber-reinforcement
JP3793938B2 (en) Aromatic polyamide fiber for rubber reinforcement, method for producing the same, and fiber-reinforced rubber composite material
JPH0112868B2 (en)
JPH10195768A (en) Adhesion treatment of polyester fiber for reinforcing ethylene-propylene rubber
JPH03227457A (en) Method for treating aromatic polyamide fiber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525